]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm/kvm/arm.c
Merge remote-tracking branch 'percpu/for-next'
[karo-tx-linux.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66         BUG_ON(preemptible());
67         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69
70 /**
71  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72  * Must be called from non-preemptible context
73  */
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76         BUG_ON(preemptible());
77         return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79
80 /**
81  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82  */
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85         return &kvm_arm_running_vcpu;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90         return 0;
91 }
92
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97
98 int kvm_arch_hardware_setup(void)
99 {
100         return 0;
101 }
102
103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105         *(int *)rtn = 0;
106 }
107
108
109 /**
110  * kvm_arch_init_vm - initializes a VM data structure
111  * @kvm:        pointer to the KVM struct
112  */
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115         int ret = 0;
116
117         if (type)
118                 return -EINVAL;
119
120         ret = kvm_alloc_stage2_pgd(kvm);
121         if (ret)
122                 goto out_fail_alloc;
123
124         ret = create_hyp_mappings(kvm, kvm + 1);
125         if (ret)
126                 goto out_free_stage2_pgd;
127
128         kvm_vgic_early_init(kvm);
129         kvm_timer_init(kvm);
130
131         /* Mark the initial VMID generation invalid */
132         kvm->arch.vmid_gen = 0;
133
134         /* The maximum number of VCPUs is limited by the host's GIC model */
135         kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
136
137         return ret;
138 out_free_stage2_pgd:
139         kvm_free_stage2_pgd(kvm);
140 out_fail_alloc:
141         return ret;
142 }
143
144 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
145 {
146         return VM_FAULT_SIGBUS;
147 }
148
149
150 /**
151  * kvm_arch_destroy_vm - destroy the VM data structure
152  * @kvm:        pointer to the KVM struct
153  */
154 void kvm_arch_destroy_vm(struct kvm *kvm)
155 {
156         int i;
157
158         kvm_free_stage2_pgd(kvm);
159
160         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
161                 if (kvm->vcpus[i]) {
162                         kvm_arch_vcpu_free(kvm->vcpus[i]);
163                         kvm->vcpus[i] = NULL;
164                 }
165         }
166
167         kvm_vgic_destroy(kvm);
168 }
169
170 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
171 {
172         int r;
173         switch (ext) {
174         case KVM_CAP_IRQCHIP:
175         case KVM_CAP_IOEVENTFD:
176         case KVM_CAP_DEVICE_CTRL:
177         case KVM_CAP_USER_MEMORY:
178         case KVM_CAP_SYNC_MMU:
179         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
180         case KVM_CAP_ONE_REG:
181         case KVM_CAP_ARM_PSCI:
182         case KVM_CAP_ARM_PSCI_0_2:
183         case KVM_CAP_READONLY_MEM:
184         case KVM_CAP_MP_STATE:
185                 r = 1;
186                 break;
187         case KVM_CAP_COALESCED_MMIO:
188                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
189                 break;
190         case KVM_CAP_ARM_SET_DEVICE_ADDR:
191                 r = 1;
192                 break;
193         case KVM_CAP_NR_VCPUS:
194                 r = num_online_cpus();
195                 break;
196         case KVM_CAP_MAX_VCPUS:
197                 r = KVM_MAX_VCPUS;
198                 break;
199         default:
200                 r = kvm_arch_dev_ioctl_check_extension(ext);
201                 break;
202         }
203         return r;
204 }
205
206 long kvm_arch_dev_ioctl(struct file *filp,
207                         unsigned int ioctl, unsigned long arg)
208 {
209         return -EINVAL;
210 }
211
212
213 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
214 {
215         int err;
216         struct kvm_vcpu *vcpu;
217
218         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
219                 err = -EBUSY;
220                 goto out;
221         }
222
223         if (id >= kvm->arch.max_vcpus) {
224                 err = -EINVAL;
225                 goto out;
226         }
227
228         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
