]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kernel/fadump.c
powerpc: Fix fallout from system.h split up
[karo-tx-linux.git] / arch / powerpc / kernel / fadump.c
1 /*
2  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3  * dump with assistance from firmware. This approach does not use kexec,
4  * instead firmware assists in booting the kdump kernel while preserving
5  * memory contents. The most of the code implementation has been adapted
6  * from phyp assisted dump implementation written by Linas Vepstas and
7  * Manish Ahuja
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  *
23  * Copyright 2011 IBM Corporation
24  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25  */
26
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/debugfs.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/kobject.h>
37 #include <linux/sysfs.h>
38
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 #include <asm/debug.h>
44 #include <asm/setup.h>
45
46 static struct fw_dump fw_dump;
47 static struct fadump_mem_struct fdm;
48 static const struct fadump_mem_struct *fdm_active;
49
50 static DEFINE_MUTEX(fadump_mutex);
51 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
52 int crash_mem_ranges;
53
54 /* Scan the Firmware Assisted dump configuration details. */
55 int __init early_init_dt_scan_fw_dump(unsigned long node,
56                         const char *uname, int depth, void *data)
57 {
58         __be32 *sections;
59         int i, num_sections;
60         unsigned long size;
61         const int *token;
62
63         if (depth != 1 || strcmp(uname, "rtas") != 0)
64                 return 0;
65
66         /*
67          * Check if Firmware Assisted dump is supported. if yes, check
68          * if dump has been initiated on last reboot.
69          */
70         token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
71         if (!token)
72                 return 0;
73
74         fw_dump.fadump_supported = 1;
75         fw_dump.ibm_configure_kernel_dump = *token;
76
77         /*
78          * The 'ibm,kernel-dump' rtas node is present only if there is
79          * dump data waiting for us.
80          */
81         fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
82         if (fdm_active)
83                 fw_dump.dump_active = 1;
84
85         /* Get the sizes required to store dump data for the firmware provided
86          * dump sections.
87          * For each dump section type supported, a 32bit cell which defines
88          * the ID of a supported section followed by two 32 bit cells which
89          * gives teh size of the section in bytes.
90          */
91         sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
92                                         &size);
93
94         if (!sections)
95                 return 0;
96
97         num_sections = size / (3 * sizeof(u32));
98
99         for (i = 0; i < num_sections; i++, sections += 3) {
100                 u32 type = (u32)of_read_number(sections, 1);
101
102                 switch (type) {
103                 case FADUMP_CPU_STATE_DATA:
104                         fw_dump.cpu_state_data_size =
105                                         of_read_ulong(&sections[1], 2);
106                         break;
107                 case FADUMP_HPTE_REGION:
108                         fw_dump.hpte_region_size =
109                                         of_read_ulong(&sections[1], 2);
110                         break;
111                 }
112         }
113         return 1;
114 }
115
116 int is_fadump_active(void)
117 {
118         return fw_dump.dump_active;
119 }
120
121 /* Print firmware assisted dump configurations for debugging purpose. */
122 static void fadump_show_config(void)
123 {
124         pr_debug("Support for firmware-assisted dump (fadump): %s\n",
125                         (fw_dump.fadump_supported ? "present" : "no support"));
126
127         if (!fw_dump.fadump_supported)
128                 return;
129
130         pr_debug("Fadump enabled    : %s\n",
131                                 (fw_dump.fadump_enabled ? "yes" : "no"));
132         pr_debug("Dump Active       : %s\n",
133                                 (fw_dump.dump_active ? "yes" : "no"));
134         pr_debug("Dump section sizes:\n");
135         pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
136         pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
137         pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
138 }
139
140 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
141                                 unsigned long addr)
142 {
143         if (!fdm)
144                 return 0;
145
146         memset(fdm, 0, sizeof(struct fadump_mem_struct));
147         addr = addr & PAGE_MASK;
148
149         fdm->header.dump_format_version = 0x00000001;
150         fdm->header.dump_num_sections = 3;
151         fdm->header.dump_status_flag = 0;
152         fdm->header.offset_first_dump_section =
153                 (u32)offsetof(struct fadump_mem_struct, cpu_state_data);
154
155         /*
156          * Fields for disk dump option.
157          * We are not using disk dump option, hence set these fields to 0.
158          */
159         fdm->header.dd_block_size = 0;
160         fdm->header.dd_block_offset = 0;
161         fdm->header.dd_num_blocks = 0;
162         fdm->header.dd_offset_disk_path = 0;
163
164         /* set 0 to disable an automatic dump-reboot. */
165         fdm->header.max_time_auto = 0;
166
167         /* Kernel dump sections */
168         /* cpu state data section. */
169         fdm->cpu_state_data.request_flag = FADUMP_REQUEST_FLAG;
170         fdm->cpu_state_data.source_data_type = FADUMP_CPU_STATE_DATA;
171         fdm->cpu_state_data.source_address = 0;
172         fdm->cpu_state_data.source_len = fw_dump.cpu_state_data_size;
173         fdm->cpu_state_data.destination_address = addr;
174         addr += fw_dump.cpu_state_data_size;
175
176         /* hpte region section */
177         fdm->hpte_region.request_flag = FADUMP_REQUEST_FLAG;
178         fdm->hpte_region.source_data_type = FADUMP_HPTE_REGION;
179         fdm->hpte_region.source_address = 0;
180         fdm->hpte_region.source_len = fw_dump.hpte_region_size;
181         fdm->hpte_region.destination_address = addr;
182         addr += fw_dump.hpte_region_size;
183
184         /* RMA region section */
185         fdm->rmr_region.request_flag = FADUMP_REQUEST_FLAG;
186         fdm->rmr_region.source_data_type = FADUMP_REAL_MODE_REGION;
187         fdm->rmr_region.source_address = RMA_START;
188         fdm->rmr_region.source_len = fw_dump.boot_memory_size;
189         fdm->rmr_region.destination_address = addr;
190         addr += fw_dump.boot_memory_size;
191
192         return addr;
193 }
194
195 /**
196  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
197  *
198  * Function to find the largest memory size we need to reserve during early
199  * boot process. This will be the size of the memory that is required for a
200  * kernel to boot successfully.
