]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/mips/mm/dma-default.c
Merge remote-tracking branch 'at91/at91-next'
[karo-tx-linux.git] / arch / mips / mm / dma-default.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
7  * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
8  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9  */
10
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19 #include <linux/dma-contiguous.h>
20
21 #include <asm/cache.h>
22 #include <asm/cpu-type.h>
23 #include <asm/io.h>
24
25 #include <dma-coherence.h>
26
27 #ifdef CONFIG_DMA_MAYBE_COHERENT
28 int coherentio = 0;     /* User defined DMA coherency from command line. */
29 EXPORT_SYMBOL_GPL(coherentio);
30 int hw_coherentio = 0;  /* Actual hardware supported DMA coherency setting. */
31
32 static int __init setcoherentio(char *str)
33 {
34         coherentio = 1;
35         pr_info("Hardware DMA cache coherency (command line)\n");
36         return 0;
37 }
38 early_param("coherentio", setcoherentio);
39
40 static int __init setnocoherentio(char *str)
41 {
42         coherentio = 0;
43         pr_info("Software DMA cache coherency (command line)\n");
44         return 0;
45 }
46 early_param("nocoherentio", setnocoherentio);
47 #endif
48
49 static inline struct page *dma_addr_to_page(struct device *dev,
50         dma_addr_t dma_addr)
51 {
52         return pfn_to_page(
53                 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
54 }
55
56 /*
57  * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
58  * speculatively fill random cachelines with stale data at any time,
59  * requiring an extra flush post-DMA.
60  *
61  * Warning on the terminology - Linux calls an uncached area coherent;
62  * MIPS terminology calls memory areas with hardware maintained coherency
63  * coherent.
64  *
65  * Note that the R14000 and R16000 should also be checked for in this
66  * condition.  However this function is only called on non-I/O-coherent
67  * systems and only the R10000 and R12000 are used in such systems, the
68  * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
69  */
70 static inline int cpu_needs_post_dma_flush(struct device *dev)
71 {
72         return !plat_device_is_coherent(dev) &&
73                (boot_cpu_type() == CPU_R10000 ||
74                 boot_cpu_type() == CPU_R12000 ||
75                 boot_cpu_type() == CPU_BMIPS5000);
76 }
77
78 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
79 {
80         gfp_t dma_flag;
81
82         /* ignore region specifiers */
83         gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
84
85 #ifdef CONFIG_ISA
86         if (dev == NULL)
87                 dma_flag = __GFP_DMA;
88         else
89 #endif
90 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
91              if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
92                         dma_flag = __GFP_DMA;
93         else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
94                         dma_flag = __GFP_DMA32;
95         else
96 #endif
97 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
98              if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
99                 dma_flag = __GFP_DMA32;
100         else
101 #endif
102 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
103              if (dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
104                 dma_flag = __GFP_DMA;
105         else
106 #endif
107                 dma_flag = 0;
108
109         /* Don't invoke OOM killer */
110         gfp |= __GFP_NORETRY;
111
112         return gfp | dma_flag;
113 }
114
115 static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
116         dma_addr_t * dma_handle, gfp_t gfp)
117 {
118         void *ret;
119
120         gfp = massage_gfp_flags(dev, gfp);
121
122         ret = (void *) __get_free_pages(gfp, get_order(size));
123
124         if (ret != NULL) {
125                 memset(ret, 0, size);
126                 *dma_handle = plat_map_dma_mem(dev, ret, size);
127         }
128
129         return ret;
130 }
131
132 static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
133         dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
134 {
135         void *ret;
136         struct page *page = NULL;
137         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
138
139         /*
140          * XXX: seems like the coherent and non-coherent implementations could
141          * be consolidated.
