]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/alpha/kernel/time.c
Merge branch 'cpuidle' into release
[karo-tx-linux.git] / arch / alpha / kernel / time.c
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the clocksource time handling.
7  * 1997-09-10   Updated NTP code according to technical memorandum Jan '96
8  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
9  * 1997-01-09    Adrian Sun
10  *      use interval timer if CONFIG_RTC=y
11  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
12  *      fixed tick loss calculation in timer_interrupt
13  *      (round system clock to nearest tick instead of truncating)
14  *      fixed algorithm in time_init for getting time from CMOS clock
15  * 1999-04-16   Thorsten Kranzkowski (dl8bcu@gmx.net)
16  *      fixed algorithm in do_gettimeofday() for calculating the precise time
17  *      from processor cycle counter (now taking lost_ticks into account)
18  * 2003-06-03   R. Scott Bailey <scott.bailey@eds.com>
19  *      Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
20  */
21 #include <linux/errno.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/param.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/delay.h>
29 #include <linux/ioport.h>
30 #include <linux/irq.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/bcd.h>
34 #include <linux/profile.h>
35 #include <linux/irq_work.h>
36
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/hwrpb.h>
40
41 #include <linux/mc146818rtc.h>
42 #include <linux/time.h>
43 #include <linux/timex.h>
44 #include <linux/clocksource.h>
45 #include <linux/clockchips.h>
46
47 #include "proto.h"
48 #include "irq_impl.h"
49
50 DEFINE_SPINLOCK(rtc_lock);
51 EXPORT_SYMBOL(rtc_lock);
52
53 unsigned long est_cycle_freq;
54
55 #ifdef CONFIG_IRQ_WORK
56
57 DEFINE_PER_CPU(u8, irq_work_pending);
58
59 #define set_irq_work_pending_flag()  __this_cpu_write(irq_work_pending, 1)
60 #define test_irq_work_pending()      __this_cpu_read(irq_work_pending)
61 #define clear_irq_work_pending()     __this_cpu_write(irq_work_pending, 0)
62
63 void arch_irq_work_raise(void)
64 {
65         set_irq_work_pending_flag();
66 }
67
68 #else  /* CONFIG_IRQ_WORK */
69
70 #define test_irq_work_pending()      0
71 #define clear_irq_work_pending()
72
73 #endif /* CONFIG_IRQ_WORK */
74
75
76 static inline __u32 rpcc(void)
77 {
78         return __builtin_alpha_rpcc();
79 }
80
81
82 \f
83 /*
84  * The RTC as a clock_event_device primitive.
85  */
86
87 static DEFINE_PER_CPU(struct clock_event_device, cpu_ce);
88
89 irqreturn_t
90 rtc_timer_interrupt(int irq, void *dev)
91 {
92         int cpu = smp_processor_id();
93         struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
94
95         /* Don't run the hook for UNUSED or SHUTDOWN.  */
96         if (likely(clockevent_state_periodic(ce)))
97                 ce->event_handler(ce);
98
99         if (test_irq_work_pending()) {
100                 clear_irq_work_pending();
101                 irq_work_run();
102         }
103
104         return IRQ_HANDLED;
105 }
106
107 static int
108 rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
109 {
110         /* This hook is for oneshot mode, which we don't support.  */
111         return -EINVAL;
112 }
113
114 static void __init
115 init_rtc_clockevent(void)
116 {
117         int cpu = smp_processor_id();
118         struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
119
120         *ce = (struct clock_event_device){
121                 .name = "rtc",
122                 .features = CLOCK_EVT_FEAT_PERIODIC,
123                 .rating = 100,
124                 .cpumask = cpumask_of(cpu),
125                 .set_next_event = rtc_ce_set_next_event,
126         };
127
128         clockevents_config_and_register(ce, CONFIG_HZ, 0, 0);
129 }
130
131 \f
132 /*
133  * The QEMU clock as a clocksource primitive.
134  */
135
136 static cycle_t
137 qemu_cs_read(struct clocksource *cs)
138 {
139         return qemu_get_vmtime();
140 }
141
142 static struct clocksource qemu_cs = {
143         .name                   = "qemu",
144         .rating                 = 400,
145         .read                   = qemu_cs_read,
146         .mask                   = CLOCKSOURCE_MASK(64),
147         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
148         .max_idle_ns            = LONG_MAX
149 };
150
151
152 /*
153  * The QEMU alarm as a clock_event_device primitive.
154  */
155
156 static int qemu_ce_shutdown(struct clock_event_device *ce)
157 {
158         /* The mode member of CE is updated for us in generic code.
