]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm/include/asm/pgtable.h
Merge remote-tracking branch 'drm-panel/drm/panel/for-next'
[karo-tx-linux.git] / arch / arm / include / asm / pgtable.h
1 /*
2  *  arch/arm/include/asm/pgtable.h
3  *
4  *  Copyright (C) 1995-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #ifndef _ASMARM_PGTABLE_H
11 #define _ASMARM_PGTABLE_H
12
13 #include <linux/const.h>
14 #include <asm/proc-fns.h>
15
16 #ifndef CONFIG_MMU
17
18 #include <asm-generic/4level-fixup.h>
19 #include <asm/pgtable-nommu.h>
20
21 #else
22
23 #include <asm-generic/pgtable-nopud.h>
24 #include <asm/memory.h>
25 #include <asm/pgtable-hwdef.h>
26
27
28 #include <asm/tlbflush.h>
29
30 #ifdef CONFIG_ARM_LPAE
31 #include <asm/pgtable-3level.h>
32 #else
33 #include <asm/pgtable-2level.h>
34 #endif
35
36 /*
37  * Just any arbitrary offset to the start of the vmalloc VM area: the
38  * current 8MB value just means that there will be a 8MB "hole" after the
39  * physical memory until the kernel virtual memory starts.  That means that
40  * any out-of-bounds memory accesses will hopefully be caught.
41  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
42  * area for the same reason. ;)
43  */
44 #define VMALLOC_OFFSET          (8*1024*1024)
45 #define VMALLOC_START           (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
46 #define VMALLOC_END             0xff800000UL
47
48 #define LIBRARY_TEXT_START      0x0c000000
49
50 #ifndef __ASSEMBLY__
51 extern void __pte_error(const char *file, int line, pte_t);
52 extern void __pmd_error(const char *file, int line, pmd_t);
53 extern void __pgd_error(const char *file, int line, pgd_t);
54
55 #define pte_ERROR(pte)          __pte_error(__FILE__, __LINE__, pte)
56 #define pmd_ERROR(pmd)          __pmd_error(__FILE__, __LINE__, pmd)
57 #define pgd_ERROR(pgd)          __pgd_error(__FILE__, __LINE__, pgd)
58
59 /*
60  * This is the lowest virtual address we can permit any user space
61  * mapping to be mapped at.  This is particularly important for
62  * non-high vector CPUs.
63  */
64 #define FIRST_USER_ADDRESS      (PAGE_SIZE * 2)
65
66 /*
67  * Use TASK_SIZE as the ceiling argument for free_pgtables() and
68  * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
69  * page shared between user and kernel).
70  */
71 #ifdef CONFIG_ARM_LPAE
72 #define USER_PGTABLES_CEILING   TASK_SIZE
73 #endif
74
75 /*
76  * The pgprot_* and protection_map entries will be fixed up in runtime
77  * to include the cachable and bufferable bits based on memory policy,
78  * as well as any architecture dependent bits like global/ASID and SMP
79  * shared mapping bits.
80  */
81 #define _L_PTE_DEFAULT  L_PTE_PRESENT | L_PTE_YOUNG
82
83 extern pgprot_t         pgprot_user;
84 extern pgprot_t         pgprot_kernel;
85 extern pgprot_t         pgprot_hyp_device;
86 extern pgprot_t         pgprot_s2;
87 extern pgprot_t         pgprot_s2_device;
88
89 #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
90
91 #define PAGE_NONE               _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
92 #define PAGE_SHARED             _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
93 #define PAGE_SHARED_EXEC        _MOD_PROT(pgprot_user, L_PTE_USER)
94 #define PAGE_COPY               _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
95 #define PAGE_COPY_EXEC          _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
96 #define PAGE_READONLY           _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
97 #define PAGE_READONLY_EXEC      _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
98 #define PAGE_KERNEL             _MOD_PROT(pgprot_kernel, L_PTE_XN)
99 #define PAGE_KERNEL_EXEC        pgprot_kernel
100 #define PAGE_HYP                _MOD_PROT(pgprot_kernel, L_PTE_HYP)
101 #define PAGE_HYP_DEVICE         _MOD_PROT(pgprot_hyp_device, L_PTE_HYP)
102 #define PAGE_S2                 _MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY)
103 #define PAGE_S2_DEVICE          _MOD_PROT(pgprot_s2_device, L_PTE_S2_RDONLY)
104
105 #define __PAGE_NONE             __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
106 #define __PAGE_SHARED           __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
107 #define __PAGE_SHARED_EXEC      __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
108 #define __PAGE_COPY             __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
109 #define __PAGE_COPY_EXEC        __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