201  *
202  * This function has been taken from phyp-assisted dump feature implementation.
203  *
204  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
205  *
206  * TODO: Come up with better approach to find out more accurate memory size
207  * that is required for a kernel to boot successfully.
208  *
209  */
210 static inline unsigned long fadump_calculate_reserve_size(void)
211 {
212         unsigned long size;
213
214         /*
215          * Check if the size is specified through fadump_reserve_mem= cmdline
216          * option. If yes, then use that.
217          */
218         if (fw_dump.reserve_bootvar)
219                 return fw_dump.reserve_bootvar;
220
221         /* divide by 20 to get 5% of value */
222         size = memblock_end_of_DRAM() / 20;
223
224         /* round it down in multiples of 256 */
225         size = size & ~0x0FFFFFFFUL;
226
227         /* Truncate to memory_limit. We don't want to over reserve the memory.*/
228         if (memory_limit && size > memory_limit)
229                 size = memory_limit;
230
231         return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
232 }
233
234 /*
235  * Calculate the total memory size required to be reserved for
236  * firmware-assisted dump registration.
237  */
238 static unsigned long get_fadump_area_size(void)
239 {
240         unsigned long size = 0;
241
242         size += fw_dump.cpu_state_data_size;
243         size += fw_dump.hpte_region_size;
244         size += fw_dump.boot_memory_size;
245         size += sizeof(struct fadump_crash_info_header);
246         size += sizeof(struct elfhdr); /* ELF core header.*/
247         size += sizeof(struct elf_phdr); /* place holder for cpu notes */
248         /* Program headers for crash memory regions. */
249         size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
250
251         size = PAGE_ALIGN(size);
252         return size;
253 }
254
255 int __init fadump_reserve_mem(void)
256 {
257         unsigned long base, size, memory_boundary;
258
259         if (!fw_dump.fadump_enabled)
260                 return 0;
261
262         if (!fw_dump.fadump_supported) {
263                 printk(KERN_INFO "Firmware-assisted dump is not supported on"
264                                 " this hardware\n");
265                 fw_dump.fadump_enabled = 0;
266                 return 0;
267         }
268         /*
269          * Initialize boot memory size
270          * If dump is active then we have already calculated the size during
271          * first kernel.
272          */
273         if (fdm_active)
274                 fw_dump.boot_memory_size = fdm_active->rmr_region.source_len;
275         else
276                 fw_dump.boot_memory_size = fadump_calculate_reserve_size();
277
278         /*
279          * Calculate the memory boundary.
280          * If memory_limit is less than actual memory boundary then reserve
281          * the memory for fadump beyond the memory_limit and adjust the
282          * memory_limit accordingly, so that the running kernel can run with
283          * specified memory_limit.
284          */
285         if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
286                 size = get_fadump_area_size();
287                 if ((memory_limit + size) < memblock_end_of_DRAM())
288                         memory_limit += size;
289                 else
290                         memory_limit = memblock_end_of_DRAM();
291                 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
292                                 " dump, now %#016llx\n",
293                                 (unsigned long long)memory_limit);
294         }
295         if (memory_limit)
296                 memory_boundary = memory_limit;
297         else
298                 memory_boundary = memblock_end_of_DRAM();
299
300         if (fw_dump.dump_active) {
301                 printk(KERN_INFO "Firmware-assisted dump is active.\n");
302                 /*
303                  * If last boot has crashed then reserve all the memory
304                  * above boot_memory_size so that we don't touch it until
305                  * dump is written to disk by userspace tool. This memory
306                  * will be released for general use once the dump is saved.