159            Just make sure that the event is disabled.  */
160         qemu_set_alarm_abs(0);
161         return 0;
162 }
163
164 static int
165 qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
166 {
167         qemu_set_alarm_rel(evt);
168         return 0;
169 }
170
171 static irqreturn_t
172 qemu_timer_interrupt(int irq, void *dev)
173 {
174         int cpu = smp_processor_id();
175         struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
176
177         ce->event_handler(ce);
178         return IRQ_HANDLED;
179 }
180
181 static void __init
182 init_qemu_clockevent(void)
183 {
184         int cpu = smp_processor_id();
185         struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
186
187         *ce = (struct clock_event_device){
188                 .name = "qemu",
189                 .features = CLOCK_EVT_FEAT_ONESHOT,
190                 .rating = 400,
191                 .cpumask = cpumask_of(cpu),
192                 .set_state_shutdown = qemu_ce_shutdown,
193                 .set_state_oneshot = qemu_ce_shutdown,
194                 .tick_resume = qemu_ce_shutdown,
195                 .set_next_event = qemu_ce_set_next_event,
196         };
197
198         clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX);
199 }
200
201 \f
202 void __init
203 common_init_rtc(void)
204 {
205         unsigned char x, sel = 0;
206
207         /* Reset periodic interrupt frequency.  */
208 #if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
209         x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
210         /* Test includes known working values on various platforms
211            where 0x26 is wrong; we refuse to change those. */
212         if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
213                 sel = RTC_REF_CLCK_32KHZ + 6;
214         }
215 #elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
216         sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
217 #else
218 # error "Unknown HZ from arch/alpha/Kconfig"
219 #endif
220         if (sel) {
221                 printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
222                        CONFIG_HZ, sel);
223                 CMOS_WRITE(sel, RTC_FREQ_SELECT);
224         }
225
226         /* Turn on periodic interrupts.  */
227         x = CMOS_READ(RTC_CONTROL);
228         if (!(x & RTC_PIE)) {
229                 printk("Turning on RTC interrupts.\n");
230                 x |= RTC_PIE;
231                 x &= ~(RTC_AIE | RTC_UIE);
232                 CMOS_WRITE(x, RTC_CONTROL);
233         }
234         (void) CMOS_READ(RTC_INTR_FLAGS);
235
236         outb(0x36, 0x43);       /* pit counter 0: system timer */
237         outb(0x00, 0x40);
238         outb(0x00, 0x40);
239
240         outb(0xb6, 0x43);       /* pit counter 2: speaker */
241         outb(0x31, 0x42);
242         outb(0x13, 0x42);
243
244         init_rtc_irq();
245 }
246
247 \f
248 #ifndef CONFIG_ALPHA_WTINT
249 /*
250  * The RPCC as a clocksource primitive.
251  *
252  * While we have free-running timecounters running on all CPUs, and we make
253  * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter
254  * with the wall clock, that initialization isn't kept up-to-date across
255  * different time counters in SMP mode.  Therefore we can only use this
256  * method when there's only one CPU enabled.
257  *
258  * When using the WTINT PALcall, the RPCC may shift to a lower frequency,
259  * or stop altogether, while waiting for the interrupt.  Therefore we cannot
260  * use this method when WTINT is in use.
261  */
262
263 static cycle_t read_rpcc(struct clocksource *cs)
264 {
265         return rpcc();
266 }
267
268 static struct clocksource clocksource_rpcc = {
269         .name                   = "rpcc",
270         .rating                 = 300,
271         .read                   = read_rpcc,
272         .mask                   = CLOCKSOURCE_MASK(32),
273         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS
274 };
275 #endif /* ALPHA_WTINT */
276
277 \f
278 /* Validate a computed cycle counter result against the known bounds for
279    the given processor core.  There's too much brokenness in the way of
280    timing hardware for any one method to work everywhere.  :-(
281
282    Return 0 if the result cannot be trusted, otherwise return the argument.  */
283
284 static unsigned long __init
285 validate_cc_value(unsigned long cc)
286 {
287         static struct bounds {
288                 unsigned int min, max;
289         } cpu_hz[] __initdata = {
290                 [EV3_CPU]    = {   50000000,  200000000 },      /* guess */
291                 [EV4_CPU]    = {  100000000,  300000000 },
292                 [LCA4_CPU]   = {  100000000,  300000000 },      /* guess */
293                 [EV45_CPU]   = {  200000000,  300000000 },
294                 [EV5_CPU]    = {  250000000,  433000000 },
295                 [EV56_CPU]   = {  333000000,  667000000 },
296                 [PCA56_CPU]  = {  400000000,  600000000 },      /* guess */
297                 [PCA57_CPU]  = {  500000000,  600000000 },      /* guess */
298                 [EV6_CPU]    = {  466000000,  600000000 },
299                 [EV67_CPU]   = {  600000000,  750000000 },
300                 [EV68AL_CPU] = {  750000000,  940000000 },
301                 [EV68CB_CPU] = { 1000000000, 1333333333 },
302                 /* None of the following are shipping as of 2001-11-01.  */
303                 [EV68CX_CPU] = { 1000000000, 1700000000 },      /* guess */
304                 [EV69_CPU]   = { 1000000000, 1700000000 },      /* guess */
305                 [EV7_CPU]    = {  800000000, 1400000000 },      /* guess */
306                 [EV79_CPU]   = { 1000000000, 2000000000 },      /* guess */
307         };
308
309         /* Allow for some drift in the crystal.  10MHz is more than enough.  */
310         const unsigned int deviation = 10000000;
311
312         struct percpu_struct *cpu;
313         unsigned int index;
314
315         cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
316         index = cpu->type & 0xffffffff;
317
318         /* If index out of bounds, no way to validate.  */
319         if (index >= ARRAY_SIZE(cpu_hz))
320                 return cc;
321
322         /* If index contains no data, no way to validate.  */
323         if (cpu_hz[index].max == 0)
324                 return cc;
325
326         if (cc < cpu_hz[index].min - deviation
327             || cc > cpu_hz[index].max + deviation)
328                 return 0;
329
330         return cc;
331 }
332
333
334 /*
335  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
336  * arch/i386/time.c.
