]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm64/kvm/sys_regs.c
Merge remote-tracking branch 'input/next'
[karo-tx-linux.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/kvm_host.h>
24 #include <linux/mm.h>
25 #include <linux/uaccess.h>
26
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/esr.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_coproc.h>
33 #include <asm/kvm_emulate.h>
34 #include <asm/kvm_host.h>
35 #include <asm/kvm_mmu.h>
36
37 #include <trace/events/kvm.h>
38
39 #include "sys_regs.h"
40
41 #include "trace.h"
42
43 /*
44  * All of this file is extremly similar to the ARM coproc.c, but the
45  * types are different. My gut feeling is that it should be pretty
46  * easy to merge, but that would be an ABI breakage -- again. VFP
47  * would also need to be abstracted.
48  *
49  * For AArch32, we only take care of what is being trapped. Anything
50  * that has to do with init and userspace access has to go via the
51  * 64bit interface.
52  */
53
54 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
55 static u32 cache_levels;
56
57 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
58 #define CSSELR_MAX 12
59
60 /* Which cache CCSIDR represents depends on CSSELR value. */
61 static u32 get_ccsidr(u32 csselr)
62 {
63         u32 ccsidr;
64
65         /* Make sure noone else changes CSSELR during this! */
66         local_irq_disable();
67         /* Put value into CSSELR */
68         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
69         isb();
70         /* Read result out of CCSIDR */
71         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
72         local_irq_enable();
73
74         return ccsidr;
75 }
76
77 /*
78  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
79  */
80 static bool access_dcsw(struct kvm_vcpu *vcpu,
81                         const struct sys_reg_params *p,
82                         const struct sys_reg_desc *r)
83 {
84         if (!p->is_write)
85                 return read_from_write_only(vcpu, p);
86
87         kvm_set_way_flush(vcpu);
88         return true;
89 }
90
91 /*
92  * Generic accessor for VM registers. Only called as long as HCR_TVM
93  * is set. If the guest enables the MMU, we stop trapping the VM
94  * sys_regs and leave it in complete control of the caches.
95  */
96 static bool access_vm_reg(struct kvm_vcpu *vcpu,
97                           const struct sys_reg_params *p,
98                           const struct sys_reg_desc *r)
99 {
100         unsigned long val;
101         bool was_enabled = vcpu_has_cache_enabled(vcpu);
102
103         BUG_ON(!p->is_write);
104
105         val = *vcpu_reg(vcpu, p->Rt);
106         if (!p->is_aarch32) {
107                 vcpu_sys_reg(vcpu, r->reg) = val;
108         } else {
109                 if (!p->is_32bit)
110                         vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
111                 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
112         }
113
114         kvm_toggle_cache(vcpu, was_enabled);
115         return true;
116 }
117
118 /*
119  * Trap handler for the GICv3 SGI generation system register.
120  * Forward the request to the VGIC emulation.
121  * The cp15_64 code makes sure this automatically works
122  * for both AArch64 and AArch32 accesses.
123  */
124 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
125                            const struct sys_reg_params *p,
126                            const struct sys_reg_desc *r)
127 {
128         u64 val;
129
130         if (!p->is_write)
131                 return read_from_write_only(vcpu, p);
132
133         val = *vcpu_reg(vcpu, p->Rt);
134         vgic_v3_dispatch_sgi(vcpu, val);
135
136         return true;
137 }
138
139 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
140                         const struct sys_reg_params *p,
141                         const struct sys_reg_desc *r)
142 {
143         if (p->is_write)
144                 return ignore_write(vcpu, p);
145         else
146                 return read_zero(vcpu, p);
147 }
148
149 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
150                            const struct sys_reg_params *p,
151                            const struct sys_reg_desc *r)
152 {
153         if (p->is_write) {
154                 return ignore_write(vcpu, p);
155         } else {
156                 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
157                 return true;
158         }
159 }
160
161 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
162                                    const struct sys_reg_params *p,
163                                    const struct sys_reg_desc *r)
164 {
165         if (p->is_write) {
166                 return ignore_write(vcpu, p);
167         } else {
168                 u32 val;
169                 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
170                 *vcpu_reg(vcpu, p->Rt) = val;
171                 return true;
172         }
173 }
174
175 /*
176  * We want to avoid world-switching all the DBG registers all the
177  * time:
178  * 
179  * - If we've touched any debug register, it is likely that we're
180  *   going to touch more of them. It then makes sense to disable the
181  *   traps and start doing the save/restore dance
182  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
183  *   then mandatory to save/restore the registers, as the guest
184  *   depends on them.
185  * 
186  * For this, we use a DIRTY bit, indicating the guest has modified the
187  * debug registers, used as follow:
188  *
189  * On guest entry:
190  * - If the dirty bit is set (because we're coming back from trapping),
191  *   disable the traps, save host registers, restore guest registers.
192  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
193  *   set the dirty bit, disable the traps, save host registers,
194  *   restore guest registers.
195  * - Otherwise, enable the traps
196  *
197  * On guest exit:
198  * - If the dirty bit is set, save guest registers, restore host
199  *   registers and clear the dirty bit. This ensure that the host can
200  *   now use the debug registers.
201  */
202 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
203                             const struct sys_reg_params *p,
204                             const struct sys_reg_desc *r)
205 {
206         if (p->is_write) {
207                 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
208                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
209         } else {
210                 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
211         }
212
213         trace_trap_reg(__func__, r->reg, p->is_write, *vcpu_reg(vcpu, p->Rt));
214
215         return true;
216 }
217
218 /*
219  * reg_to_dbg/dbg_to_reg
220  *
221  * A 32 bit write to a debug register leave top bits alone
222  * A 32 bit read from a debug register only returns the bottom bits
223  *
224  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
225  * hyp.S code switches between host and guest values in future.
