]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/mips/kernel/smp-cps.c
Merge remote-tracking branch 'metag/for-next'
[karo-tx-linux.git] / arch / mips / kernel / smp-cps.c
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10
11 #include <linux/io.h>
12 #include <linux/irqchip/mips-gic.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/smp.h>
16 #include <linux/types.h>
17
18 #include <asm/bcache.h>
19 #include <asm/mips-cm.h>
20 #include <asm/mips-cpc.h>
21 #include <asm/mips_mt.h>
22 #include <asm/mipsregs.h>
23 #include <asm/pm-cps.h>
24 #include <asm/r4kcache.h>
25 #include <asm/smp-cps.h>
26 #include <asm/time.h>
27 #include <asm/uasm.h>
28
29 static DECLARE_BITMAP(core_power, NR_CPUS);
30
31 struct core_boot_config *mips_cps_core_bootcfg;
32
33 static unsigned core_vpe_count(unsigned core)
34 {
35         unsigned cfg;
36
37         if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
38                 return 1;
39
40         write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
41         cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
42         return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
43 }
44
45 static void __init cps_smp_setup(void)
46 {
47         unsigned int ncores, nvpes, core_vpes;
48         int c, v;
49
50         /* Detect & record VPE topology */
51         ncores = mips_cm_numcores();
52         pr_info("VPE topology ");
53         for (c = nvpes = 0; c < ncores; c++) {
54                 core_vpes = core_vpe_count(c);
55                 pr_cont("%c%u", c ? ',' : '{', core_vpes);
56
57                 /* Use the number of VPEs in core 0 for smp_num_siblings */
58                 if (!c)
59                         smp_num_siblings = core_vpes;
60
61                 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
62                         cpu_data[nvpes + v].core = c;
63 #ifdef CONFIG_MIPS_MT_SMP
64                         cpu_data[nvpes + v].vpe_id = v;
65 #endif
66                 }
67
68                 nvpes += core_vpes;
69         }
70         pr_cont("} total %u\n", nvpes);
71
72         /* Indicate present CPUs (CPU being synonymous with VPE) */
73         for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
74                 set_cpu_possible(v, true);
75                 set_cpu_present(v, true);
76                 __cpu_number_map[v] = v;
77                 __cpu_logical_map[v] = v;
78         }
79
80         /* Set a coherent default CCA (CWB) */
81         change_c0_config(CONF_CM_CMASK, 0x5);
82
83         /* Core 0 is powered up (we're running on it) */
84         bitmap_set(core_power, 0, 1);
85
86         /* Initialise core 0 */
87         mips_cps_core_init();
88
89         /* Make core 0 coherent with everything */
90         write_gcr_cl_coherence(0xff);
91
92 #ifdef CONFIG_MIPS_MT_FPAFF
93         /* If we have an FPU, enroll ourselves in the FPU-full mask */
94         if (cpu_has_fpu)
95                 cpumask_set_cpu(0, &mt_fpu_cpumask);
96 #endif /* CONFIG_MIPS_MT_FPAFF */
97 }
98
99 static void __init cps_prepare_cpus(unsigned int max_cpus)
100 {
101         unsigned ncores, core_vpes, c, cca;
102         bool cca_unsuitable;
103         u32 *entry_code;
104
105         mips_mt_set_cpuoptions();
106
107         /* Detect whether the CCA is unsuited to multi-core SMP */
108         cca = read_c0_config() & CONF_CM_CMASK;
109         switch (cca) {
110         case 0x4: /* CWBE */
111         case 0x5: /* CWB */
112                 /* The CCA is coherent, multi-core is fine */
113                 cca_unsuitable = false;
114                 break;
115
116         default:
117                 /* CCA is not coherent, multi-core is not usable */
118                 cca_unsuitable = true;
119         }
120
121         /* Warn the user if the CCA prevents multi-core */
122         ncores = mips_cm_numcores();
123         if (cca_unsuitable && ncores > 1) {
124                 pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
125                         cca);
126
127                 for_each_present_cpu(c) {
128                         if (cpu_data[c].core)
129                                 set_cpu_present(c, false);
130                 }
131         }
132
133         /*
134          * Patch the start of mips_cps_core_entry to provide:
135          *
136          * v1 = CM base address
137          * s0 = kseg0 CCA
138          */
139         entry_code = (u32 *)&mips_cps_core_entry;
140         UASM_i_LA(&entry_code, 3, (long)mips_cm_base);
141         uasm_i_addiu(&entry_code, 16, 0, cca);
142         blast_dcache_range((unsigned long)&mips_cps_core_entry,
143                            (unsigned long)entry_code);
144         bc_wback_inv((unsigned long)&mips_cps_core_entry,
145                      (void *)entry_code - (void *)&mips_cps_core_entry);
146         __sync();
147
148         /* Allocate core boot configuration structs */
149         mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
150                                         GFP_KERNEL);
151         if (!mips_cps_core_bootcfg) {
152                 pr_err("Failed to allocate boot config for %u cores\n", ncores);
153                 goto err_out;
154         }
155
156         /* Allocate VPE boot configuration structs */
157         for (c = 0; c < ncores; c++) {
158                 core_vpes = core_vpe_count(c);
159                 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
160                                 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
161                                 GFP_KERNEL);
162                 if (!mips_cps_core_bootcfg[c].vpe_config) {
163                         pr_err("Failed to allocate %u VPE boot configs\n",
164                                core_vpes);
165                         goto err_out;
166                 }
167         }
168
169         /* Mark this CPU as booted */
170         atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
