]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/metag/kernel/smp.c
Merge remote-tracking branch 'pci/next'
[karo-tx-linux.git] / arch / metag / kernel / smp.c
1 /*
2  *  Copyright (C) 2009,2010,2011 Imagination Technologies Ltd.
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/atomic.h>
11 #include <linux/completion.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/spinlock.h>
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/cache.h>
18 #include <linux/profile.h>
19 #include <linux/errno.h>
20 #include <linux/mm.h>
21 #include <linux/err.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/bootmem.h>
27
28 #include <asm/cacheflush.h>
29 #include <asm/cachepart.h>
30 #include <asm/core_reg.h>
31 #include <asm/cpu.h>
32 #include <asm/global_lock.h>
33 #include <asm/metag_mem.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/processor.h>
38 #include <asm/setup.h>
39 #include <asm/tlbflush.h>
40 #include <asm/hwthread.h>
41 #include <asm/traps.h>
42
43 #define SYSC_DCPART(n)  (SYSC_DCPART0 + SYSC_xCPARTn_STRIDE * (n))
44 #define SYSC_ICPART(n)  (SYSC_ICPART0 + SYSC_xCPARTn_STRIDE * (n))
45
46 DECLARE_PER_CPU(PTBI, pTBI);
47
48 void *secondary_data_stack;
49
50 /*
51  * structures for inter-processor calls
52  * - A collection of single bit ipi messages.
53  */
54 struct ipi_data {
55         spinlock_t lock;
56         unsigned long ipi_count;
57         unsigned long bits;
58 };
59
60 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
61         .lock   = __SPIN_LOCK_UNLOCKED(ipi_data.lock),
62 };
63
64 static DEFINE_SPINLOCK(boot_lock);
65
66 static DECLARE_COMPLETION(cpu_running);
67
68 /*
69  * "thread" is assumed to be a valid Meta hardware thread ID.
70  */
71 static int boot_secondary(unsigned int thread, struct task_struct *idle)
72 {
73         u32 val;
74
75         /*
76          * set synchronisation state between this boot processor
77          * and the secondary one
78          */
79         spin_lock(&boot_lock);
80
81         core_reg_write(TXUPC_ID, 0, thread, (unsigned int)secondary_startup);
82         core_reg_write(TXUPC_ID, 1, thread, 0);
83
84         /*
85          * Give the thread privilege (PSTAT) and clear potentially problematic
86          * bits in the process (namely ISTAT, CBMarker, CBMarkerI, LSM_STEP).
87          */
88         core_reg_write(TXUCT_ID, TXSTATUS_REGNUM, thread, TXSTATUS_PSTAT_BIT);
89
90         /* Clear the minim enable bit. */
91         val = core_reg_read(TXUCT_ID, TXPRIVEXT_REGNUM, thread);
92         core_reg_write(TXUCT_ID, TXPRIVEXT_REGNUM, thread, val & ~0x80);
93
94         /*
95          * set the ThreadEnable bit (0x1) in the TXENABLE register
96          * for the specified thread - off it goes!
97          */
98         val = core_reg_read(TXUCT_ID, TXENABLE_REGNUM, thread);
99         core_reg_write(TXUCT_ID, TXENABLE_REGNUM, thread, val | 0x1);
100
101         /*
102          * now the secondary core is starting up let it run its
103          * calibrations, then wait for it to finish
104          */
105         spin_unlock(&boot_lock);
106
107         return 0;
108 }
109
110 /**
111  * describe_cachepart_change: describe a change to cache partitions.
112  * @thread:     Hardware thread number.
113  * @label:      Label of cache type, e.g. "dcache" or "icache".
114  * @sz:         Total size of the cache.
115  * @old:        Old cache partition configuration (*CPART* register).
116  * @new:        New cache partition configuration (*CPART* register).
117  *
118  * If the cache partition has changed, prints a message to the log describing
119  * those changes.
