]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm64/mm/mmu.c
Merge remote-tracking branch 'mips/mips-for-linux-next'
[karo-tx-linux.git] / arch / arm64 / mm / mmu.c
1 /*
2  * Based on arch/arm/mm/mmu.c
3  *
4  * Copyright (C) 1995-2005 Russell King
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/export.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/libfdt.h>
25 #include <linux/mman.h>
26 #include <linux/nodemask.h>
27 #include <linux/memblock.h>
28 #include <linux/fs.h>
29 #include <linux/io.h>
30 #include <linux/slab.h>
31 #include <linux/stop_machine.h>
32
33 #include <asm/cputype.h>
34 #include <asm/fixmap.h>
35 #include <asm/kernel-pgtable.h>
36 #include <asm/sections.h>
37 #include <asm/setup.h>
38 #include <asm/sizes.h>
39 #include <asm/tlb.h>
40 #include <asm/memblock.h>
41 #include <asm/mmu_context.h>
42
43 #include "mm.h"
44
45 u64 idmap_t0sz = TCR_T0SZ(VA_BITS);
46
47 /*
48  * Empty_zero_page is a special page that is used for zero-initialized data
49  * and COW.
50  */
51 struct page *empty_zero_page;
52 EXPORT_SYMBOL(empty_zero_page);
53
54 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
55                               unsigned long size, pgprot_t vma_prot)
56 {
57         if (!pfn_valid(pfn))
58                 return pgprot_noncached(vma_prot);
59         else if (file->f_flags & O_SYNC)
60                 return pgprot_writecombine(vma_prot);
61         return vma_prot;
62 }
63 EXPORT_SYMBOL(phys_mem_access_prot);
64
65 static void __init *early_alloc(unsigned long sz)
66 {
67         void *ptr = __va(memblock_alloc(sz, sz));
68         BUG_ON(!ptr);
69         memset(ptr, 0, sz);
70         return ptr;
71 }
72
73 /*
74  * remap a PMD into pages
75  */
76 static void split_pmd(pmd_t *pmd, pte_t *pte)
77 {
78         unsigned long pfn = pmd_pfn(*pmd);
79         int i = 0;
80
81         do {
82                 /*
83                  * Need to have the least restrictive permissions available
84                  * permissions will be fixed up later. Default the new page
85                  * range as contiguous ptes.
86                  */
87                 set_pte(pte, pfn_pte(pfn, PAGE_KERNEL_EXEC_CONT));
88                 pfn++;
89         } while (pte++, i++, i < PTRS_PER_PTE);
90 }
91
92 /*
93  * Given a PTE with the CONT bit set, determine where the CONT range
94  * starts, and clear the entire range of PTE CONT bits.
95  */
96 static void clear_cont_pte_range(pte_t *pte, unsigned long addr)
97 {
98         int i;
99
100         pte -= CONT_RANGE_OFFSET(addr);
101         for (i = 0; i < CONT_PTES; i++) {
102                 set_pte(pte, pte_mknoncont(*pte));
103                 pte++;
104         }
105         flush_tlb_all();
106 }
107
108 /*
109  * Given a range of PTEs set the pfn and provided page protection flags
110  */
111 static void __populate_init_pte(pte_t *pte, unsigned long addr,
112                                 unsigned long end, phys_addr_t phys,
113                                 pgprot_t prot)
114 {
115         unsigned long pfn = __phys_to_pfn(phys);
116
117         do {
118                 /* clear all the bits except the pfn, then apply the prot */
119                 set_pte(pte, pfn_pte(pfn, prot));
120                 pte++;
121                 pfn++;
122                 addr += PAGE_SIZE;
123         } while (addr != end);
124 }
125
126 static void alloc_init_pte(pmd_t *pmd, unsigned long addr,
127                                   unsigned long end, phys_addr_t phys,
128                                   pgprot_t prot,
129                                   void *(*alloc)(unsigned long size))
130 {
131         pte_t *pte;
132         unsigned long next;
133
134         if (pmd_none(*pmd) || pmd_sect(*pmd)) {
135                 pte = alloc(PTRS_PER_PTE * sizeof(pte_t));
136                 if (pmd_sect(*pmd))
137                         split_pmd(pmd, pte);
138                 __pmd_populate(pmd, __pa(pte), PMD_TYPE_TABLE);
139                 flush_tlb_all();
140         }
141         BUG_ON(pmd_bad(*pmd));
142
143         pte = pte_offset_kernel(pmd, addr);
144         do {
145                 next = min(end, (addr + CONT_SIZE) & CONT_MASK);
146                 if (((addr | next | phys) & ~CONT_MASK) == 0) {
147                         /* a block of CONT_PTES  */
148                         __populate_init_pte(pte, addr, next, phys,
149                                             prot | __pgprot(PTE_CONT));
150                 } else {
151                         /*
152                          * If the range being split is already inside of a
153                          * contiguous range but this PTE isn't going to be
154                          * contiguous, then we want to unmark the adjacent
155                          * ranges, then update the portion of the range we
156                          * are interrested in.