226  */
227 static inline void reg_to_dbg(struct kvm_vcpu *vcpu,
228                               const struct sys_reg_params *p,
229                               u64 *dbg_reg)
230 {
231         u64 val = *vcpu_reg(vcpu, p->Rt);
232
233         if (p->is_32bit) {
234                 val &= 0xffffffffUL;
235                 val |= ((*dbg_reg >> 32) << 32);
236         }
237
238         *dbg_reg = val;
239         vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
240 }
241
242 static inline void dbg_to_reg(struct kvm_vcpu *vcpu,
243                               const struct sys_reg_params *p,
244                               u64 *dbg_reg)
245 {
246         u64 val = *dbg_reg;
247
248         if (p->is_32bit)
249                 val &= 0xffffffffUL;
250
251         *vcpu_reg(vcpu, p->Rt) = val;
252 }
253
254 static inline bool trap_bvr(struct kvm_vcpu *vcpu,
255                             const struct sys_reg_params *p,
256                             const struct sys_reg_desc *rd)
257 {
258         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
259
260         if (p->is_write)
261                 reg_to_dbg(vcpu, p, dbg_reg);
262         else
263                 dbg_to_reg(vcpu, p, dbg_reg);
264
265         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
266
267         return true;
268 }
269
270 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
271                 const struct kvm_one_reg *reg, void __user *uaddr)
272 {
273         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
274
275         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
276                 return -EFAULT;
277         return 0;
278 }
279
280 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
281         const struct kvm_one_reg *reg, void __user *uaddr)
282 {
283         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
284
285         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
286                 return -EFAULT;
287         return 0;
288 }
289
290 static inline void reset_bvr(struct kvm_vcpu *vcpu,
291                              const struct sys_reg_desc *rd)
292 {
293         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
294 }
295
296 static inline bool trap_bcr(struct kvm_vcpu *vcpu,
297                             const struct sys_reg_params *p,
298                             const struct sys_reg_desc *rd)
299 {
300         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
301
302         if (p->is_write)
303                 reg_to_dbg(vcpu, p, dbg_reg);
304         else
305                 dbg_to_reg(vcpu, p, dbg_reg);
306
307         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
308
309         return true;
310 }
311
312 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
313                 const struct kvm_one_reg *reg, void __user *uaddr)
314 {
315         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
316
317         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
318                 return -EFAULT;
319
320         return 0;
321 }
322
323 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
324         const struct kvm_one_reg *reg, void __user *uaddr)
325 {
326         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
327
328         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
329                 return -EFAULT;
330         return 0;
331 }
332
333 static inline void reset_bcr(struct kvm_vcpu *vcpu,
334                              const struct sys_reg_desc *rd)
335 {
336         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
337 }
338
339 static inline bool trap_wvr(struct kvm_vcpu *vcpu,
340                             const struct sys_reg_params *p,
341                             const struct sys_reg_desc *rd)
342 {
343         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
344
345         if (p->is_write)
346                 reg_to_dbg(vcpu, p, dbg_reg);
347         else
348                 dbg_to_reg(vcpu, p, dbg_reg);
349
350         trace_trap_reg(__func__, rd->reg, p->is_write,
351                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
352
353         return true;
354 }
355
356 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
357                 const struct kvm_one_reg *reg, void __user *uaddr)
358 {
359         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
360
361         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
362                 return -EFAULT;
363         return 0;
364 }
365
366 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
367         const struct kvm_one_reg *reg, void __user *uaddr)
368 {
369         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
370
371         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
372                 return -EFAULT;
373         return 0;
374 }
375
376 static inline void reset_wvr(struct kvm_vcpu *vcpu,
377                              const struct sys_reg_desc *rd)
378 {
379         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
380 }
381
382 static inline bool trap_wcr(struct kvm_vcpu *vcpu,
383                             const struct sys_reg_params *p,
384                             const struct sys_reg_desc *rd)
385 {
386         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
387
388         if (p->is_write)
389                 reg_to_dbg(vcpu, p, dbg_reg);
390         else
391                 dbg_to_reg(vcpu, p, dbg_reg);
392
393         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
394
395         return true;
396 }
397
398 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
399                 const struct kvm_one_reg *reg, void __user *uaddr)
400 {
401         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
402
403         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
404                 return -EFAULT;
405         return 0;
406 }
407
408 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
409         const struct kvm_one_reg *reg, void __user *uaddr)
410 {
411         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
412
413         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
414                 return -EFAULT;
415         return 0;
416 }
417
418 static inline void reset_wcr(struct kvm_vcpu *vcpu,
419                              const struct sys_reg_desc *rd)
420 {
421         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
422 }
423
424 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
425 {
426         u64 amair;
427
428         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
429         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
430 }
431
432 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
433 {
434         u64 mpidr;
435
436         /*
437          * Map the vcpu_id into the first three affinity level fields of
438          * the MPIDR. We limit the number of VCPUs in level 0 due to a
439          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
440          * of the GICv3 to be able to address each CPU directly when
441          * sending IPIs.
442          */
443         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
444         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
445         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
446         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
447 }
448
449 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
450 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
451         /* DBGBVRn_EL1 */                                               \
452         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),     \
453           trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },                \
454         /* DBGBCRn_EL1 */                                               \
455         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),     \
456           trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },                \
457         /* DBGWVRn_EL1 */                                               \
458         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),     \
459           trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },               \
460         /* DBGWCRn_EL1 */                                               \
461         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),     \
462           trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
463
464 /*
465  * Architected system registers.
466  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
467  *
468  * We could trap ID_DFR0 and tell the guest we don't support performance
469  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
470  * NAKed, so it will read the PMCR anyway.
471  *
472  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
473  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
474  * all PM registers, which doesn't crash the guest kernel at least.
475  *
476  * Debug handling: We do trap most, if not all debug related system
477  * registers. The implementation is good enough to ensure that a guest
478  * can use these with minimal performance degradation. The drawback is
479  * that we don't implement any of the external debug, none of the
480  * OSlock protocol. This should be revisited if we ever encounter a
481  * more demanding guest...
