]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/mips/kvm/mips.c
Merge remote-tracking branch 'qcom/qcom/for-next'
[karo-tx-linux.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <asm/fpu.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
24
25 #include <linux/kvm_host.h>
26
27 #include "interrupt.h"
28 #include "commpage.h"
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #ifndef VECTORSPACING
34 #define VECTORSPACING 0x100     /* for EI/VI mode */
35 #endif
36
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
40         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
41         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
42         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
43         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
45         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
46         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
47         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
48         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
49         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
50         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
51         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
52         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
53         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
54         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
55         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
59         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
60         {NULL}
61 };
62
63 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
64 {
65         int i;
66
67         for_each_possible_cpu(i) {
68                 vcpu->arch.guest_kernel_asid[i] = 0;
69                 vcpu->arch.guest_user_asid[i] = 0;
70         }
71
72         return 0;
73 }
74
75 /*
76  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
77  * Config7, so we are "runnable" if interrupts are pending
78  */
79 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
80 {
81         return !!(vcpu->arch.pending_exceptions);
82 }
83
84 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
85 {
86         return 1;
87 }
88
89 int kvm_arch_hardware_enable(void)
90 {
91         return 0;
92 }
93
94 int kvm_arch_hardware_setup(void)
95 {
96         return 0;
97 }
98
99 void kvm_arch_check_processor_compat(void *rtn)
100 {
101         *(int *)rtn = 0;
102 }
103
104 static void kvm_mips_init_tlbs(struct kvm *kvm)
105 {
106         unsigned long wired;
107
108         /*
109          * Add a wired entry to the TLB, it is used to map the commpage to
110          * the Guest kernel
111          */
112         wired = read_c0_wired();
113         write_c0_wired(wired + 1);
114         mtc0_tlbw_hazard();
115         kvm->arch.commpage_tlb = wired;
116
117         kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
118                   kvm->arch.commpage_tlb);
119 }
120
121 static void kvm_mips_init_vm_percpu(void *arg)
122 {
123         struct kvm *kvm = (struct kvm *)arg;
124
125         kvm_mips_init_tlbs(kvm);
126         kvm_mips_callbacks->vm_init(kvm);
127
128 }
129
130 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
131 {
132         if (atomic_inc_return(&kvm_mips_instance) == 1) {
133                 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
134                           __func__);
135                 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
136         }
137
138         return 0;
139 }
140
141 void kvm_mips_free_vcpus(struct kvm *kvm)
142 {
143         unsigned int i;
144         struct kvm_vcpu *vcpu;
145
146         /* Put the pages we reserved for the guest pmap */
147         for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
148                 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
149                         kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
150         }
151         kfree(kvm->arch.guest_pmap);
152
153         kvm_for_each_vcpu(i, vcpu, kvm) {
154                 kvm_arch_vcpu_free(vcpu);
155         }
156
157         mutex_lock(&kvm->lock);
158
159         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
160                 kvm->vcpus[i] = NULL;
161
162         atomic_set(&kvm->online_vcpus, 0);
163
164         mutex_unlock(&kvm->lock);
165 }
166
167 static void kvm_mips_uninit_tlbs(void *arg)
168 {
169         /* Restore wired count */
170         write_c0_wired(0);
171         mtc0_tlbw_hazard();
172         /* Clear out all the TLBs */
173         kvm_local_flush_tlb_all();
174 }
175
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         kvm_mips_free_vcpus(kvm);
179
180         /* If this is the last instance, restore wired count */
181         if (atomic_dec_return(&kvm_mips_instance) == 0) {
182                 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
183                           __func__);
184                 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
185         }
186 }
187
188 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
189                         unsigned long arg)
190 {
191         return -ENOIOCTLCMD;
192 }
193
194 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
195                             unsigned long npages)
196 {
197         return 0;
198 }
199
200 int kvm_arch_prepare_memory_region(struct kvm *kvm,
201                                    struct kvm_memory_slot *memslot,
202                                    const struct kvm_userspace_memory_region *mem,
203                                    enum kvm_mr_change change)
204 {
205         return 0;
206 }
207
208 void kvm_arch_commit_memory_region(struct kvm *kvm,
209                                    const struct kvm_userspace_memory_region *mem,
210                                    const struct kvm_memory_slot *old,
211                                    const struct kvm_memory_slot *new,
212                                    enum kvm_mr_change change)
213 {
214         unsigned long npages = 0;
215         int i;
216
217         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
218                   __func__, kvm, mem->slot, mem->guest_phys_addr,
219                   mem->memory_size, mem->userspace_addr);
220
221         /* Setup Guest PMAP table */
222         if (!kvm->arch.guest_pmap) {
223                 if (mem->slot == 0)
224                         npages = mem->memory_size >> PAGE_SHIFT;
225
226                 if (npages) {
227                         kvm->arch.guest_pmap_npages = npages;
228                         kvm->arch.guest_pmap =
229                             kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
230
231                         if (!kvm->arch.guest_pmap) {
232                                 kvm_err("Failed to allocate guest PMAP");
233                                 return;
234                         }
235
236                         kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
237                                   npages, kvm->arch.guest_pmap);
238
239                         /* Now setup the page table */
240                         for (i = 0; i < npages; i++)
241                                 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
242                 }
243         }
244 }
245
246 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
247 {
248         int err, size, offset;
249         void *gebase;
250         int i;
251
252         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
253
254         if (!vcpu) {
