]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm64/kernel/perf_event.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[karo-tx-linux.git] / arch / arm64 / kernel / perf_event.c
1 /*
2  * PMU support
3  *
4  * Copyright (C) 2012 ARM Limited
5  * Author: Will Deacon <will.deacon@arm.com>
6  *
7  * This code is based heavily on the ARMv7 perf event code.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 #define pr_fmt(fmt) "hw perfevents: " fmt
22
23 #include <linux/bitmap.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/platform_device.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/uaccess.h>
34
35 #include <asm/cputype.h>
36 #include <asm/irq.h>
37 #include <asm/irq_regs.h>
38 #include <asm/pmu.h>
39
40 /*
41  * ARMv8 supports a maximum of 32 events.
42  * The cycle counter is included in this total.
43  */
44 #define ARMPMU_MAX_HWEVENTS             32
45
46 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
47 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
48 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
49
50 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
51
52 /* Set at runtime when we know what CPU type we are. */
53 static struct arm_pmu *cpu_pmu;
54
55 int
56 armpmu_get_max_events(void)
57 {
58         int max_events = 0;
59
60         if (cpu_pmu != NULL)
61                 max_events = cpu_pmu->num_events;
62
63         return max_events;
64 }
65 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
66
67 int perf_num_counters(void)
68 {
69         return armpmu_get_max_events();
70 }
71 EXPORT_SYMBOL_GPL(perf_num_counters);
72
73 #define HW_OP_UNSUPPORTED               0xFFFF
74
75 #define C(_x) \
76         PERF_COUNT_HW_CACHE_##_x
77
78 #define CACHE_OP_UNSUPPORTED            0xFFFF
79
80 #define PERF_MAP_ALL_UNSUPPORTED                                        \
81         [0 ... PERF_COUNT_HW_MAX - 1] = HW_OP_UNSUPPORTED
82
83 #define PERF_CACHE_MAP_ALL_UNSUPPORTED                                  \
84 [0 ... C(MAX) - 1] = {                                                  \
85         [0 ... C(OP_MAX) - 1] = {                                       \
86                 [0 ... C(RESULT_MAX) - 1] = CACHE_OP_UNSUPPORTED,       \
87         },                                                              \
88 }
89
90 static int
91 armpmu_map_cache_event(const unsigned (*cache_map)
92                                       [PERF_COUNT_HW_CACHE_MAX]
93                                       [PERF_COUNT_HW_CACHE_OP_MAX]
94                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
95                        u64 config)
96 {
97         unsigned int cache_type, cache_op, cache_result, ret;
98
99         cache_type = (config >>  0) & 0xff;
100         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
101                 return -EINVAL;
102
103         cache_op = (config >>  8) & 0xff;
104         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
105                 return -EINVAL;
106
107         cache_result = (config >> 16) & 0xff;
108         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
109                 return -EINVAL;
110
111         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
112
113         if (ret == CACHE_OP_UNSUPPORTED)
114                 return -ENOENT;
115
116         return ret;
117 }
118
119 static int
120 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
121 {
122         int mapping;
123
124         if (config >= PERF_COUNT_HW_MAX)
125                 return -EINVAL;
126
127         mapping = (*event_map)[config];
128         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
129 }
130
131 static int
132 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
133 {
134         return (int)(config & raw_event_mask);
135 }
136
137 static int map_cpu_event(struct perf_event *event,
138                          const unsigned (*event_map)[PERF_COUNT_HW_MAX],
139                          const unsigned (*cache_map)
140                                         [PERF_COUNT_HW_CACHE_MAX]
141                                         [PERF_COUNT_HW_CACHE_OP_MAX]
142                                         [PERF_COUNT_HW_CACHE_RESULT_MAX],
143                          u32 raw_event_mask)
144 {
145         u64 config = event->attr.config;
146
147         switch (event->attr.type) {
148         case PERF_TYPE_HARDWARE:
149                 return armpmu_map_event(event_map, config);
150         case PERF_TYPE_HW_CACHE:
151                 return armpmu_map_cache_event(cache_map, config);
152         case PERF_TYPE_RAW:
153                 return armpmu_map_raw_event(raw_event_mask, config);
154         }
155
156         return -ENOENT;
157 }
158
159 int
160 armpmu_event_set_period(struct perf_event *event,
161                         struct hw_perf_event *hwc,
162                         int idx)
163 {
164         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
165         s64 left = local64_read(&hwc->period_left);
166         s64 period = hwc->sample_period;
167         int ret = 0;
168
169         if (unlikely(left <= -period)) {
170                 left = period;
171                 local64_set(&hwc->period_left, left);
172                 hwc->last_period = period;
173                 ret = 1;
174         }
175
176         if (unlikely(left <= 0)) {
177                 left += period;
178                 local64_set(&hwc->period_left, left);
179                 hwc->last_period = period;
180                 ret = 1;
181         }
182
183         /*
184          * Limit the maximum period to prevent the counter value
185          * from overtaking the one we are about to program. In
186          * effect we are reducing max_period to account for
187          * interrupt latency (and we are being very conservative).