229         if (!vcpu) {
230                 err = -ENOMEM;
231                 goto out;
232         }
233
234         err = kvm_vcpu_init(vcpu, kvm, id);
235         if (err)
236                 goto free_vcpu;
237
238         err = create_hyp_mappings(vcpu, vcpu + 1);
239         if (err)
240                 goto vcpu_uninit;
241
242         return vcpu;
243 vcpu_uninit:
244         kvm_vcpu_uninit(vcpu);
245 free_vcpu:
246         kmem_cache_free(kvm_vcpu_cache, vcpu);
247 out:
248         return ERR_PTR(err);
249 }
250
251 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
252 {
253         kvm_vgic_vcpu_early_init(vcpu);
254 }
255
256 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
257 {
258         kvm_mmu_free_memory_caches(vcpu);
259         kvm_timer_vcpu_terminate(vcpu);
260         kvm_vgic_vcpu_destroy(vcpu);
261         kmem_cache_free(kvm_vcpu_cache, vcpu);
262 }
263
264 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
265 {
266         kvm_arch_vcpu_free(vcpu);
267 }
268
269 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
270 {
271         return kvm_timer_should_fire(vcpu);
272 }
273
274 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
275 {
276         kvm_timer_schedule(vcpu);
277 }
278
279 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
280 {
281         kvm_timer_unschedule(vcpu);
282 }
283
284 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
285 {
286         /* Force users to call KVM_ARM_VCPU_INIT */
287         vcpu->arch.target = -1;
288         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
289
290         /* Set up the timer */
291         kvm_timer_vcpu_init(vcpu);
292
293         kvm_arm_reset_debug_ptr(vcpu);
294
295         return 0;
296 }
297
298 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
299 {
300         vcpu->cpu = cpu;
301         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
302
303         kvm_arm_set_running_vcpu(vcpu);
304 }
305
306 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
307 {
308         /*
309          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
310          * if the vcpu is no longer assigned to a cpu.  This is used for the
311          * optimized make_all_cpus_request path.
312          */
313         vcpu->cpu = -1;
314
315         kvm_arm_set_running_vcpu(NULL);
316 }
317
318 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
319                                     struct kvm_mp_state *mp_state)
320 {
321         if (vcpu->arch.power_off)
322                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
323         else
324                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
325
326         return 0;
327 }
328
329 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
330                                     struct kvm_mp_state *mp_state)
331 {
332         switch (mp_state->mp_state) {
333         case KVM_MP_STATE_RUNNABLE:
334                 vcpu->arch.power_off = false;
335                 break;
336         case KVM_MP_STATE_STOPPED:
337                 vcpu->arch.power_off = true;
338                 break;
339         default:
340                 return -EINVAL;
341         }
342
343         return 0;
344 }
345
346 /**
347  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
348  * @v:          The VCPU pointer
349  *
350  * If the guest CPU is not waiting for interrupts or an interrupt line is
351  * asserted, the CPU is by definition runnable.
352  */
353 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
354 {
355         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
356                 && !v->arch.power_off && !v->arch.pause);
357 }
358
359 /* Just ensure a guest exit from a particular CPU */
360 static void exit_vm_noop(void *info)
361 {
362 }
363
364 void force_vm_exit(const cpumask_t *mask)
365 {
366         smp_call_function_many(mask, exit_vm_noop, NULL, true);
367 }
368
369 /**
370  * need_new_vmid_gen - check that the VMID is still valid
371  * @kvm: The VM's VMID to checkt
372  *
373  * return true if there is a new generation of VMIDs being used
374  *
375  * The hardware supports only 256 values with the value zero reserved for the
376  * host, so we check if an assigned value belongs to a previous generation,
377  * which which requires us to assign a new value. If we're the first to use a
378  * VMID for the new generation, we must flush necessary caches and TLBs on all
379  * CPUs.
