]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kernel/lparcfg.c
powerpc: Remove FW_FEATURE ISERIES from arch code
[karo-tx-linux.git] / arch / powerpc / kernel / lparcfg.c
1 /*
2  * PowerPC64 LPAR Configuration Information Driver
3  *
4  * Dave Engebretsen engebret@us.ibm.com
5  *    Copyright (c) 2003 Dave Engebretsen
6  * Will Schmidt willschm@us.ibm.com
7  *    SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
8  *    seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
9  * Nathan Lynch nathanl@austin.ibm.com
10  *    Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  *
17  * This driver creates a proc file at /proc/ppc64/lparcfg which contains
18  * keyword - value pairs that specify the configuration of the partition.
19  */
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/errno.h>
24 #include <linux/proc_fs.h>
25 #include <linux/init.h>
26 #include <linux/seq_file.h>
27 #include <linux/slab.h>
28 #include <asm/uaccess.h>
29 #include <asm/lppaca.h>
30 #include <asm/hvcall.h>
31 #include <asm/firmware.h>
32 #include <asm/rtas.h>
33 #include <asm/system.h>
34 #include <asm/time.h>
35 #include <asm/prom.h>
36 #include <asm/vdso_datapage.h>
37 #include <asm/vio.h>
38 #include <asm/mmu.h>
39
40 #define MODULE_VERS "1.9"
41 #define MODULE_NAME "lparcfg"
42
43 /* #define LPARCFG_DEBUG */
44
45 static struct proc_dir_entry *proc_ppc64_lparcfg;
46
47 /*
48  * Track sum of all purrs across all processors. This is used to further
49  * calculate usage values by different applications
50  */
51 static unsigned long get_purr(void)
52 {
53         unsigned long sum_purr = 0;
54         int cpu;
55
56         for_each_possible_cpu(cpu) {
57                 struct cpu_usage *cu;
58
59                 cu = &per_cpu(cpu_usage_array, cpu);
60                 sum_purr += cu->current_tb;
61         }
62         return sum_purr;
63 }
64
65 /*
66  * Methods used to fetch LPAR data when running on a pSeries platform.
67  */
68
69 struct hvcall_ppp_data {
70         u64     entitlement;
71         u64     unallocated_entitlement;
72         u16     group_num;
73         u16     pool_num;
74         u8      capped;
75         u8      weight;
76         u8      unallocated_weight;
77         u16     active_procs_in_pool;
78         u16     active_system_procs;
79         u16     phys_platform_procs;
80         u32     max_proc_cap_avail;
81         u32     entitled_proc_cap_avail;
82 };
83
84 /*
85  * H_GET_PPP hcall returns info in 4 parms.
86  *  entitled_capacity,unallocated_capacity,
87  *  aggregation, resource_capability).
88  *
89  *  R4 = Entitled Processor Capacity Percentage.
90  *  R5 = Unallocated Processor Capacity Percentage.
91  *  R6 (AABBCCDDEEFFGGHH).
92  *      XXXX - reserved (0)
93  *          XXXX - reserved (0)
94  *              XXXX - Group Number
95  *                  XXXX - Pool Number.
96  *  R7 (IIJJKKLLMMNNOOPP).
97  *      XX - reserved. (0)
98  *        XX - bit 0-6 reserved (0).   bit 7 is Capped indicator.
99  *          XX - variable processor Capacity Weight
100  *            XX - Unallocated Variable Processor Capacity Weight.
101  *              XXXX - Active processors in Physical Processor Pool.
102  *                  XXXX  - Processors active on platform.
103  *  R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1
104  *      XXXX - Physical platform procs allocated to virtualization.
105  *          XXXXXX - Max procs capacity % available to the partitions pool.
106  *                XXXXXX - Entitled procs capacity % available to the
107  *                         partitions pool.