307                  */
308                 base = fw_dump.boot_memory_size;
309                 size = memory_boundary - base;
310                 memblock_reserve(base, size);
311                 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
312                                 "for saving crash dump\n",
313                                 (unsigned long)(size >> 20),
314                                 (unsigned long)(base >> 20));
315
316                 fw_dump.fadumphdr_addr =
317                                 fdm_active->rmr_region.destination_address +
318                                 fdm_active->rmr_region.source_len;
319                 pr_debug("fadumphdr_addr = %p\n",
320                                 (void *) fw_dump.fadumphdr_addr);
321         } else {
322                 /* Reserve the memory at the top of memory. */
323                 size = get_fadump_area_size();
324                 base = memory_boundary - size;
325                 memblock_reserve(base, size);
326                 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
327                                 "for firmware-assisted dump\n",
328                                 (unsigned long)(size >> 20),
329                                 (unsigned long)(base >> 20));
330         }
331         fw_dump.reserve_dump_area_start = base;
332         fw_dump.reserve_dump_area_size = size;
333         return 1;
334 }
335
336 /* Look for fadump= cmdline option. */
337 static int __init early_fadump_param(char *p)
338 {
339         if (!p)
340                 return 1;
341
342         if (strncmp(p, "on", 2) == 0)
343                 fw_dump.fadump_enabled = 1;
344         else if (strncmp(p, "off", 3) == 0)
345                 fw_dump.fadump_enabled = 0;
346
347         return 0;
348 }
349 early_param("fadump", early_fadump_param);
350
351 /* Look for fadump_reserve_mem= cmdline option */
352 static int __init early_fadump_reserve_mem(char *p)
353 {
354         if (p)
355                 fw_dump.reserve_bootvar = memparse(p, &p);
356         return 0;
357 }
358 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
359
360 static void register_fw_dump(struct fadump_mem_struct *fdm)
361 {
362         int rc;
363         unsigned int wait_time;
364
365         pr_debug("Registering for firmware-assisted kernel dump...\n");
366
367         /* TODO: Add upper time limit for the delay */
368         do {
369                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
370                         FADUMP_REGISTER, fdm,
371                         sizeof(struct fadump_mem_struct));
372
373                 wait_time = rtas_busy_delay_time(rc);
374                 if (wait_time)
375                         mdelay(wait_time);
376
377         } while (wait_time);
378
379         switch (rc) {
380         case -1:
381                 printk(KERN_ERR "Failed to register firmware-assisted kernel"
382                         " dump. Hardware Error(%d).\n", rc);
383                 break;
384         case -3:
385                 printk(KERN_ERR "Failed to register firmware-assisted kernel"
386                         " dump. Parameter Error(%d).\n", rc);
387                 break;
388         case -9:
389                 printk(KERN_ERR "firmware-assisted kernel dump is already "
390                         " registered.");
391                 fw_dump.dump_registered = 1;
392                 break;
393         case 0:
394                 printk(KERN_INFO "firmware-assisted kernel dump registration"
395                         " is successful\n");
396                 fw_dump.dump_registered = 1;
397                 break;
398         }
399 }
400
401 void crash_fadump(struct pt_regs *regs, const char *str)
402 {
403         struct fadump_crash_info_header *fdh = NULL;
404
405         if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
406                 return;
407
408         fdh = __va(fw_dump.fadumphdr_addr);
409         crashing_cpu = smp_processor_id();
410         fdh->crashing_cpu = crashing_cpu;
411         crash_save_vmcoreinfo();
412
413         if (regs)
414                 fdh->regs = *regs;
415         else
416                 ppc_save_regs(&fdh->regs);
417
418         fdh->cpu_online_mask = *cpu_online_mask;
419
420         /* Call ibm,os-term rtas call to trigger firmware assisted dump */
421         rtas_os_term((char *)str);
422 }
423
424 #define GPR_MASK        0xffffff0000000000
425 static inline int fadump_gpr_index(u64 id)
426 {
427         int i = -1;
428         char str[3];
429
430         if ((id & GPR_MASK) == REG_ID("GPR")) {
431                 /* get the digits at the end */
432                 id &= ~GPR_MASK;
433                 id >>= 24;
434                 str[2] = '\0';
435                 str[1] = id & 0xff;
436                 str[0] = (id >> 8) & 0xff;
437                 sscanf(str, "%d", &i);
438                 if (i > 31)
439                         i = -1;
440         }
441         return i;
442 }
443
444 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
445                                                                 u64 reg_val)
446 {
447         int i;
448
449         i = fadump_gpr_index(reg_id);
450         if (i >= 0)
451                 regs->gpr[i] = (unsigned long)reg_val;
452         else if (reg_id == REG_ID("NIA"))
453                 regs->nip = (unsigned long)reg_val;
454         else if (reg_id == REG_ID("MSR"))
455                 regs->msr = (unsigned long)reg_val;
456         else if (reg_id == REG_ID("CTR"))
457                 regs->ctr = (unsigned long)reg_val;
458         else if (reg_id == REG_ID("LR"))
459                 regs->link = (unsigned long)reg_val;
460         else if (reg_id == REG_ID("XER"))
461                 regs->xer = (unsigned long)reg_val;
462         else if (reg_id == REG_ID("CR"))
463                 regs->ccr = (unsigned long)reg_val;
464         else if (reg_id == REG_ID("DAR"))
465                 regs->dar = (unsigned long)reg_val;
466         else if (reg_id == REG_ID("DSISR"))
467                 regs->dsisr = (unsigned long)reg_val;
468 }
469
470 static struct fadump_reg_entry*
471 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
472 {
473         memset(regs, 0, sizeof(struct pt_regs));
474
475         while (reg_entry->reg_id != REG_ID("CPUEND")) {
476                 fadump_set_regval(regs, reg_entry->reg_id,
477                                         reg_entry->reg_value);
478                 reg_entry++;
479         }
480         reg_entry++;
481         return reg_entry;
482 }
483
484 static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
485                                                 void *data, size_t data_len)
486 {
487         struct elf_note note;
488
489         note.n_namesz = strlen(name) + 1;
490         note.n_descsz = data_len;
491         note.n_type   = type;
492         memcpy(buf, &note, sizeof(note));
493         buf += (sizeof(note) + 3)/4;
494         memcpy(buf, name, note.n_namesz);
495         buf += (note.n_namesz + 3)/4;
496         memcpy(buf, data, note.n_descsz);
497         buf += (note.n_descsz + 3)/4;
498
499         return buf;
500 }
501
502 static void fadump_final_note(u32 *buf)
503 {
504         struct elf_note note;
505
506         note.n_namesz = 0;
507         note.n_descsz = 0;
508         note.n_type   = 0;
509         memcpy(buf, &note, sizeof(note));
510 }
511
512 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
513 {
514         struct elf_prstatus prstatus;
515
516         memset(&prstatus, 0, sizeof(prstatus));
517         /*
518          * FIXME: How do i get PID? Do I really need it?