157                          */
158                          clear_cont_pte_range(pte, addr);
159                          __populate_init_pte(pte, addr, next, phys, prot);
160                 }
161
162                 pte += (next - addr) >> PAGE_SHIFT;
163                 phys += next - addr;
164                 addr = next;
165         } while (addr != end);
166 }
167
168 void split_pud(pud_t *old_pud, pmd_t *pmd)
169 {
170         unsigned long addr = pud_pfn(*old_pud) << PAGE_SHIFT;
171         pgprot_t prot = __pgprot(pud_val(*old_pud) ^ addr);
172         int i = 0;
173
174         do {
175                 set_pmd(pmd, __pmd(addr | pgprot_val(prot)));
176                 addr += PMD_SIZE;
177         } while (pmd++, i++, i < PTRS_PER_PMD);
178 }
179
180 static void alloc_init_pmd(struct mm_struct *mm, pud_t *pud,
181                                   unsigned long addr, unsigned long end,
182                                   phys_addr_t phys, pgprot_t prot,
183                                   void *(*alloc)(unsigned long size))
184 {
185         pmd_t *pmd;
186         unsigned long next;
187
188         /*
189          * Check for initial section mappings in the pgd/pud and remove them.
190          */
191         if (pud_none(*pud) || pud_sect(*pud)) {
192                 pmd = alloc(PTRS_PER_PMD * sizeof(pmd_t));
193                 if (pud_sect(*pud)) {
194                         /*
195                          * need to have the 1G of mappings continue to be
196                          * present
197                          */
198                         split_pud(pud, pmd);
199                 }
200                 pud_populate(mm, pud, pmd);
201                 flush_tlb_all();
202         }
203         BUG_ON(pud_bad(*pud));
204
205         pmd = pmd_offset(pud, addr);
206         do {
207                 next = pmd_addr_end(addr, end);
208                 /* try section mapping first */
209                 if (((addr | next | phys) & ~SECTION_MASK) == 0) {
210                         pmd_t old_pmd =*pmd;
211                         set_pmd(pmd, __pmd(phys |
212                                            pgprot_val(mk_sect_prot(prot))));
213                         /*
214                          * Check for previous table entries created during
215                          * boot (__create_page_tables) and flush them.
216                          */
217                         if (!pmd_none(old_pmd)) {
218                                 flush_tlb_all();
219                                 if (pmd_table(old_pmd)) {
220                                         phys_addr_t table = __pa(pte_offset_map(&old_pmd, 0));
221                                         if (!WARN_ON_ONCE(slab_is_available()))
222                                                 memblock_free(table, PAGE_SIZE);
223                                 }
224                         }
225                 } else {
226                         alloc_init_pte(pmd, addr, next, phys, prot, alloc);
227                 }
228                 phys += next - addr;
229         } while (pmd++, addr = next, addr != end);
230 }
231
232 static inline bool use_1G_block(unsigned long addr, unsigned long next,
233                         unsigned long phys)
234 {
235         if (PAGE_SHIFT != 12)
236                 return false;
237
238         if (((addr | next | phys) & ~PUD_MASK) != 0)
239                 return false;
240
241         return true;
242 }
243
244 static void alloc_init_pud(struct mm_struct *mm, pgd_t *pgd,
245                                   unsigned long addr, unsigned long end,
246                                   phys_addr_t phys, pgprot_t prot,
247                                   void *(*alloc)(unsigned long size))
248 {
249         pud_t *pud;
250         unsigned long next;
251
252         if (pgd_none(*pgd)) {
253                 pud = alloc(PTRS_PER_PUD * sizeof(pud_t));
254                 pgd_populate(mm, pgd, pud);
255         }
256         BUG_ON(pgd_bad(*pgd));
257
258         pud = pud_offset(pgd, addr);
259         do {
260                 next = pud_addr_end(addr, end);
261
262                 /*
263                  * For 4K granule only, attempt to put down a 1GB block
264                  */
265                 if (use_1G_block(addr, next, phys)) {
266                         pud_t old_pud = *pud;
267                         set_pud(pud, __pud(phys |
268                                            pgprot_val(mk_sect_prot(prot))));
269
270                         /*
271                          * If we have an old value for a pud, it will
272                          * be pointing to a pmd table that we no longer
273                          * need (from swapper_pg_dir).