120  */
121 static void describe_cachepart_change(unsigned int thread, const char *label,
122                                       unsigned int sz, unsigned int old,
123                                       unsigned int new)
124 {
125         unsigned int lor1, land1, gor1, gand1;
126         unsigned int lor2, land2, gor2, gand2;
127         unsigned int diff = old ^ new;
128
129         if (!diff)
130                 return;
131
132         pr_info("Thread %d: %s partition changed:", thread, label);
133         if (diff & (SYSC_xCPARTL_OR_BITS | SYSC_xCPARTL_AND_BITS)) {
134                 lor1   = (old & SYSC_xCPARTL_OR_BITS)  >> SYSC_xCPARTL_OR_S;
135                 lor2   = (new & SYSC_xCPARTL_OR_BITS)  >> SYSC_xCPARTL_OR_S;
136                 land1  = (old & SYSC_xCPARTL_AND_BITS) >> SYSC_xCPARTL_AND_S;
137                 land2  = (new & SYSC_xCPARTL_AND_BITS) >> SYSC_xCPARTL_AND_S;
138                 pr_cont(" L:%#x+%#x->%#x+%#x",
139                         (lor1 * sz) >> 4,
140                         ((land1 + 1) * sz) >> 4,
141                         (lor2 * sz) >> 4,
142                         ((land2 + 1) * sz) >> 4);
143         }
144         if (diff & (SYSC_xCPARTG_OR_BITS | SYSC_xCPARTG_AND_BITS)) {
145                 gor1   = (old & SYSC_xCPARTG_OR_BITS)  >> SYSC_xCPARTG_OR_S;
146                 gor2   = (new & SYSC_xCPARTG_OR_BITS)  >> SYSC_xCPARTG_OR_S;
147                 gand1  = (old & SYSC_xCPARTG_AND_BITS) >> SYSC_xCPARTG_AND_S;
148                 gand2  = (new & SYSC_xCPARTG_AND_BITS) >> SYSC_xCPARTG_AND_S;
149                 pr_cont(" G:%#x+%#x->%#x+%#x",
150                         (gor1 * sz) >> 4,
151                         ((gand1 + 1) * sz) >> 4,
152                         (gor2 * sz) >> 4,
153                         ((gand2 + 1) * sz) >> 4);
154         }
155         if (diff & SYSC_CWRMODE_BIT)
156                 pr_cont(" %sWR",
157                         (new & SYSC_CWRMODE_BIT) ? "+" : "-");
158         if (diff & SYSC_DCPART_GCON_BIT)
159                 pr_cont(" %sGCOn",
160                         (new & SYSC_DCPART_GCON_BIT) ? "+" : "-");
161         pr_cont("\n");
162 }
163
164 /**
165  * setup_smp_cache: ensure cache coherency for new SMP thread.
166  * @thread:     New hardware thread number.
167  *
168  * Ensures that coherency is enabled and that the threads share the same cache
169  * partitions.
170  */
171 static void setup_smp_cache(unsigned int thread)
172 {
173         unsigned int this_thread, lflags;
174         unsigned int dcsz, dcpart_this, dcpart_old, dcpart_new;
175         unsigned int icsz, icpart_old, icpart_new;
176
177         /*
178          * Copy over the current thread's cache partition configuration to the
179          * new thread so that they share cache partitions.
180          */
181         __global_lock2(lflags);
182         this_thread = hard_processor_id();
183         /* Share dcache partition */
184         dcpart_this = metag_in32(SYSC_DCPART(this_thread));
185         dcpart_old = metag_in32(SYSC_DCPART(thread));
186         dcpart_new = dcpart_this;
187 #if PAGE_OFFSET < LINGLOBAL_BASE
188         /*
189          * For the local data cache to be coherent the threads must also have
190          * GCOn enabled.
191          */
192         dcpart_new |= SYSC_DCPART_GCON_BIT;
193         metag_out32(dcpart_new, SYSC_DCPART(this_thread));
194 #endif
195         metag_out32(dcpart_new, SYSC_DCPART(thread));
196         /* Share icache partition too */
197         icpart_new = metag_in32(SYSC_ICPART(this_thread));
198         icpart_old = metag_in32(SYSC_ICPART(thread));
199         metag_out32(icpart_new, SYSC_ICPART(thread));
200         __global_unlock2(lflags);
201
202         /*
203          * Log if the cache partitions were altered so the user is aware of any
204          * potential unintentional cache wastage.
205          */
206         dcsz = get_dcache_size();
207         icsz = get_dcache_size();
208         describe_cachepart_change(this_thread, "dcache", dcsz,
209                                   dcpart_this, dcpart_new);
210         describe_cachepart_change(thread, "dcache", dcsz,
211                                   dcpart_old, dcpart_new);
212         describe_cachepart_change(thread, "icache", icsz,
213                                   icpart_old, icpart_new);
214 }
215
216 int __cpu_up(unsigned int cpu, struct task_struct *idle)
217 {
218         unsigned int thread = cpu_2_hwthread_id[cpu];
219         int ret;
220
221         load_pgd(swapper_pg_dir, thread);
222
223         flush_tlb_all();
224
225         setup_smp_cache(thread);
226
227         /*
228          * Tell the secondary CPU where to find its idle thread's stack.