519          * prstatus.pr_pid = ????
520          */
521         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
522         buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
523                                 &prstatus, sizeof(prstatus));
524         return buf;
525 }
526
527 static void fadump_update_elfcore_header(char *bufp)
528 {
529         struct elfhdr *elf;
530         struct elf_phdr *phdr;
531
532         elf = (struct elfhdr *)bufp;
533         bufp += sizeof(struct elfhdr);
534
535         /* First note is a place holder for cpu notes info. */
536         phdr = (struct elf_phdr *)bufp;
537
538         if (phdr->p_type == PT_NOTE) {
539                 phdr->p_paddr = fw_dump.cpu_notes_buf;
540                 phdr->p_offset  = phdr->p_paddr;
541                 phdr->p_filesz  = fw_dump.cpu_notes_buf_size;
542                 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
543         }
544         return;
545 }
546
547 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
548 {
549         void *vaddr;
550         struct page *page;
551         unsigned long order, count, i;
552
553         order = get_order(size);
554         vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
555         if (!vaddr)
556                 return NULL;
557
558         count = 1 << order;
559         page = virt_to_page(vaddr);
560         for (i = 0; i < count; i++)
561                 SetPageReserved(page + i);
562         return vaddr;
563 }
564
565 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
566 {
567         struct page *page;
568         unsigned long order, count, i;
569
570         order = get_order(size);
571         count = 1 << order;
572         page = virt_to_page(vaddr);
573         for (i = 0; i < count; i++)
574                 ClearPageReserved(page + i);
575         __free_pages(page, order);
576 }
577
578 /*
579  * Read CPU state dump data and convert it into ELF notes.
580  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
581  * used to access the data to allow for additional fields to be added without
582  * affecting compatibility. Each list of registers for a CPU starts with
583  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
584  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
585  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
586  * of register value. For more details refer to PAPR document.
587  *
588  * Only for the crashing cpu we ignore the CPU dump data and get exact
589  * state from fadump crash info structure populated by first kernel at the
590  * time of crash.
591  */
592 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
593 {
594         struct fadump_reg_save_area_header *reg_header;
595         struct fadump_reg_entry *reg_entry;
596         struct fadump_crash_info_header *fdh = NULL;
597         void *vaddr;
598         unsigned long addr;
599         u32 num_cpus, *note_buf;
600         struct pt_regs regs;
601         int i, rc = 0, cpu = 0;
602
603         if (!fdm->cpu_state_data.bytes_dumped)
604                 return -EINVAL;
605
606         addr = fdm->cpu_state_data.destination_address;
607         vaddr = __va(addr);
608
609         reg_header = vaddr;
610         if (reg_header->magic_number != REGSAVE_AREA_MAGIC) {
611                 printk(KERN_ERR "Unable to read register save area.\n");
612                 return -ENOENT;
613         }
614         pr_debug("--------CPU State Data------------\n");
615         pr_debug("Magic Number: %llx\n", reg_header->magic_number);
616         pr_debug("NumCpuOffset: %x\n", reg_header->num_cpu_offset);
617
618         vaddr += reg_header->num_cpu_offset;
619         num_cpus = *((u32 *)(vaddr));
620         pr_debug("NumCpus     : %u\n", num_cpus);
621         vaddr += sizeof(u32);
622         reg_entry = (struct fadump_reg_entry *)vaddr;
623
624         /* Allocate buffer to hold cpu crash notes. */
625         fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
626         fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
627         note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
628         if (!note_buf) {
629                 printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
630                         "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
631                 return -ENOMEM;
632         }
633         fw_dump.cpu_notes_buf = __pa(note_buf);
634
635         pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
636                         (num_cpus * sizeof(note_buf_t)), note_buf);
637
638         if (fw_dump.fadumphdr_addr)
639                 fdh = __va(fw_dump.fadumphdr_addr);
640
641         for (i = 0; i < num_cpus; i++) {
642                 if (reg_entry->reg_id != REG_ID("CPUSTRT")) {
643                         printk(KERN_ERR "Unable to read CPU state data\n");
644                         rc = -ENOENT;
645                         goto error_out;
646                 }
647                 /* Lower 4 bytes of reg_value contains logical cpu id */
648                 cpu = reg_entry->reg_value & FADUMP_CPU_ID_MASK;
649                 if (!cpumask_test_cpu(cpu, &fdh->cpu_online_mask)) {
650                         SKIP_TO_NEXT_CPU(reg_entry);
651                         continue;
652                 }
653                 pr_debug("Reading register data for cpu %d...\n", cpu);
654                 if (fdh && fdh->crashing_cpu == cpu) {
655                         regs = fdh->regs;
656                         note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
657                         SKIP_TO_NEXT_CPU(reg_entry);
658                 } else {
659                         reg_entry++;
660                         reg_entry = fadump_read_registers(reg_entry, &regs);
661                         note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
662                 }
663         }
664         fadump_final_note(note_buf);
665
666         pr_debug("Updating elfcore header (%llx) with cpu notes\n",
667                                                         fdh->elfcorehdr_addr);
668         fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
669         return 0;
670
671 error_out:
672         fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
673                                         fw_dump.cpu_notes_buf_size);
674         fw_dump.cpu_notes_buf = 0;
675         fw_dump.cpu_notes_buf_size = 0;
676         return rc;
677
678 }
679
680 /*
681  * Validate and process the dump data stored by firmware before exporting
682  * it through '/proc/vmcore'.