380  */
381 static bool need_new_vmid_gen(struct kvm *kvm)
382 {
383         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
384 }
385
386 /**
387  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
388  * @kvm The guest that we are about to run
389  *
390  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
391  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
392  * caches and TLBs.
393  */
394 static void update_vttbr(struct kvm *kvm)
395 {
396         phys_addr_t pgd_phys;
397         u64 vmid;
398
399         if (!need_new_vmid_gen(kvm))
400                 return;
401
402         spin_lock(&kvm_vmid_lock);
403
404         /*
405          * We need to re-check the vmid_gen here to ensure that if another vcpu
406          * already allocated a valid vmid for this vm, then this vcpu should
407          * use the same vmid.
408          */
409         if (!need_new_vmid_gen(kvm)) {
410                 spin_unlock(&kvm_vmid_lock);
411                 return;
412         }
413
414         /* First user of a new VMID generation? */
415         if (unlikely(kvm_next_vmid == 0)) {
416                 atomic64_inc(&kvm_vmid_gen);
417                 kvm_next_vmid = 1;
418
419                 /*
420                  * On SMP we know no other CPUs can use this CPU's or each
421                  * other's VMID after force_vm_exit returns since the
422                  * kvm_vmid_lock blocks them from reentry to the guest.
423                  */
424                 force_vm_exit(cpu_all_mask);
425                 /*
426                  * Now broadcast TLB + ICACHE invalidation over the inner
427                  * shareable domain to make sure all data structures are
428                  * clean.
429                  */
430                 kvm_call_hyp(__kvm_flush_vm_context);
431         }
432
433         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
434         kvm->arch.vmid = kvm_next_vmid;
435         kvm_next_vmid++;
436
437         /* update vttbr to be used with the new vmid */
438         pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
439         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
440         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
441         kvm->arch.vttbr = pgd_phys | vmid;
442
443         spin_unlock(&kvm_vmid_lock);
444 }
445
446 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
447 {
448         struct kvm *kvm = vcpu->kvm;
449         int ret;
450
451         if (likely(vcpu->arch.has_run_once))
452                 return 0;
453
454         vcpu->arch.has_run_once = true;
455
456         /*
457          * Map the VGIC hardware resources before running a vcpu the first
458          * time on this VM.
459          */
460         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
461                 ret = kvm_vgic_map_resources(kvm);
462                 if (ret)
463                         return ret;
464         }
465
466         /*
467          * Enable the arch timers only if we have an in-kernel VGIC
468          * and it has been properly initialized, since we cannot handle
469          * interrupts from the virtual timer with a userspace gic.
470          */
471         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
472                 kvm_timer_enable(kvm);
473
474         return 0;
475 }
476
477 bool kvm_arch_intc_initialized(struct kvm *kvm)
478 {
479         return vgic_initialized(kvm);
480 }
481
482 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
483 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
484
485 static void kvm_arm_halt_guest(struct kvm *kvm)
486 {
487         int i;
488         struct kvm_vcpu *vcpu;
489
490         kvm_for_each_vcpu(i, vcpu, kvm)
491                 vcpu->arch.pause = true;
492         force_vm_exit(cpu_all_mask);
493 }
494
495 static void kvm_arm_resume_guest(struct kvm *kvm)
496 {
497         int i;
498         struct kvm_vcpu *vcpu;
499
500         kvm_for_each_vcpu(i, vcpu, kvm) {
501                 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
502
503                 vcpu->arch.pause = false;
504                 wake_up_interruptible(wq);
505         }
506 }
507
508 static void vcpu_sleep(struct kvm_vcpu *vcpu)
509 {
510         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
511
512         wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
513                                        (!vcpu->arch.pause)));
514 }
515
516 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
517 {
518         return vcpu->arch.target >= 0;
519 }
520
521 /**
522  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
523  * @vcpu:       The VCPU pointer
524  * @run:        The kvm_run structure pointer used for userspace state exchange
525  *
526  * This function is called through the VCPU_RUN ioctl called from user space. It
527  * will execute VM code in a loop until the time slice for the process is used
528  * or some emulation is needed from user space in which case the function will
529  * return with return value 0 and with the kvm_run structure filled in with the
530  * required data for the requested emulation.