337  */
338
339 #define CALIBRATE_LATCH 0xffff
340 #define TIMEOUT_COUNT   0x100000
341
342 static unsigned long __init
343 calibrate_cc_with_pit(void)
344 {
345         int cc, count = 0;
346
347         /* Set the Gate high, disable speaker */
348         outb((inb(0x61) & ~0x02) | 0x01, 0x61);
349
350         /*
351          * Now let's take care of CTC channel 2
352          *
353          * Set the Gate high, program CTC channel 2 for mode 0,
354          * (interrupt on terminal count mode), binary count,
355          * load 5 * LATCH count, (LSB and MSB) to begin countdown.
356          */
357         outb(0xb0, 0x43);               /* binary, mode 0, LSB/MSB, Ch 2 */
358         outb(CALIBRATE_LATCH & 0xff, 0x42);     /* LSB of count */
359         outb(CALIBRATE_LATCH >> 8, 0x42);       /* MSB of count */
360
361         cc = rpcc();
362         do {
363                 count++;
364         } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
365         cc = rpcc() - cc;
366
367         /* Error: ECTCNEVERSET or ECPUTOOFAST.  */
368         if (count <= 1 || count == TIMEOUT_COUNT)
369                 return 0;
370
371         return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
372 }
373
374 /* The Linux interpretation of the CMOS clock register contents:
375    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
376    RTC registers show the second which has precisely just started.
377    Let's hope other operating systems interpret the RTC the same way.  */
378
379 static unsigned long __init
380 rpcc_after_update_in_progress(void)
381 {
382         do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
383         do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
384
385         return rpcc();
386 }
387
388 void __init
389 time_init(void)
390 {
391         unsigned int cc1, cc2;
392         unsigned long cycle_freq, tolerance;
393         long diff;
394
395         if (alpha_using_qemu) {
396                 clocksource_register_hz(&qemu_cs, NSEC_PER_SEC);
397                 init_qemu_clockevent();
398
399                 timer_irqaction.handler = qemu_timer_interrupt;
400                 init_rtc_irq();
401                 return;
402         }
403
404         /* Calibrate CPU clock -- attempt #1.  */
405         if (!est_cycle_freq)
406                 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
407
408         cc1 = rpcc();
409
410         /* Calibrate CPU clock -- attempt #2.  */
411         if (!est_cycle_freq) {
412                 cc1 = rpcc_after_update_in_progress();
413                 cc2 = rpcc_after_update_in_progress();
414                 est_cycle_freq = validate_cc_value(cc2 - cc1);
415                 cc1 = cc2;
416         }
417
418         cycle_freq = hwrpb->cycle_freq;
419         if (est_cycle_freq) {
420                 /* If the given value is within 250 PPM of what we calculated,
421                    accept it.  Otherwise, use what we found.  */
422                 tolerance = cycle_freq / 4000;
423                 diff = cycle_freq - est_cycle_freq;
424                 if (diff < 0)
425                         diff = -diff;
426                 if ((unsigned long)diff > tolerance) {
427                         cycle_freq = est_cycle_freq;
428                         printk("HWRPB cycle frequency bogus.  "
429                                "Estimated %lu Hz\n", cycle_freq);
430                 } else {
431                         est_cycle_freq = 0;
432                 }
433         } else if (! validate_cc_value (cycle_freq)) {
434                 printk("HWRPB cycle frequency bogus, "
435                        "and unable to estimate a proper value!\n");
436         }
437
438         /* See above for restrictions on using clocksource_rpcc.  */
439 #ifndef CONFIG_ALPHA_WTINT
440         if (hwrpb->nr_processors == 1)
441                 clocksource_register_hz(&clocksource_rpcc, cycle_freq);
442 #endif
443
444         /* Startup the timer source. */
445         alpha_mv.init_rtc();
446         init_rtc_clockevent();
447 }
448
449 /* Initialize the clock_event_device for secondary cpus.  */
450 #ifdef CONFIG_SMP
451 void __init
452 init_clockevent(void)
453 {
454         if (alpha_using_qemu)
455                 init_qemu_clockevent();
456         else
457                 init_rtc_clockevent();
458 }
459 #endif