683  */
684 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
685 {
686         struct fadump_crash_info_header *fdh;
687         int rc = 0;
688
689         if (!fdm_active || !fw_dump.fadumphdr_addr)
690                 return -EINVAL;
691
692         /* Check if the dump data is valid. */
693         if ((fdm_active->header.dump_status_flag == FADUMP_ERROR_FLAG) ||
694                         (fdm_active->cpu_state_data.error_flags != 0) ||
695                         (fdm_active->rmr_region.error_flags != 0)) {
696                 printk(KERN_ERR "Dump taken by platform is not valid\n");
697                 return -EINVAL;
698         }
699         if ((fdm_active->rmr_region.bytes_dumped !=
700                         fdm_active->rmr_region.source_len) ||
701                         !fdm_active->cpu_state_data.bytes_dumped) {
702                 printk(KERN_ERR "Dump taken by platform is incomplete\n");
703                 return -EINVAL;
704         }
705
706         /* Validate the fadump crash info header */
707         fdh = __va(fw_dump.fadumphdr_addr);
708         if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
709                 printk(KERN_ERR "Crash info header is not valid.\n");
710                 return -EINVAL;
711         }
712
713         rc = fadump_build_cpu_notes(fdm_active);
714         if (rc)
715                 return rc;
716
717         /*
718          * We are done validating dump info and elfcore header is now ready
719          * to be exported. set elfcorehdr_addr so that vmcore module will
720          * export the elfcore header through '/proc/vmcore'.
721          */
722         elfcorehdr_addr = fdh->elfcorehdr_addr;
723
724         return 0;
725 }
726
727 static inline void fadump_add_crash_memory(unsigned long long base,
728                                         unsigned long long end)
729 {
730         if (base == end)
731                 return;
732
733         pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
734                 crash_mem_ranges, base, end - 1, (end - base));
735         crash_memory_ranges[crash_mem_ranges].base = base;
736         crash_memory_ranges[crash_mem_ranges].size = end - base;
737         crash_mem_ranges++;
738 }
739
740 static void fadump_exclude_reserved_area(unsigned long long start,
741                                         unsigned long long end)
742 {
743         unsigned long long ra_start, ra_end;
744
745         ra_start = fw_dump.reserve_dump_area_start;
746         ra_end = ra_start + fw_dump.reserve_dump_area_size;
747
748         if ((ra_start < end) && (ra_end > start)) {
749                 if ((start < ra_start) && (end > ra_end)) {
750                         fadump_add_crash_memory(start, ra_start);
751                         fadump_add_crash_memory(ra_end, end);
752                 } else if (start < ra_start) {
753                         fadump_add_crash_memory(start, ra_start);
754                 } else if (ra_end < end) {
755                         fadump_add_crash_memory(ra_end, end);
756                 }
757         } else
758                 fadump_add_crash_memory(start, end);
759 }
760
761 static int fadump_init_elfcore_header(char *bufp)
762 {
763         struct elfhdr *elf;
764
765         elf = (struct elfhdr *) bufp;
766         bufp += sizeof(struct elfhdr);
767         memcpy(elf->e_ident, ELFMAG, SELFMAG);
768         elf->e_ident[EI_CLASS] = ELF_CLASS;
769         elf->e_ident[EI_DATA] = ELF_DATA;
770         elf->e_ident[EI_VERSION] = EV_CURRENT;
771         elf->e_ident[EI_OSABI] = ELF_OSABI;
772         memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
773         elf->e_type = ET_CORE;
774         elf->e_machine = ELF_ARCH;
775         elf->e_version = EV_CURRENT;
776         elf->e_entry = 0;
777         elf->e_phoff = sizeof(struct elfhdr);
778         elf->e_shoff = 0;
779         elf->e_flags = ELF_CORE_EFLAGS;
780         elf->e_ehsize = sizeof(struct elfhdr);
781         elf->e_phentsize = sizeof(struct elf_phdr);
782         elf->e_phnum = 0;
783         elf->e_shentsize = 0;
784         elf->e_shnum = 0;
785         elf->e_shstrndx = 0;
786
787         return 0;
788 }
789
790 /*
791  * Traverse through memblock structure and setup crash memory ranges. These
792  * ranges will be used create PT_LOAD program headers in elfcore header.
793  */
794 static void fadump_setup_crash_memory_ranges(void)
795 {
796         struct memblock_region *reg;
797         unsigned long long start, end;
798
799         pr_debug("Setup crash memory ranges.\n");
800         crash_mem_ranges = 0;
801         /*
802          * add the first memory chunk (RMA_START through boot_memory_size) as
803          * a separate memory chunk. The reason is, at the time crash firmware
804          * will move the content of this memory chunk to different location
805          * specified during fadump registration. We need to create a separate
806          * program header for this chunk with the correct offset.
807          */
808         fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
809
810         for_each_memblock(memory, reg) {
811                 start = (unsigned long long)reg->base;
812                 end = start + (unsigned long long)reg->size;
813                 if (start == RMA_START && end >= fw_dump.boot_memory_size)
814                         start = fw_dump.boot_memory_size;
815
816                 /* add this range excluding the reserved dump area. */
817                 fadump_exclude_reserved_area(start, end);
818         }
819 }
820
821 /*
822  * If the given physical address falls within the boot memory region then
823  * return the relocated address that points to the dump region reserved
824  * for saving initial boot memory contents.