188          */
189         if (left > (armpmu->max_period >> 1))
190                 left = armpmu->max_period >> 1;
191
192         local64_set(&hwc->prev_count, (u64)-left);
193
194         armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
195
196         perf_event_update_userpage(event);
197
198         return ret;
199 }
200
201 u64
202 armpmu_event_update(struct perf_event *event,
203                     struct hw_perf_event *hwc,
204                     int idx)
205 {
206         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
207         u64 delta, prev_raw_count, new_raw_count;
208
209 again:
210         prev_raw_count = local64_read(&hwc->prev_count);
211         new_raw_count = armpmu->read_counter(idx);
212
213         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
214                              new_raw_count) != prev_raw_count)
215                 goto again;
216
217         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
218
219         local64_add(delta, &event->count);
220         local64_sub(delta, &hwc->period_left);
221
222         return new_raw_count;
223 }
224
225 static void
226 armpmu_read(struct perf_event *event)
227 {
228         struct hw_perf_event *hwc = &event->hw;
229
230         /* Don't read disabled counters! */
231         if (hwc->idx < 0)
232                 return;
233
234         armpmu_event_update(event, hwc, hwc->idx);
235 }
236
237 static void
238 armpmu_stop(struct perf_event *event, int flags)
239 {
240         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241         struct hw_perf_event *hwc = &event->hw;
242
243         /*
244          * ARM pmu always has to update the counter, so ignore
245          * PERF_EF_UPDATE, see comments in armpmu_start().
246          */
247         if (!(hwc->state & PERF_HES_STOPPED)) {
248                 armpmu->disable(hwc, hwc->idx);
249                 barrier(); /* why? */
250                 armpmu_event_update(event, hwc, hwc->idx);
251                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
252         }
253 }
254
255 static void
256 armpmu_start(struct perf_event *event, int flags)
257 {
258         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
259         struct hw_perf_event *hwc = &event->hw;
260
261         /*
262          * ARM pmu always has to reprogram the period, so ignore
263          * PERF_EF_RELOAD, see the comment below.
264          */
265         if (flags & PERF_EF_RELOAD)
266                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
267
268         hwc->state = 0;
269         /*
270          * Set the period again. Some counters can't be stopped, so when we
271          * were stopped we simply disabled the IRQ source and the counter
272          * may have been left counting. If we don't do this step then we may
273          * get an interrupt too soon or *way* too late if the overflow has
274          * happened since disabling.
275          */
276         armpmu_event_set_period(event, hwc, hwc->idx);
277         armpmu->enable(hwc, hwc->idx);
278 }
279
280 static void
281 armpmu_del(struct perf_event *event, int flags)
282 {
283         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
284         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
285         struct hw_perf_event *hwc = &event->hw;
286         int idx = hwc->idx;
287
288         WARN_ON(idx < 0);
289
290         armpmu_stop(event, PERF_EF_UPDATE);
291         hw_events->events[idx] = NULL;
292         clear_bit(idx, hw_events->used_mask);
293
294         perf_event_update_userpage(event);
295 }
296
297 static int
298 armpmu_add(struct perf_event *event, int flags)
299 {
300         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
301         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
302         struct hw_perf_event *hwc = &event->hw;
303         int idx;
304         int err = 0;
305
306         perf_pmu_disable(event->pmu);
307
308         /* If we don't have a space for the counter then finish early. */
309         idx = armpmu->get_event_idx(hw_events, hwc);
310         if (idx < 0) {
311                 err = idx;
312                 goto out;
313         }
314
315         /*
316          * If there is an event in the counter we are going to use then make
317          * sure it is disabled.
318          */
319         event->hw.idx = idx;
320         armpmu->disable(hwc, idx);
321         hw_events->events[idx] = event;
322
323         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
324         if (flags & PERF_EF_START)
325                 armpmu_start(event, PERF_EF_RELOAD);
326
327         /* Propagate our changes to the userspace mapping. */
328         perf_event_update_userpage(event);
329
330 out:
331         perf_pmu_enable(event->pmu);
332         return err;
333 }
334
335 static int
336 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
337                                 struct perf_event *event)
338 {
339         struct arm_pmu *armpmu;
340         struct hw_perf_event fake_event = event->hw;
341         struct pmu *leader_pmu = event->group_leader->pmu;
342
343         if (is_software_event(event))
344                 return 1;
345
346         /*
347          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
348          * core perf code won't check that the pmu->ctx == leader->ctx
349          * until after pmu->event_init(event).
350          */
351         if (event->pmu != pmu)
352                 return 0;
353
354         if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
355                 return 1;
356
357         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
358                 return 1;
359
360         armpmu = to_arm_pmu(event->pmu);
361         return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
362 }
363
364 static int
365 validate_group(struct perf_event *event)
366 {
367         struct perf_event *sibling, *leader = event->group_leader;
368         struct pmu_hw_events fake_pmu;
369         DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
370
371         /*
372          * Initialise the fake PMU. We only need to populate the
373          * used_mask for the purposes of validation.