229          */
230         secondary_data_stack = task_stack_page(idle);
231
232         wmb();
233
234         /*
235          * Now bring the CPU into our world.
236          */
237         ret = boot_secondary(thread, idle);
238         if (ret == 0) {
239                 /*
240                  * CPU was successfully started, wait for it
241                  * to come online or time out.
242                  */
243                 wait_for_completion_timeout(&cpu_running,
244                                             msecs_to_jiffies(1000));
245
246                 if (!cpu_online(cpu))
247                         ret = -EIO;
248         }
249
250         secondary_data_stack = NULL;
251
252         if (ret) {
253                 pr_crit("CPU%u: processor failed to boot\n", cpu);
254
255                 /*
256                  * FIXME: We need to clean up the new idle thread. --rmk
257                  */
258         }
259
260         return ret;
261 }
262
263 #ifdef CONFIG_HOTPLUG_CPU
264
265 /*
266  * __cpu_disable runs on the processor to be shutdown.
267  */
268 int __cpu_disable(void)
269 {
270         unsigned int cpu = smp_processor_id();
271
272         /*
273          * Take this CPU offline.  Once we clear this, we can't return,
274          * and we must not schedule until we're ready to give up the cpu.
275          */
276         set_cpu_online(cpu, false);
277
278         /*
279          * OK - migrate IRQs away from this CPU
280          */
281         migrate_irqs();
282
283         /*
284          * Flush user cache and TLB mappings, and then remove this CPU
285          * from the vm mask set of all processes.
286          */
287         flush_cache_all();
288         local_flush_tlb_all();
289
290         clear_tasks_mm_cpumask(cpu);
291
292         return 0;
293 }
294
295 /*
296  * called on the thread which is asking for a CPU to be shutdown -
297  * waits until shutdown has completed, or it is timed out.
298  */
299 void __cpu_die(unsigned int cpu)
300 {
301         if (!cpu_wait_death(cpu, 1))
302                 pr_err("CPU%u: unable to kill\n", cpu);
303 }
304
305 /*
306  * Called from the idle thread for the CPU which has been shutdown.
307  *
308  * Note that we do not return from this function. If this cpu is
309  * brought online again it will need to run secondary_startup().
310  */
311 void cpu_die(void)
312 {
313         local_irq_disable();
314         idle_task_exit();
315         irq_ctx_exit(smp_processor_id());
316
317         (void)cpu_report_death();
318
319         asm ("XOR       TXENABLE, D0Re0,D0Re0\n");
320 }
321 #endif /* CONFIG_HOTPLUG_CPU */
322
323 /*
324  * Called by both boot and secondaries to move global data into
325  * per-processor storage.
326  */
327 void smp_store_cpu_info(unsigned int cpuid)
328 {
329         struct cpuinfo_metag *cpu_info = &per_cpu(cpu_data, cpuid);
330
331         cpu_info->loops_per_jiffy = loops_per_jiffy;
332 }
333
334 /*
335  * This is the secondary CPU boot entry.  We're using this CPUs
336  * idle thread stack and the global page tables.
337  */
338 asmlinkage void secondary_start_kernel(void)
339 {
340         struct mm_struct *mm = &init_mm;
341         unsigned int cpu = smp_processor_id();
342
343         /*
344          * All kernel threads share the same mm context; grab a
345          * reference and switch to it.
346          */
347         atomic_inc(&mm->mm_users);
348         atomic_inc(&mm->mm_count);
349         current->active_mm = mm;
350         cpumask_set_cpu(cpu, mm_cpumask(mm));
351         enter_lazy_tlb(mm, current);
352         local_flush_tlb_all();
353
354         /*
355          * TODO: Some day it might be useful for each Linux CPU to
356          * have its own TBI structure. That would allow each Linux CPU
357          * to run different interrupt handlers for the same IRQ
358          * number.
359          *
360          * For now, simply copying the pointer to the boot CPU's TBI
361          * structure is sufficient because we always want to run the
362          * same interrupt handler whatever CPU takes the interrupt.
