]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/blackfin/mach-common/smp.c
Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty...
[karo-tx-linux.git] / arch / blackfin / mach-common / smp.c
1 /*
2  * IPI management based on arch/arm/kernel/smp.c (Copyright 2002 ARM Limited)
3  *
4  * Copyright 2007-2009 Analog Devices Inc.
5  *                         Philippe Gerum <rpm@xenomai.org>
6  *
7  * Licensed under the GPL-2.
8  */
9
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/clockchips.h>
18 #include <linux/profile.h>
19 #include <linux/errno.h>
20 #include <linux/mm.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/cpumask.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/slab.h>
27 #include <linux/atomic.h>
28 #include <asm/cacheflush.h>
29 #include <asm/irq_handler.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/pgalloc.h>
33 #include <asm/processor.h>
34 #include <asm/ptrace.h>
35 #include <asm/cpu.h>
36 #include <asm/time.h>
37 #include <linux/err.h>
38
39 /*
40  * Anomaly notes:
41  * 05000120 - we always define corelock as 32-bit integer in L2
42  */
43 struct corelock_slot corelock __attribute__ ((__section__(".l2.bss")));
44
45 #ifdef CONFIG_ICACHE_FLUSH_L1
46 unsigned long blackfin_iflush_l1_entry[NR_CPUS];
47 #endif
48
49 struct blackfin_initial_pda initial_pda_coreb;
50
51 enum ipi_message_type {
52         BFIN_IPI_NONE,
53         BFIN_IPI_TIMER,
54         BFIN_IPI_RESCHEDULE,
55         BFIN_IPI_CALL_FUNC,
56         BFIN_IPI_CPU_STOP,
57 };
58
59 struct blackfin_flush_data {
60         unsigned long start;
61         unsigned long end;
62 };
63
64 void *secondary_stack;
65
66 static struct blackfin_flush_data smp_flush_data;
67
68 static DEFINE_SPINLOCK(stop_lock);
69
70 /* A magic number - stress test shows this is safe for common cases */
71 #define BFIN_IPI_MSGQ_LEN 5
72
73 /* Simple FIFO buffer, overflow leads to panic */
74 struct ipi_data {
75         atomic_t count;
76         atomic_t bits;
77 };
78
79 static DEFINE_PER_CPU(struct ipi_data, bfin_ipi);
80
81 static void ipi_cpu_stop(unsigned int cpu)
82 {
83         spin_lock(&stop_lock);
84         printk(KERN_CRIT "CPU%u: stopping\n", cpu);
85         dump_stack();
86         spin_unlock(&stop_lock);
87
88         set_cpu_online(cpu, false);
89
90         local_irq_disable();
91
92         while (1)
93                 SSYNC();
94 }
95
96 static void ipi_flush_icache(void *info)
97 {
98         struct blackfin_flush_data *fdata = info;
99
100         /* Invalidate the memory holding the bounds of the flushed region. */
101         blackfin_dcache_invalidate_range((unsigned long)fdata,
102                                          (unsigned long)fdata + sizeof(*fdata));
103
104         /* Make sure all write buffers in the data side of the core
105          * are flushed before trying to invalidate the icache.  This
106          * needs to be after the data flush and before the icache
107          * flush so that the SSYNC does the right thing in preventing
108          * the instruction prefetcher from hitting things in cached
109          * memory at the wrong time -- it runs much further ahead than
110          * the pipeline.
111          */
112         SSYNC();
113
114         /* ipi_flaush_icache is invoked by generic flush_icache_range,
115          * so call blackfin arch icache flush directly here.
116          */
117         blackfin_icache_flush_range(fdata->start, fdata->end);
118 }
119
120 /* Use IRQ_SUPPLE_0 to request reschedule.