531  */
532 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
533 {
534         int ret;
535         sigset_t sigsaved;
536
537         if (unlikely(!kvm_vcpu_initialized(vcpu)))
538                 return -ENOEXEC;
539
540         ret = kvm_vcpu_first_run_init(vcpu);
541         if (ret)
542                 return ret;
543
544         if (run->exit_reason == KVM_EXIT_MMIO) {
545                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
546                 if (ret)
547                         return ret;
548         }
549
550         if (vcpu->sigset_active)
551                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
552
553         ret = 1;
554         run->exit_reason = KVM_EXIT_UNKNOWN;
555         while (ret > 0) {
556                 /*
557                  * Check conditions before entering the guest
558                  */
559                 cond_resched();
560
561                 update_vttbr(vcpu->kvm);
562
563                 if (vcpu->arch.power_off || vcpu->arch.pause)
564                         vcpu_sleep(vcpu);
565
566                 /*
567                  * Disarming the background timer must be done in a
568                  * preemptible context, as this call may sleep.
569                  */
570                 kvm_timer_flush_hwstate(vcpu);
571
572                 /*
573                  * Preparing the interrupts to be injected also
574                  * involves poking the GIC, which must be done in a
575                  * non-preemptible context.
576                  */
577                 preempt_disable();
578                 kvm_vgic_flush_hwstate(vcpu);
579
580                 local_irq_disable();
581
582                 /*
583                  * Re-check atomic conditions
584                  */
585                 if (signal_pending(current)) {
586                         ret = -EINTR;
587                         run->exit_reason = KVM_EXIT_INTR;
588                 }
589
590                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
591                         vcpu->arch.power_off || vcpu->arch.pause) {
592                         local_irq_enable();
593                         kvm_timer_sync_hwstate(vcpu);
594                         kvm_vgic_sync_hwstate(vcpu);
595                         preempt_enable();
596                         continue;
597                 }
598
599                 kvm_arm_setup_debug(vcpu);
600
601                 /**************************************************************
602                  * Enter the guest
603                  */
604                 trace_kvm_entry(*vcpu_pc(vcpu));
605                 __kvm_guest_enter();
606                 vcpu->mode = IN_GUEST_MODE;
607
608                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
609
610                 vcpu->mode = OUTSIDE_GUEST_MODE;
611                 /*
612                  * Back from guest
613                  *************************************************************/
614
615                 kvm_arm_clear_debug(vcpu);
616
617                 /*
618                  * We may have taken a host interrupt in HYP mode (ie
619                  * while executing the guest). This interrupt is still
620                  * pending, as we haven't serviced it yet!
621                  *
622                  * We're now back in SVC mode, with interrupts
623                  * disabled.  Enabling the interrupts now will have
624                  * the effect of taking the interrupt again, in SVC
625                  * mode this time.
626                  */
627                 local_irq_enable();
628
629                 /*
630                  * We do local_irq_enable() before calling kvm_guest_exit() so
631                  * that if a timer interrupt hits while running the guest we
632                  * account that tick as being spent in the guest.  We enable
633                  * preemption after calling kvm_guest_exit() so that if we get
634                  * preempted we make sure ticks after that is not counted as
635                  * guest time.
636                  */
637                 kvm_guest_exit();
638                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
639
640                 /*
641                  * We must sync the timer state before the vgic state so that
642                  * the vgic can properly sample the updated state of the
643                  * interrupt line.