825  */
826 static inline unsigned long fadump_relocate(unsigned long paddr)
827 {
828         if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
829                 return fdm.rmr_region.destination_address + paddr;
830         else
831                 return paddr;
832 }
833
834 static int fadump_create_elfcore_headers(char *bufp)
835 {
836         struct elfhdr *elf;
837         struct elf_phdr *phdr;
838         int i;
839
840         fadump_init_elfcore_header(bufp);
841         elf = (struct elfhdr *)bufp;
842         bufp += sizeof(struct elfhdr);
843
844         /*
845          * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
846          * will be populated during second kernel boot after crash. Hence
847          * this PT_NOTE will always be the first elf note.
848          *
849          * NOTE: Any new ELF note addition should be placed after this note.
850          */
851         phdr = (struct elf_phdr *)bufp;
852         bufp += sizeof(struct elf_phdr);
853         phdr->p_type = PT_NOTE;
854         phdr->p_flags = 0;
855         phdr->p_vaddr = 0;
856         phdr->p_align = 0;
857
858         phdr->p_offset = 0;
859         phdr->p_paddr = 0;
860         phdr->p_filesz = 0;
861         phdr->p_memsz = 0;
862
863         (elf->e_phnum)++;
864
865         /* setup ELF PT_NOTE for vmcoreinfo */
866         phdr = (struct elf_phdr *)bufp;
867         bufp += sizeof(struct elf_phdr);
868         phdr->p_type    = PT_NOTE;
869         phdr->p_flags   = 0;
870         phdr->p_vaddr   = 0;
871         phdr->p_align   = 0;
872
873         phdr->p_paddr   = fadump_relocate(paddr_vmcoreinfo_note());
874         phdr->p_offset  = phdr->p_paddr;
875         phdr->p_memsz   = vmcoreinfo_max_size;
876         phdr->p_filesz  = vmcoreinfo_max_size;
877
878         /* Increment number of program headers. */
879         (elf->e_phnum)++;
880
881         /* setup PT_LOAD sections. */
882
883         for (i = 0; i < crash_mem_ranges; i++) {
884                 unsigned long long mbase, msize;
885                 mbase = crash_memory_ranges[i].base;
886                 msize = crash_memory_ranges[i].size;
887
888                 if (!msize)
889                         continue;
890
891                 phdr = (struct elf_phdr *)bufp;
892                 bufp += sizeof(struct elf_phdr);
893                 phdr->p_type    = PT_LOAD;
894                 phdr->p_flags   = PF_R|PF_W|PF_X;
895                 phdr->p_offset  = mbase;
896
897                 if (mbase == RMA_START) {
898                         /*
899                          * The entire RMA region will be moved by firmware
900                          * to the specified destination_address. Hence set
901                          * the correct offset.
902                          */
903                         phdr->p_offset = fdm.rmr_region.destination_address;
904                 }
905
906                 phdr->p_paddr = mbase;
907                 phdr->p_vaddr = (unsigned long)__va(mbase);
908                 phdr->p_filesz = msize;
909                 phdr->p_memsz = msize;
910                 phdr->p_align = 0;
911
912                 /* Increment number of program headers. */
913                 (elf->e_phnum)++;
914         }
915         return 0;
916 }
917
918 static unsigned long init_fadump_header(unsigned long addr)
919 {
920         struct fadump_crash_info_header *fdh;
921
922         if (!addr)
923                 return 0;
924
925         fw_dump.fadumphdr_addr = addr;
926         fdh = __va(addr);
927         addr += sizeof(struct fadump_crash_info_header);
928
929         memset(fdh, 0, sizeof(struct fadump_crash_info_header));
930         fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
931         fdh->elfcorehdr_addr = addr;
932         /* We will set the crashing cpu id in crash_fadump() during crash. */
933         fdh->crashing_cpu = CPU_UNKNOWN;
934
935         return addr;
936 }
937
938 static void register_fadump(void)
939 {
940         unsigned long addr;
941         void *vaddr;
942
943         /*
944          * If no memory is reserved then we can not register for firmware-
945          * assisted dump.
946          */
947         if (!fw_dump.reserve_dump_area_size)
948                 return;
949
950         fadump_setup_crash_memory_ranges();
951
952         addr = fdm.rmr_region.destination_address + fdm.rmr_region.source_len;
953         /* Initialize fadump crash info header. */
954         addr = init_fadump_header(addr);
955         vaddr = __va(addr);
956
957         pr_debug("Creating ELF core headers at %#016lx\n", addr);
958         fadump_create_elfcore_headers(vaddr);
959
960         /* register the future kernel dump with firmware. */
961         register_fw_dump(&fdm);
962 }
963
964 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
965 {
966         int rc = 0;
967         unsigned int wait_time;
968
969         pr_debug("Un-register firmware-assisted dump\n");
970
971         /* TODO: Add upper time limit for the delay */
972         do {
973                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
974                         FADUMP_UNREGISTER, fdm,
975                         sizeof(struct fadump_mem_struct));
976
977                 wait_time = rtas_busy_delay_time(rc);
978                 if (wait_time)
979                         mdelay(wait_time);
980         } while (wait_time);
981
982         if (rc) {
983                 printk(KERN_ERR "Failed to un-register firmware-assisted dump."