121  * When returning from interrupt to user space,
122  * there is chance to reschedule */
123 static irqreturn_t ipi_handler_int0(int irq, void *dev_instance)
124 {
125         unsigned int cpu = smp_processor_id();
126
127         platform_clear_ipi(cpu, IRQ_SUPPLE_0);
128         return IRQ_HANDLED;
129 }
130
131 DECLARE_PER_CPU(struct clock_event_device, coretmr_events);
132 void ipi_timer(void)
133 {
134         int cpu = smp_processor_id();
135         struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
136         evt->event_handler(evt);
137 }
138
139 static irqreturn_t ipi_handler_int1(int irq, void *dev_instance)
140 {
141         struct ipi_data *bfin_ipi_data;
142         unsigned int cpu = smp_processor_id();
143         unsigned long pending;
144         unsigned long msg;
145
146         platform_clear_ipi(cpu, IRQ_SUPPLE_1);
147
148         smp_rmb();
149         bfin_ipi_data = this_cpu_ptr(&bfin_ipi);
150         while ((pending = atomic_xchg(&bfin_ipi_data->bits, 0)) != 0) {
151                 msg = 0;
152                 do {
153                         msg = find_next_bit(&pending, BITS_PER_LONG, msg + 1);
154                         switch (msg) {
155                         case BFIN_IPI_TIMER:
156                                 ipi_timer();
157                                 break;
158                         case BFIN_IPI_RESCHEDULE:
159                                 scheduler_ipi();
160                                 break;
161                         case BFIN_IPI_CALL_FUNC:
162                                 generic_smp_call_function_interrupt();
163                                 break;
164                         case BFIN_IPI_CPU_STOP:
165                                 ipi_cpu_stop(cpu);
166                                 break;
167                         default:
168                                 goto out;
169                         }
170                         atomic_dec(&bfin_ipi_data->count);
171                 } while (msg < BITS_PER_LONG);
172
173         }
174 out:
175         return IRQ_HANDLED;
176 }
177
178 static void bfin_ipi_init(void)
179 {
180         unsigned int cpu;
181         struct ipi_data *bfin_ipi_data;
182         for_each_possible_cpu(cpu) {
183                 bfin_ipi_data = &per_cpu(bfin_ipi, cpu);
184                 atomic_set(&bfin_ipi_data->bits, 0);
185                 atomic_set(&bfin_ipi_data->count, 0);
186         }
187 }
188
189 void send_ipi(const struct cpumask *cpumask, enum ipi_message_type msg)
190 {
191         unsigned int cpu;
192         struct ipi_data *bfin_ipi_data;
193         unsigned long flags;
194
195         local_irq_save(flags);
196         for_each_cpu(cpu, cpumask) {
197                 bfin_ipi_data = &per_cpu(bfin_ipi, cpu);
198                 atomic_or((1 << msg), &bfin_ipi_data->bits);
199                 atomic_inc(&bfin_ipi_data->count);
200         }
201         local_irq_restore(flags);
202         smp_wmb();
203         for_each_cpu(cpu, cpumask)
204                 platform_send_ipi_cpu(cpu, IRQ_SUPPLE_1);
205 }
206
207 void arch_send_call_function_single_ipi(int cpu)
208 {
209         send_ipi(cpumask_of(cpu), BFIN_IPI_CALL_FUNC);
210 }
211
212 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
213 {
214         send_ipi(mask, BFIN_IPI_CALL_FUNC);
215 }
216
217 void smp_send_reschedule(int cpu)
218 {
219         send_ipi(cpumask_of(cpu), BFIN_IPI_RESCHEDULE);
220
221         return;
222 }
223
224 void smp_send_msg(const struct cpumask *mask, unsigned long type)
225 {
226         send_ipi(mask, type);
227 }
228
229 void smp_timer_broadcast(const struct cpumask *mask)
230 {
231         smp_send_msg(mask, BFIN_IPI_TIMER);
232 }
233
234 void smp_send_stop(void)
235 {
236         cpumask_t callmap;
237
238         preempt_disable();
239         cpumask_copy(&callmap, cpu_online_mask);
240         cpumask_clear_cpu(smp_processor_id(), &callmap);
241         if (!cpumask_empty(&callmap))
242                 send_ipi(&callmap, BFIN_IPI_CPU_STOP);
243
244         preempt_enable();
245
246         return;
247 }
248
249 int __cpu_up(unsigned int cpu, struct task_struct *idle)
250 {
251         int ret;
252
253         secondary_stack = task_stack_page(idle) + THREAD_SIZE;
254
255         ret = platform_boot_secondary(cpu, idle);
256
257         secondary_stack = NULL;
258
259         return ret;
260 }
261
262 static void setup_secondary(unsigned int cpu)
263 {
264         unsigned long ilat;
265
266         bfin_write_IMASK(0);
267         CSYNC();
268         ilat = bfin_read_ILAT();
269         CSYNC();
270         bfin_write_ILAT(ilat);
271         CSYNC();
272
273         /* Enable interrupt levels IVG7-15. IARs have been already
274          * programmed by the boot CPU.  */
275         bfin_irq_flags |= IMASK_IVG15 |
276             IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
277             IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
278 }
279
280 void secondary_start_kernel(void)
281 {
282         unsigned int cpu = smp_processor_id();
283         struct mm_struct *mm = &init_mm;
284
285         if (_bfin_swrst & SWRST_DBL_FAULT_B) {
286                 printk(KERN_EMERG "CoreB Recovering from DOUBLE FAULT event\n");
287 #ifdef CONFIG_DEBUG_DOUBLEFAULT
288                 printk(KERN_EMERG " While handling exception (EXCAUSE = %#x) at %pF\n",
289                         initial_pda_coreb.seqstat_doublefault & SEQSTAT_EXCAUSE,
290                         initial_pda_coreb.retx_doublefault);
291                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n",
292                         initial_pda_coreb.dcplb_doublefault_addr);
293                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n",
294                         initial_pda_coreb.icplb_doublefault_addr);
295 #endif
296                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
297                         initial_pda_coreb.retx);
298         }
299
300         /*
301          * We want the D-cache to be enabled early, in case the atomic
302          * support code emulates cache coherence (see
303          * __ARCH_SYNC_CORE_DCACHE).