644                  */
645                 kvm_timer_sync_hwstate(vcpu);
646
647                 kvm_vgic_sync_hwstate(vcpu);
648
649                 preempt_enable();
650
651                 ret = handle_exit(vcpu, run, ret);
652         }
653
654         if (vcpu->sigset_active)
655                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
656         return ret;
657 }
658
659 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
660 {
661         int bit_index;
662         bool set;
663         unsigned long *ptr;
664
665         if (number == KVM_ARM_IRQ_CPU_IRQ)
666                 bit_index = __ffs(HCR_VI);
667         else /* KVM_ARM_IRQ_CPU_FIQ */
668                 bit_index = __ffs(HCR_VF);
669
670         ptr = (unsigned long *)&vcpu->arch.irq_lines;
671         if (level)
672                 set = test_and_set_bit(bit_index, ptr);
673         else
674                 set = test_and_clear_bit(bit_index, ptr);
675
676         /*
677          * If we didn't change anything, no need to wake up or kick other CPUs
678          */
679         if (set == level)
680                 return 0;
681
682         /*
683          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
684          * trigger a world-switch round on the running physical CPU to set the
685          * virtual IRQ/FIQ fields in the HCR appropriately.
686          */
687         kvm_vcpu_kick(vcpu);
688
689         return 0;
690 }
691
692 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
693                           bool line_status)
694 {
695         u32 irq = irq_level->irq;
696         unsigned int irq_type, vcpu_idx, irq_num;
697         int nrcpus = atomic_read(&kvm->online_vcpus);
698         struct kvm_vcpu *vcpu = NULL;
699         bool level = irq_level->level;
700
701         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
702         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
703         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
704
705         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
706
707         switch (irq_type) {
708         case KVM_ARM_IRQ_TYPE_CPU:
709                 if (irqchip_in_kernel(kvm))
710                         return -ENXIO;
711
712                 if (vcpu_idx >= nrcpus)
713                         return -EINVAL;
714
715                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
716                 if (!vcpu)
717                         return -EINVAL;
718
719                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
720                         return -EINVAL;
721
722                 return vcpu_interrupt_line(vcpu, irq_num, level);
723         case KVM_ARM_IRQ_TYPE_PPI:
724                 if (!irqchip_in_kernel(kvm))
725                         return -ENXIO;
726
727                 if (vcpu_idx >= nrcpus)
728                         return -EINVAL;
729
730                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
731                 if (!vcpu)
732                         return -EINVAL;
733
734                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
735                         return -EINVAL;
736
737                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
738         case KVM_ARM_IRQ_TYPE_SPI:
739                 if (!irqchip_in_kernel(kvm))
740                         return -ENXIO;
741
742                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
743                         return -EINVAL;
744
745                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
746         }
747
748         return -EINVAL;
749 }
750
751 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
752                                const struct kvm_vcpu_init *init)
753 {
754         unsigned int i;
755         int phys_target = kvm_target_cpu();
756
757         if (init->target != phys_target)
758                 return -EINVAL;
759
760         /*
761          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
762          * use the same target.
763          */
764         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
765                 return -EINVAL;
766
767         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
768         for (i = 0; i < sizeof(init->features) * 8; i++) {
769                 bool set = (init->features[i / 32] & (1 << (i % 32)));
770
771                 if (set && i >= KVM_VCPU_MAX_FEATURES)
772                         return -ENOENT;
773
774                 /*
775                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
776                  * use the same feature set.
777                  */
778                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
779                     test_bit(i, vcpu->arch.features) != set)
780                         return -EINVAL;
781
782                 if (set)
783                         set_bit(i, vcpu->arch.features);
784         }
785
786         vcpu->arch.target = phys_target;
787
788         /* Now we know what it is, we can reset it. */
789         return kvm_reset_vcpu(vcpu);
790 }
791
792
793 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
794                                          struct kvm_vcpu_init *init)
795 {
796         int ret;
797
798         ret = kvm_vcpu_set_target(vcpu, init);
799         if (ret)
800                 return ret;
801
802         /*
803          * Ensure a rebooted VM will fault in RAM pages and detect if the
804          * guest MMU is turned off and flush the caches as needed.
