]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/mips/kernel/smp-cps.c
Merge remote-tracking branch 'drm-panel/drm/panel/for-next'
[karo-tx-linux.git] / arch / mips / kernel / smp-cps.c
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/irqchip/mips-gic.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/smp.h>
17 #include <linux/types.h>
18
19 #include <asm/bcache.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mips_mt.h>
23 #include <asm/mipsregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/r4kcache.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29
30 static DECLARE_BITMAP(core_power, NR_CPUS);
31
32 struct core_boot_config *mips_cps_core_bootcfg;
33
34 static unsigned core_vpe_count(unsigned core)
35 {
36         unsigned cfg;
37
38         if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
39                 return 1;
40
41         mips_cm_lock_other(core, 0);
42         cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
43         mips_cm_unlock_other();
44         return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
45 }
46
47 static void __init cps_smp_setup(void)
48 {
49         unsigned int ncores, nvpes, core_vpes;
50         int c, v;
51
52         /* Detect & record VPE topology */
53         ncores = mips_cm_numcores();
54         pr_info("VPE topology ");
55         for (c = nvpes = 0; c < ncores; c++) {
56                 core_vpes = core_vpe_count(c);
57                 pr_cont("%c%u", c ? ',' : '{', core_vpes);
58
59                 /* Use the number of VPEs in core 0 for smp_num_siblings */
60                 if (!c)
61                         smp_num_siblings = core_vpes;
62
63                 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
64                         cpu_data[nvpes + v].core = c;
65 #ifdef CONFIG_MIPS_MT_SMP
66                         cpu_data[nvpes + v].vpe_id = v;
67 #endif
68                 }
69
70                 nvpes += core_vpes;
71         }
72         pr_cont("} total %u\n", nvpes);
73
74         /* Indicate present CPUs (CPU being synonymous with VPE) */
75         for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
76                 set_cpu_possible(v, true);
77                 set_cpu_present(v, true);
78                 __cpu_number_map[v] = v;
79                 __cpu_logical_map[v] = v;
80         }
81
82         /* Set a coherent default CCA (CWB) */
83         change_c0_config(CONF_CM_CMASK, 0x5);
84
85         /* Core 0 is powered up (we're running on it) */
86         bitmap_set(core_power, 0, 1);
87
88         /* Initialise core 0 */
89         mips_cps_core_init();
90
91         /* Make core 0 coherent with everything */
92         write_gcr_cl_coherence(0xff);
93
94 #ifdef CONFIG_MIPS_MT_FPAFF
95         /* If we have an FPU, enroll ourselves in the FPU-full mask */
96         if (cpu_has_fpu)
97                 cpumask_set_cpu(0, &mt_fpu_cpumask);
98 #endif /* CONFIG_MIPS_MT_FPAFF */
99 }
100
101 static void __init cps_prepare_cpus(unsigned int max_cpus)
102 {
103         unsigned ncores, core_vpes, c, cca;
104         bool cca_unsuitable;
105         u32 *entry_code;
106
107         mips_mt_set_cpuoptions();
108
109         /* Detect whether the CCA is unsuited to multi-core SMP */
110         cca = read_c0_config() & CONF_CM_CMASK;
111         switch (cca) {
112         case 0x4: /* CWBE */
113         case 0x5: /* CWB */
114                 /* The CCA is coherent, multi-core is fine */
115                 cca_unsuitable = false;
116                 break;
117
118         default:
119                 /* CCA is not coherent, multi-core is not usable */
120                 cca_unsuitable = true;
121         }
122
123         /* Warn the user if the CCA prevents multi-core */
124         ncores = mips_cm_numcores();
125         if (cca_unsuitable && ncores > 1) {
126                 pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
127                         cca);
128
129                 for_each_present_cpu(c) {
130                         if (cpu_data[c].core)
131                                 set_cpu_present(c, false);
132                 }
133         }
134
135         /*
136          * Patch the start of mips_cps_core_entry to provide:
137          *
138          * s0 = kseg0 CCA
139          */
140         entry_code = (u32 *)&mips_cps_core_entry;
141         uasm_i_addiu(&entry_code, 16, 0, cca);
142         blast_dcache_range((unsigned long)&mips_cps_core_entry,
143                            (unsigned long)entry_code);
144         bc_wback_inv((unsigned long)&mips_cps_core_entry,
145                      (void *)entry_code - (void *)&mips_cps_core_entry);
146         __sync();
147
148         /* Allocate core boot configuration structs */
149         mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
150                                         GFP_KERNEL);
151         if (!mips_cps_core_bootcfg) {
152                 pr_err("Failed to allocate boot config for %u cores\n", ncores);
153                 goto err_out;
154         }
155
156         /* Allocate VPE boot configuration structs */
157         for (c = 0; c < ncores; c++) {
158                 core_vpes = core_vpe_count(c);
159                 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
160                                 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
161                                 GFP_KERNEL);
162                 if (!mips_cps_core_bootcfg[c].vpe_config) {
163                         pr_err("Failed to allocate %u VPE boot configs\n",
164                                core_vpes);
165                         goto err_out;
166                 }
167         }
168
169         /* Mark this CPU as booted */
170         atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
171                    1 << cpu_vpe_id(&current_cpu_data));
172
173         return;
174 err_out:
175         /* Clean up allocations */
176         if (mips_cps_core_bootcfg) {
177                 for (c = 0; c < ncores; c++)
178                         kfree(mips_cps_core_bootcfg[c].vpe_config);
179                 kfree(mips_cps_core_bootcfg);
180                 mips_cps_core_bootcfg = NULL;
181         }
182
183         /* Effectively disable SMP by declaring CPUs not present */
184         for_each_possible_cpu(c) {
185                 if (c == 0)