142          */
143         if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs))
144                 return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
145
146         gfp = massage_gfp_flags(dev, gfp);
147
148         if (IS_ENABLED(CONFIG_DMA_CMA) && !(gfp & GFP_ATOMIC))
149                 page = dma_alloc_from_contiguous(dev,
150                                         count, get_order(size));
151         if (!page)
152                 page = alloc_pages(gfp, get_order(size));
153
154         if (!page)
155                 return NULL;
156
157         ret = page_address(page);
158         memset(ret, 0, size);
159         *dma_handle = plat_map_dma_mem(dev, ret, size);
160         if (!plat_device_is_coherent(dev)) {
161                 dma_cache_wback_inv((unsigned long) ret, size);
162                 if (!hw_coherentio)
163                         ret = UNCAC_ADDR(ret);
164         }
165
166         return ret;
167 }
168
169
170 static void mips_dma_free_noncoherent(struct device *dev, size_t size,
171                 void *vaddr, dma_addr_t dma_handle)
172 {
173         plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
174         free_pages((unsigned long) vaddr, get_order(size));
175 }
176
177 static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
178         dma_addr_t dma_handle, struct dma_attrs *attrs)
179 {
180         unsigned long addr = (unsigned long) vaddr;
181         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
182         struct page *page = NULL;
183
184         if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs)) {
185                 mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
186                 return;
187         }
188
189         plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
190
191         if (!plat_device_is_coherent(dev) && !hw_coherentio)
192                 addr = CAC_ADDR(addr);
193
194         page = virt_to_page((void *) addr);
195
196         if (!dma_release_from_contiguous(dev, page, count))
197                 __free_pages(page, get_order(size));
198 }
199
200 static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
201         void *cpu_addr, dma_addr_t dma_addr, size_t size,
202         struct dma_attrs *attrs)
203 {
204         unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
205         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
206         unsigned long addr = (unsigned long)cpu_addr;
207         unsigned long off = vma->vm_pgoff;
208         unsigned long pfn;
209         int ret = -ENXIO;
210
211         if (!plat_device_is_coherent(dev) && !hw_coherentio)
212                 addr = CAC_ADDR(addr);
213
214         pfn = page_to_pfn(virt_to_page((void *)addr));
215
216         if (dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
217                 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
218         else
219                 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
220
221         if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
222                 return ret;
223
224         if (off < count && user_count <= (count - off)) {
225                 ret = remap_pfn_range(vma, vma->vm_start,
226                                       pfn + off,
227                                       user_count << PAGE_SHIFT,
228                                       vma->vm_page_prot);
229         }
230
231         return ret;
232 }
233
234 static inline void __dma_sync_virtual(void *addr, size_t size,
235         enum dma_data_direction direction)
236 {
237         switch (direction) {
238         case DMA_TO_DEVICE:
239                 dma_cache_wback((unsigned long)addr, size);
240                 break;
241
242         case DMA_FROM_DEVICE:
243                 dma_cache_inv((unsigned long)addr, size);
244                 break;
245
246         case DMA_BIDIRECTIONAL:
247                 dma_cache_wback_inv((unsigned long)addr, size);
248                 break;
249
250         default:
251                 BUG();
252         }
253 }
254
255 /*
256  * A single sg entry may refer to multiple physically contiguous
257  * pages. But we still need to process highmem pages individually.
258  * If highmem is not configured then the bulk of this loop gets
259  * optimized out.
260  */
261 static inline void __dma_sync(struct page *page,
262         unsigned long offset, size_t size, enum dma_data_direction direction)
263 {
264         size_t left = size;
265
266         do {
267                 size_t len = left;
268
269                 if (PageHighMem(page)) {
270                         void *addr;
271
272                         if (offset + len > PAGE_SIZE) {
273                                 if (offset >= PAGE_SIZE) {
274                                         page += offset >> PAGE_SHIFT;
275                                         offset &= ~PAGE_MASK;
276                                 }
277                                 len = PAGE_SIZE - offset;
278                         }
279
280                         addr = kmap_atomic(page);
281                         __dma_sync_virtual(addr + offset, len, direction);
282                         kunmap_atomic(addr);
283                 } else
284                         __dma_sync_virtual(page_address(page) + offset,
285                                            size, direction);
286                 offset = 0;
287                 page++;
288                 left -= len;
289         } while (left);
290 }
291