363          */
364         per_cpu(pTBI, cpu) = __TBI(TBID_ISTAT_BIT);
365
366         if (!per_cpu(pTBI, cpu))
367                 panic("No TBI found!");
368
369         per_cpu_trap_init(cpu);
370         irq_ctx_init(cpu);
371
372         preempt_disable();
373
374         setup_priv();
375
376         notify_cpu_starting(cpu);
377
378         pr_info("CPU%u (thread %u): Booted secondary processor\n",
379                 cpu, cpu_2_hwthread_id[cpu]);
380
381         calibrate_delay();
382         smp_store_cpu_info(cpu);
383
384         /*
385          * OK, now it's safe to let the boot CPU continue
386          */
387         set_cpu_online(cpu, true);
388         complete(&cpu_running);
389
390         /*
391          * Enable local interrupts.
392          */
393         tbi_startup_interrupt(TBID_SIGNUM_TRT);
394         local_irq_enable();
395
396         /*
397          * OK, it's off to the idle thread for us
398          */
399         cpu_startup_entry(CPUHP_ONLINE);
400 }
401
402 void __init smp_cpus_done(unsigned int max_cpus)
403 {
404         int cpu;
405         unsigned long bogosum = 0;
406
407         for_each_online_cpu(cpu)
408                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
409
410         pr_info("SMP: Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
411                 num_online_cpus(),
412                 bogosum / (500000/HZ),
413                 (bogosum / (5000/HZ)) % 100);
414 }
415
416 void __init smp_prepare_cpus(unsigned int max_cpus)
417 {
418         unsigned int cpu = smp_processor_id();
419
420         init_new_context(current, &init_mm);
421         current_thread_info()->cpu = cpu;
422
423         smp_store_cpu_info(cpu);
424         init_cpu_present(cpu_possible_mask);
425 }
426
427 void __init smp_prepare_boot_cpu(void)
428 {
429         unsigned int cpu = smp_processor_id();
430
431         per_cpu(pTBI, cpu) = __TBI(TBID_ISTAT_BIT);
432
433         if (!per_cpu(pTBI, cpu))
434                 panic("No TBI found!");
435 }
436
437 static void smp_cross_call(cpumask_t callmap, enum ipi_msg_type msg);
438
439 static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg)
440 {
441         unsigned long flags;
442         unsigned int cpu;
443         cpumask_t map;
444
445         cpumask_clear(&map);
446         local_irq_save(flags);
447
448         for_each_cpu(cpu, mask) {
449                 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
450
451                 spin_lock(&ipi->lock);
452
453                 /*
454                  * KICK interrupts are queued in hardware so we'll get
455                  * multiple interrupts if we call smp_cross_call()
456                  * multiple times for one msg. The problem is that we
457                  * only have one bit for each message - we can't queue
458                  * them in software.
459                  *
460                  * The first time through ipi_handler() we'll clear
461                  * the msg bit, having done all the work. But when we
462                  * return we'll get _another_ interrupt (and another,
463                  * and another until we've handled all the queued
464                  * KICKs). Running ipi_handler() when there's no work
465                  * to do is bad because that's how kick handler
466                  * chaining detects who the KICK was intended for.
467                  * See arch/metag/kernel/kick.c for more details.
468                  *
469                  * So only add 'cpu' to 'map' if we haven't already
470                  * queued a KICK interrupt for 'msg'.
471                  */
472                 if (!(ipi->bits & (1 << msg))) {
473                         ipi->bits |= 1 << msg;
474                         cpumask_set_cpu(cpu, &map);
475                 }
476
477                 spin_unlock(&ipi->lock);
478         }
479
480         /*
481          * Call the platform specific cross-CPU call function.