274                          *
275                          * Look up the old pmd table and free it.
276                          */
277                         if (!pud_none(old_pud)) {
278                                 flush_tlb_all();
279                                 if (pud_table(old_pud)) {
280                                         phys_addr_t table = __pa(pmd_offset(&old_pud, 0));
281                                         if (!WARN_ON_ONCE(slab_is_available()))
282                                                 memblock_free(table, PAGE_SIZE);
283                                 }
284                         }
285                 } else {
286                         alloc_init_pmd(mm, pud, addr, next, phys, prot, alloc);
287                 }
288                 phys += next - addr;
289         } while (pud++, addr = next, addr != end);
290 }
291
292 /*
293  * Create the page directory entries and any necessary page tables for the
294  * mapping specified by 'md'.
295  */
296 static void  __create_mapping(struct mm_struct *mm, pgd_t *pgd,
297                                     phys_addr_t phys, unsigned long virt,
298                                     phys_addr_t size, pgprot_t prot,
299                                     void *(*alloc)(unsigned long size))
300 {
301         unsigned long addr, length, end, next;
302
303         addr = virt & PAGE_MASK;
304         length = PAGE_ALIGN(size + (virt & ~PAGE_MASK));
305
306         end = addr + length;
307         do {
308                 next = pgd_addr_end(addr, end);
309                 alloc_init_pud(mm, pgd, addr, next, phys, prot, alloc);
310                 phys += next - addr;
311         } while (pgd++, addr = next, addr != end);
312 }
313
314 static void *late_alloc(unsigned long size)
315 {
316         void *ptr;
317
318         BUG_ON(size > PAGE_SIZE);
319         ptr = (void *)__get_free_page(PGALLOC_GFP);
320         BUG_ON(!ptr);
321         return ptr;
322 }
323
324 static void __init create_mapping(phys_addr_t phys, unsigned long virt,
325                                   phys_addr_t size, pgprot_t prot)
326 {
327         if (virt < VMALLOC_START) {
328                 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
329                         &phys, virt);
330                 return;
331         }
332         __create_mapping(&init_mm, pgd_offset_k(virt & PAGE_MASK), phys, virt,
333                          size, prot, early_alloc);
334 }
335
336 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
337                                unsigned long virt, phys_addr_t size,
338                                pgprot_t prot)
339 {
340         __create_mapping(mm, pgd_offset(mm, virt), phys, virt, size, prot,
341                                 late_alloc);
342 }
343
344 static void create_mapping_late(phys_addr_t phys, unsigned long virt,
345                                   phys_addr_t size, pgprot_t prot)
346 {
347         if (virt < VMALLOC_START) {
348                 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
349                         &phys, virt);
350                 return;
351         }
352
353         return __create_mapping(&init_mm, pgd_offset_k(virt & PAGE_MASK),
354                                 phys, virt, size, prot, late_alloc);
355 }
356
357 #ifdef CONFIG_DEBUG_RODATA
358 static void __init __map_memblock(phys_addr_t start, phys_addr_t end)
359 {
360         /*
361          * Set up the executable regions using the existing section mappings
362          * for now. This will get more fine grained later once all memory
363          * is mapped
364          */
365         unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
366         unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
367
368         if (end < kernel_x_start) {
369                 create_mapping(start, __phys_to_virt(start),
370                         end - start, PAGE_KERNEL);
371         } else if (start >= kernel_x_end) {
372                 create_mapping(start, __phys_to_virt(start),
373                         end - start, PAGE_KERNEL);
374         } else {
375                 if (start < kernel_x_start)
376                         create_mapping(start, __phys_to_virt(start),
377                                 kernel_x_start - start,
378                                 PAGE_KERNEL);
379                 create_mapping(kernel_x_start,
380                                 __phys_to_virt(kernel_x_start),
381                                 kernel_x_end - kernel_x_start,
382                                 PAGE_KERNEL_EXEC);
383                 if (kernel_x_end < end)