171                    1 << cpu_vpe_id(&current_cpu_data));
172
173         return;
174 err_out:
175         /* Clean up allocations */
176         if (mips_cps_core_bootcfg) {
177                 for (c = 0; c < ncores; c++)
178                         kfree(mips_cps_core_bootcfg[c].vpe_config);
179                 kfree(mips_cps_core_bootcfg);
180                 mips_cps_core_bootcfg = NULL;
181         }
182
183         /* Effectively disable SMP by declaring CPUs not present */
184         for_each_possible_cpu(c) {
185                 if (c == 0)
186                         continue;
187                 set_cpu_present(c, false);
188         }
189 }
190
191 static void boot_core(unsigned core)
192 {
193         u32 access;
194
195         /* Select the appropriate core */
196         write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
197
198         /* Set its reset vector */
199         write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
200
201         /* Ensure its coherency is disabled */
202         write_gcr_co_coherence(0);
203
204         /* Ensure the core can access the GCRs */
205         access = read_gcr_access();
206         access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
207         write_gcr_access(access);
208
209         if (mips_cpc_present()) {
210                 /* Reset the core */
211                 mips_cpc_lock_other(core);
212                 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
213                 mips_cpc_unlock_other();
214         } else {
215                 /* Take the core out of reset */
216                 write_gcr_co_reset_release(0);
217         }
218
219         /* The core is now powered up */
220         bitmap_set(core_power, core, 1);
221 }
222
223 static void remote_vpe_boot(void *dummy)
224 {
225         mips_cps_boot_vpes();
226 }
227
228 static void cps_boot_secondary(int cpu, struct task_struct *idle)
229 {
230         unsigned core = cpu_data[cpu].core;
231         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
232         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
233         struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
234         unsigned int remote;
235         int err;
236
237         vpe_cfg->pc = (unsigned long)&smp_bootstrap;
238         vpe_cfg->sp = __KSTK_TOS(idle);
239         vpe_cfg->gp = (unsigned long)task_thread_info(idle);
240
241         atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
242
243         preempt_disable();
244
245         if (!test_bit(core, core_power)) {
246                 /* Boot a VPE on a powered down core */
247                 boot_core(core);
248                 goto out;
249         }
250
251         if (core != current_cpu_data.core) {
252                 /* Boot a VPE on another powered up core */
253                 for (remote = 0; remote < NR_CPUS; remote++) {
254                         if (cpu_data[remote].core != core)
255                                 continue;
256                         if (cpu_online(remote))
257                                 break;
258                 }
259                 BUG_ON(remote >= NR_CPUS);
260
261                 err = smp_call_function_single(remote, remote_vpe_boot,
262                                                NULL, 1);
263                 if (err)
264                         panic("Failed to call remote CPU\n");
265                 goto out;
266         }
267
268         BUG_ON(!cpu_has_mipsmt);
269
270         /* Boot a VPE on this core */
271         mips_cps_boot_vpes();
272 out:
273         preempt_enable();
274 }
275
276 static void cps_init_secondary(void)
277 {
278         /* Disable MT - we only want to run 1 TC per VPE */
279         if (cpu_has_mipsmt)
280                 dmt();
281
282         change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
283                                  STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
284 }
285
286 static void cps_smp_finish(void)
287 {
288         write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
289
290 #ifdef CONFIG_MIPS_MT_FPAFF
291         /* If we have an FPU, enroll ourselves in the FPU-full mask */
292         if (cpu_has_fpu)
293                 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
294 #endif /* CONFIG_MIPS_MT_FPAFF */
295
296         local_irq_enable();
297 }
298
299 #ifdef CONFIG_HOTPLUG_CPU
300
301 static int cps_cpu_disable(void)
302 {
303         unsigned cpu = smp_processor_id();
304         struct core_boot_config *core_cfg;
305
306         if (!cpu)
307                 return -EBUSY;
308
309         if (!cps_pm_support_state(CPS_PM_POWER_GATED))
310                 return -EINVAL;
311
312         core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
313         atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
314         smp_mb__after_atomic();
315         set_cpu_online(cpu, false);
316         cpumask_clear_cpu(cpu, &cpu_callin_map);
317
318         return 0;
319 }
320
321 static DECLARE_COMPLETION(cpu_death_chosen);
322 static unsigned cpu_death_sibling;
323 static enum {
324         CPU_DEATH_HALT,
325         CPU_DEATH_POWER,
326 } cpu_death;
327
328 void play_dead(void)
329 {
330         unsigned cpu, core;
331
332         local_irq_disable();
333         idle_task_exit();
334         cpu = smp_processor_id();
335         cpu_death = CPU_DEATH_POWER;
336
337         if (cpu_has_mipsmt) {
338                 core = cpu_data[cpu].core;
339
340                 /* Look for another online VPE within the core */
341                 for_each_online_cpu(cpu_death_sibling) {
342                         if (cpu_data[cpu_death_sibling].core != core)
343                                 continue;
344
345                         /*
346                          * There is an online VPE within the core. Just halt
347                          * this TC and leave the core alone.