374          */
375         memset(fake_used_mask, 0, sizeof(fake_used_mask));
376         fake_pmu.used_mask = fake_used_mask;
377
378         if (!validate_event(event->pmu, &fake_pmu, leader))
379                 return -EINVAL;
380
381         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
382                 if (!validate_event(event->pmu, &fake_pmu, sibling))
383                         return -EINVAL;
384         }
385
386         if (!validate_event(event->pmu, &fake_pmu, event))
387                 return -EINVAL;
388
389         return 0;
390 }
391
392 static void
393 armpmu_disable_percpu_irq(void *data)
394 {
395         unsigned int irq = *(unsigned int *)data;
396         disable_percpu_irq(irq);
397 }
398
399 static void
400 armpmu_release_hardware(struct arm_pmu *armpmu)
401 {
402         int irq;
403         unsigned int i, irqs;
404         struct platform_device *pmu_device = armpmu->plat_device;
405
406         irqs = min(pmu_device->num_resources, num_possible_cpus());
407         if (!irqs)
408                 return;
409
410         irq = platform_get_irq(pmu_device, 0);
411         if (irq <= 0)
412                 return;
413
414         if (irq_is_percpu(irq)) {
415                 on_each_cpu(armpmu_disable_percpu_irq, &irq, 1);
416                 free_percpu_irq(irq, &cpu_hw_events);
417         } else {
418                 for (i = 0; i < irqs; ++i) {
419                         int cpu = i;
420
421                         if (armpmu->irq_affinity)
422                                 cpu = armpmu->irq_affinity[i];
423
424                         if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
425                                 continue;
426                         irq = platform_get_irq(pmu_device, i);
427                         if (irq > 0)
428                                 free_irq(irq, armpmu);
429                 }
430         }
431 }
432
433 static void
434 armpmu_enable_percpu_irq(void *data)
435 {
436         unsigned int irq = *(unsigned int *)data;
437         enable_percpu_irq(irq, IRQ_TYPE_NONE);
438 }
439
440 static int
441 armpmu_reserve_hardware(struct arm_pmu *armpmu)
442 {
443         int err, irq;
444         unsigned int i, irqs;
445         struct platform_device *pmu_device = armpmu->plat_device;
446
447         if (!pmu_device)
448                 return -ENODEV;
449
450         irqs = min(pmu_device->num_resources, num_possible_cpus());
451         if (!irqs) {
452                 pr_err("no irqs for PMUs defined\n");
453                 return -ENODEV;
454         }
455
456         irq = platform_get_irq(pmu_device, 0);
457         if (irq <= 0) {
458                 pr_err("failed to get valid irq for PMU device\n");
459                 return -ENODEV;
460         }
461
462         if (irq_is_percpu(irq)) {
463                 err = request_percpu_irq(irq, armpmu->handle_irq,
464                                 "arm-pmu", &cpu_hw_events);
465
466                 if (err) {
467                         pr_err("unable to request percpu IRQ%d for ARM PMU counters\n",
468                                         irq);
469                         armpmu_release_hardware(armpmu);
470                         return err;
471                 }
472
473                 on_each_cpu(armpmu_enable_percpu_irq, &irq, 1);
474         } else {
475                 for (i = 0; i < irqs; ++i) {
476                         int cpu = i;
477
478                         err = 0;
479                         irq = platform_get_irq(pmu_device, i);
480                         if (irq <= 0)
481                                 continue;
482
483                         if (armpmu->irq_affinity)
484                                 cpu = armpmu->irq_affinity[i];
485
486                         /*
487                          * If we have a single PMU interrupt that we can't shift,
488                          * assume that we're running on a uniprocessor machine and
489                          * continue. Otherwise, continue without this interrupt.
490                          */
491                         if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
492                                 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
493                                                 irq, cpu);
494                                 continue;
495                         }
496
497                         err = request_irq(irq, armpmu->handle_irq,
498                                         IRQF_NOBALANCING | IRQF_NO_THREAD,
499                                         "arm-pmu", armpmu);
500                         if (err) {
501                                 pr_err("unable to request IRQ%d for ARM PMU counters\n",
502                                                 irq);
503                                 armpmu_release_hardware(armpmu);
504                                 return err;
505                         }
506
507                         cpumask_set_cpu(cpu, &armpmu->active_irqs);
508                 }
509         }
510
511         return 0;
512 }
513
514 static void
515 hw_perf_event_destroy(struct perf_event *event)
516 {
517         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
518         atomic_t *active_events  = &armpmu->active_events;
519         struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
520
521         if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
522                 armpmu_release_hardware(armpmu);
523                 mutex_unlock(pmu_reserve_mutex);
524         }
525 }
526
527 static int
528 event_requires_mode_exclusion(struct perf_event_attr *attr)
529 {
530         return attr->exclude_idle || attr->exclude_user ||
531                attr->exclude_kernel || attr->exclude_hv;
532 }
533
534 static int
535 __hw_perf_event_init(struct perf_event *event)
536 {
537         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
538         struct hw_perf_event *hwc = &event->hw;
539         int mapping, err;
540
541         mapping = armpmu->map_event(event);
542
543         if (mapping < 0) {
544                 pr_debug("event %x:%llx not supported\n", event->attr.type,
545                          event->attr.config);
546                 return mapping;
547         }
548
549         /*
550          * We don't assign an index until we actually place the event onto
551          * hardware. Use -1 to signify that we haven't decided where to put it
552          * yet. For SMP systems, each core has it's own PMU so we can't do any
553          * clever allocation or constraints checking at this point.