482          */
483         smp_cross_call(map, msg);
484
485         local_irq_restore(flags);
486 }
487
488 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
489 {
490         send_ipi_message(mask, IPI_CALL_FUNC);
491 }
492
493 void arch_send_call_function_single_ipi(int cpu)
494 {
495         send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC);
496 }
497
498 void show_ipi_list(struct seq_file *p)
499 {
500         unsigned int cpu;
501
502         seq_puts(p, "IPI:");
503
504         for_each_present_cpu(cpu)
505                 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
506
507         seq_putc(p, '\n');
508 }
509
510 static DEFINE_SPINLOCK(stop_lock);
511
512 /*
513  * Main handler for inter-processor interrupts
514  *
515  * For Meta, the ipimask now only identifies a single
516  * category of IPI (Bit 1 IPIs have been replaced by a
517  * different mechanism):
518  *
519  *  Bit 0 - Inter-processor function call
520  */
521 static int do_IPI(void)
522 {
523         unsigned int cpu = smp_processor_id();
524         struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
525         unsigned long msgs, nextmsg;
526         int handled = 0;
527
528         ipi->ipi_count++;
529
530         spin_lock(&ipi->lock);
531         msgs = ipi->bits;
532         nextmsg = msgs & -msgs;
533         ipi->bits &= ~nextmsg;
534         spin_unlock(&ipi->lock);
535
536         if (nextmsg) {
537                 handled = 1;
538
539                 nextmsg = ffz(~nextmsg);
540                 switch (nextmsg) {
541                 case IPI_RESCHEDULE:
542                         scheduler_ipi();
543                         break;
544
545                 case IPI_CALL_FUNC:
546                         generic_smp_call_function_interrupt();
547                         break;
548
549                 default:
550                         pr_crit("CPU%u: Unknown IPI message 0x%lx\n",
551                                 cpu, nextmsg);
552                         break;
553                 }
554         }
555
556         return handled;
557 }
558
559 void smp_send_reschedule(int cpu)
560 {
561         send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
562 }
563
564 static void stop_this_cpu(void *data)
565 {
566         unsigned int cpu = smp_processor_id();
567
568         if (system_state == SYSTEM_BOOTING ||
569             system_state == SYSTEM_RUNNING) {
570                 spin_lock(&stop_lock);
571                 pr_crit("CPU%u: stopping\n", cpu);
572                 dump_stack();
573                 spin_unlock(&stop_lock);
574         }
575
576         set_cpu_online(cpu, false);
577
578         local_irq_disable();
579
580         hard_processor_halt(HALT_OK);
581 }
582
583 void smp_send_stop(void)
584 {
585         smp_call_function(stop_this_cpu, NULL, 0);
586 }
587
588 /*
589  * not supported here
590  */
591 int setup_profiling_timer(unsigned int multiplier)
592 {
593         return -EINVAL;
594 }
595
596 /*
597  * We use KICKs for inter-processor interrupts.
598  *
599  * For every CPU in "callmap" the IPI data must already have been
600  * stored in that CPU's "ipi_data" member prior to calling this
601  * function.
602  */
603 static void kick_raise_softirq(cpumask_t callmap, unsigned int irq)
604 {
605         int cpu;
606
607         for_each_cpu(cpu, &callmap) {
608                 unsigned int thread;
609
610                 thread = cpu_2_hwthread_id[cpu];
611
612                 BUG_ON(thread == BAD_HWTHREAD_ID);
613
614                 metag_out32(1, T0KICKI + (thread * TnXKICK_STRIDE));
615         }
616 }
617
618 static TBIRES ipi_handler(TBIRES State, int SigNum, int Triggers,
619                    int Inst, PTBI pTBI, int *handled)
620 {
621         *handled = do_IPI();
622
623         return State;
624 }
625
626 static struct kick_irq_handler ipi_irq = {
627         .func = ipi_handler,
628 };
629
630 static void smp_cross_call(cpumask_t callmap, enum ipi_msg_type msg)
631 {
632         kick_raise_softirq(callmap, 1);
633 }
634
635 static inline unsigned int get_core_count(void)
636 {
637         int i;
638         unsigned int ret = 0;
639
640         for (i = 0; i < CONFIG_NR_CPUS; i++) {
641                 if (core_reg_read(TXUCT_ID, TXENABLE_REGNUM, i))
642                         ret++;
643         }
644
645         return ret;
646 }
647
648 /*
649  * Initialise the CPU possible map early - this describes the CPUs
650  * which may be present or become present in the system.
651  */
652 void __init smp_init_cpus(void)
653 {
654         unsigned int i, ncores = get_core_count();
655
656         /* If no hwthread_map early param was set use default mapping */
657         for (i = 0; i < NR_CPUS; i++)
658                 if (cpu_2_hwthread_id[i] == BAD_HWTHREAD_ID) {
659                         cpu_2_hwthread_id[i] = i;
660                         hwthread_id_2_cpu[i] = i;
661                 }
662
663         for (i = 0; i < ncores; i++)
664                 set_cpu_possible(i, true);
665
666         kick_register_func(&ipi_irq);
667 }