482  */
483 static const struct sys_reg_desc sys_reg_descs[] = {
484         /* DC ISW */
485         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
486           access_dcsw },
487         /* DC CSW */
488         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
489           access_dcsw },
490         /* DC CISW */
491         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
492           access_dcsw },
493
494         DBG_BCR_BVR_WCR_WVR_EL1(0),
495         DBG_BCR_BVR_WCR_WVR_EL1(1),
496         /* MDCCINT_EL1 */
497         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
498           trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
499         /* MDSCR_EL1 */
500         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
501           trap_debug_regs, reset_val, MDSCR_EL1, 0 },
502         DBG_BCR_BVR_WCR_WVR_EL1(2),
503         DBG_BCR_BVR_WCR_WVR_EL1(3),
504         DBG_BCR_BVR_WCR_WVR_EL1(4),
505         DBG_BCR_BVR_WCR_WVR_EL1(5),
506         DBG_BCR_BVR_WCR_WVR_EL1(6),
507         DBG_BCR_BVR_WCR_WVR_EL1(7),
508         DBG_BCR_BVR_WCR_WVR_EL1(8),
509         DBG_BCR_BVR_WCR_WVR_EL1(9),
510         DBG_BCR_BVR_WCR_WVR_EL1(10),
511         DBG_BCR_BVR_WCR_WVR_EL1(11),
512         DBG_BCR_BVR_WCR_WVR_EL1(12),
513         DBG_BCR_BVR_WCR_WVR_EL1(13),
514         DBG_BCR_BVR_WCR_WVR_EL1(14),
515         DBG_BCR_BVR_WCR_WVR_EL1(15),
516
517         /* MDRAR_EL1 */
518         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
519           trap_raz_wi },
520         /* OSLAR_EL1 */
521         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
522           trap_raz_wi },
523         /* OSLSR_EL1 */
524         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
525           trap_oslsr_el1 },
526         /* OSDLR_EL1 */
527         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
528           trap_raz_wi },
529         /* DBGPRCR_EL1 */
530         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
531           trap_raz_wi },
532         /* DBGCLAIMSET_EL1 */
533         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
534           trap_raz_wi },
535         /* DBGCLAIMCLR_EL1 */
536         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
537           trap_raz_wi },
538         /* DBGAUTHSTATUS_EL1 */
539         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
540           trap_dbgauthstatus_el1 },
541
542         /* MDCCSR_EL1 */
543         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
544           trap_raz_wi },
545         /* DBGDTR_EL0 */
546         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
547           trap_raz_wi },
548         /* DBGDTR[TR]X_EL0 */
549         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
550           trap_raz_wi },
551
552         /* DBGVCR32_EL2 */
553         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
554           NULL, reset_val, DBGVCR32_EL2, 0 },
555
556         /* MPIDR_EL1 */
557         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
558           NULL, reset_mpidr, MPIDR_EL1 },
559         /* SCTLR_EL1 */
560         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
561           access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
562         /* CPACR_EL1 */
563         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
564           NULL, reset_val, CPACR_EL1, 0 },
565         /* TTBR0_EL1 */
566         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
567           access_vm_reg, reset_unknown, TTBR0_EL1 },
568         /* TTBR1_EL1 */
569         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
570           access_vm_reg, reset_unknown, TTBR1_EL1 },
571         /* TCR_EL1 */
572         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
573           access_vm_reg, reset_val, TCR_EL1, 0 },
574
575         /* AFSR0_EL1 */
576         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
577           access_vm_reg, reset_unknown, AFSR0_EL1 },
578         /* AFSR1_EL1 */
579         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
580           access_vm_reg, reset_unknown, AFSR1_EL1 },
581         /* ESR_EL1 */
582         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
583           access_vm_reg, reset_unknown, ESR_EL1 },
584         /* FAR_EL1 */
585         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
586           access_vm_reg, reset_unknown, FAR_EL1 },
587         /* PAR_EL1 */
588         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
589           NULL, reset_unknown, PAR_EL1 },
590
591         /* PMINTENSET_EL1 */
592         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
593           trap_raz_wi },
594         /* PMINTENCLR_EL1 */
595         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
596           trap_raz_wi },
597
598         /* MAIR_EL1 */
599         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
600           access_vm_reg, reset_unknown, MAIR_EL1 },
601         /* AMAIR_EL1 */
602         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
603           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
604
605         /* VBAR_EL1 */
606         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
607           NULL, reset_val, VBAR_EL1, 0 },
608
609         /* ICC_SGI1R_EL1 */
610         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
611           access_gic_sgi },
612         /* ICC_SRE_EL1 */
613         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
614           trap_raz_wi },
615
616         /* CONTEXTIDR_EL1 */
617         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
618           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
619         /* TPIDR_EL1 */
620         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
621           NULL, reset_unknown, TPIDR_EL1 },
622
623         /* CNTKCTL_EL1 */
624         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
625           NULL, reset_val, CNTKCTL_EL1, 0},
626
627         /* CSSELR_EL1 */
628         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
629           NULL, reset_unknown, CSSELR_EL1 },
630
631         /* PMCR_EL0 */
632         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
633           trap_raz_wi },
634         /* PMCNTENSET_EL0 */
635         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
636           trap_raz_wi },
637         /* PMCNTENCLR_EL0 */
638         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
639           trap_raz_wi },
640         /* PMOVSCLR_EL0 */
641         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
642           trap_raz_wi },
643         /* PMSWINC_EL0 */
644         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
645           trap_raz_wi },
646         /* PMSELR_EL0 */
647         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
648           trap_raz_wi },
649         /* PMCEID0_EL0 */
650         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
651           trap_raz_wi },
652         /* PMCEID1_EL0 */
653         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
654           trap_raz_wi },
655         /* PMCCNTR_EL0 */
656         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
657           trap_raz_wi },
658         /* PMXEVTYPER_EL0 */
659         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
660           trap_raz_wi },
661         /* PMXEVCNTR_EL0 */
662         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
663           trap_raz_wi },
664         /* PMUSERENR_EL0 */
665         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
666           trap_raz_wi },
667         /* PMOVSSET_EL0 */
668         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
669           trap_raz_wi },
670
671         /* TPIDR_EL0 */
672         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
673           NULL, reset_unknown, TPIDR_EL0 },
674         /* TPIDRRO_EL0 */
675         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
676           NULL, reset_unknown, TPIDRRO_EL0 },
677
678         /* DACR32_EL2 */
679         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
680           NULL, reset_unknown, DACR32_EL2 },
681         /* IFSR32_EL2 */
682         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
683           NULL, reset_unknown, IFSR32_EL2 },
684         /* FPEXC32_EL2 */
685         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
686           NULL, reset_val, FPEXC32_EL2, 0x70 },
687 };
688
689 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
690                         const struct sys_reg_params *p,
691                         const struct sys_reg_desc *r)
692 {
693         if (p->is_write) {
694                 return ignore_write(vcpu, p);
695         } else {
696                 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
697                 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
698                 u32 el3 = !!cpuid_feature_extract_field(pfr, ID_AA64PFR0_EL3_SHIFT);
699
700                 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
701                                           (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
702                                           (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20) |
703                                           (6 << 16) | (el3 << 14) | (el3 << 12));
704                 return true;
705         }
706 }
707
708 static bool trap_debug32(struct kvm_vcpu *vcpu,
709                          const struct sys_reg_params *p,
710                          const struct sys_reg_desc *r)
711 {
712         if (p->is_write) {
713                 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
714                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
715         } else {
716                 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
717         }
718
719         return true;
720 }
721
722 /* AArch32 debug register mappings
723  *
724  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
725  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
726  *
727  * All control registers and watchpoint value registers are mapped to
728  * the lower 32 bits of their AArch64 equivalents. We share the trap
729  * handlers with the above AArch64 code which checks what mode the
730  * system is in.