108  */
109 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
110 {
111         unsigned long rc;
112         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
113
114         rc = plpar_hcall9(H_GET_PPP, retbuf);
115
116         ppp_data->entitlement = retbuf[0];
117         ppp_data->unallocated_entitlement = retbuf[1];
118
119         ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
120         ppp_data->pool_num = retbuf[2] & 0xffff;
121
122         ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
123         ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
124         ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
125         ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
126         ppp_data->active_system_procs = retbuf[3] & 0xffff;
127
128         ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8;
129         ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff;
130         ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff;
131
132         return rc;
133 }
134
135 static unsigned h_pic(unsigned long *pool_idle_time,
136                       unsigned long *num_procs)
137 {
138         unsigned long rc;
139         unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
140
141         rc = plpar_hcall(H_PIC, retbuf);
142
143         *pool_idle_time = retbuf[0];
144         *num_procs = retbuf[1];
145
146         return rc;
147 }
148
149 /*
150  * parse_ppp_data
151  * Parse out the data returned from h_get_ppp and h_pic
152  */
153 static void parse_ppp_data(struct seq_file *m)
154 {
155         struct hvcall_ppp_data ppp_data;
156         struct device_node *root;
157         const int *perf_level;
158         int rc;
159
160         rc = h_get_ppp(&ppp_data);
161         if (rc)
162                 return;
163
164         seq_printf(m, "partition_entitled_capacity=%lld\n",
165                    ppp_data.entitlement);
166         seq_printf(m, "group=%d\n", ppp_data.group_num);
167         seq_printf(m, "system_active_processors=%d\n",
168                    ppp_data.active_system_procs);
169
170         /* pool related entries are appropriate for shared configs */
171         if (lppaca_of(0).shared_proc) {
172                 unsigned long pool_idle_time, pool_procs;
173
174                 seq_printf(m, "pool=%d\n", ppp_data.pool_num);
175
176                 /* report pool_capacity in percentage */
177                 seq_printf(m, "pool_capacity=%d\n",
178                            ppp_data.active_procs_in_pool * 100);
179
180                 h_pic(&pool_idle_time, &pool_procs);
181                 seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
182                 seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
183         }
184
185         seq_printf(m, "unallocated_capacity_weight=%d\n",
186                    ppp_data.unallocated_weight);
187         seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
188         seq_printf(m, "capped=%d\n", ppp_data.capped);
189         seq_printf(m, "unallocated_capacity=%lld\n",
190                    ppp_data.unallocated_entitlement);
191
192         /* The last bits of information returned from h_get_ppp are only
193          * valid if the ibm,partition-performance-parameters-level
194          * property is >= 1.
195          */
196         root = of_find_node_by_path("/");
197         if (root) {
198                 perf_level = of_get_property(root,
199                                 "ibm,partition-performance-parameters-level",
200                                              NULL);
201                 if (perf_level && (*perf_level >= 1)) {
202                         seq_printf(m,
203                             "physical_procs_allocated_to_virtualization=%d\n",
204                                    ppp_data.phys_platform_procs);
205                         seq_printf(m, "max_proc_capacity_available=%d\n",
206                                    ppp_data.max_proc_cap_avail);
207                         seq_printf(m, "entitled_proc_capacity_available=%d\n",
208                                    ppp_data.entitled_proc_cap_avail);
209                 }
210
211                 of_node_put(root);
212         }
213 }
214
215 /**
216  * parse_mpp_data
217  * Parse out data returned from h_get_mpp
218  */
219 static void parse_mpp_data(struct seq_file *m)
220 {
221         struct hvcall_mpp_data mpp_data;
222         int rc;
223
224         rc = h_get_mpp(&mpp_data);
225         if (rc)
226                 return;
227
228         seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
229
230         if (mpp_data.mapped_mem != -1)
231                 seq_printf(m, "mapped_entitled_memory=%ld\n",
232                            mpp_data.mapped_mem);
233
234         seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
235         seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
236
237         seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
238         seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
239                    mpp_data.unallocated_mem_weight);
240         seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
241                    mpp_data.unallocated_entitlement);
242
243         if (mpp_data.pool_size != -1)
244                 seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
245                            mpp_data.pool_size);
246
247         seq_printf(m, "entitled_memory_loan_request=%ld\n",
248                    mpp_data.loan_request);
249
250         seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
251 }
252
253 /**
254  * parse_mpp_x_data
255  * Parse out data returned from h_get_mpp_x
256  */
257 static void parse_mpp_x_data(struct seq_file *m)
258 {
259         struct hvcall_mpp_x_data mpp_x_data;
260
261         if (!firmware_has_feature(FW_FEATURE_XCMO))
262                 return;
263         if (h_get_mpp_x(&mpp_x_data))
264                 return;
265
266         seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes);
267
268         if (mpp_x_data.pool_coalesced_bytes)
269                 seq_printf(m, "pool_coalesced_bytes=%ld\n",
270                            mpp_x_data.pool_coalesced_bytes);
271         if (mpp_x_data.pool_purr_cycles)
272                 seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles);
273         if (mpp_x_data.pool_spurr_cycles)
274                 seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles);
275 }
276
277 #define SPLPAR_CHARACTERISTICS_TOKEN 20
278 #define SPLPAR_MAXLENGTH 1026*(sizeof(char))
279
280 /*
281  * parse_system_parameter_string()
282  * Retrieve the potential_processors, max_entitled_capacity and friends
283  * through the get-system-parameter rtas call.  Replace keyword strings as
284  * necessary.