255                 err = -ENOMEM;
256                 goto out;
257         }
258
259         err = kvm_vcpu_init(vcpu, kvm, id);
260
261         if (err)
262                 goto out_free_cpu;
263
264         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
265
266         /*
267          * Allocate space for host mode exception handlers that handle
268          * guest mode exits
269          */
270         if (cpu_has_veic || cpu_has_vint)
271                 size = 0x200 + VECTORSPACING * 64;
272         else
273                 size = 0x4000;
274
275         /* Save Linux EBASE */
276         vcpu->arch.host_ebase = (void *)read_c0_ebase();
277
278         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
279
280         if (!gebase) {
281                 err = -ENOMEM;
282                 goto out_free_cpu;
283         }
284         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
285                   ALIGN(size, PAGE_SIZE), gebase);
286
287         /* Save new ebase */
288         vcpu->arch.guest_ebase = gebase;
289
290         /* Copy L1 Guest Exception handler to correct offset */
291
292         /* TLB Refill, EXL = 0 */
293         memcpy(gebase, mips32_exception,
294                mips32_exceptionEnd - mips32_exception);
295
296         /* General Exception Entry point */
297         memcpy(gebase + 0x180, mips32_exception,
298                mips32_exceptionEnd - mips32_exception);
299
300         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
301         for (i = 0; i < 8; i++) {
302                 kvm_debug("L1 Vectored handler @ %p\n",
303                           gebase + 0x200 + (i * VECTORSPACING));
304                 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
305                        mips32_exceptionEnd - mips32_exception);
306         }
307
308         /* General handler, relocate to unmapped space for sanity's sake */
309         offset = 0x2000;
310         kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
311                   gebase + offset,
312                   mips32_GuestExceptionEnd - mips32_GuestException);
313
314         memcpy(gebase + offset, mips32_GuestException,
315                mips32_GuestExceptionEnd - mips32_GuestException);
316
317         /* Invalidate the icache for these ranges */
318         local_flush_icache_range((unsigned long)gebase,
319                                 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
320
321         /*
322          * Allocate comm page for guest kernel, a TLB will be reserved for
323          * mapping GVA @ 0xFFFF8000 to this page
324          */
325         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
326
327         if (!vcpu->arch.kseg0_commpage) {
328                 err = -ENOMEM;
329                 goto out_free_gebase;
330         }
331
332         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
333         kvm_mips_commpage_init(vcpu);
334
335         /* Init */
336         vcpu->arch.last_sched_cpu = -1;
337
338         /* Start off the timer */
339         kvm_mips_init_count(vcpu);
340
341         return vcpu;
342
343 out_free_gebase:
344         kfree(gebase);
345
346 out_free_cpu:
347         kfree(vcpu);
348
349 out:
350         return ERR_PTR(err);
351 }
352
353 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
354 {
355         hrtimer_cancel(&vcpu->arch.comparecount_timer);
356
357         kvm_vcpu_uninit(vcpu);
358
359         kvm_mips_dump_stats(vcpu);
360
361         kfree(vcpu->arch.guest_ebase);
362         kfree(vcpu->arch.kseg0_commpage);
363         kfree(vcpu);
364 }
365
366 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
367 {
368         kvm_arch_vcpu_free(vcpu);
369 }
370
371 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
372                                         struct kvm_guest_debug *dbg)
373 {
374         return -ENOIOCTLCMD;
375 }
376
377 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
378 {
379         int r = 0;
380         sigset_t sigsaved;
381
382         if (vcpu->sigset_active)
383                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
384
385         if (vcpu->mmio_needed) {
386                 if (!vcpu->mmio_is_write)
387                         kvm_mips_complete_mmio_load(vcpu, run);
388                 vcpu->mmio_needed = 0;
389         }
390
391         lose_fpu(1);
392
393         local_irq_disable();
394         /* Check if we have any exceptions/interrupts pending */
395         kvm_mips_deliver_interrupts(vcpu,
396                                     kvm_read_c0_guest_cause(vcpu->arch.cop0));
397
398         __kvm_guest_enter();
399
400         /* Disable hardware page table walking while in guest */
401         htw_stop();
402
403         r = __kvm_mips_vcpu_run(run, vcpu);
404
405         /* Re-enable HTW before enabling interrupts */
406         htw_start();
407
408         __kvm_guest_exit();
409         local_irq_enable();
410
411         if (vcpu->sigset_active)
412                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
413
414         return r;
415 }
416
417 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
418                              struct kvm_mips_interrupt *irq)
419 {
420         int intr = (int)irq->irq;
421         struct kvm_vcpu *dvcpu = NULL;
422
423         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
424                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
425                           (int)intr);
426
427         if (irq->cpu == -1)
428                 dvcpu = vcpu;
429         else
430                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
431
432         if (intr == 2 || intr == 3 || intr == 4) {
433                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
434
435         } else if (intr == -2 || intr == -3 || intr == -4) {
436                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
437         } else {
438                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
439                         irq->cpu, irq->irq);
440                 return -EINVAL;
441         }
442
443         dvcpu->arch.wait = 0;
444
445         if (waitqueue_active(&dvcpu->wq))
446                 wake_up_interruptible(&dvcpu->wq);
447
448         return 0;
449 }
450
451 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
452                                     struct kvm_mp_state *mp_state)
453 {
454         return -ENOIOCTLCMD;
455 }
456
457 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
458                                     struct kvm_mp_state *mp_state)
459 {
460         return -ENOIOCTLCMD;
461 }
462
463 static u64 kvm_mips_get_one_regs[] = {
464         KVM_REG_MIPS_R0,
465         KVM_REG_MIPS_R1,
466         KVM_REG_MIPS_R2,
467         KVM_REG_MIPS_R3,
468         KVM_REG_MIPS_R4,
469         KVM_REG_MIPS_R5,
470         KVM_REG_MIPS_R6,
471         KVM_REG_MIPS_R7,
472         KVM_REG_MIPS_R8,
473         KVM_REG_MIPS_R9,
474         KVM_REG_MIPS_R10,
475         KVM_REG_MIPS_R11,
476         KVM_REG_MIPS_R12,
477         KVM_REG_MIPS_R13,
478         KVM_REG_MIPS_R14,
479         KVM_REG_MIPS_R15,
480         KVM_REG_MIPS_R16,
481         KVM_REG_MIPS_R17,
482         KVM_REG_MIPS_R18,
483         KVM_REG_MIPS_R19,
484         KVM_REG_MIPS_R20,
485         KVM_REG_MIPS_R21,
486         KVM_REG_MIPS_R22,
487         KVM_REG_MIPS_R23,
488         KVM_REG_MIPS_R24,
489         KVM_REG_MIPS_R25,
490         KVM_REG_MIPS_R26,
491         KVM_REG_MIPS_R27,
492         KVM_REG_MIPS_R28,
493         KVM_REG_MIPS_R29,
494         KVM_REG_MIPS_R30,