110 #define __PAGE_READONLY         __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
111 #define __PAGE_READONLY_EXEC    __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
112
113 #define __pgprot_modify(prot,mask,bits)         \
114         __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
115
116 #define pgprot_noncached(prot) \
117         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
118
119 #define pgprot_writecombine(prot) \
120         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
121
122 #define pgprot_stronglyordered(prot) \
123         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
124
125 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
126 #define pgprot_dmacoherent(prot) \
127         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
128 #define __HAVE_PHYS_MEM_ACCESS_PROT
129 struct file;
130 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
131                                      unsigned long size, pgprot_t vma_prot);
132 #else
133 #define pgprot_dmacoherent(prot) \
134         __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
135 #endif
136
137 #endif /* __ASSEMBLY__ */
138
139 /*
140  * The table below defines the page protection levels that we insert into our
141  * Linux page table version.  These get translated into the best that the
142  * architecture can perform.  Note that on most ARM hardware:
143  *  1) We cannot do execute protection
144  *  2) If we could do execute protection, then read is implied
145  *  3) write implies read permissions
146  */
147 #define __P000  __PAGE_NONE
148 #define __P001  __PAGE_READONLY
149 #define __P010  __PAGE_COPY
150 #define __P011  __PAGE_COPY
151 #define __P100  __PAGE_READONLY_EXEC
152 #define __P101  __PAGE_READONLY_EXEC
153 #define __P110  __PAGE_COPY_EXEC
154 #define __P111  __PAGE_COPY_EXEC
155
156 #define __S000  __PAGE_NONE
157 #define __S001  __PAGE_READONLY
158 #define __S010  __PAGE_SHARED
159 #define __S011  __PAGE_SHARED
160 #define __S100  __PAGE_READONLY_EXEC
161 #define __S101  __PAGE_READONLY_EXEC
162 #define __S110  __PAGE_SHARED_EXEC
163 #define __S111  __PAGE_SHARED_EXEC
164
165 #ifndef __ASSEMBLY__
166 /*
167  * ZERO_PAGE is a global shared page that is always zero: used
168  * for zero-mapped memory areas etc..
169  */
170 extern struct page *empty_zero_page;
171 #define ZERO_PAGE(vaddr)        (empty_zero_page)
172
173
174 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
175
176 /* to find an entry in a page-table-directory */
177 #define pgd_index(addr)         ((addr) >> PGDIR_SHIFT)
178
179 #define pgd_offset(mm, addr)    ((mm)->pgd + pgd_index(addr))
180
181 /* to find an entry in a kernel page-table-directory */
182 #define pgd_offset_k(addr)      pgd_offset(&init_mm, addr)
183
184 #define pmd_none(pmd)           (!pmd_val(pmd))
185 #define pmd_present(pmd)        (pmd_val(pmd))
186
187 static inline pte_t *pmd_page_vaddr(pmd_t pmd)
188 {
189         return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
190 }
191
192 #define pmd_page(pmd)           pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
193
194 #ifndef CONFIG_HIGHPTE
195 #define __pte_map(pmd)          pmd_page_vaddr(*(pmd))
196 #define __pte_unmap(pte)        do { } while (0)
197 #else
198 #define __pte_map(pmd)          (pte_t *)kmap_atomic(pmd_page(*(pmd)))
199 #define __pte_unmap(pte)        kunmap_atomic(pte)
200 #endif
201
202 #define pte_index(addr)         (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
203
204 #define pte_offset_kernel(pmd,addr)     (pmd_page_vaddr(*(pmd)) + pte_index(addr))
205
206 #define pte_offset_map(pmd,addr)        (__pte_map(pmd) + pte_index(addr))
207 #define pte_unmap(pte)                  __pte_unmap(pte)
208
209 #define pte_pfn(pte)            ((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
210 #define pfn_pte(pfn,prot)       __pte(__pfn_to_phys(pfn) | pgprot_val(prot))
211
212 #define pte_page(pte)           pfn_to_page(pte_pfn(pte))
213 #define mk_pte(page,prot)       pfn_pte(page_to_pfn(page), prot)
214
215 #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
216
217 #define pte_isset(pte, val)     ((u32)(val) == (val) ? pte_val(pte) & (val) \
218                                                 : !!(pte_val(pte) & (val)))
219 #define pte_isclear(pte, val)   (!(pte_val(pte) & (val)))
220
221 #define pte_none(pte)           (!pte_val(pte))
222 #define pte_present(pte)        (pte_isset((pte), L_PTE_PRESENT))
223 #define pte_valid(pte)          (pte_isset((pte), L_PTE_VALID))