186                         continue;
187                 set_cpu_present(c, false);
188         }
189 }
190
191 static void boot_core(unsigned core)
192 {
193         u32 access, stat, seq_state;
194         unsigned timeout;
195
196         /* Select the appropriate core */
197         mips_cm_lock_other(core, 0);
198
199         /* Set its reset vector */
200         write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
201
202         /* Ensure its coherency is disabled */
203         write_gcr_co_coherence(0);
204
205         /* Ensure the core can access the GCRs */
206         access = read_gcr_access();
207         access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
208         write_gcr_access(access);
209
210         if (mips_cpc_present()) {
211                 /* Reset the core */
212                 mips_cpc_lock_other(core);
213                 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
214
215                 timeout = 100;
216                 while (true) {
217                         stat = read_cpc_co_stat_conf();
218                         seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
219
220                         /* U6 == coherent execution, ie. the core is up */
221                         if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
222                                 break;
223
224                         /* Delay a little while before we start warning */
225                         if (timeout) {
226                                 timeout--;
227                                 mdelay(10);
228                                 continue;
229                         }
230
231                         pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
232                                 core, stat);
233                         mdelay(1000);
234                 }
235
236                 mips_cpc_unlock_other();
237         } else {
238                 /* Take the core out of reset */
239                 write_gcr_co_reset_release(0);
240         }
241
242         mips_cm_unlock_other();
243
244         /* The core is now powered up */
245         bitmap_set(core_power, core, 1);
246 }
247
248 static void remote_vpe_boot(void *dummy)
249 {
250         mips_cps_boot_vpes();
251 }
252
253 static void cps_boot_secondary(int cpu, struct task_struct *idle)
254 {
255         unsigned core = cpu_data[cpu].core;
256         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
257         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
258         struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
259         unsigned int remote;
260         int err;
261
262         vpe_cfg->pc = (unsigned long)&smp_bootstrap;
263         vpe_cfg->sp = __KSTK_TOS(idle);
264         vpe_cfg->gp = (unsigned long)task_thread_info(idle);
265
266         atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
267
268         preempt_disable();
269
270         if (!test_bit(core, core_power)) {
271                 /* Boot a VPE on a powered down core */
272                 boot_core(core);
273                 goto out;
274         }
275
276         if (core != current_cpu_data.core) {
277                 /* Boot a VPE on another powered up core */
278                 for (remote = 0; remote < NR_CPUS; remote++) {
279                         if (cpu_data[remote].core != core)
280                                 continue;
281                         if (cpu_online(remote))
282                                 break;
283                 }
284                 BUG_ON(remote >= NR_CPUS);
285
286                 err = smp_call_function_single(remote, remote_vpe_boot,
287                                                NULL, 1);
288                 if (err)
289                         panic("Failed to call remote CPU\n");
290                 goto out;
291         }
292
293         BUG_ON(!cpu_has_mipsmt);
294
295         /* Boot a VPE on this core */
296         mips_cps_boot_vpes();
297 out:
298         preempt_enable();
299 }
300
301 static void cps_init_secondary(void)
302 {
303         /* Disable MT - we only want to run 1 TC per VPE */
304         if (cpu_has_mipsmt)
305                 dmt();
306
307         change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
308                                  STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
309 }
310
311 static void cps_smp_finish(void)
312 {
313         write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
314
315 #ifdef CONFIG_MIPS_MT_FPAFF
316         /* If we have an FPU, enroll ourselves in the FPU-full mask */
317         if (cpu_has_fpu)
318                 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
319 #endif /* CONFIG_MIPS_MT_FPAFF */
320
321         local_irq_enable();
322 }
323
324 #ifdef CONFIG_HOTPLUG_CPU
325
326 static int cps_cpu_disable(void)
327 {
328         unsigned cpu = smp_processor_id();
329         struct core_boot_config *core_cfg;
330
331         if (!cpu)
332                 return -EBUSY;
333
334         if (!cps_pm_support_state(CPS_PM_POWER_GATED))
335                 return -EINVAL;
336
337         core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
338         atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
339         smp_mb__after_atomic();
340         set_cpu_online(cpu, false);
341         cpumask_clear_cpu(cpu, &cpu_callin_map);
342
343         return 0;
344 }
345
346 static DECLARE_COMPLETION(cpu_death_chosen);
347 static unsigned cpu_death_sibling;
348 static enum {
349         CPU_DEATH_HALT,
350         CPU_DEATH_POWER,
351 } cpu_death;
352
353 void play_dead(void)
354 {
355         unsigned cpu, core;
356
357         local_irq_disable();
358         idle_task_exit();
359         cpu = smp_processor_id();
360         cpu_death = CPU_DEATH_POWER;
361
362         if (cpu_has_mipsmt) {
363                 core = cpu_data[cpu].core;
364
365                 /* Look for another online VPE within the core */
366                 for_each_online_cpu(cpu_death_sibling) {
367                         if (cpu_data[cpu_death_sibling].core != core)
368                                 continue;
369
370                         /*
371                          * There is an online VPE within the core. Just halt
372                          * this TC and leave the core alone.