495         KVM_REG_MIPS_R31,
496
497         KVM_REG_MIPS_HI,
498         KVM_REG_MIPS_LO,
499         KVM_REG_MIPS_PC,
500
501         KVM_REG_MIPS_CP0_INDEX,
502         KVM_REG_MIPS_CP0_CONTEXT,
503         KVM_REG_MIPS_CP0_USERLOCAL,
504         KVM_REG_MIPS_CP0_PAGEMASK,
505         KVM_REG_MIPS_CP0_WIRED,
506         KVM_REG_MIPS_CP0_HWRENA,
507         KVM_REG_MIPS_CP0_BADVADDR,
508         KVM_REG_MIPS_CP0_COUNT,
509         KVM_REG_MIPS_CP0_ENTRYHI,
510         KVM_REG_MIPS_CP0_COMPARE,
511         KVM_REG_MIPS_CP0_STATUS,
512         KVM_REG_MIPS_CP0_CAUSE,
513         KVM_REG_MIPS_CP0_EPC,
514         KVM_REG_MIPS_CP0_PRID,
515         KVM_REG_MIPS_CP0_CONFIG,
516         KVM_REG_MIPS_CP0_CONFIG1,
517         KVM_REG_MIPS_CP0_CONFIG2,
518         KVM_REG_MIPS_CP0_CONFIG3,
519         KVM_REG_MIPS_CP0_CONFIG4,
520         KVM_REG_MIPS_CP0_CONFIG5,
521         KVM_REG_MIPS_CP0_CONFIG7,
522         KVM_REG_MIPS_CP0_ERROREPC,
523
524         KVM_REG_MIPS_COUNT_CTL,
525         KVM_REG_MIPS_COUNT_RESUME,
526         KVM_REG_MIPS_COUNT_HZ,
527 };
528
529 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
530                             const struct kvm_one_reg *reg)
531 {
532         struct mips_coproc *cop0 = vcpu->arch.cop0;
533         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
534         int ret;
535         s64 v;
536         s64 vs[2];
537         unsigned int idx;
538
539         switch (reg->id) {
540         /* General purpose registers */
541         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
542                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
543                 break;
544         case KVM_REG_MIPS_HI:
545                 v = (long)vcpu->arch.hi;
546                 break;
547         case KVM_REG_MIPS_LO:
548                 v = (long)vcpu->arch.lo;
549                 break;
550         case KVM_REG_MIPS_PC:
551                 v = (long)vcpu->arch.pc;
552                 break;
553
554         /* Floating point registers */
555         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
556                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
557                         return -EINVAL;
558                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
559                 /* Odd singles in top of even double when FR=0 */
560                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
561                         v = get_fpr32(&fpu->fpr[idx], 0);
562                 else
563                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
564                 break;
565         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
566                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
567                         return -EINVAL;
568                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
569                 /* Can't access odd doubles in FR=0 mode */
570                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
571                         return -EINVAL;
572                 v = get_fpr64(&fpu->fpr[idx], 0);
573                 break;
574         case KVM_REG_MIPS_FCR_IR:
575                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
576                         return -EINVAL;
577                 v = boot_cpu_data.fpu_id;
578                 break;
579         case KVM_REG_MIPS_FCR_CSR:
580                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
581                         return -EINVAL;
582                 v = fpu->fcr31;
583                 break;
584
585         /* MIPS SIMD Architecture (MSA) registers */
586         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
587                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
588                         return -EINVAL;
589                 /* Can't access MSA registers in FR=0 mode */
590                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
591                         return -EINVAL;
592                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
593 #ifdef CONFIG_CPU_LITTLE_ENDIAN
594                 /* least significant byte first */
595                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
596                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
597 #else
598                 /* most significant byte first */
599                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
600                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
601 #endif
602                 break;
603         case KVM_REG_MIPS_MSA_IR:
604                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
605                         return -EINVAL;
606                 v = boot_cpu_data.msa_id;
607                 break;
608         case KVM_REG_MIPS_MSA_CSR:
609                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
610                         return -EINVAL;
611                 v = fpu->msacsr;
612                 break;
613
614         /* Co-processor 0 registers */
615         case KVM_REG_MIPS_CP0_INDEX:
616                 v = (long)kvm_read_c0_guest_index(cop0);
617                 break;
618         case KVM_REG_MIPS_CP0_CONTEXT:
619                 v = (long)kvm_read_c0_guest_context(cop0);
620                 break;
621         case KVM_REG_MIPS_CP0_USERLOCAL:
622                 v = (long)kvm_read_c0_guest_userlocal(cop0);
623                 break;
624         case KVM_REG_MIPS_CP0_PAGEMASK:
625                 v = (long)kvm_read_c0_guest_pagemask(cop0);
626                 break;
627         case KVM_REG_MIPS_CP0_WIRED:
628                 v = (long)kvm_read_c0_guest_wired(cop0);
629                 break;
630         case KVM_REG_MIPS_CP0_HWRENA:
631                 v = (long)kvm_read_c0_guest_hwrena(cop0);
632                 break;
633         case KVM_REG_MIPS_CP0_BADVADDR:
634                 v = (long)kvm_read_c0_guest_badvaddr(cop0);
635                 break;
636         case KVM_REG_MIPS_CP0_ENTRYHI:
637                 v = (long)kvm_read_c0_guest_entryhi(cop0);
638                 break;
639         case KVM_REG_MIPS_CP0_COMPARE:
640                 v = (long)kvm_read_c0_guest_compare(cop0);
641                 break;
642         case KVM_REG_MIPS_CP0_STATUS:
643                 v = (long)kvm_read_c0_guest_status(cop0);
644                 break;
645         case KVM_REG_MIPS_CP0_CAUSE:
646                 v = (long)kvm_read_c0_guest_cause(cop0);
647                 break;
648         case KVM_REG_MIPS_CP0_EPC:
649                 v = (long)kvm_read_c0_guest_epc(cop0);
650                 break;
651         case KVM_REG_MIPS_CP0_PRID:
652                 v = (long)kvm_read_c0_guest_prid(cop0);
653                 break;
654         case KVM_REG_MIPS_CP0_CONFIG:
655                 v = (long)kvm_read_c0_guest_config(cop0);
656                 break;
657         case KVM_REG_MIPS_CP0_CONFIG1:
658                 v = (long)kvm_read_c0_guest_config1(cop0);
659                 break;
660         case KVM_REG_MIPS_CP0_CONFIG2:
661                 v = (long)kvm_read_c0_guest_config2(cop0);
662                 break;
663         case KVM_REG_MIPS_CP0_CONFIG3:
664                 v = (long)kvm_read_c0_guest_config3(cop0);
665                 break;
666         case KVM_REG_MIPS_CP0_CONFIG4:
667                 v = (long)kvm_read_c0_guest_config4(cop0);
668                 break;
669         case KVM_REG_MIPS_CP0_CONFIG5:
670                 v = (long)kvm_read_c0_guest_config5(cop0);
671                 break;
672         case KVM_REG_MIPS_CP0_CONFIG7:
673                 v = (long)kvm_read_c0_guest_config7(cop0);
674                 break;
675         case KVM_REG_MIPS_CP0_ERROREPC:
676                 v = (long)kvm_read_c0_guest_errorepc(cop0);
677                 break;
678         /* registers to be handled specially */
679         case KVM_REG_MIPS_CP0_COUNT:
680         case KVM_REG_MIPS_COUNT_CTL:
681         case KVM_REG_MIPS_COUNT_RESUME:
682         case KVM_REG_MIPS_COUNT_HZ:
683                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
684                 if (ret)
685                         return ret;
686                 break;
687         default:
688                 return -EINVAL;
689         }
690         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
691                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
692
693                 return put_user(v, uaddr64);
694         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
695                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
696                 u32 v32 = (u32)v;
697
698                 return put_user(v32, uaddr32);
699         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
700                 void __user *uaddr = (void __user *)(long)reg->addr;
701
702                 return copy_to_user(uaddr, vs, 16);
703         } else {
704                 return -EINVAL;
705         }
706 }
707
708 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
709                             const struct kvm_one_reg *reg)
710 {
711         struct mips_coproc *cop0 = vcpu->arch.cop0;
712         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
713         s64 v;
714         s64 vs[2];
715         unsigned int idx;
716
717         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
718                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
719
720                 if (get_user(v, uaddr64) != 0)
721                         return -EFAULT;
722         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
723                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
724                 s32 v32;
725
726                 if (get_user(v32, uaddr32) != 0)
727                         return -EFAULT;
728                 v = (s64)v32;
729         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
730                 void __user *uaddr = (void __user *)(long)reg->addr;
731
732                 return copy_from_user(vs, uaddr, 16);
733         } else {
734                 return -EINVAL;
735         }
736
737         switch (reg->id) {
738         /* General purpose registers */
739         case KVM_REG_MIPS_R0:
740                 /* Silently ignore requests to set $0 */
741                 break;
742         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
743                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
744                 break;
745         case KVM_REG_MIPS_HI:
746                 vcpu->arch.hi = v;
747                 break;
748         case KVM_REG_MIPS_LO:
749                 vcpu->arch.lo = v;
750                 break;
751         case KVM_REG_MIPS_PC:
752                 vcpu->arch.pc = v;
753                 break;
754
755         /* Floating point registers */
756         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
757                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
758                         return -EINVAL;
759                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
760                 /* Odd singles in top of even double when FR=0 */
761                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
762                         set_fpr32(&fpu->fpr[idx], 0, v);
763                 else
764                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
765                 break;
766         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
767                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
768                         return -EINVAL;
769                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
770                 /* Can't access odd doubles in FR=0 mode */
771                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
772                         return -EINVAL;
773                 set_fpr64(&fpu->fpr[idx], 0, v);
774                 break;
775         case KVM_REG_MIPS_FCR_IR:
776                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
777                         return -EINVAL;
778                 /* Read-only */
779                 break;
780         case KVM_REG_MIPS_FCR_CSR:
781                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
782                         return -EINVAL;
783                 fpu->fcr31 = v;
784                 break;
785
786         /* MIPS SIMD Architecture (MSA) registers */
787         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
788                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
789                         return -EINVAL;
790                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
791 #ifdef CONFIG_CPU_LITTLE_ENDIAN
792                 /* least significant byte first */
793                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
794                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
795 #else
796                 /* most significant byte first */
797                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
798                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
799 #endif
800                 break;
801         case KVM_REG_MIPS_MSA_IR:
802                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
803                         return -EINVAL;
804                 /* Read-only */
805                 break;
806         case KVM_REG_MIPS_MSA_CSR:
807                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
808                         return -EINVAL;
809                 fpu->msacsr = v;
810                 break;
811
812         /* Co-processor 0 registers */
813         case KVM_REG_MIPS_CP0_INDEX:
814                 kvm_write_c0_guest_index(cop0, v);
815                 break;
816         case KVM_REG_MIPS_CP0_CONTEXT:
817                 kvm_write_c0_guest_context(cop0, v);
818                 break;
819         case KVM_REG_MIPS_CP0_USERLOCAL:
820                 kvm_write_c0_guest_userlocal(cop0, v);
821                 break;
822         case KVM_REG_MIPS_CP0_PAGEMASK:
823                 kvm_write_c0_guest_pagemask(cop0, v);
824                 break;
825         case KVM_REG_MIPS_CP0_WIRED:
826                 kvm_write_c0_guest_wired(cop0, v);
827                 break;
828         case KVM_REG_MIPS_CP0_HWRENA:
829                 kvm_write_c0_guest_hwrena(cop0, v);
830                 break;
831         case KVM_REG_MIPS_CP0_BADVADDR:
832                 kvm_write_c0_guest_badvaddr(cop0, v);
833                 break;
834         case KVM_REG_MIPS_CP0_ENTRYHI:
835                 kvm_write_c0_guest_entryhi(cop0, v);
836                 break;
837         case KVM_REG_MIPS_CP0_STATUS:
838                 kvm_write_c0_guest_status(cop0, v);
839                 break;
840         case KVM_REG_MIPS_CP0_EPC:
841                 kvm_write_c0_guest_epc(cop0, v);
842                 break;
843         case KVM_REG_MIPS_CP0_PRID:
844                 kvm_write_c0_guest_prid(cop0, v);
845                 break;
846         case KVM_REG_MIPS_CP0_ERROREPC:
847                 kvm_write_c0_guest_errorepc(cop0, v);
848                 break;
849         /* registers to be handled specially */