731  */
732
733 static inline bool trap_xvr(struct kvm_vcpu *vcpu,
734                             const struct sys_reg_params *p,
735                             const struct sys_reg_desc *rd)
736 {
737         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
738
739         if (p->is_write) {
740                 u64 val = *dbg_reg;
741
742                 val &= 0xffffffffUL;
743                 val |= *vcpu_reg(vcpu, p->Rt) << 32;
744                 *dbg_reg = val;
745
746                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
747         } else {
748                 *vcpu_reg(vcpu, p->Rt) = *dbg_reg >> 32;
749         }
750
751         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
752
753         return true;
754 }
755
756 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
757         /* DBGBVRn */                                                   \
758         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
759         /* DBGBCRn */                                                   \
760         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
761         /* DBGWVRn */                                                   \
762         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
763         /* DBGWCRn */                                                   \
764         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
765
766 #define DBGBXVR(n)                                                      \
767         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
768
769 /*
770  * Trapped cp14 registers. We generally ignore most of the external
771  * debug, on the principle that they don't really make sense to a
772  * guest. Revisit this one day, would this principle change.
773  */
774 static const struct sys_reg_desc cp14_regs[] = {
775         /* DBGIDR */
776         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
777         /* DBGDTRRXext */
778         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
779
780         DBG_BCR_BVR_WCR_WVR(0),
781         /* DBGDSCRint */
782         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
783         DBG_BCR_BVR_WCR_WVR(1),
784         /* DBGDCCINT */
785         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
786         /* DBGDSCRext */
787         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
788         DBG_BCR_BVR_WCR_WVR(2),
789         /* DBGDTR[RT]Xint */
790         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
791         /* DBGDTR[RT]Xext */
792         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
793         DBG_BCR_BVR_WCR_WVR(3),
794         DBG_BCR_BVR_WCR_WVR(4),
795         DBG_BCR_BVR_WCR_WVR(5),
796         /* DBGWFAR */
797         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
798         /* DBGOSECCR */
799         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
800         DBG_BCR_BVR_WCR_WVR(6),
801         /* DBGVCR */
802         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
803         DBG_BCR_BVR_WCR_WVR(7),
804         DBG_BCR_BVR_WCR_WVR(8),
805         DBG_BCR_BVR_WCR_WVR(9),
806         DBG_BCR_BVR_WCR_WVR(10),
807         DBG_BCR_BVR_WCR_WVR(11),
808         DBG_BCR_BVR_WCR_WVR(12),
809         DBG_BCR_BVR_WCR_WVR(13),
810         DBG_BCR_BVR_WCR_WVR(14),
811         DBG_BCR_BVR_WCR_WVR(15),
812
813         /* DBGDRAR (32bit) */
814         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
815
816         DBGBXVR(0),
817         /* DBGOSLAR */
818         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
819         DBGBXVR(1),
820         /* DBGOSLSR */
821         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
822         DBGBXVR(2),
823         DBGBXVR(3),
824         /* DBGOSDLR */
825         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
826         DBGBXVR(4),
827         /* DBGPRCR */
828         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
829         DBGBXVR(5),
830         DBGBXVR(6),
831         DBGBXVR(7),
832         DBGBXVR(8),
833         DBGBXVR(9),
834         DBGBXVR(10),
835         DBGBXVR(11),
836         DBGBXVR(12),
837         DBGBXVR(13),
838         DBGBXVR(14),
839         DBGBXVR(15),
840
841         /* DBGDSAR (32bit) */
842         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
843
844         /* DBGDEVID2 */
845         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
846         /* DBGDEVID1 */
847         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
848         /* DBGDEVID */
849         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
850         /* DBGCLAIMSET */
851         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
852         /* DBGCLAIMCLR */
853         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
854         /* DBGAUTHSTATUS */
855         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
856 };
857
858 /* Trapped cp14 64bit registers */
859 static const struct sys_reg_desc cp14_64_regs[] = {
860         /* DBGDRAR (64bit) */
861         { Op1( 0), CRm( 1), .access = trap_raz_wi },
862
863         /* DBGDSAR (64bit) */
864         { Op1( 0), CRm( 2), .access = trap_raz_wi },
865 };
866
867 /*
868  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
869  * depending on the way they are accessed (as a 32bit or a 64bit
870  * register).