805          */
806         if (vcpu->arch.has_run_once)
807                 stage2_unmap_vm(vcpu->kvm);
808
809         vcpu_reset_hcr(vcpu);
810
811         /*
812          * Handle the "start in power-off" case.
813          */
814         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
815                 vcpu->arch.power_off = true;
816         else
817                 vcpu->arch.power_off = false;
818
819         return 0;
820 }
821
822 long kvm_arch_vcpu_ioctl(struct file *filp,
823                          unsigned int ioctl, unsigned long arg)
824 {
825         struct kvm_vcpu *vcpu = filp->private_data;
826         void __user *argp = (void __user *)arg;
827
828         switch (ioctl) {
829         case KVM_ARM_VCPU_INIT: {
830                 struct kvm_vcpu_init init;
831
832                 if (copy_from_user(&init, argp, sizeof(init)))
833                         return -EFAULT;
834
835                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
836         }
837         case KVM_SET_ONE_REG:
838         case KVM_GET_ONE_REG: {
839                 struct kvm_one_reg reg;
840
841                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
842                         return -ENOEXEC;
843
844                 if (copy_from_user(&reg, argp, sizeof(reg)))
845                         return -EFAULT;
846                 if (ioctl == KVM_SET_ONE_REG)
847                         return kvm_arm_set_reg(vcpu, &reg);
848                 else
849                         return kvm_arm_get_reg(vcpu, &reg);
850         }
851         case KVM_GET_REG_LIST: {
852                 struct kvm_reg_list __user *user_list = argp;
853                 struct kvm_reg_list reg_list;
854                 unsigned n;
855
856                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
857                         return -ENOEXEC;
858
859                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
860                         return -EFAULT;
861                 n = reg_list.n;
862                 reg_list.n = kvm_arm_num_regs(vcpu);
863                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
864                         return -EFAULT;
865                 if (n < reg_list.n)
866                         return -E2BIG;
867                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
868         }
869         default:
870                 return -EINVAL;
871         }
872 }
873
874 /**
875  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
876  * @kvm: kvm instance
877  * @log: slot id and address to which we copy the log
878  *
879  * Steps 1-4 below provide general overview of dirty page logging. See
880  * kvm_get_dirty_log_protect() function description for additional details.
881  *
882  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
883  * always flush the TLB (step 4) even if previous step failed  and the dirty
884  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
885  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
886  * writes will be marked dirty for next log read.
887  *
888  *   1. Take a snapshot of the bit and clear it if needed.
889  *   2. Write protect the corresponding page.
890  *   3. Copy the snapshot to the userspace.
891  *   4. Flush TLB's if needed.
892  */
893 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
894 {
895         bool is_dirty = false;
896         int r;
897
898         mutex_lock(&kvm->slots_lock);
899
900         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
901
902         if (is_dirty)
903                 kvm_flush_remote_tlbs(kvm);
904
905         mutex_unlock(&kvm->slots_lock);
906         return r;
907 }
908
909 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
910                                         struct kvm_arm_device_addr *dev_addr)
911 {
912         unsigned long dev_id, type;
913
914         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
915                 KVM_ARM_DEVICE_ID_SHIFT;
916         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