850         case KVM_REG_MIPS_CP0_COUNT:
851         case KVM_REG_MIPS_CP0_COMPARE:
852         case KVM_REG_MIPS_CP0_CAUSE:
853         case KVM_REG_MIPS_CP0_CONFIG:
854         case KVM_REG_MIPS_CP0_CONFIG1:
855         case KVM_REG_MIPS_CP0_CONFIG2:
856         case KVM_REG_MIPS_CP0_CONFIG3:
857         case KVM_REG_MIPS_CP0_CONFIG4:
858         case KVM_REG_MIPS_CP0_CONFIG5:
859         case KVM_REG_MIPS_COUNT_CTL:
860         case KVM_REG_MIPS_COUNT_RESUME:
861         case KVM_REG_MIPS_COUNT_HZ:
862                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
863         default:
864                 return -EINVAL;
865         }
866         return 0;
867 }
868
869 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
870                                      struct kvm_enable_cap *cap)
871 {
872         int r = 0;
873
874         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
875                 return -EINVAL;
876         if (cap->flags)
877                 return -EINVAL;
878         if (cap->args[0])
879                 return -EINVAL;
880
881         switch (cap->cap) {
882         case KVM_CAP_MIPS_FPU:
883                 vcpu->arch.fpu_enabled = true;
884                 break;
885         case KVM_CAP_MIPS_MSA:
886                 vcpu->arch.msa_enabled = true;
887                 break;
888         default:
889                 r = -EINVAL;
890                 break;
891         }
892
893         return r;
894 }
895
896 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
897                          unsigned long arg)
898 {
899         struct kvm_vcpu *vcpu = filp->private_data;
900         void __user *argp = (void __user *)arg;
901         long r;
902
903         switch (ioctl) {
904         case KVM_SET_ONE_REG:
905         case KVM_GET_ONE_REG: {
906                 struct kvm_one_reg reg;
907
908                 if (copy_from_user(&reg, argp, sizeof(reg)))
909                         return -EFAULT;
910                 if (ioctl == KVM_SET_ONE_REG)
911                         return kvm_mips_set_reg(vcpu, &reg);
912                 else
913                         return kvm_mips_get_reg(vcpu, &reg);
914         }
915         case KVM_GET_REG_LIST: {
916                 struct kvm_reg_list __user *user_list = argp;
917                 u64 __user *reg_dest;
918                 struct kvm_reg_list reg_list;
919                 unsigned n;
920
921                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
922                         return -EFAULT;
923                 n = reg_list.n;
924                 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
925                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
926                         return -EFAULT;
927                 if (n < reg_list.n)
928                         return -E2BIG;
929                 reg_dest = user_list->reg;
930                 if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
931                                  sizeof(kvm_mips_get_one_regs)))
932                         return -EFAULT;
933                 return 0;
934         }
935         case KVM_NMI:
936                 /* Treat the NMI as a CPU reset */
937                 r = kvm_mips_reset_vcpu(vcpu);
938                 break;
939         case KVM_INTERRUPT:
940                 {
941                         struct kvm_mips_interrupt irq;
942
943                         r = -EFAULT;
944                         if (copy_from_user(&irq, argp, sizeof(irq)))
945                                 goto out;
946
947                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
948                                   irq.irq);
949
950                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
951                         break;
952                 }
953         case KVM_ENABLE_CAP: {
954                 struct kvm_enable_cap cap;
955
956                 r = -EFAULT;
957                 if (copy_from_user(&cap, argp, sizeof(cap)))
958                         goto out;
959                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
960                 break;
961         }
962         default:
963                 r = -ENOIOCTLCMD;
964         }
965
966 out:
967         return r;
968 }
969
970 /* Get (and clear) the dirty memory log for a memory slot. */
971 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
972 {
973         struct kvm_memslots *slots;
974         struct kvm_memory_slot *memslot;
975         unsigned long ga, ga_end;
976         int is_dirty = 0;
977         int r;
978         unsigned long n;
979
980         mutex_lock(&kvm->slots_lock);
981
982         r = kvm_get_dirty_log(kvm, log, &is_dirty);
983         if (r)
984                 goto out;
985
986         /* If nothing is dirty, don't bother messing with page tables. */
987         if (is_dirty) {
988                 slots = kvm_memslots(kvm);
989                 memslot = id_to_memslot(slots, log->slot);
990
991                 ga = memslot->base_gfn << PAGE_SHIFT;
992                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
993
994                 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
995                          ga_end);
996
997                 n = kvm_dirty_bitmap_bytes(memslot);
998                 memset(memslot->dirty_bitmap, 0, n);
999         }
1000
1001         r = 0;
1002 out:
1003         mutex_unlock(&kvm->slots_lock);
1004         return r;
1005
1006 }
1007
1008 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1009 {
1010         long r;
1011
1012         switch (ioctl) {
1013         default:
1014                 r = -ENOIOCTLCMD;
1015         }
1016
1017         return r;
1018 }
1019
1020 int kvm_arch_init(void *opaque)
1021 {
1022         if (kvm_mips_callbacks) {
1023                 kvm_err("kvm: module already exists\n");
1024                 return -EEXIST;
1025         }
1026
1027         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1028 }
1029
1030 void kvm_arch_exit(void)
1031 {
1032         kvm_mips_callbacks = NULL;
1033 }
1034
1035 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1036                                   struct kvm_sregs *sregs)
1037 {
1038         return -ENOIOCTLCMD;
1039 }
1040
1041 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1042                                   struct kvm_sregs *sregs)
1043 {
1044         return -ENOIOCTLCMD;
1045 }
1046
1047 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1048 {
1049 }
1050
1051 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1052 {
1053         return -ENOIOCTLCMD;
1054 }
1055
1056 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1057 {
1058         return -ENOIOCTLCMD;
1059 }
1060
1061 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1062 {
1063         return VM_FAULT_SIGBUS;
1064 }
1065
1066 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1067 {
1068         int r;
1069
1070         switch (ext) {
1071         case KVM_CAP_ONE_REG:
1072         case KVM_CAP_ENABLE_CAP:
1073                 r = 1;
1074                 break;
1075         case KVM_CAP_COALESCED_MMIO:
1076                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1077                 break;
1078         case KVM_CAP_MIPS_FPU:
1079                 r = !!cpu_has_fpu;
1080                 break;
1081         case KVM_CAP_MIPS_MSA:
1082                 /*
1083                  * We don't support MSA vector partitioning yet:
1084                  * 1) It would require explicit support which can't be tested
1085                  *    yet due to lack of support in current hardware.