984                         " unexpected error(%d).\n", rc);
985                 return rc;
986         }
987         fw_dump.dump_registered = 0;
988         return 0;
989 }
990
991 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
992 {
993         int rc = 0;
994         unsigned int wait_time;
995
996         pr_debug("Invalidating firmware-assisted dump registration\n");
997
998         /* TODO: Add upper time limit for the delay */
999         do {
1000                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1001                         FADUMP_INVALIDATE, fdm,
1002                         sizeof(struct fadump_mem_struct));
1003
1004                 wait_time = rtas_busy_delay_time(rc);
1005                 if (wait_time)
1006                         mdelay(wait_time);
1007         } while (wait_time);
1008
1009         if (rc) {
1010                 printk(KERN_ERR "Failed to invalidate firmware-assisted dump "
1011                         "rgistration. unexpected error(%d).\n", rc);
1012                 return rc;
1013         }
1014         fw_dump.dump_active = 0;
1015         fdm_active = NULL;
1016         return 0;
1017 }
1018
1019 void fadump_cleanup(void)
1020 {
1021         /* Invalidate the registration only if dump is active. */
1022         if (fw_dump.dump_active) {
1023                 init_fadump_mem_struct(&fdm,
1024                         fdm_active->cpu_state_data.destination_address);
1025                 fadump_invalidate_dump(&fdm);
1026         }
1027 }
1028
1029 /*
1030  * Release the memory that was reserved in early boot to preserve the memory
1031  * contents. The released memory will be available for general use.
1032  */
1033 static void fadump_release_memory(unsigned long begin, unsigned long end)
1034 {
1035         unsigned long addr;
1036         unsigned long ra_start, ra_end;
1037
1038         ra_start = fw_dump.reserve_dump_area_start;
1039         ra_end = ra_start + fw_dump.reserve_dump_area_size;
1040
1041         for (addr = begin; addr < end; addr += PAGE_SIZE) {
1042                 /*
1043                  * exclude the dump reserve area. Will reuse it for next
1044                  * fadump registration.
1045                  */
1046                 if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1047                         continue;
1048
1049                 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1050                 init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1051                 free_page((unsigned long)__va(addr));
1052                 totalram_pages++;
1053         }
1054 }
1055
1056 static void fadump_invalidate_release_mem(void)
1057 {
1058         unsigned long reserved_area_start, reserved_area_end;
1059         unsigned long destination_address;
1060
1061         mutex_lock(&fadump_mutex);
1062         if (!fw_dump.dump_active) {
1063                 mutex_unlock(&fadump_mutex);
1064                 return;
1065         }
1066
1067         destination_address = fdm_active->cpu_state_data.destination_address;
1068         fadump_cleanup();
1069         mutex_unlock(&fadump_mutex);
1070
1071         /*
1072          * Save the current reserved memory bounds we will require them
1073          * later for releasing the memory for general use.
1074          */
1075         reserved_area_start = fw_dump.reserve_dump_area_start;
1076         reserved_area_end = reserved_area_start +
1077                         fw_dump.reserve_dump_area_size;
1078         /*
1079          * Setup reserve_dump_area_start and its size so that we can
1080          * reuse this reserved memory for Re-registration.
1081          */
1082         fw_dump.reserve_dump_area_start = destination_address;
1083         fw_dump.reserve_dump_area_size = get_fadump_area_size();
1084
1085         fadump_release_memory(reserved_area_start, reserved_area_end);
1086         if (fw_dump.cpu_notes_buf) {
1087                 fadump_cpu_notes_buf_free(
1088                                 (unsigned long)__va(fw_dump.cpu_notes_buf),
1089                                 fw_dump.cpu_notes_buf_size);
1090                 fw_dump.cpu_notes_buf = 0;
1091                 fw_dump.cpu_notes_buf_size = 0;
1092         }
1093         /* Initialize the kernel dump memory structure for FAD registration. */
1094         init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1095 }
1096
1097 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1098                                         struct kobj_attribute *attr,
1099                                         const char *buf, size_t count)
1100 {
1101         if (!fw_dump.dump_active)
1102                 return -EPERM;
1103
1104         if (buf[0] == '1') {
1105                 /*
1106                  * Take away the '/proc/vmcore'. We are releasing the dump
1107                  * memory, hence it will not be valid anymore.
1108                  */
1109                 vmcore_cleanup();
1110                 fadump_invalidate_release_mem();
1111
1112         } else
1113                 return -EINVAL;
1114         return count;
1115 }
1116
1117 static ssize_t fadump_enabled_show(struct kobject *kobj,
1118                                         struct kobj_attribute *attr,
1119                                         char *buf)
1120 {
1121         return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1122 }
1123
1124 static ssize_t fadump_register_show(struct kobject *kobj,
1125                                         struct kobj_attribute *attr,
1126                                         char *buf)
1127 {
1128         return sprintf(buf, "%d\n", fw_dump.dump_registered);
1129 }
1130
1131 static ssize_t fadump_register_store(struct kobject *kobj,
1132                                         struct kobj_attribute *attr,
1133                                         const char *buf, size_t count)
1134 {
1135         int ret = 0;
1136
1137         if (!fw_dump.fadump_enabled || fdm_active)
1138                 return -EPERM;
1139
1140         mutex_lock(&fadump_mutex);
1141
1142         switch (buf[0]) {
1143         case '0':
1144                 if (fw_dump.dump_registered == 0) {
1145                         ret = -EINVAL;
1146                         goto unlock_out;
1147                 }
1148                 /* Un-register Firmware-assisted dump */
1149                 fadump_unregister_dump(&fdm);
1150                 break;
1151         case '1':
1152                 if (fw_dump.dump_registered == 1) {
1153                         ret = -EINVAL;
1154                         goto unlock_out;
1155                 }
1156                 /* Register Firmware-assisted dump */
1157                 register_fadump();
1158                 break;