224 #define pte_accessible(mm, pte) (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
225 #define pte_write(pte)          (pte_isclear((pte), L_PTE_RDONLY))
226 #define pte_dirty(pte)          (pte_isset((pte), L_PTE_DIRTY))
227 #define pte_young(pte)          (pte_isset((pte), L_PTE_YOUNG))
228 #define pte_exec(pte)           (pte_isclear((pte), L_PTE_XN))
229
230 #define pte_valid_user(pte)     \
231         (pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
232
233 #if __LINUX_ARM_ARCH__ < 6
234 static inline void __sync_icache_dcache(pte_t pteval)
235 {
236 }
237 #else
238 extern void __sync_icache_dcache(pte_t pteval);
239 #endif
240
241 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
242                               pte_t *ptep, pte_t pteval)
243 {
244         unsigned long ext = 0;
245
246         if (addr < TASK_SIZE && pte_valid_user(pteval)) {
247                 if (!pte_special(pteval))
248                         __sync_icache_dcache(pteval);
249                 ext |= PTE_EXT_NG;
250         }
251
252         set_pte_ext(ptep, pteval, ext);
253 }
254
255 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
256 {
257         pte_val(pte) &= ~pgprot_val(prot);
258         return pte;
259 }
260
261 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
262 {
263         pte_val(pte) |= pgprot_val(prot);
264         return pte;
265 }
266
267 static inline pte_t pte_wrprotect(pte_t pte)
268 {
269         return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
270 }
271
272 static inline pte_t pte_mkwrite(pte_t pte)
273 {
274         return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
275 }
276
277 static inline pte_t pte_mkclean(pte_t pte)
278 {
279         return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
280 }
281
282 static inline pte_t pte_mkdirty(pte_t pte)
283 {
284         return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
285 }
286
287 static inline pte_t pte_mkold(pte_t pte)
288 {
289         return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
290 }
291
292 static inline pte_t pte_mkyoung(pte_t pte)
293 {
294         return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
295 }
296
297 static inline pte_t pte_mkexec(pte_t pte)
298 {
299         return clear_pte_bit(pte, __pgprot(L_PTE_XN));
300 }
301
302 static inline pte_t pte_mknexec(pte_t pte)
303 {
304         return set_pte_bit(pte, __pgprot(L_PTE_XN));
305 }
306
307 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
308 {
309         const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
310                 L_PTE_NONE | L_PTE_VALID;
311         pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
312         return pte;
313 }
314
315 /*
316  * Encode and decode a swap entry.  Swap entries are stored in the Linux
317  * page tables as follows:
318  *
319  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
320  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
321  *   <--------------- offset ------------------------> < type -> 0 0
322  *
323  * This gives us up to 31 swap files and 128GB per swap file.  Note that
324  * the offset field is always non-zero.
325  */
326 #define __SWP_TYPE_SHIFT        2
327 #define __SWP_TYPE_BITS         5
328 #define __SWP_TYPE_MASK         ((1 << __SWP_TYPE_BITS) - 1)
329 #define __SWP_OFFSET_SHIFT      (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
330
331 #define __swp_type(x)           (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
332 #define __swp_offset(x)         ((x).val >> __SWP_OFFSET_SHIFT)
333 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
334
335 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
336 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
337
338 /*
339  * It is an error for the kernel to have more swap files than we can
340  * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
341  * is increased beyond what we presently support.
342  */
343 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
344
345 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
346 /* FIXME: this is not correct */
347 #define kern_addr_valid(addr)   (1)
348
349 #include <asm-generic/pgtable.h>
350
351 /*
352  * We provide our own arch_get_unmapped_area to cope with VIPT caches.
353  */
354 #define HAVE_ARCH_UNMAPPED_AREA
355 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
356
357 #define pgtable_cache_init() do { } while (0)
358
359 #endif /* !__ASSEMBLY__ */
360
361 #endif /* CONFIG_MMU */
362
363 #endif /* _ASMARM_PGTABLE_H */