384                         create_mapping(kernel_x_end,
385                                 __phys_to_virt(kernel_x_end),
386                                 end - kernel_x_end,
387                                 PAGE_KERNEL);
388         }
389
390 }
391 #else
392 static void __init __map_memblock(phys_addr_t start, phys_addr_t end)
393 {
394         create_mapping(start, __phys_to_virt(start), end - start,
395                         PAGE_KERNEL_EXEC);
396 }
397 #endif
398
399 static void __init map_mem(void)
400 {
401         struct memblock_region *reg;
402         phys_addr_t limit;
403
404         /*
405          * Temporarily limit the memblock range. We need to do this as
406          * create_mapping requires puds, pmds and ptes to be allocated from
407          * memory addressable from the initial direct kernel mapping.
408          *
409          * The initial direct kernel mapping, located at swapper_pg_dir, gives
410          * us PUD_SIZE (with SECTION maps) or PMD_SIZE (without SECTION maps,
411          * memory starting from PHYS_OFFSET (which must be aligned to 2MB as
412          * per Documentation/arm64/booting.txt).
413          */
414         limit = PHYS_OFFSET + SWAPPER_INIT_MAP_SIZE;
415         memblock_set_current_limit(limit);
416
417         /* map all the memory banks */
418         for_each_memblock(memory, reg) {
419                 phys_addr_t start = reg->base;
420                 phys_addr_t end = start + reg->size;
421
422                 if (start >= end)
423                         break;
424
425                 if (ARM64_SWAPPER_USES_SECTION_MAPS) {
426                         /*
427                          * For the first memory bank align the start address and
428                          * current memblock limit to prevent create_mapping() from
429                          * allocating pte page tables from unmapped memory. With
430                          * the section maps, if the first block doesn't end on section
431                          * size boundary, create_mapping() will try to allocate a pte
432                          * page, which may be returned from an unmapped area.
433                          * When section maps are not used, the pte page table for the
434                          * current limit is already present in swapper_pg_dir.
435                          */
436                         if (start < limit)
437                                 start = ALIGN(start, SECTION_SIZE);
438                         if (end < limit) {
439                                 limit = end & SECTION_MASK;
440                                 memblock_set_current_limit(limit);
441                         }
442                 }
443                 __map_memblock(start, end);
444         }
445
446         /* Limit no longer required. */
447         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
448 }
449
450 void __init fixup_executable(void)
451 {
452 #ifdef CONFIG_DEBUG_RODATA
453         /* now that we are actually fully mapped, make the start/end more fine grained */
454         if (!IS_ALIGNED((unsigned long)_stext, SECTION_SIZE)) {
455                 unsigned long aligned_start = round_down(__pa(_stext),
456                                                         SECTION_SIZE);
457
458                 create_mapping(aligned_start, __phys_to_virt(aligned_start),
459                                 __pa(_stext) - aligned_start,
460                                 PAGE_KERNEL);
461         }
462
463         if (!IS_ALIGNED((unsigned long)__init_end, SECTION_SIZE)) {
464                 unsigned long aligned_end = round_up(__pa(__init_end),
465                                                         SECTION_SIZE);
466                 create_mapping(__pa(__init_end), (unsigned long)__init_end,
467                                 aligned_end - __pa(__init_end),
468                                 PAGE_KERNEL);
469         }
470 #endif
471 }
472
473 #ifdef CONFIG_DEBUG_RODATA
474 void mark_rodata_ro(void)
475 {
476         create_mapping_late(__pa(_stext), (unsigned long)_stext,
477                                 (unsigned long)_etext - (unsigned long)_stext,
478                                 PAGE_KERNEL_EXEC | PTE_RDONLY);
479
480 }
481 #endif
482
483 void fixup_init(void)
484 {
485         create_mapping_late(__pa(__init_begin), (unsigned long)__init_begin,
486                         (unsigned long)__init_end - (unsigned long)__init_begin,
487                         PAGE_KERNEL);
488 }
489
490 /*
491  * paging_init() sets up the page tables, initialises the zone memory
492  * maps and sets up the zero page.