373                          */
374                         cpu_death = CPU_DEATH_HALT;
375                         break;
376                 }
377         }
378
379         /* This CPU has chosen its way out */
380         complete(&cpu_death_chosen);
381
382         if (cpu_death == CPU_DEATH_HALT) {
383                 /* Halt this TC */
384                 write_c0_tchalt(TCHALT_H);
385                 instruction_hazard();
386         } else {
387                 /* Power down the core */
388                 cps_pm_enter_state(CPS_PM_POWER_GATED);
389         }
390
391         /* This should never be reached */
392         panic("Failed to offline CPU %u", cpu);
393 }
394
395 static void wait_for_sibling_halt(void *ptr_cpu)
396 {
397         unsigned cpu = (unsigned long)ptr_cpu;
398         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
399         unsigned halted;
400         unsigned long flags;
401
402         do {
403                 local_irq_save(flags);
404                 settc(vpe_id);
405                 halted = read_tc_c0_tchalt();
406                 local_irq_restore(flags);
407         } while (!(halted & TCHALT_H));
408 }
409
410 static void cps_cpu_die(unsigned int cpu)
411 {
412         unsigned core = cpu_data[cpu].core;
413         unsigned stat;
414         int err;
415
416         /* Wait for the cpu to choose its way out */
417         if (!wait_for_completion_timeout(&cpu_death_chosen,
418                                          msecs_to_jiffies(5000))) {
419                 pr_err("CPU%u: didn't offline\n", cpu);
420                 return;
421         }
422
423         /*
424          * Now wait for the CPU to actually offline. Without doing this that
425          * offlining may race with one or more of:
426          *
427          *   - Onlining the CPU again.
428          *   - Powering down the core if another VPE within it is offlined.
429          *   - A sibling VPE entering a non-coherent state.
430          *
431          * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
432          * with which we could race, so do nothing.
433          */
434         if (cpu_death == CPU_DEATH_POWER) {
435                 /*
436                  * Wait for the core to enter a powered down or clock gated
437                  * state, the latter happening when a JTAG probe is connected
438                  * in which case the CPC will refuse to power down the core.
439                  */
440                 do {
441                         mips_cpc_lock_other(core);
442                         stat = read_cpc_co_stat_conf();
443                         stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
444                         mips_cpc_unlock_other();
445                 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
446                          stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
447                          stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
448
449                 /* Indicate the core is powered off */
450                 bitmap_clear(core_power, core, 1);
451         } else if (cpu_has_mipsmt) {
452                 /*
453                  * Have a CPU with access to the offlined CPUs registers wait
454                  * for its TC to halt.
455                  */
456                 err = smp_call_function_single(cpu_death_sibling,
457                                                wait_for_sibling_halt,
458                                                (void *)(unsigned long)cpu, 1);
459                 if (err)
460                         panic("Failed to call remote sibling CPU\n");
461         }
462 }
463
464 #endif /* CONFIG_HOTPLUG_CPU */
465
466 static struct plat_smp_ops cps_smp_ops = {
467         .smp_setup              = cps_smp_setup,
468         .prepare_cpus           = cps_prepare_cpus,
469         .boot_secondary         = cps_boot_secondary,
470         .init_secondary         = cps_init_secondary,
471         .smp_finish             = cps_smp_finish,
472         .send_ipi_single        = gic_send_ipi_single,
473         .send_ipi_mask          = gic_send_ipi_mask,
474 #ifdef CONFIG_HOTPLUG_CPU
475         .cpu_disable            = cps_cpu_disable,
476         .cpu_die                = cps_cpu_die,
477 #endif
478 };
479
480 bool mips_cps_smp_in_use(void)
481 {
482         extern struct plat_smp_ops *mp_ops;
483         return mp_ops == &cps_smp_ops;
484 }
485
486 int register_cps_smp_ops(void)
487 {
488         if (!mips_cm_present()) {
489                 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
490                 return -ENODEV;
491         }
492
493         /* check we have a GIC - we need one for IPIs */
494         if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
495                 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
496                 return -ENODEV;
497         }
498
499         register_smp_ops(&cps_smp_ops);
500         return 0;
501 }