871  */
872 static const struct sys_reg_desc cp15_regs[] = {
873         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
874
875         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
876         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
877         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
878         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
879         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
880         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
881         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
882         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
883         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
884         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
885         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
886
887         /*
888          * DC{C,I,CI}SW operations:
889          */
890         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
891         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
892         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
893
894         /* PMU */
895         { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
896         { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
897         { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
898         { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
899         { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
900         { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
901         { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
902         { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
903         { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
904         { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
905         { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
906         { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
907         { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
908
909         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
910         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
911         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
912         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
913
914         /* ICC_SRE */
915         { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
916
917         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
918 };
919
920 static const struct sys_reg_desc cp15_64_regs[] = {
921         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
922         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
923         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
924 };
925
926 /* Target specific emulation tables */
927 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
928
929 void kvm_register_target_sys_reg_table(unsigned int target,
930                                        struct kvm_sys_reg_target_table *table)
931 {
932         target_tables[target] = table;
933 }
934
935 /* Get specific register table for this target. */
936 static const struct sys_reg_desc *get_target_table(unsigned target,
937                                                    bool mode_is_64,
938                                                    size_t *num)
939 {
940         struct kvm_sys_reg_target_table *table;
941
942         table = target_tables[target];
943         if (mode_is_64) {
944                 *num = table->table64.num;
945                 return table->table64.table;
946         } else {
947                 *num = table->table32.num;
948                 return table->table32.table;
949         }
950 }
951
952 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
953                                          const struct sys_reg_desc table[],
954                                          unsigned int num)
955 {
956         unsigned int i;
957
958         for (i = 0; i < num; i++) {
959                 const struct sys_reg_desc *r = &table[i];
960
961                 if (params->Op0 != r->Op0)
962                         continue;
963                 if (params->Op1 != r->Op1)
964                         continue;
965                 if (params->CRn != r->CRn)
966                         continue;
967                 if (params->CRm != r->CRm)
968                         continue;
969                 if (params->Op2 != r->Op2)
970                         continue;
971
972                 return r;
973         }
974         return NULL;
975 }
976
977 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
978 {
979         kvm_inject_undefined(vcpu);
980         return 1;
981 }
982
983 /*
984  * emulate_cp --  tries to match a sys_reg access in a handling table, and
985  *                call the corresponding trap handler.
986  *
987  * @params: pointer to the descriptor of the access
988  * @table: array of trap descriptors
989  * @num: size of the trap descriptor array
990  *
991  * Return 0 if the access has been handled, and -1 if not.
992  */
993 static int emulate_cp(struct kvm_vcpu *vcpu,
994                       const struct sys_reg_params *params,
995                       const struct sys_reg_desc *table,
996                       size_t num)
997 {
998         const struct sys_reg_desc *r;
999
1000         if (!table)
1001                 return -1;      /* Not handled */
1002
1003         r = find_reg(params, table, num);
1004
1005         if (r) {
1006                 /*
1007                  * Not having an accessor means that we have
1008                  * configured a trap that we don't know how to
1009                  * handle. This certainly qualifies as a gross bug
1010                  * that should be fixed right away.
1011                  */
1012                 BUG_ON(!r->access);
1013
1014                 if (likely(r->access(vcpu, params, r))) {
1015                         /* Skip instruction, since it was emulated */
1016                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1017                 }
1018
1019                 /* Handled */
1020                 return 0;
1021         }
1022
1023         /* Not handled */
1024         return -1;
1025 }
1026
1027 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1028                                 struct sys_reg_params *params)
1029 {
1030         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1031         int cp;
1032
1033         switch(hsr_ec) {
1034         case ESR_ELx_EC_CP15_32:
1035         case ESR_ELx_EC_CP15_64:
1036                 cp = 15;
1037                 break;
1038         case ESR_ELx_EC_CP14_MR:
1039         case ESR_ELx_EC_CP14_64:
1040                 cp = 14;
1041                 break;
1042         default:
1043                 WARN_ON((cp = -1));
1044         }
1045
1046         kvm_err("Unsupported guest CP%d access at: %08lx\n",
1047                 cp, *vcpu_pc(vcpu));
1048         print_sys_reg_instr(params);
1049         kvm_inject_undefined(vcpu);
1050 }
1051
1052 /**
1053  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
1054  * @vcpu: The VCPU pointer
1055  * @run:  The kvm_run struct
1056  */
1057 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1058                             const struct sys_reg_desc *global,
1059                             size_t nr_global,
1060                             const struct sys_reg_desc *target_specific,
1061                             size_t nr_specific)
1062 {
1063         struct sys_reg_params params;
1064         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1065         int Rt2 = (hsr >> 10) & 0xf;
1066
1067         params.is_aarch32 = true;
1068         params.is_32bit = false;
1069         params.CRm = (hsr >> 1) & 0xf;
1070         params.Rt = (hsr >> 5) & 0xf;
1071         params.is_write = ((hsr & 1) == 0);
1072
1073         params.Op0 = 0;
1074         params.Op1 = (hsr >> 16) & 0xf;
1075         params.Op2 = 0;
1076         params.CRn = 0;
1077
1078         /*
1079          * Massive hack here. Store Rt2 in the top 32bits so we only
1080          * have one register to deal with. As we use the same trap
1081          * backends between AArch32 and AArch64, we get away with it.