1086                  * 2) It extends the state that would need to be saved/restored
1087                  *    by e.g. QEMU for migration.
1088                  *
1089                  * When vector partitioning hardware becomes available, support
1090                  * could be added by requiring a flag when enabling
1091                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1092                  * to save/restore the appropriate extra state.
1093                  */
1094                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1095                 break;
1096         default:
1097                 r = 0;
1098                 break;
1099         }
1100         return r;
1101 }
1102
1103 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1104 {
1105         return kvm_mips_pending_timer(vcpu);
1106 }
1107
1108 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1109 {
1110         int i;
1111         struct mips_coproc *cop0;
1112
1113         if (!vcpu)
1114                 return -1;
1115
1116         kvm_debug("VCPU Register Dump:\n");
1117         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1118         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1119
1120         for (i = 0; i < 32; i += 4) {
1121                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1122                        vcpu->arch.gprs[i],
1123                        vcpu->arch.gprs[i + 1],
1124                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1125         }
1126         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1127         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1128
1129         cop0 = vcpu->arch.cop0;
1130         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1131                   kvm_read_c0_guest_status(cop0),
1132                   kvm_read_c0_guest_cause(cop0));
1133
1134         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1135
1136         return 0;
1137 }
1138
1139 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1140 {
1141         int i;
1142
1143         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1144                 vcpu->arch.gprs[i] = regs->gpr[i];
1145         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1146         vcpu->arch.hi = regs->hi;
1147         vcpu->arch.lo = regs->lo;
1148         vcpu->arch.pc = regs->pc;
1149
1150         return 0;
1151 }
1152
1153 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1154 {
1155         int i;
1156
1157         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1158                 regs->gpr[i] = vcpu->arch.gprs[i];
1159
1160         regs->hi = vcpu->arch.hi;
1161         regs->lo = vcpu->arch.lo;
1162         regs->pc = vcpu->arch.pc;
1163
1164         return 0;
1165 }
1166
1167 static void kvm_mips_comparecount_func(unsigned long data)
1168 {
1169         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1170
1171         kvm_mips_callbacks->queue_timer_int(vcpu);
1172
1173         vcpu->arch.wait = 0;
1174         if (waitqueue_active(&vcpu->wq))
1175                 wake_up_interruptible(&vcpu->wq);
1176 }
1177
1178 /* low level hrtimer wake routine */
1179 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1180 {
1181         struct kvm_vcpu *vcpu;
1182
1183         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1184         kvm_mips_comparecount_func((unsigned long) vcpu);
1185         return kvm_mips_count_timeout(vcpu);
1186 }
1187
1188 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1189 {
1190         kvm_mips_callbacks->vcpu_init(vcpu);
1191         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1192                      HRTIMER_MODE_REL);
1193         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1194         return 0;
1195 }
1196
1197 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1198                                   struct kvm_translation *tr)
1199 {
1200         return 0;
1201 }
1202
1203 /* Initial guest state */
1204 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1205 {
1206         return kvm_mips_callbacks->vcpu_setup(vcpu);
1207 }
1208
1209 static void kvm_mips_set_c0_status(void)
1210 {
1211         uint32_t status = read_c0_status();
1212
1213         if (cpu_has_dsp)
1214                 status |= (ST0_MX);
1215
1216         write_c0_status(status);
1217         ehb();
1218 }
1219
1220 /*
1221  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1222  */
1223 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1224 {
1225         uint32_t cause = vcpu->arch.host_cp0_cause;
1226         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1227         uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1228         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1229         enum emulation_result er = EMULATE_DONE;
1230         int ret = RESUME_GUEST;
1231
1232         /* re-enable HTW before enabling interrupts */
1233         htw_start();
1234
1235         /* Set a default exit reason */
1236         run->exit_reason = KVM_EXIT_UNKNOWN;
1237         run->ready_for_interrupt_injection = 1;
1238
1239         /*
1240          * Set the appropriate status bits based on host CPU features,
1241          * before we hit the scheduler
1242          */
1243         kvm_mips_set_c0_status();
1244
1245         local_irq_enable();
1246
1247         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1248                         cause, opc, run, vcpu);
1249
1250         /*
1251          * Do a privilege check, if in UM most of these exit conditions end up
1252          * causing an exception to be delivered to the Guest Kernel
1253          */
1254         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1255         if (er == EMULATE_PRIV_FAIL) {
1256                 goto skip_emul;
1257         } else if (er == EMULATE_FAIL) {
1258                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1259                 ret = RESUME_HOST;
1260                 goto skip_emul;
1261         }
1262
1263         switch (exccode) {
1264         case T_INT:
1265                 kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
1266
1267                 ++vcpu->stat.int_exits;
1268                 trace_kvm_exit(vcpu, INT_EXITS);
1269
1270                 if (need_resched())
1271                         cond_resched();
1272
1273                 ret = RESUME_GUEST;
1274                 break;
1275
1276         case T_COP_UNUSABLE:
1277                 kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
1278
1279                 ++vcpu->stat.cop_unusable_exits;
1280                 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1281                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1282                 /* XXXKYMA: Might need to return to user space */
1283                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1284                         ret = RESUME_HOST;
1285                 break;
1286
1287         case T_TLB_MOD:
1288                 ++vcpu->stat.tlbmod_exits;
1289                 trace_kvm_exit(vcpu, TLBMOD_EXITS);
1290                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1291                 break;
1292
1293         case T_TLB_ST_MISS:
1294                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1295                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1296                           badvaddr);