348                          */
349                         cpu_death = CPU_DEATH_HALT;
350                         break;
351                 }
352         }
353
354         /* This CPU has chosen its way out */
355         complete(&cpu_death_chosen);
356
357         if (cpu_death == CPU_DEATH_HALT) {
358                 /* Halt this TC */
359                 write_c0_tchalt(TCHALT_H);
360                 instruction_hazard();
361         } else {
362                 /* Power down the core */
363                 cps_pm_enter_state(CPS_PM_POWER_GATED);
364         }
365
366         /* This should never be reached */
367         panic("Failed to offline CPU %u", cpu);
368 }
369
370 static void wait_for_sibling_halt(void *ptr_cpu)
371 {
372         unsigned cpu = (unsigned long)ptr_cpu;
373         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
374         unsigned halted;
375         unsigned long flags;
376
377         do {
378                 local_irq_save(flags);
379                 settc(vpe_id);
380                 halted = read_tc_c0_tchalt();
381                 local_irq_restore(flags);
382         } while (!(halted & TCHALT_H));
383 }
384
385 static void cps_cpu_die(unsigned int cpu)
386 {
387         unsigned core = cpu_data[cpu].core;
388         unsigned stat;
389         int err;
390
391         /* Wait for the cpu to choose its way out */
392         if (!wait_for_completion_timeout(&cpu_death_chosen,
393                                          msecs_to_jiffies(5000))) {
394                 pr_err("CPU%u: didn't offline\n", cpu);
395                 return;
396         }
397
398         /*
399          * Now wait for the CPU to actually offline. Without doing this that
400          * offlining may race with one or more of:
401          *
402          *   - Onlining the CPU again.
403          *   - Powering down the core if another VPE within it is offlined.
404          *   - A sibling VPE entering a non-coherent state.
405          *
406          * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
407          * with which we could race, so do nothing.
408          */
409         if (cpu_death == CPU_DEATH_POWER) {
410                 /*
411                  * Wait for the core to enter a powered down or clock gated
412                  * state, the latter happening when a JTAG probe is connected
413                  * in which case the CPC will refuse to power down the core.
414                  */
415                 do {
416                         mips_cpc_lock_other(core);
417                         stat = read_cpc_co_stat_conf();
418                         stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
419                         mips_cpc_unlock_other();
420                 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
421                          stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
422                          stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
423
424                 /* Indicate the core is powered off */
425                 bitmap_clear(core_power, core, 1);
426         } else if (cpu_has_mipsmt) {
427                 /*
428                  * Have a CPU with access to the offlined CPUs registers wait
429                  * for its TC to halt.
430                  */
431                 err = smp_call_function_single(cpu_death_sibling,
432                                                wait_for_sibling_halt,
433                                                (void *)(unsigned long)cpu, 1);
434                 if (err)
435                         panic("Failed to call remote sibling CPU\n");
436         }
437 }
438
439 #endif /* CONFIG_HOTPLUG_CPU */
440
441 static struct plat_smp_ops cps_smp_ops = {
442         .smp_setup              = cps_smp_setup,
443         .prepare_cpus           = cps_prepare_cpus,
444         .boot_secondary         = cps_boot_secondary,
445         .init_secondary         = cps_init_secondary,
446         .smp_finish             = cps_smp_finish,
447         .send_ipi_single        = gic_send_ipi_single,
448         .send_ipi_mask          = gic_send_ipi_mask,
449 #ifdef CONFIG_HOTPLUG_CPU
450         .cpu_disable            = cps_cpu_disable,
451         .cpu_die                = cps_cpu_die,
452 #endif
453 };
454
455 bool mips_cps_smp_in_use(void)
456 {
457         extern struct plat_smp_ops *mp_ops;
458         return mp_ops == &cps_smp_ops;
459 }
460
461 int register_cps_smp_ops(void)
462 {
463         if (!mips_cm_present()) {
464                 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
465                 return -ENODEV;
466         }
467
468         /* check we have a GIC - we need one for IPIs */
469         if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
470                 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
471                 return -ENODEV;
472         }
473
474         register_smp_ops(&cps_smp_ops);
475         return 0;
476 }