292 static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
293         size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
294 {
295         if (cpu_needs_post_dma_flush(dev))
296                 __dma_sync(dma_addr_to_page(dev, dma_addr),
297                            dma_addr & ~PAGE_MASK, size, direction);
298         plat_post_dma_flush(dev);
299         plat_unmap_dma_mem(dev, dma_addr, size, direction);
300 }
301
302 static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
303         int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
304 {
305         int i;
306         struct scatterlist *sg;
307
308         for_each_sg(sglist, sg, nents, i) {
309                 if (!plat_device_is_coherent(dev))
310                         __dma_sync(sg_page(sg), sg->offset, sg->length,
311                                    direction);
312 #ifdef CONFIG_NEED_SG_DMA_LENGTH
313                 sg->dma_length = sg->length;
314 #endif
315                 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
316                                   sg->offset;
317         }
318
319         return nents;
320 }
321
322 static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
323         unsigned long offset, size_t size, enum dma_data_direction direction,
324         struct dma_attrs *attrs)
325 {
326         if (!plat_device_is_coherent(dev))
327                 __dma_sync(page, offset, size, direction);
328
329         return plat_map_dma_mem_page(dev, page) + offset;
330 }
331
332 static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
333         int nhwentries, enum dma_data_direction direction,
334         struct dma_attrs *attrs)
335 {
336         int i;
337         struct scatterlist *sg;
338
339         for_each_sg(sglist, sg, nhwentries, i) {
340                 if (!plat_device_is_coherent(dev) &&
341                     direction != DMA_TO_DEVICE)
342                         __dma_sync(sg_page(sg), sg->offset, sg->length,
343                                    direction);
344                 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
345         }
346 }
347
348 static void mips_dma_sync_single_for_cpu(struct device *dev,
349         dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
350 {
351         if (cpu_needs_post_dma_flush(dev))
352                 __dma_sync(dma_addr_to_page(dev, dma_handle),
353                            dma_handle & ~PAGE_MASK, size, direction);
354         plat_post_dma_flush(dev);
355 }
356
357 static void mips_dma_sync_single_for_device(struct device *dev,
358         dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
359 {
360         if (!plat_device_is_coherent(dev))
361                 __dma_sync(dma_addr_to_page(dev, dma_handle),
362                            dma_handle & ~PAGE_MASK, size, direction);
363 }
364
365 static void mips_dma_sync_sg_for_cpu(struct device *dev,
366         struct scatterlist *sglist, int nelems,
367         enum dma_data_direction direction)
368 {
369         int i;
370         struct scatterlist *sg;
371
372         if (cpu_needs_post_dma_flush(dev)) {
373                 for_each_sg(sglist, sg, nelems, i) {
374                         __dma_sync(sg_page(sg), sg->offset, sg->length,
375                                    direction);
376                 }
377         }
378         plat_post_dma_flush(dev);
379 }
380
381 static void mips_dma_sync_sg_for_device(struct device *dev,
382         struct scatterlist *sglist, int nelems,
383         enum dma_data_direction direction)
384 {
385         int i;
386         struct scatterlist *sg;
387
388         if (!plat_device_is_coherent(dev)) {
389                 for_each_sg(sglist, sg, nelems, i) {
390                         __dma_sync(sg_page(sg), sg->offset, sg->length,
391                                    direction);
392                 }
393         }
394 }
395
396 int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
397 {
398         return 0;
399 }
400
401 int mips_dma_supported(struct device *dev, u64 mask)
402 {
403         return plat_dma_supported(dev, mask);
404 }
405
406 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
407                          enum dma_data_direction direction)
408 {
409         BUG_ON(direction == DMA_NONE);
410
411         if (!plat_device_is_coherent(dev))
412                 __dma_sync_virtual(vaddr, size, direction);
413 }
414
415 EXPORT_SYMBOL(dma_cache_sync);
416
417 static struct dma_map_ops mips_default_dma_map_ops = {
418         .alloc = mips_dma_alloc_coherent,
419         .free = mips_dma_free_coherent,
420         .mmap = mips_dma_mmap,
421         .map_page = mips_dma_map_page,
422         .unmap_page = mips_dma_unmap_page,
423         .map_sg = mips_dma_map_sg,
424         .unmap_sg = mips_dma_unmap_sg,
425         .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
426         .sync_single_for_device = mips_dma_sync_single_for_device,
427         .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
428         .sync_sg_for_device = mips_dma_sync_sg_for_device,
429         .mapping_error = mips_dma_mapping_error,
430         .dma_supported = mips_dma_supported
431 };
432
433 struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
434 EXPORT_SYMBOL(mips_dma_map_ops);
435
436 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
437
438 static int __init mips_dma_init(void)
439 {
440         dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
441
442         return 0;
443 }
444 fs_initcall(mips_dma_init);