1297
1298                 ++vcpu->stat.tlbmiss_st_exits;
1299                 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1300                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1301                 break;
1302
1303         case T_TLB_LD_MISS:
1304                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1305                           cause, opc, badvaddr);
1306
1307                 ++vcpu->stat.tlbmiss_ld_exits;
1308                 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1309                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1310                 break;
1311
1312         case T_ADDR_ERR_ST:
1313                 ++vcpu->stat.addrerr_st_exits;
1314                 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1315                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1316                 break;
1317
1318         case T_ADDR_ERR_LD:
1319                 ++vcpu->stat.addrerr_ld_exits;
1320                 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1321                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1322                 break;
1323
1324         case T_SYSCALL:
1325                 ++vcpu->stat.syscall_exits;
1326                 trace_kvm_exit(vcpu, SYSCALL_EXITS);
1327                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1328                 break;
1329
1330         case T_RES_INST:
1331                 ++vcpu->stat.resvd_inst_exits;
1332                 trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1333                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1334                 break;
1335
1336         case T_BREAK:
1337                 ++vcpu->stat.break_inst_exits;
1338                 trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1339                 ret = kvm_mips_callbacks->handle_break(vcpu);
1340                 break;
1341
1342         case T_TRAP:
1343                 ++vcpu->stat.trap_inst_exits;
1344                 trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1345                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1346                 break;
1347
1348         case T_MSAFPE:
1349                 ++vcpu->stat.msa_fpe_exits;
1350                 trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1351                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1352                 break;
1353
1354         case T_FPE:
1355                 ++vcpu->stat.fpe_exits;
1356                 trace_kvm_exit(vcpu, FPE_EXITS);
1357                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1358                 break;
1359
1360         case T_MSADIS:
1361                 ++vcpu->stat.msa_disabled_exits;
1362                 trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1363                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1364                 break;
1365
1366         default:
1367                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1368                         exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1369                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1370                 kvm_arch_vcpu_dump_regs(vcpu);
1371                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1372                 ret = RESUME_HOST;
1373                 break;
1374
1375         }
1376
1377 skip_emul:
1378         local_irq_disable();
1379
1380         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1381                 kvm_mips_deliver_interrupts(vcpu, cause);
1382
1383         if (!(ret & RESUME_HOST)) {
1384                 /* Only check for signals if not already exiting to userspace */
1385                 if (signal_pending(current)) {
1386                         run->exit_reason = KVM_EXIT_INTR;
1387                         ret = (-EINTR << 2) | RESUME_HOST;
1388                         ++vcpu->stat.signal_exits;
1389                         trace_kvm_exit(vcpu, SIGNAL_EXITS);
1390                 }
1391         }
1392
1393         if (ret == RESUME_GUEST) {
1394                 /*
1395                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1396                  * is live), restore FCR31 / MSACSR.
1397                  *
1398                  * This should be before returning to the guest exception
1399                  * vector, as it may well cause an [MSA] FP exception if there
1400                  * are pending exception bits unmasked. (see
1401                  * kvm_mips_csr_die_notifier() for how that is handled).
1402                  */
1403                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1404                     read_c0_status() & ST0_CU1)
1405                         __kvm_restore_fcsr(&vcpu->arch);
1406
1407                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1408                     read_c0_config5() & MIPS_CONF5_MSAEN)
1409                         __kvm_restore_msacsr(&vcpu->arch);
1410         }
1411
1412         /* Disable HTW before returning to guest or host */
1413         htw_stop();
1414
1415         return ret;
1416 }
1417
1418 /* Enable FPU for guest and restore context */
1419 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1420 {
1421         struct mips_coproc *cop0 = vcpu->arch.cop0;
1422         unsigned int sr, cfg5;
1423
1424         preempt_disable();
1425
1426         sr = kvm_read_c0_guest_status(cop0);
1427
1428         /*
1429          * If MSA state is already live, it is undefined how it interacts with
1430          * FR=0 FPU state, and we don't want to hit reserved instruction
1431          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1432          * play it safe and save it first.
1433          *
1434          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1435          * get called when guest CU1 is set, however we can't trust the guest
1436          * not to clobber the status register directly via the commpage.
1437          */
1438         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1439             vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1440                 kvm_lose_fpu(vcpu);
1441
1442         /*
1443          * Enable FPU for guest
1444          * We set FR and FRE according to guest context
1445          */
1446         change_c0_status(ST0_CU1 | ST0_FR, sr);
1447         if (cpu_has_fre) {
1448                 cfg5 = kvm_read_c0_guest_config5(cop0);
1449                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1450         }
1451         enable_fpu_hazard();
1452
1453         /* If guest FPU state not active, restore it now */
1454         if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1455                 __kvm_restore_fpu(&vcpu->arch);
1456                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1457         }
1458
1459         preempt_enable();
1460 }
1461
1462 #ifdef CONFIG_CPU_HAS_MSA
1463 /* Enable MSA for guest and restore context */
1464 void kvm_own_msa(struct kvm_vcpu *vcpu)
1465 {
1466         struct mips_coproc *cop0 = vcpu->arch.cop0;
1467         unsigned int sr, cfg5;
1468
1469         preempt_disable();
1470
1471         /*
1472          * Enable FPU if enabled in guest, since we're restoring FPU context
1473          * anyway. We set FR and FRE according to guest context.