554          */
555         hwc->idx                = -1;
556         hwc->config_base        = 0;
557         hwc->config             = 0;
558         hwc->event_base         = 0;
559
560         /*
561          * Check whether we need to exclude the counter from certain modes.
562          */
563         if ((!armpmu->set_event_filter ||
564              armpmu->set_event_filter(hwc, &event->attr)) &&
565              event_requires_mode_exclusion(&event->attr)) {
566                 pr_debug("ARM performance counters do not support mode exclusion\n");
567                 return -EPERM;
568         }
569
570         /*
571          * Store the event encoding into the config_base field.
572          */
573         hwc->config_base            |= (unsigned long)mapping;
574
575         if (!hwc->sample_period) {
576                 /*
577                  * For non-sampling runs, limit the sample_period to half
578                  * of the counter width. That way, the new counter value
579                  * is far less likely to overtake the previous one unless
580                  * you have some serious IRQ latency issues.
581                  */
582                 hwc->sample_period  = armpmu->max_period >> 1;
583                 hwc->last_period    = hwc->sample_period;
584                 local64_set(&hwc->period_left, hwc->sample_period);
585         }
586
587         err = 0;
588         if (event->group_leader != event) {
589                 err = validate_group(event);
590                 if (err)
591                         return -EINVAL;
592         }
593
594         return err;
595 }
596
597 static int armpmu_event_init(struct perf_event *event)
598 {
599         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
600         int err = 0;
601         atomic_t *active_events = &armpmu->active_events;
602
603         if (armpmu->map_event(event) == -ENOENT)
604                 return -ENOENT;
605
606         event->destroy = hw_perf_event_destroy;
607
608         if (!atomic_inc_not_zero(active_events)) {
609                 mutex_lock(&armpmu->reserve_mutex);
610                 if (atomic_read(active_events) == 0)
611                         err = armpmu_reserve_hardware(armpmu);
612
613                 if (!err)
614                         atomic_inc(active_events);
615                 mutex_unlock(&armpmu->reserve_mutex);
616         }
617
618         if (err)
619                 return err;
620
621         err = __hw_perf_event_init(event);
622         if (err)
623                 hw_perf_event_destroy(event);
624
625         return err;
626 }
627
628 static void armpmu_enable(struct pmu *pmu)
629 {
630         struct arm_pmu *armpmu = to_arm_pmu(pmu);
631         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
632         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
633
634         if (enabled)
635                 armpmu->start();
636 }
637
638 static void armpmu_disable(struct pmu *pmu)
639 {
640         struct arm_pmu *armpmu = to_arm_pmu(pmu);
641         armpmu->stop();
642 }
643
644 static void __init armpmu_init(struct arm_pmu *armpmu)
645 {
646         atomic_set(&armpmu->active_events, 0);
647         mutex_init(&armpmu->reserve_mutex);
648
649         armpmu->pmu = (struct pmu) {
650                 .pmu_enable     = armpmu_enable,
651                 .pmu_disable    = armpmu_disable,
652                 .event_init     = armpmu_event_init,
653                 .add            = armpmu_add,
654                 .del            = armpmu_del,
655                 .start          = armpmu_start,
656                 .stop           = armpmu_stop,
657                 .read           = armpmu_read,
658         };
659 }
660
661 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
662 {
663         armpmu_init(armpmu);
664         return perf_pmu_register(&armpmu->pmu, name, type);
665 }
666
667 /*
668  * ARMv8 PMUv3 Performance Events handling code.
669  * Common event types.