1159         default:
1160                 ret = -EINVAL;
1161                 break;
1162         }
1163
1164 unlock_out:
1165         mutex_unlock(&fadump_mutex);
1166         return ret < 0 ? ret : count;
1167 }
1168
1169 static int fadump_region_show(struct seq_file *m, void *private)
1170 {
1171         const struct fadump_mem_struct *fdm_ptr;
1172
1173         if (!fw_dump.fadump_enabled)
1174                 return 0;
1175
1176         mutex_lock(&fadump_mutex);
1177         if (fdm_active)
1178                 fdm_ptr = fdm_active;
1179         else {
1180                 mutex_unlock(&fadump_mutex);
1181                 fdm_ptr = &fdm;
1182         }
1183
1184         seq_printf(m,
1185                         "CPU : [%#016llx-%#016llx] %#llx bytes, "
1186                         "Dumped: %#llx\n",
1187                         fdm_ptr->cpu_state_data.destination_address,
1188                         fdm_ptr->cpu_state_data.destination_address +
1189                         fdm_ptr->cpu_state_data.source_len - 1,
1190                         fdm_ptr->cpu_state_data.source_len,
1191                         fdm_ptr->cpu_state_data.bytes_dumped);
1192         seq_printf(m,
1193                         "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1194                         "Dumped: %#llx\n",
1195                         fdm_ptr->hpte_region.destination_address,
1196                         fdm_ptr->hpte_region.destination_address +
1197                         fdm_ptr->hpte_region.source_len - 1,
1198                         fdm_ptr->hpte_region.source_len,
1199                         fdm_ptr->hpte_region.bytes_dumped);
1200         seq_printf(m,
1201                         "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1202                         "Dumped: %#llx\n",
1203                         fdm_ptr->rmr_region.destination_address,
1204                         fdm_ptr->rmr_region.destination_address +
1205                         fdm_ptr->rmr_region.source_len - 1,
1206                         fdm_ptr->rmr_region.source_len,
1207                         fdm_ptr->rmr_region.bytes_dumped);
1208
1209         if (!fdm_active ||
1210                 (fw_dump.reserve_dump_area_start ==
1211                 fdm_ptr->cpu_state_data.destination_address))
1212                 goto out;
1213
1214         /* Dump is active. Show reserved memory region. */
1215         seq_printf(m,
1216                         "    : [%#016llx-%#016llx] %#llx bytes, "
1217                         "Dumped: %#llx\n",
1218                         (unsigned long long)fw_dump.reserve_dump_area_start,
1219                         fdm_ptr->cpu_state_data.destination_address - 1,
1220                         fdm_ptr->cpu_state_data.destination_address -
1221                         fw_dump.reserve_dump_area_start,
1222                         fdm_ptr->cpu_state_data.destination_address -
1223                         fw_dump.reserve_dump_area_start);
1224 out:
1225         if (fdm_active)
1226                 mutex_unlock(&fadump_mutex);
1227         return 0;
1228 }
1229
1230 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1231                                                 0200, NULL,
1232                                                 fadump_release_memory_store);
1233 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1234                                                 0444, fadump_enabled_show,
1235                                                 NULL);
1236 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1237                                                 0644, fadump_register_show,
1238                                                 fadump_register_store);
1239
1240 static int fadump_region_open(struct inode *inode, struct file *file)
1241 {
1242         return single_open(file, fadump_region_show, inode->i_private);
1243 }
1244
1245 static const struct file_operations fadump_region_fops = {
1246         .open    = fadump_region_open,
1247         .read    = seq_read,
1248         .llseek  = seq_lseek,
1249         .release = single_release,
1250 };
1251
1252 static void fadump_init_files(void)
1253 {
1254         struct dentry *debugfs_file;
1255         int rc = 0;
1256
1257         rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1258         if (rc)
1259                 printk(KERN_ERR "fadump: unable to create sysfs file"
1260                         " fadump_enabled (%d)\n", rc);
1261
1262         rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1263         if (rc)
1264                 printk(KERN_ERR "fadump: unable to create sysfs file"
1265                         " fadump_registered (%d)\n", rc);
1266
1267         debugfs_file = debugfs_create_file("fadump_region", 0444,
1268                                         powerpc_debugfs_root, NULL,
1269                                         &fadump_region_fops);
1270         if (!debugfs_file)
1271                 printk(KERN_ERR "fadump: unable to create debugfs file"
1272                                 " fadump_region\n");
1273
1274         if (fw_dump.dump_active) {
1275                 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1276                 if (rc)
1277                         printk(KERN_ERR "fadump: unable to create sysfs file"
1278                                 " fadump_release_mem (%d)\n", rc);
1279         }
1280         return;
1281 }
1282
1283 /*
1284  * Prepare for firmware-assisted dump.
1285  */
1286 int __init setup_fadump(void)
1287 {
1288         if (!fw_dump.fadump_enabled)
1289                 return 0;
1290
1291         if (!fw_dump.fadump_supported) {
1292                 printk(KERN_ERR "Firmware-assisted dump is not supported on"
1293                         " this hardware\n");
1294                 return 0;
1295         }
1296
1297         fadump_show_config();
1298         /*
1299          * If dump data is available then see if it is valid and prepare for
1300          * saving it to the disk.
1301          */
1302         if (fw_dump.dump_active) {
1303                 /*
1304                  * if dump process fails then invalidate the registration
1305                  * and release memory before proceeding for re-registration.
1306                  */
1307                 if (process_fadump(fdm_active) < 0)
1308                         fadump_invalidate_release_mem();
1309         }
1310         /* Initialize the kernel dump memory structure for FAD registration. */
1311         else if (fw_dump.reserve_dump_area_size)
1312                 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1313         fadump_init_files();
1314
1315         return 1;
1316 }
1317 subsys_initcall(setup_fadump);