1082          */
1083         if (params.is_write) {
1084                 u64 val = *vcpu_reg(vcpu, params.Rt);
1085                 val &= 0xffffffff;
1086                 val |= *vcpu_reg(vcpu, Rt2) << 32;
1087                 *vcpu_reg(vcpu, params.Rt) = val;
1088         }
1089
1090         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1091                 goto out;
1092         if (!emulate_cp(vcpu, &params, global, nr_global))
1093                 goto out;
1094
1095         unhandled_cp_access(vcpu, &params);
1096
1097 out:
1098         /* Do the opposite hack for the read side */
1099         if (!params.is_write) {
1100                 u64 val = *vcpu_reg(vcpu, params.Rt);
1101                 val >>= 32;
1102                 *vcpu_reg(vcpu, Rt2) = val;
1103         }
1104
1105         return 1;
1106 }
1107
1108 /**
1109  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
1110  * @vcpu: The VCPU pointer
1111  * @run:  The kvm_run struct
1112  */
1113 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1114                             const struct sys_reg_desc *global,
1115                             size_t nr_global,
1116                             const struct sys_reg_desc *target_specific,
1117                             size_t nr_specific)
1118 {
1119         struct sys_reg_params params;
1120         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1121
1122         params.is_aarch32 = true;
1123         params.is_32bit = true;
1124         params.CRm = (hsr >> 1) & 0xf;
1125         params.Rt  = (hsr >> 5) & 0xf;
1126         params.is_write = ((hsr & 1) == 0);
1127         params.CRn = (hsr >> 10) & 0xf;
1128         params.Op0 = 0;
1129         params.Op1 = (hsr >> 14) & 0x7;
1130         params.Op2 = (hsr >> 17) & 0x7;
1131
1132         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1133                 return 1;
1134         if (!emulate_cp(vcpu, &params, global, nr_global))
1135                 return 1;
1136
1137         unhandled_cp_access(vcpu, &params);
1138         return 1;
1139 }
1140
1141 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1142 {
1143         const struct sys_reg_desc *target_specific;
1144         size_t num;
1145
1146         target_specific = get_target_table(vcpu->arch.target, false, &num);
1147         return kvm_handle_cp_64(vcpu,
1148                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1149                                 target_specific, num);
1150 }
1151
1152 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1153 {
1154         const struct sys_reg_desc *target_specific;
1155         size_t num;
1156
1157         target_specific = get_target_table(vcpu->arch.target, false, &num);
1158         return kvm_handle_cp_32(vcpu,
1159                                 cp15_regs, ARRAY_SIZE(cp15_regs),
1160                                 target_specific, num);
1161 }
1162
1163 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1164 {
1165         return kvm_handle_cp_64(vcpu,
1166                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1167                                 NULL, 0);
1168 }
1169
1170 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1171 {
1172         return kvm_handle_cp_32(vcpu,
1173                                 cp14_regs, ARRAY_SIZE(cp14_regs),
1174                                 NULL, 0);
1175 }
1176
1177 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1178                            const struct sys_reg_params *params)
1179 {
1180         size_t num;
1181         const struct sys_reg_desc *table, *r;
1182
1183         table = get_target_table(vcpu->arch.target, true, &num);
1184
1185         /* Search target-specific then generic table. */
1186         r = find_reg(params, table, num);
1187         if (!r)
1188                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1189
1190         if (likely(r)) {
1191                 /*
1192                  * Not having an accessor means that we have
1193                  * configured a trap that we don't know how to
1194                  * handle. This certainly qualifies as a gross bug
1195                  * that should be fixed right away.
1196                  */
1197                 BUG_ON(!r->access);
1198
1199                 if (likely(r->access(vcpu, params, r))) {
1200                         /* Skip instruction, since it was emulated */
1201                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1202                         return 1;
1203                 }
1204                 /* If access function fails, it should complain. */
1205         } else {
1206                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1207                         *vcpu_pc(vcpu));
1208                 print_sys_reg_instr(params);
1209         }
1210         kvm_inject_undefined(vcpu);
1211         return 1;
1212 }
1213
1214 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1215                               const struct sys_reg_desc *table, size_t num)
1216 {
1217         unsigned long i;
1218
1219         for (i = 0; i < num; i++)
1220                 if (table[i].reset)
1221                         table[i].reset(vcpu, &table[i]);
1222 }
1223
1224 /**
1225  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1226  * @vcpu: The VCPU pointer
1227  * @run:  The kvm_run struct
1228  */
1229 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1230 {
1231         struct sys_reg_params params;
1232         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1233
1234         trace_kvm_handle_sys_reg(esr);
1235
1236         params.is_aarch32 = false;
1237         params.is_32bit = false;
1238         params.Op0 = (esr >> 20) & 3;
1239         params.Op1 = (esr >> 14) & 0x7;
1240         params.CRn = (esr >> 10) & 0xf;
1241         params.CRm = (esr >> 1) & 0xf;
1242         params.Op2 = (esr >> 17) & 0x7;
1243         params.Rt = (esr >> 5) & 0x1f;
1244         params.is_write = !(esr & 1);
1245
1246         return emulate_sys_reg(vcpu, &params);
1247 }
1248
1249 /******************************************************************************
1250  * Userspace API
1251  *****************************************************************************/
1252
1253 static bool index_to_params(u64 id, struct sys_reg_params *params)
1254 {
1255         switch (id & KVM_REG_SIZE_MASK) {
1256         case KVM_REG_SIZE_U64:
1257                 /* Any unused index bits means it's not valid. */
1258                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1259                               | KVM_REG_ARM_COPROC_MASK
1260                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1261                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1262                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1263                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1264                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1265                         return false;
1266                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1267                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1268                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1269                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1270                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1271                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1272                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1273                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1274                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1275                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1276                 return true;
1277         default:
1278                 return false;
1279         }
1280 }
1281
1282 /* Decode an index value, and find the sys_reg_desc entry. */
1283 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1284                                                     u64 id)
1285 {
1286         size_t num;
1287         const struct sys_reg_desc *table, *r;
1288         struct sys_reg_params params;
1289
1290         /* We only do sys_reg for now. */
1291         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1292                 return NULL;
1293
1294         if (!index_to_params(id, &params))
1295                 return NULL;
1296
1297         table = get_target_table(vcpu->arch.target, true, &num);
1298         r = find_reg(&params, table, num);
1299         if (!r)
1300                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1301
1302         /* Not saved in the sys_reg array? */
1303         if (r && !r->reg)
1304                 r = NULL;
1305
1306         return r;
1307 }
1308
1309 /*
1310  * These are the invariant sys_reg registers: we let the guest see the
1311  * host versions of these, so they're part of the guest state.
1312  *
1313  * A future CPU may provide a mechanism to present different values to
1314  * the guest, or a future kvm may trap them.