670  */
671 enum armv8_pmuv3_perf_types {
672         /* Required events. */
673         ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR                        = 0x00,
674         ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL                    = 0x03,
675         ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS                    = 0x04,
676         ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED                  = 0x10,
677         ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES                        = 0x11,
678         ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED                      = 0x12,
679
680         /* At least one of the following is required. */
681         ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED                      = 0x08,
682         ARMV8_PMUV3_PERFCTR_OP_SPEC                             = 0x1B,
683
684         /* Common architectural events. */
685         ARMV8_PMUV3_PERFCTR_MEM_READ                            = 0x06,
686         ARMV8_PMUV3_PERFCTR_MEM_WRITE                           = 0x07,
687         ARMV8_PMUV3_PERFCTR_EXC_TAKEN                           = 0x09,
688         ARMV8_PMUV3_PERFCTR_EXC_EXECUTED                        = 0x0A,
689         ARMV8_PMUV3_PERFCTR_CID_WRITE                           = 0x0B,
690         ARMV8_PMUV3_PERFCTR_PC_WRITE                            = 0x0C,
691         ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH                       = 0x0D,
692         ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN                      = 0x0E,
693         ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS                = 0x0F,
694         ARMV8_PMUV3_PERFCTR_TTBR_WRITE                          = 0x1C,
695
696         /* Common microarchitectural events. */
697         ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL                    = 0x01,
698         ARMV8_PMUV3_PERFCTR_ITLB_REFILL                         = 0x02,
699         ARMV8_PMUV3_PERFCTR_DTLB_REFILL                         = 0x05,
700         ARMV8_PMUV3_PERFCTR_MEM_ACCESS                          = 0x13,
701         ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS                    = 0x14,
702         ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB                        = 0x15,
703         ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS                     = 0x16,
704         ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL                     = 0x17,
705         ARMV8_PMUV3_PERFCTR_L2_CACHE_WB                         = 0x18,
706         ARMV8_PMUV3_PERFCTR_BUS_ACCESS                          = 0x19,
707         ARMV8_PMUV3_PERFCTR_MEM_ERROR                           = 0x1A,
708         ARMV8_PMUV3_PERFCTR_BUS_CYCLES                          = 0x1D,
709 };
710
711 /* PMUv3 HW events mapping. */
712 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
713         PERF_MAP_ALL_UNSUPPORTED,
714         [PERF_COUNT_HW_CPU_CYCLES]              = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
715         [PERF_COUNT_HW_INSTRUCTIONS]            = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
716         [PERF_COUNT_HW_CACHE_REFERENCES]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
717         [PERF_COUNT_HW_CACHE_MISSES]            = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
718         [PERF_COUNT_HW_BRANCH_MISSES]           = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
719 };
720
721 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
722                                                 [PERF_COUNT_HW_CACHE_OP_MAX]
723                                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
724         PERF_CACHE_MAP_ALL_UNSUPPORTED,
725
726         [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
727         [C(L1D)][C(OP_READ)][C(RESULT_MISS)]    = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
728         [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
729         [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]   = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
730
731         [C(BPU)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
732         [C(BPU)][C(OP_READ)][C(RESULT_MISS)]    = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
733         [C(BPU)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
734         [C(BPU)][C(OP_WRITE)][C(RESULT_MISS)]   = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
735 };
736
737 /*
738  * Perf Events' indices
739  */
740 #define ARMV8_IDX_CYCLE_COUNTER 0
741 #define ARMV8_IDX_COUNTER0      1
742 #define ARMV8_IDX_COUNTER_LAST  (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
743
744 #define ARMV8_MAX_COUNTERS      32
745 #define ARMV8_COUNTER_MASK      (ARMV8_MAX_COUNTERS - 1)
746
747 /*
748  * ARMv8 low level PMU access
749  */
750
751 /*
752  * Perf Event to low level counters mapping
753  */
754 #define ARMV8_IDX_TO_COUNTER(x) \
755         (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
756
757 /*
758  * Per-CPU PMCR: config reg
759  */
760 #define ARMV8_PMCR_E            (1 << 0) /* Enable all counters */
761 #define ARMV8_PMCR_P            (1 << 1) /* Reset all counters */
762 #define ARMV8_PMCR_C            (1 << 2) /* Cycle counter reset */
763 #define ARMV8_PMCR_D            (1 << 3) /* CCNT counts every 64th cpu cycle */
764 #define ARMV8_PMCR_X            (1 << 4) /* Export to ETM */
765 #define ARMV8_PMCR_DP           (1 << 5) /* Disable CCNT if non-invasive debug*/
766 #define ARMV8_PMCR_N_SHIFT      11       /* Number of counters supported */
767 #define ARMV8_PMCR_N_MASK       0x1f
768 #define ARMV8_PMCR_MASK         0x3f     /* Mask for writable bits */
769
770 /*
771  * PMOVSR: counters overflow flag status reg
772  */
773 #define ARMV8_OVSR_MASK         0xffffffff      /* Mask for writable bits */
774 #define ARMV8_OVERFLOWED_MASK   ARMV8_OVSR_MASK
775
776 /*
777  * PMXEVTYPER: Event selection reg
778  */
779 #define ARMV8_EVTYPE_MASK       0xc80003ff      /* Mask for writable bits */
780 #define ARMV8_EVTYPE_EVENT      0x3ff           /* Mask for EVENT bits */