917                 KVM_ARM_DEVICE_TYPE_SHIFT;
918
919         switch (dev_id) {
920         case KVM_ARM_DEVICE_VGIC_V2:
921                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
922         default:
923                 return -ENODEV;
924         }
925 }
926
927 long kvm_arch_vm_ioctl(struct file *filp,
928                        unsigned int ioctl, unsigned long arg)
929 {
930         struct kvm *kvm = filp->private_data;
931         void __user *argp = (void __user *)arg;
932
933         switch (ioctl) {
934         case KVM_CREATE_IRQCHIP: {
935                 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
936         }
937         case KVM_ARM_SET_DEVICE_ADDR: {
938                 struct kvm_arm_device_addr dev_addr;
939
940                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
941                         return -EFAULT;
942                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
943         }
944         case KVM_ARM_PREFERRED_TARGET: {
945                 int err;
946                 struct kvm_vcpu_init init;
947
948                 err = kvm_vcpu_preferred_target(&init);
949                 if (err)
950                         return err;
951
952                 if (copy_to_user(argp, &init, sizeof(init)))
953                         return -EFAULT;
954
955                 return 0;
956         }
957         default:
958                 return -EINVAL;
959         }
960 }
961
962 static void cpu_init_hyp_mode(void *dummy)
963 {
964         phys_addr_t boot_pgd_ptr;
965         phys_addr_t pgd_ptr;
966         unsigned long hyp_stack_ptr;
967         unsigned long stack_page;
968         unsigned long vector_ptr;
969
970         /* Switch from the HYP stub to our own HYP init vector */
971         __hyp_set_vectors(kvm_get_idmap_vector());
972
973         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
974         pgd_ptr = kvm_mmu_get_httbr();
975         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
976         hyp_stack_ptr = stack_page + PAGE_SIZE;
977         vector_ptr = (unsigned long)__kvm_hyp_vector;
978
979         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
980
981         kvm_arm_init_debug();
982 }
983
984 static int hyp_init_cpu_notify(struct notifier_block *self,
985                                unsigned long action, void *cpu)
986 {
987         switch (action) {
988         case CPU_STARTING:
989         case CPU_STARTING_FROZEN:
990                 if (__hyp_get_vectors() == hyp_default_vectors)
991                         cpu_init_hyp_mode(NULL);
992                 break;
993         }
994
995         return NOTIFY_OK;
996 }
997
998 static struct notifier_block hyp_init_cpu_nb = {
999         .notifier_call = hyp_init_cpu_notify,
1000 };
1001
1002 #ifdef CONFIG_CPU_PM
1003 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1004                                     unsigned long cmd,
1005                                     void *v)
1006 {
1007         if (cmd == CPU_PM_EXIT &&
1008             __hyp_get_vectors() == hyp_default_vectors) {
1009                 cpu_init_hyp_mode(NULL);
1010                 return NOTIFY_OK;
1011         }
1012
1013         return NOTIFY_DONE;
1014 }
1015
1016 static struct notifier_block hyp_init_cpu_pm_nb = {
1017         .notifier_call = hyp_init_cpu_pm_notifier,
1018 };
1019
1020 static void __init hyp_cpu_pm_init(void)
1021 {
1022         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1023 }
1024 #else
1025 static inline void hyp_cpu_pm_init(void)
1026 {
1027 }
1028 #endif
1029
1030 /**
1031  * Inits Hyp-mode on all online CPUs
1032  */
1033 static int init_hyp_mode(void)
1034 {
1035         int cpu;
1036         int err = 0;
1037
1038         /*
1039          * Allocate Hyp PGD and setup Hyp identity mapping
1040          */
1041         err = kvm_mmu_init();
1042         if (err)
1043                 goto out_err;
1044
1045         /*
1046          * It is probably enough to obtain the default on one
1047          * CPU. It's unlikely to be different on the others.