493  */
494 void __init paging_init(void)
495 {
496         void *zero_page;
497
498         map_mem();
499         fixup_executable();
500
501         /* allocate the zero page. */
502         zero_page = early_alloc(PAGE_SIZE);
503
504         bootmem_init();
505
506         empty_zero_page = virt_to_page(zero_page);
507
508         /*
509          * TTBR0 is only used for the identity mapping at this stage. Make it
510          * point to zero page to avoid speculatively fetching new entries.
511          */
512         cpu_set_reserved_ttbr0();
513         local_flush_tlb_all();
514         cpu_set_default_tcr_t0sz();
515 }
516
517 /*
518  * Check whether a kernel address is valid (derived from arch/x86/).
519  */
520 int kern_addr_valid(unsigned long addr)
521 {
522         pgd_t *pgd;
523         pud_t *pud;
524         pmd_t *pmd;
525         pte_t *pte;
526
527         if ((((long)addr) >> VA_BITS) != -1UL)
528                 return 0;
529
530         pgd = pgd_offset_k(addr);
531         if (pgd_none(*pgd))
532                 return 0;
533
534         pud = pud_offset(pgd, addr);
535         if (pud_none(*pud))
536                 return 0;
537
538         if (pud_sect(*pud))
539                 return pfn_valid(pud_pfn(*pud));
540
541         pmd = pmd_offset(pud, addr);
542         if (pmd_none(*pmd))
543                 return 0;
544
545         if (pmd_sect(*pmd))
546                 return pfn_valid(pmd_pfn(*pmd));
547
548         pte = pte_offset_kernel(pmd, addr);
549         if (pte_none(*pte))
550                 return 0;
551
552         return pfn_valid(pte_pfn(*pte));
553 }
554 #ifdef CONFIG_SPARSEMEM_VMEMMAP
555 #if !ARM64_SWAPPER_USES_SECTION_MAPS
556 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
557 {
558         return vmemmap_populate_basepages(start, end, node);
559 }
560 #else   /* !ARM64_SWAPPER_USES_SECTION_MAPS */
561 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
562 {
563         unsigned long addr = start;
564         unsigned long next;
565         pgd_t *pgd;
566         pud_t *pud;
567         pmd_t *pmd;
568
569         do {
570                 next = pmd_addr_end(addr, end);
571
572                 pgd = vmemmap_pgd_populate(addr, node);
573                 if (!pgd)
574                         return -ENOMEM;
575
576                 pud = vmemmap_pud_populate(pgd, addr, node);
577                 if (!pud)
578                         return -ENOMEM;
579
580                 pmd = pmd_offset(pud, addr);
581                 if (pmd_none(*pmd)) {
582                         void *p = NULL;
583
584                         p = vmemmap_alloc_block_buf(PMD_SIZE, node);
585                         if (!p)
586                                 return -ENOMEM;
587
588                         set_pmd(pmd, __pmd(__pa(p) | PROT_SECT_NORMAL));
589                 } else
590                         vmemmap_verify((pte_t *)pmd, node, addr, next);
591         } while (addr = next, addr != end);
592
593         return 0;
594 }
595 #endif  /* CONFIG_ARM64_64K_PAGES */
596 void vmemmap_free(unsigned long start, unsigned long end)
597 {
598 }
599 #endif  /* CONFIG_SPARSEMEM_VMEMMAP */
600
601 static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
602 #if CONFIG_PGTABLE_LEVELS > 2
603 static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss;
604 #endif
605 #if CONFIG_PGTABLE_LEVELS > 3
606 static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss;
607 #endif
608
609 static inline pud_t * fixmap_pud(unsigned long addr)
610 {
611         pgd_t *pgd = pgd_offset_k(addr);
612
613         BUG_ON(pgd_none(*pgd) || pgd_bad(*pgd));
614
615         return pud_offset(pgd, addr);
616 }
617
618 static inline pmd_t * fixmap_pmd(unsigned long addr)
619 {
620         pud_t *pud = fixmap_pud(addr);
621
622         BUG_ON(pud_none(*pud) || pud_bad(*pud));
623
624         return pmd_offset(pud, addr);
625 }
626
627 static inline pte_t * fixmap_pte(unsigned long addr)
628 {
629         pmd_t *pmd = fixmap_pmd(addr);
630
631         BUG_ON(pmd_none(*pmd) || pmd_bad(*pmd));
632
633         return pte_offset_kernel(pmd, addr);
634 }
635
636 void __init early_fixmap_init(void)
637 {
638         pgd_t *pgd;
639         pud_t *pud;
640         pmd_t *pmd;
641         unsigned long addr = FIXADDR_START;
642
643         pgd = pgd_offset_k(addr);