781
782 /*
783  * Event filters for PMUv3
784  */
785 #define ARMV8_EXCLUDE_EL1       (1 << 31)
786 #define ARMV8_EXCLUDE_EL0       (1 << 30)
787 #define ARMV8_INCLUDE_EL2       (1 << 27)
788
789 static inline u32 armv8pmu_pmcr_read(void)
790 {
791         u32 val;
792         asm volatile("mrs %0, pmcr_el0" : "=r" (val));
793         return val;
794 }
795
796 static inline void armv8pmu_pmcr_write(u32 val)
797 {
798         val &= ARMV8_PMCR_MASK;
799         isb();
800         asm volatile("msr pmcr_el0, %0" :: "r" (val));
801 }
802
803 static inline int armv8pmu_has_overflowed(u32 pmovsr)
804 {
805         return pmovsr & ARMV8_OVERFLOWED_MASK;
806 }
807
808 static inline int armv8pmu_counter_valid(int idx)
809 {
810         return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
811 }
812
813 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
814 {
815         int ret = 0;
816         u32 counter;
817
818         if (!armv8pmu_counter_valid(idx)) {
819                 pr_err("CPU%u checking wrong counter %d overflow status\n",
820                         smp_processor_id(), idx);
821         } else {
822                 counter = ARMV8_IDX_TO_COUNTER(idx);
823                 ret = pmnc & BIT(counter);
824         }
825
826         return ret;
827 }
828
829 static inline int armv8pmu_select_counter(int idx)
830 {
831         u32 counter;
832
833         if (!armv8pmu_counter_valid(idx)) {
834                 pr_err("CPU%u selecting wrong PMNC counter %d\n",
835                         smp_processor_id(), idx);
836                 return -EINVAL;
837         }
838
839         counter = ARMV8_IDX_TO_COUNTER(idx);
840         asm volatile("msr pmselr_el0, %0" :: "r" (counter));
841         isb();
842
843         return idx;
844 }
845
846 static inline u32 armv8pmu_read_counter(int idx)
847 {
848         u32 value = 0;
849
850         if (!armv8pmu_counter_valid(idx))
851                 pr_err("CPU%u reading wrong counter %d\n",
852                         smp_processor_id(), idx);
853         else if (idx == ARMV8_IDX_CYCLE_COUNTER)
854                 asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
855         else if (armv8pmu_select_counter(idx) == idx)
856                 asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
857
858         return value;
859 }
860
861 static inline void armv8pmu_write_counter(int idx, u32 value)
862 {
863         if (!armv8pmu_counter_valid(idx))
864                 pr_err("CPU%u writing wrong counter %d\n",
865                         smp_processor_id(), idx);
866         else if (idx == ARMV8_IDX_CYCLE_COUNTER)
867                 asm volatile("msr pmccntr_el0, %0" :: "r" (value));
868         else if (armv8pmu_select_counter(idx) == idx)
869                 asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
870 }
871
872 static inline void armv8pmu_write_evtype(int idx, u32 val)
873 {
874         if (armv8pmu_select_counter(idx) == idx) {
875                 val &= ARMV8_EVTYPE_MASK;
876                 asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
877         }
878 }
879
880 static inline int armv8pmu_enable_counter(int idx)
881 {
882         u32 counter;
883
884         if (!armv8pmu_counter_valid(idx)) {
885                 pr_err("CPU%u enabling wrong PMNC counter %d\n",
886                         smp_processor_id(), idx);
887                 return -EINVAL;
888         }
889
890         counter = ARMV8_IDX_TO_COUNTER(idx);
891         asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
892         return idx;
893 }
894
895 static inline int armv8pmu_disable_counter(int idx)
896 {
897         u32 counter;
898
899         if (!armv8pmu_counter_valid(idx)) {
900                 pr_err("CPU%u disabling wrong PMNC counter %d\n",
901                         smp_processor_id(), idx);
902                 return -EINVAL;
903         }
904
905         counter = ARMV8_IDX_TO_COUNTER(idx);
906         asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
907         return idx;
908 }
909
910 static inline int armv8pmu_enable_intens(int idx)
911 {
912         u32 counter;
913
914         if (!armv8pmu_counter_valid(idx)) {
915                 pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
916                         smp_processor_id(), idx);
917                 return -EINVAL;
918         }
919
920         counter = ARMV8_IDX_TO_COUNTER(idx);
921         asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
922         return idx;
923 }
924
925 static inline int armv8pmu_disable_intens(int idx)
926 {
927         u32 counter;
928
929         if (!armv8pmu_counter_valid(idx)) {
930                 pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
931                         smp_processor_id(), idx);
932                 return -EINVAL;
933         }
934
935         counter = ARMV8_IDX_TO_COUNTER(idx);
936         asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
937         isb();
938         /* Clear the overflow flag in case an interrupt is pending. */
939         asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
940         isb();
941         return idx;
942 }
943
944 static inline u32 armv8pmu_getreset_flags(void)
945 {
946         u32 value;
947
948         /* Read */
949         asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
950
951         /* Write to clear flags */
952         value &= ARMV8_OVSR_MASK;
953         asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
954
955         return value;
956 }
957
958 static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
959 {
960         unsigned long flags;
961         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
962
963         /*
964          * Enable counter and interrupt, and set the counter to count
965          * the event that we're interested in.
966          */
967         raw_spin_lock_irqsave(&events->pmu_lock, flags);
968
969         /*
970          * Disable counter
971          */
972         armv8pmu_disable_counter(idx);
973
974         /*
975          * Set event (if destined for PMNx counters).