1048          */
1049         hyp_default_vectors = __hyp_get_vectors();
1050
1051         /*
1052          * Allocate stack pages for Hypervisor-mode
1053          */
1054         for_each_possible_cpu(cpu) {
1055                 unsigned long stack_page;
1056
1057                 stack_page = __get_free_page(GFP_KERNEL);
1058                 if (!stack_page) {
1059                         err = -ENOMEM;
1060                         goto out_free_stack_pages;
1061                 }
1062
1063                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1064         }
1065
1066         /*
1067          * Map the Hyp-code called directly from the host
1068          */
1069         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1070         if (err) {
1071                 kvm_err("Cannot map world-switch code\n");
1072                 goto out_free_mappings;
1073         }
1074
1075         /*
1076          * Map the Hyp stack pages
1077          */
1078         for_each_possible_cpu(cpu) {
1079                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1080                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1081
1082                 if (err) {
1083                         kvm_err("Cannot map hyp stack\n");
1084                         goto out_free_mappings;
1085                 }
1086         }
1087
1088         /*
1089          * Map the host CPU structures
1090          */
1091         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1092         if (!kvm_host_cpu_state) {
1093                 err = -ENOMEM;
1094                 kvm_err("Cannot allocate host CPU state\n");
1095                 goto out_free_mappings;
1096         }
1097
1098         for_each_possible_cpu(cpu) {
1099                 kvm_cpu_context_t *cpu_ctxt;
1100
1101                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1102                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1103
1104                 if (err) {
1105                         kvm_err("Cannot map host CPU state: %d\n", err);
1106                         goto out_free_context;
1107                 }
1108         }
1109
1110         /*
1111          * Execute the init code on each CPU.
1112          */
1113         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1114
1115         /*
1116          * Init HYP view of VGIC
1117          */
1118         err = kvm_vgic_hyp_init();
1119         if (err)
1120                 goto out_free_context;
1121
1122         /*
1123          * Init HYP architected timer support
1124          */
1125         err = kvm_timer_hyp_init();
1126         if (err)
1127                 goto out_free_context;
1128
1129 #ifndef CONFIG_HOTPLUG_CPU
1130         free_boot_hyp_pgd();
1131 #endif
1132
1133         kvm_perf_init();
1134
1135         kvm_info("Hyp mode initialized successfully\n");
1136
1137         return 0;
1138 out_free_context:
1139         free_percpu(kvm_host_cpu_state);
1140 out_free_mappings:
1141         free_hyp_pgds();
1142 out_free_stack_pages:
1143         for_each_possible_cpu(cpu)
1144                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1145 out_err:
1146         kvm_err("error initializing Hyp mode: %d\n", err);
1147         return err;
1148 }
1149
1150 static void check_kvm_target_cpu(void *ret)
1151 {
1152         *(int *)ret = kvm_target_cpu();
1153 }
1154
1155 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1156 {
1157         struct kvm_vcpu *vcpu;
1158         int i;
1159
1160         mpidr &= MPIDR_HWID_BITMASK;
1161         kvm_for_each_vcpu(i, vcpu, kvm) {
1162                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1163                         return vcpu;
1164         }
1165         return NULL;
1166 }
1167
1168 /**
1169  * Initialize Hyp-mode and memory mappings on all CPUs.
1170  */
1171 int kvm_arch_init(void *opaque)
1172 {
1173         int err;
1174         int ret, cpu;
1175
1176         if (!is_hyp_mode_available()) {
1177                 kvm_err("HYP mode not available\n");
1178                 return -ENODEV;
1179         }
1180
1181         for_each_online_cpu(cpu) {
1182                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1183                 if (ret < 0) {
1184                         kvm_err("Error, CPU %d not supported!\n", cpu);
1185                         return -ENODEV;
1186                 }
1187         }
1188
1189         cpu_notifier_register_begin();
1190
1191         err = init_hyp_mode();
1192         if (err)
1193                 goto out_err;
1194
1195         err = __register_cpu_notifier(&hyp_init_cpu_nb);
1196         if (err) {
1197                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1198                 goto out_err;
1199         }
1200
1201         cpu_notifier_register_done();
1202
1203         hyp_cpu_pm_init();
1204
1205         kvm_coproc_table_init();
1206         return 0;
1207 out_err:
1208         cpu_notifier_register_done();
1209         return err;
1210 }
1211
1212 /* NOP: Compiling as a module not supported */
1213 void kvm_arch_exit(void)
1214 {
1215         kvm_perf_teardown();
1216 }
1217
1218 static int arm_init(void)
1219 {
1220         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1221         return rc;
1222 }
1223
1224 module_init(arm_init);