644         pgd_populate(&init_mm, pgd, bm_pud);
645         pud = pud_offset(pgd, addr);
646         pud_populate(&init_mm, pud, bm_pmd);
647         pmd = pmd_offset(pud, addr);
648         pmd_populate_kernel(&init_mm, pmd, bm_pte);
649
650         /*
651          * The boot-ioremap range spans multiple pmds, for which
652          * we are not preparted:
653          */
654         BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
655                      != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
656
657         if ((pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
658              || pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
659                 WARN_ON(1);
660                 pr_warn("pmd %p != %p, %p\n",
661                         pmd, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
662                         fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
663                 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
664                         fix_to_virt(FIX_BTMAP_BEGIN));
665                 pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
666                         fix_to_virt(FIX_BTMAP_END));
667
668                 pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
669                 pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
670         }
671 }
672
673 void __set_fixmap(enum fixed_addresses idx,
674                                phys_addr_t phys, pgprot_t flags)
675 {
676         unsigned long addr = __fix_to_virt(idx);
677         pte_t *pte;
678
679         BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
680
681         pte = fixmap_pte(addr);
682
683         if (pgprot_val(flags)) {
684                 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
685         } else {
686                 pte_clear(&init_mm, addr, pte);
687                 flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
688         }
689 }
690
691 void *__init fixmap_remap_fdt(phys_addr_t dt_phys)
692 {
693         const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
694         pgprot_t prot = PAGE_KERNEL | PTE_RDONLY;
695         int size, offset;
696         void *dt_virt;
697
698         /*
699          * Check whether the physical FDT address is set and meets the minimum
700          * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
701          * at least 8 bytes so that we can always access the size field of the
702          * FDT header after mapping the first chunk, double check here if that
703          * is indeed the case.
704          */
705         BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
706         if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
707                 return NULL;
708
709         /*
710          * Make sure that the FDT region can be mapped without the need to
711          * allocate additional translation table pages, so that it is safe
712          * to call create_mapping() this early.
713          *
714          * On 64k pages, the FDT will be mapped using PTEs, so we need to
715          * be in the same PMD as the rest of the fixmap.
716          * On 4k pages, we'll use section mappings for the FDT so we only
717          * have to be in the same PUD.
718          */
719         BUILD_BUG_ON(dt_virt_base % SZ_2M);
720
721         BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
722                      __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
723
724         offset = dt_phys % SWAPPER_BLOCK_SIZE;
725         dt_virt = (void *)dt_virt_base + offset;
726
727         /* map the first chunk so we can read the size from the header */
728         create_mapping(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
729                        SWAPPER_BLOCK_SIZE, prot);
730
731         if (fdt_check_header(dt_virt) != 0)
732                 return NULL;
733
734         size = fdt_totalsize(dt_virt);
735         if (size > MAX_FDT_SIZE)
736                 return NULL;
737
738         if (offset + size > SWAPPER_BLOCK_SIZE)
739                 create_mapping(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
740                                round_up(offset + size, SWAPPER_BLOCK_SIZE), prot);
741
742         memblock_reserve(dt_phys, size);
743
744         return dt_virt;
745 }