1315  */
1316
1317 #define FUNCTION_INVARIANT(reg)                                         \
1318         static void get_##reg(struct kvm_vcpu *v,                       \
1319                               const struct sys_reg_desc *r)             \
1320         {                                                               \
1321                 u64 val;                                                \
1322                                                                         \
1323                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
1324                              : "=r" (val));                             \
1325                 ((struct sys_reg_desc *)r)->val = val;                  \
1326         }
1327
1328 FUNCTION_INVARIANT(midr_el1)
1329 FUNCTION_INVARIANT(ctr_el0)
1330 FUNCTION_INVARIANT(revidr_el1)
1331 FUNCTION_INVARIANT(id_pfr0_el1)
1332 FUNCTION_INVARIANT(id_pfr1_el1)
1333 FUNCTION_INVARIANT(id_dfr0_el1)
1334 FUNCTION_INVARIANT(id_afr0_el1)
1335 FUNCTION_INVARIANT(id_mmfr0_el1)
1336 FUNCTION_INVARIANT(id_mmfr1_el1)
1337 FUNCTION_INVARIANT(id_mmfr2_el1)
1338 FUNCTION_INVARIANT(id_mmfr3_el1)
1339 FUNCTION_INVARIANT(id_isar0_el1)
1340 FUNCTION_INVARIANT(id_isar1_el1)
1341 FUNCTION_INVARIANT(id_isar2_el1)
1342 FUNCTION_INVARIANT(id_isar3_el1)
1343 FUNCTION_INVARIANT(id_isar4_el1)
1344 FUNCTION_INVARIANT(id_isar5_el1)
1345 FUNCTION_INVARIANT(clidr_el1)
1346 FUNCTION_INVARIANT(aidr_el1)
1347
1348 /* ->val is filled in by kvm_sys_reg_table_init() */
1349 static struct sys_reg_desc invariant_sys_regs[] = {
1350         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1351           NULL, get_midr_el1 },
1352         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1353           NULL, get_revidr_el1 },
1354         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1355           NULL, get_id_pfr0_el1 },
1356         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1357           NULL, get_id_pfr1_el1 },
1358         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1359           NULL, get_id_dfr0_el1 },
1360         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1361           NULL, get_id_afr0_el1 },
1362         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1363           NULL, get_id_mmfr0_el1 },
1364         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1365           NULL, get_id_mmfr1_el1 },
1366         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1367           NULL, get_id_mmfr2_el1 },
1368         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1369           NULL, get_id_mmfr3_el1 },
1370         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1371           NULL, get_id_isar0_el1 },
1372         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1373           NULL, get_id_isar1_el1 },
1374         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1375           NULL, get_id_isar2_el1 },
1376         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1377           NULL, get_id_isar3_el1 },
1378         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1379           NULL, get_id_isar4_el1 },
1380         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1381           NULL, get_id_isar5_el1 },
1382         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1383           NULL, get_clidr_el1 },
1384         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1385           NULL, get_aidr_el1 },
1386         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1387           NULL, get_ctr_el0 },
1388 };
1389
1390 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1391 {
1392         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1393                 return -EFAULT;
1394         return 0;
1395 }
1396
1397 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1398 {
1399         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1400                 return -EFAULT;
1401         return 0;
1402 }
1403
1404 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1405 {
1406         struct sys_reg_params params;
1407         const struct sys_reg_desc *r;
1408
1409         if (!index_to_params(id, &params))
1410                 return -ENOENT;
1411
1412         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1413         if (!r)
1414                 return -ENOENT;
1415
1416         return reg_to_user(uaddr, &r->val, id);
1417 }
1418
1419 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1420 {
1421         struct sys_reg_params params;
1422         const struct sys_reg_desc *r;
1423         int err;
1424         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1425
1426         if (!index_to_params(id, &params))
1427                 return -ENOENT;
1428         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1429         if (!r)
1430                 return -ENOENT;
1431
1432         err = reg_from_user(&val, uaddr, id);
1433         if (err)
1434                 return err;
1435
1436         /* This is what we mean by invariant: you can't change it. */
1437         if (r->val != val)
1438                 return -EINVAL;
1439
1440         return 0;
1441 }
1442
1443 static bool is_valid_cache(u32 val)
1444 {
1445         u32 level, ctype;
1446
1447         if (val >= CSSELR_MAX)
1448                 return false;
1449
1450         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1451         level = (val >> 1);
1452         ctype = (cache_levels >> (level * 3)) & 7;
1453
1454         switch (ctype) {
1455         case 0: /* No cache */
1456                 return false;
1457         case 1: /* Instruction cache only */
1458                 return (val & 1);
1459         case 2: /* Data cache only */
1460         case 4: /* Unified cache */
1461                 return !(val & 1);
1462         case 3: /* Separate instruction and data caches */
1463                 return true;
1464         default: /* Reserved: we can't know instruction or data. */
1465                 return false;
1466         }
1467 }
1468
1469 static int demux_c15_get(u64 id, void __user *uaddr)
1470 {
1471         u32 val;
1472         u32 __user *uval = uaddr;
1473
1474         /* Fail if we have unknown bits set. */
1475         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1476                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1477                 return -ENOENT;
1478
1479         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1480         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1481                 if (KVM_REG_SIZE(id) != 4)
1482                         return -ENOENT;
1483                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1484                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1485                 if (!is_valid_cache(val))
1486                         return -ENOENT;
1487
1488                 return put_user(get_ccsidr(val), uval);
1489         default:
1490                 return -ENOENT;
1491         }
1492 }
1493
1494 static int demux_c15_set(u64 id, void __user *uaddr)
1495 {
1496         u32 val, newval;
1497         u32 __user *uval = uaddr;
1498
1499         /* Fail if we have unknown bits set. */
1500         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1501                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1502                 return -ENOENT;
1503
1504         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1505         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1506                 if (KVM_REG_SIZE(id) != 4)
1507                         return -ENOENT;
1508                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1509                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1510                 if (!is_valid_cache(val))
1511                         return -ENOENT;
1512
1513                 if (get_user(newval, uval))
1514                         return -EFAULT;
1515
1516                 /* This is also invariant: you can't change it. */
1517                 if (newval != get_ccsidr(val))
1518                         return -EINVAL;
1519                 return 0;
1520         default:
1521                 return -ENOENT;
1522         }
1523 }
1524
1525 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1526 {
1527         const struct sys_reg_desc *r;
1528         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1529
1530         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1531                 return demux_c15_get(reg->id, uaddr);
1532