976          */
977         armv8pmu_write_evtype(idx, hwc->config_base);
978
979         /*
980          * Enable interrupt for this counter
981          */
982         armv8pmu_enable_intens(idx);
983
984         /*
985          * Enable counter
986          */
987         armv8pmu_enable_counter(idx);
988
989         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
990 }
991
992 static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
993 {
994         unsigned long flags;
995         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
996
997         /*
998          * Disable counter and interrupt
999          */
1000         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1001
1002         /*
1003          * Disable counter
1004          */
1005         armv8pmu_disable_counter(idx);
1006
1007         /*
1008          * Disable interrupt for this counter
1009          */
1010         armv8pmu_disable_intens(idx);
1011
1012         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1013 }
1014
1015 static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
1016 {
1017         u32 pmovsr;
1018         struct perf_sample_data data;
1019         struct pmu_hw_events *cpuc;
1020         struct pt_regs *regs;
1021         int idx;
1022
1023         /*
1024          * Get and reset the IRQ flags
1025          */
1026         pmovsr = armv8pmu_getreset_flags();
1027
1028         /*
1029          * Did an overflow occur?
1030          */
1031         if (!armv8pmu_has_overflowed(pmovsr))
1032                 return IRQ_NONE;
1033
1034         /*
1035          * Handle the counter(s) overflow(s)
1036          */
1037         regs = get_irq_regs();
1038
1039         cpuc = this_cpu_ptr(&cpu_hw_events);
1040         for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
1041                 struct perf_event *event = cpuc->events[idx];
1042                 struct hw_perf_event *hwc;
1043
1044                 /* Ignore if we don't have an event. */
1045                 if (!event)
1046                         continue;
1047
1048                 /*
1049                  * We have a single interrupt for all counters. Check that
1050                  * each counter has overflowed before we process it.
1051                  */
1052                 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
1053                         continue;
1054
1055                 hwc = &event->hw;
1056                 armpmu_event_update(event, hwc, idx);
1057                 perf_sample_data_init(&data, 0, hwc->last_period);
1058                 if (!armpmu_event_set_period(event, hwc, idx))
1059                         continue;
1060
1061                 if (perf_event_overflow(event, &data, regs))
1062                         cpu_pmu->disable(hwc, idx);
1063         }
1064
1065         /*
1066          * Handle the pending perf events.
1067          *
1068          * Note: this call *must* be run with interrupts disabled. For
1069          * platforms that can have the PMU interrupts raised as an NMI, this
1070          * will not work.
1071          */
1072         irq_work_run();
1073
1074         return IRQ_HANDLED;
1075 }
1076
1077 static void armv8pmu_start(void)
1078 {
1079         unsigned long flags;
1080         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1081
1082         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1083         /* Enable all counters */
1084         armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
1085         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1086 }
1087
1088 static void armv8pmu_stop(void)
1089 {
1090         unsigned long flags;
1091         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1092
1093         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1094         /* Disable all counters */
1095         armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
1096         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1097 }
1098
1099 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
1100                                   struct hw_perf_event *event)
1101 {
1102         int idx;
1103         unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
1104
1105         /* Always place a cycle counter into the cycle counter. */
1106         if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
1107                 if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
1108                         return -EAGAIN;
1109
1110                 return ARMV8_IDX_CYCLE_COUNTER;
1111         }
1112
1113         /*
1114          * For anything other than a cycle counter, try and use
1115          * the events counters
1116          */
1117         for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
1118                 if (!test_and_set_bit(idx, cpuc->used_mask))
1119                         return idx;
1120         }
1121
1122         /* The counters are all in use. */
1123         return -EAGAIN;
1124 }
1125
1126 /*
1127  * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1128  */
1129 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1130                                      struct perf_event_attr *attr)
1131 {
1132         unsigned long config_base = 0;
1133
1134         if (attr->exclude_idle)
1135                 return -EPERM;
1136         if (attr->exclude_user)
1137                 config_base |= ARMV8_EXCLUDE_EL0;
1138         if (attr->exclude_kernel)
1139                 config_base |= ARMV8_EXCLUDE_EL1;
1140         if (!attr->exclude_hv)
1141                 config_base |= ARMV8_INCLUDE_EL2;
1142
1143         /*
1144          * Install the filter into config_base as this is used to
1145          * construct the event type.
1146          */
1147         event->config_base = config_base;
1148
1149         return 0;
1150 }
1151
1152 static void armv8pmu_reset(void *info)
1153 {
1154         u32 idx, nb_cnt = cpu_pmu->num_events;
1155
1156         /* The counter and interrupt enable registers are unknown at reset. */
1157         for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
1158                 armv8pmu_disable_event(NULL, idx);
1159
1160         /* Initialize & Reset PMNC: C and P bits. */
1161         armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
1162
1163         /* Disable access from userspace. */
1164         asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
1165 }
1166
1167 static int armv8_pmuv3_map_event(struct perf_event *event)
1168 {
1169         return map_cpu_event(event, &armv8_pmuv3_perf_map,
1170                                 &armv8_pmuv3_perf_cache_map,
1171                                 ARMV8_EVTYPE_EVENT);
1172 }
1173
1174 static struct arm_pmu armv8pmu = {
1175         .handle_irq             = armv8pmu_handle_irq,
1176         .enable                 = armv8pmu_enable_event,
1177         .disable                = armv8pmu_disable_event,
1178         .read_counter           = armv8pmu_read_counter,
1179         .write_counter          = armv8pmu_write_counter,
1180         .get_event_idx          = armv8pmu_get_event_idx,
1181         .start                  = armv8pmu_start,
1182         .stop                   = armv8pmu_stop,
1183         .reset                  = armv8pmu_reset,
1184         .max_period             = (1LLU << 32) - 1,
1185 };
1186
1187 static u32 __init armv8pmu_read_num_pmnc_events(void)
1188 {
1189         u32 nb_cnt;
1190
1191         /* Read the nb of CNTx counters supported from PMNC */
1192         nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
1193
1194         /* Add the CPU cycles counter and return */
1195         return nb_cnt + 1;
1196 }
1197
1198 static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
1199 {
1200         armv8pmu.name                   = "arm/armv8-pmuv3";
1201         armv8pmu.map_event              = armv8_pmuv3_map_event;
1202         armv8pmu.num_events             = armv8pmu_read_num_pmnc_events();
1203         armv8pmu.set_event_filter       = armv8pmu_set_event_filter;
1204         return &armv8pmu;
1205 }
1206
1207 /*
1208  * Ensure the PMU has sane values out of reset.