1474          */
1475         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1476                 sr = kvm_read_c0_guest_status(cop0);
1477
1478                 /*
1479                  * If FR=0 FPU state is already live, it is undefined how it
1480                  * interacts with MSA state, so play it safe and save it first.
1481                  */
1482                 if (!(sr & ST0_FR) &&
1483                     (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1484                                 KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1485                         kvm_lose_fpu(vcpu);
1486
1487                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1488                 if (sr & ST0_CU1 && cpu_has_fre) {
1489                         cfg5 = kvm_read_c0_guest_config5(cop0);
1490                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1491                 }
1492         }
1493
1494         /* Enable MSA for guest */
1495         set_c0_config5(MIPS_CONF5_MSAEN);
1496         enable_fpu_hazard();
1497
1498         switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1499         case KVM_MIPS_FPU_FPU:
1500                 /*
1501                  * Guest FPU state already loaded, only restore upper MSA state
1502                  */
1503                 __kvm_restore_msa_upper(&vcpu->arch);
1504                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1505                 break;
1506         case 0:
1507                 /* Neither FPU or MSA already active, restore full MSA state */
1508                 __kvm_restore_msa(&vcpu->arch);
1509                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1510                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1511                         vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1512                 break;
1513         default:
1514                 break;
1515         }
1516
1517         preempt_enable();
1518 }
1519 #endif
1520
1521 /* Drop FPU & MSA without saving it */
1522 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1523 {
1524         preempt_disable();
1525         if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1526                 disable_msa();
1527                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1528         }
1529         if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1530                 clear_c0_status(ST0_CU1 | ST0_FR);
1531                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1532         }
1533         preempt_enable();
1534 }
1535
1536 /* Save and disable FPU & MSA */
1537 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1538 {
1539         /*
1540          * FPU & MSA get disabled in root context (hardware) when it is disabled
1541          * in guest context (software), but the register state in the hardware
1542          * may still be in use. This is why we explicitly re-enable the hardware
1543          * before saving.
1544          */
1545
1546         preempt_disable();
1547         if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1548                 set_c0_config5(MIPS_CONF5_MSAEN);
1549                 enable_fpu_hazard();
1550
1551                 __kvm_save_msa(&vcpu->arch);
1552
1553                 /* Disable MSA & FPU */
1554                 disable_msa();
1555                 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1556                         clear_c0_status(ST0_CU1 | ST0_FR);
1557                 vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1558         } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1559                 set_c0_status(ST0_CU1);
1560                 enable_fpu_hazard();
1561
1562                 __kvm_save_fpu(&vcpu->arch);
1563                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1564
1565                 /* Disable FPU */
1566                 clear_c0_status(ST0_CU1 | ST0_FR);
1567         }
1568         preempt_enable();
1569 }
1570
1571 /*
1572  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1573  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1574  * exception if cause bits are set in the value being written.
1575  */
1576 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1577                                    unsigned long cmd, void *ptr)
1578 {
1579         struct die_args *args = (struct die_args *)ptr;
1580         struct pt_regs *regs = args->regs;
1581         unsigned long pc;
1582
1583         /* Only interested in FPE and MSAFPE */
1584         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1585                 return NOTIFY_DONE;
1586
1587         /* Return immediately if guest context isn't active */
1588         if (!(current->flags & PF_VCPU))
1589                 return NOTIFY_DONE;
1590
1591         /* Should never get here from user mode */
1592         BUG_ON(user_mode(regs));
1593
1594         pc = instruction_pointer(regs);
1595         switch (cmd) {
1596         case DIE_FP:
1597                 /* match 2nd instruction in __kvm_restore_fcsr */
1598                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1599                         return NOTIFY_DONE;
1600                 break;
1601         case DIE_MSAFP:
1602                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1603                 if (!cpu_has_msa ||
1604                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1605                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1606                         return NOTIFY_DONE;
1607                 break;
1608         }
1609
1610         /* Move PC forward a little and continue executing */
1611         instruction_pointer(regs) += 4;
1612
1613         return NOTIFY_STOP;
1614 }
1615
1616 static struct notifier_block kvm_mips_csr_die_notifier = {
1617         .notifier_call = kvm_mips_csr_die_notify,
1618 };
1619
1620 int __init kvm_mips_init(void)
1621 {
1622         int ret;
1623
1624         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1625
1626         if (ret)
1627                 return ret;
1628
1629         register_die_notifier(&kvm_mips_csr_die_notifier);
1630
1631         /*
1632          * On MIPS, kernel modules are executed from "mapped space", which
1633          * requires TLBs. The TLB handling code is statically linked with
1634          * the rest of the kernel (tlb.c) to avoid the possibility of
1635          * double faulting. The issue is that the TLB code references
1636          * routines that are part of the the KVM module, which are only
1637          * available once the module is loaded.
1638          */
1639         kvm_mips_gfn_to_pfn = gfn_to_pfn;
1640         kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1641         kvm_mips_is_error_pfn = is_error_pfn;
1642
1643         return 0;
1644 }
1645
1646 void __exit kvm_mips_exit(void)
1647 {
1648         kvm_exit();
1649
1650         kvm_mips_gfn_to_pfn = NULL;
1651         kvm_mips_release_pfn_clean = NULL;
1652         kvm_mips_is_error_pfn = NULL;
1653
1654         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1655 }
1656
1657 module_init(kvm_mips_init);
1658 module_exit(kvm_mips_exit);
1659
1660 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);