1533         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1534                 return -ENOENT;
1535
1536         r = index_to_sys_reg_desc(vcpu, reg->id);
1537         if (!r)
1538                 return get_invariant_sys_reg(reg->id, uaddr);
1539
1540         if (r->get_user)
1541                 return (r->get_user)(vcpu, r, reg, uaddr);
1542
1543         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1544 }
1545
1546 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1547 {
1548         const struct sys_reg_desc *r;
1549         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1550
1551         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1552                 return demux_c15_set(reg->id, uaddr);
1553
1554         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1555                 return -ENOENT;
1556
1557         r = index_to_sys_reg_desc(vcpu, reg->id);
1558         if (!r)
1559                 return set_invariant_sys_reg(reg->id, uaddr);
1560
1561         if (r->set_user)
1562                 return (r->set_user)(vcpu, r, reg, uaddr);
1563
1564         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1565 }
1566
1567 static unsigned int num_demux_regs(void)
1568 {
1569         unsigned int i, count = 0;
1570
1571         for (i = 0; i < CSSELR_MAX; i++)
1572                 if (is_valid_cache(i))
1573                         count++;
1574
1575         return count;
1576 }
1577
1578 static int write_demux_regids(u64 __user *uindices)
1579 {
1580         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1581         unsigned int i;
1582
1583         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1584         for (i = 0; i < CSSELR_MAX; i++) {
1585                 if (!is_valid_cache(i))
1586                         continue;
1587                 if (put_user(val | i, uindices))
1588                         return -EFAULT;
1589                 uindices++;
1590         }
1591         return 0;
1592 }
1593
1594 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1595 {
1596         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1597                 KVM_REG_ARM64_SYSREG |
1598                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1599                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1600                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1601                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1602                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1603 }
1604
1605 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1606 {
1607         if (!*uind)
1608                 return true;
1609
1610         if (put_user(sys_reg_to_index(reg), *uind))
1611                 return false;
1612
1613         (*uind)++;
1614         return true;
1615 }
1616
1617 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1618 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1619 {
1620         const struct sys_reg_desc *i1, *i2, *end1, *end2;
1621         unsigned int total = 0;
1622         size_t num;
1623
1624         /* We check for duplicates here, to allow arch-specific overrides. */
1625         i1 = get_target_table(vcpu->arch.target, true, &num);
1626         end1 = i1 + num;
1627         i2 = sys_reg_descs;
1628         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1629
1630         BUG_ON(i1 == end1 || i2 == end2);
1631
1632         /* Walk carefully, as both tables may refer to the same register. */
1633         while (i1 || i2) {
1634                 int cmp = cmp_sys_reg(i1, i2);
1635                 /* target-specific overrides generic entry. */
1636                 if (cmp <= 0) {
1637                         /* Ignore registers we trap but don't save. */
1638                         if (i1->reg) {
1639                                 if (!copy_reg_to_user(i1, &uind))
1640                                         return -EFAULT;
1641                                 total++;
1642                         }
1643                 } else {
1644                         /* Ignore registers we trap but don't save. */
1645                         if (i2->reg) {
1646                                 if (!copy_reg_to_user(i2, &uind))
1647                                         return -EFAULT;
1648                                 total++;
1649                         }
1650                 }
1651
1652                 if (cmp <= 0 && ++i1 == end1)
1653                         i1 = NULL;
1654                 if (cmp >= 0 && ++i2 == end2)
1655                         i2 = NULL;
1656         }
1657         return total;
1658 }
1659
1660 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1661 {
1662         return ARRAY_SIZE(invariant_sys_regs)
1663                 + num_demux_regs()
1664                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1665 }
1666
1667 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1668 {
1669         unsigned int i;
1670         int err;
1671
1672         /* Then give them all the invariant registers' indices. */
1673         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1674                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1675                         return -EFAULT;
1676                 uindices++;
1677         }
1678
1679         err = walk_sys_regs(vcpu, uindices);
1680         if (err < 0)
1681                 return err;
1682         uindices += err;
1683
1684         return write_demux_regids(uindices);
1685 }
1686
1687 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1688 {
1689         unsigned int i;
1690
1691         for (i = 1; i < n; i++) {
1692                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1693                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1694                         return 1;
1695                 }
1696         }
1697
1698         return 0;
1699 }
1700
1701 void kvm_sys_reg_table_init(void)
1702 {
1703         unsigned int i;
1704         struct sys_reg_desc clidr;
1705
1706         /* Make sure tables are unique and in order. */
1707         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1708         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1709         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1710         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1711         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1712         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1713
1714         /* We abuse the reset function to overwrite the table itself. */
1715         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1716                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1717
1718         /*
1719          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1720          *
1721          *   If software reads the Cache Type fields from Ctype1
1722          *   upwards, once it has seen a value of 0b000, no caches
1723          *   exist at further-out levels of the hierarchy. So, for
1724          *   example, if Ctype3 is the first Cache Type field with a
1725          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1726          *   ignored.
1727          */
1728         get_clidr_el1(NULL, &clidr); /* Ugly... */
1729         cache_levels = clidr.val;
1730         for (i = 0; i < 7; i++)
1731                 if (((cache_levels >> (i*3)) & 7) == 0)
1732                         break;
1733         /* Clear all higher bits. */
1734         cache_levels &= (1 << (i*3))-1;
1735 }
1736
1737 /**
1738  * kvm_reset_sys_regs - sets system registers to reset value
1739  * @vcpu: The VCPU pointer
1740  *
1741  * This function finds the right table above and sets the registers on the
1742  * virtual CPU struct to their architecturally defined reset values.
1743  */
1744 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1745 {
1746         size_t num;
1747         const struct sys_reg_desc *table;
1748
1749         /* Catch someone adding a register without putting in reset entry. */
1750         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1751
1752         /* Generic chip reset first (so target could override). */
1753         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1754
1755         table = get_target_table(vcpu->arch.target, true, &num);
1756         reset_sys_reg_descs(vcpu, table, num);
1757
1758         for (num = 1; num < NR_SYS_REGS; num++)
1759                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1760                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
1761 }