1209  * This requires SMP to be available, so exists as a separate initcall.
1210  */
1211 static int __init
1212 cpu_pmu_reset(void)
1213 {
1214         if (cpu_pmu && cpu_pmu->reset)
1215                 return on_each_cpu(cpu_pmu->reset, NULL, 1);
1216         return 0;
1217 }
1218 arch_initcall(cpu_pmu_reset);
1219
1220 /*
1221  * PMU platform driver and devicetree bindings.
1222  */
1223 static const struct of_device_id armpmu_of_device_ids[] = {
1224         {.compatible = "arm,armv8-pmuv3"},
1225         {},
1226 };
1227
1228 static int armpmu_device_probe(struct platform_device *pdev)
1229 {
1230         int i, irq, *irqs;
1231
1232         if (!cpu_pmu)
1233                 return -ENODEV;
1234
1235         /* Don't bother with PPIs; they're already affine */
1236         irq = platform_get_irq(pdev, 0);
1237         if (irq >= 0 && irq_is_percpu(irq))
1238                 goto out;
1239
1240         irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
1241         if (!irqs)
1242                 return -ENOMEM;
1243
1244         for (i = 0; i < pdev->num_resources; ++i) {
1245                 struct device_node *dn;
1246                 int cpu;
1247
1248                 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity",
1249                                       i);
1250                 if (!dn) {
1251                         pr_warn("Failed to parse %s/interrupt-affinity[%d]\n",
1252                                 of_node_full_name(pdev->dev.of_node), i);
1253                         break;
1254                 }
1255
1256                 for_each_possible_cpu(cpu)
1257                         if (dn == of_cpu_device_node_get(cpu))
1258                                 break;
1259
1260                 if (cpu >= nr_cpu_ids) {
1261                         pr_warn("Failed to find logical CPU for %s\n",
1262                                 dn->name);
1263                         of_node_put(dn);
1264                         break;
1265                 }
1266                 of_node_put(dn);
1267
1268                 irqs[i] = cpu;
1269         }
1270
1271         if (i == pdev->num_resources)
1272                 cpu_pmu->irq_affinity = irqs;
1273         else
1274                 kfree(irqs);
1275
1276 out:
1277         cpu_pmu->plat_device = pdev;
1278         return 0;
1279 }
1280
1281 static struct platform_driver armpmu_driver = {
1282         .driver         = {
1283                 .name   = "arm-pmu",
1284                 .of_match_table = armpmu_of_device_ids,
1285         },
1286         .probe          = armpmu_device_probe,
1287 };
1288
1289 static int __init register_pmu_driver(void)
1290 {
1291         return platform_driver_register(&armpmu_driver);
1292 }
1293 device_initcall(register_pmu_driver);
1294
1295 static struct pmu_hw_events *armpmu_get_cpu_events(void)
1296 {
1297         return this_cpu_ptr(&cpu_hw_events);
1298 }
1299
1300 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
1301 {
1302         int cpu;
1303         for_each_possible_cpu(cpu) {
1304                 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1305                 events->events = per_cpu(hw_events, cpu);
1306                 events->used_mask = per_cpu(used_mask, cpu);
1307                 raw_spin_lock_init(&events->pmu_lock);
1308         }
1309         armpmu->get_hw_events = armpmu_get_cpu_events;
1310 }
1311
1312 static int __init init_hw_perf_events(void)
1313 {
1314         u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
1315
1316         switch ((dfr >> 8) & 0xf) {
1317         case 0x1:       /* PMUv3 */
1318                 cpu_pmu = armv8_pmuv3_pmu_init();
1319                 break;
1320         }
1321
1322         if (cpu_pmu) {
1323                 pr_info("enabled with %s PMU driver, %d counters available\n",
1324                         cpu_pmu->name, cpu_pmu->num_events);
1325                 cpu_pmu_init(cpu_pmu);
1326                 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
1327         } else {
1328                 pr_info("no hardware support available\n");
1329         }
1330
1331         return 0;
1332 }
1333 early_initcall(init_hw_perf_events);
1334