304          */
305         init_exception_vectors();
306
307         local_irq_disable();
308
309         /* Attach the new idle task to the global mm. */
310         atomic_inc(&mm->mm_users);
311         atomic_inc(&mm->mm_count);
312         current->active_mm = mm;
313
314         preempt_disable();
315
316         setup_secondary(cpu);
317
318         platform_secondary_init(cpu);
319         /* setup local core timer */
320         bfin_local_timer_setup();
321
322         local_irq_enable();
323
324         bfin_setup_caches(cpu);
325
326         notify_cpu_starting(cpu);
327         /*
328          * Calibrate loops per jiffy value.
329          * IRQs need to be enabled here - D-cache can be invalidated
330          * in timer irq handler, so core B can read correct jiffies.
331          */
332         calibrate_delay();
333
334         /* We are done with local CPU inits, unblock the boot CPU. */
335         set_cpu_online(cpu, true);
336         cpu_startup_entry(CPUHP_ONLINE);
337 }
338
339 void __init smp_prepare_boot_cpu(void)
340 {
341 }
342
343 void __init smp_prepare_cpus(unsigned int max_cpus)
344 {
345         platform_prepare_cpus(max_cpus);
346         bfin_ipi_init();
347         platform_request_ipi(IRQ_SUPPLE_0, ipi_handler_int0);
348         platform_request_ipi(IRQ_SUPPLE_1, ipi_handler_int1);
349 }
350
351 void __init smp_cpus_done(unsigned int max_cpus)
352 {
353         unsigned long bogosum = 0;
354         unsigned int cpu;
355
356         for_each_online_cpu(cpu)
357                 bogosum += loops_per_jiffy;
358
359         printk(KERN_INFO "SMP: Total of %d processors activated "
360                "(%lu.%02lu BogoMIPS).\n",
361                num_online_cpus(),
362                bogosum / (500000/HZ),
363                (bogosum / (5000/HZ)) % 100);
364 }
365
366 void smp_icache_flush_range_others(unsigned long start, unsigned long end)
367 {
368         smp_flush_data.start = start;
369         smp_flush_data.end = end;
370
371         preempt_disable();
372         if (smp_call_function(&ipi_flush_icache, &smp_flush_data, 1))
373                 printk(KERN_WARNING "SMP: failed to run I-cache flush request on other CPUs\n");
374         preempt_enable();
375 }
376 EXPORT_SYMBOL_GPL(smp_icache_flush_range_others);
377
378 #ifdef __ARCH_SYNC_CORE_ICACHE
379 unsigned long icache_invld_count[NR_CPUS];
380 void resync_core_icache(void)
381 {
382         unsigned int cpu = get_cpu();
383         blackfin_invalidate_entire_icache();
384         icache_invld_count[cpu]++;
385         put_cpu();
386 }
387 EXPORT_SYMBOL(resync_core_icache);
388 #endif
389
390 #ifdef __ARCH_SYNC_CORE_DCACHE
391 unsigned long dcache_invld_count[NR_CPUS];
392 unsigned long barrier_mask __attribute__ ((__section__(".l2.bss")));
393
394 void resync_core_dcache(void)
395 {
396         unsigned int cpu = get_cpu();
397         blackfin_invalidate_entire_dcache();
398         dcache_invld_count[cpu]++;
399         put_cpu();
400 }
401 EXPORT_SYMBOL(resync_core_dcache);
402 #endif
403
404 #ifdef CONFIG_HOTPLUG_CPU
405 int __cpu_disable(void)
406 {
407         unsigned int cpu = smp_processor_id();
408
409         if (cpu == 0)
410                 return -EPERM;
411
412         set_cpu_online(cpu, false);
413         return 0;
414 }
415
416 int __cpu_die(unsigned int cpu)
417 {
418         return cpu_wait_death(cpu, 5);
419 }
420
421 void cpu_die(void)
422 {
423         (void)cpu_report_death();
424
425         atomic_dec(&init_mm.mm_users);
426         atomic_dec(&init_mm.mm_count);
427
428         local_irq_disable();
429         platform_cpu_die();
430 }
431 #endif