285  */
286 static void parse_system_parameter_string(struct seq_file *m)
287 {
288         int call_status;
289
290         unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
291         if (!local_buffer) {
292                 printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
293                        __FILE__, __func__, __LINE__);
294                 return;
295         }
296
297         spin_lock(&rtas_data_buf_lock);
298         memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH);
299         call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
300                                 NULL,
301                                 SPLPAR_CHARACTERISTICS_TOKEN,
302                                 __pa(rtas_data_buf),
303                                 RTAS_DATA_BUF_SIZE);
304         memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH);
305         spin_unlock(&rtas_data_buf_lock);
306
307         if (call_status != 0) {
308                 printk(KERN_INFO
309                        "%s %s Error calling get-system-parameter (0x%x)\n",
310                        __FILE__, __func__, call_status);
311         } else {
312                 int splpar_strlen;
313                 int idx, w_idx;
314                 char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
315                 if (!workbuffer) {
316                         printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
317                                __FILE__, __func__, __LINE__);
318                         kfree(local_buffer);
319                         return;
320                 }
321 #ifdef LPARCFG_DEBUG
322                 printk(KERN_INFO "success calling get-system-parameter\n");
323 #endif
324                 splpar_strlen = local_buffer[0] * 256 + local_buffer[1];
325                 local_buffer += 2;      /* step over strlen value */
326
327                 w_idx = 0;
328                 idx = 0;
329                 while ((*local_buffer) && (idx < splpar_strlen)) {
330                         workbuffer[w_idx++] = local_buffer[idx++];
331                         if ((local_buffer[idx] == ',')
332                             || (local_buffer[idx] == '\0')) {
333                                 workbuffer[w_idx] = '\0';
334                                 if (w_idx) {
335                                         /* avoid the empty string */
336                                         seq_printf(m, "%s\n", workbuffer);
337                                 }
338                                 memset(workbuffer, 0, SPLPAR_MAXLENGTH);
339                                 idx++;  /* skip the comma */
340                                 w_idx = 0;
341                         } else if (local_buffer[idx] == '=') {
342                                 /* code here to replace workbuffer contents
343                                    with different keyword strings */
344                                 if (0 == strcmp(workbuffer, "MaxEntCap")) {
345                                         strcpy(workbuffer,
346                                                "partition_max_entitled_capacity");
347                                         w_idx = strlen(workbuffer);
348                                 }
349                                 if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
350                                         strcpy(workbuffer,
351                                                "system_potential_processors");
352                                         w_idx = strlen(workbuffer);
353                                 }
354                         }
355                 }
356                 kfree(workbuffer);
357                 local_buffer -= 2;      /* back up over strlen value */
358         }
359         kfree(local_buffer);
360 }
361
362 /* Return the number of processors in the system.
363  * This function reads through the device tree and counts
364  * the virtual processors, this does not include threads.
365  */
366 static int lparcfg_count_active_processors(void)
367 {
368         struct device_node *cpus_dn = NULL;
369         int count = 0;
370
371         while ((cpus_dn = of_find_node_by_type(cpus_dn, "cpu"))) {
372 #ifdef LPARCFG_DEBUG
373                 printk(KERN_ERR "cpus_dn %p\n", cpus_dn);
374 #endif
375                 count++;
376         }
377         return count;
378 }
379
380 static void pseries_cmo_data(struct seq_file *m)
381 {
382         int cpu;
383         unsigned long cmo_faults = 0;
384         unsigned long cmo_fault_time = 0;
385
386         seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
387
388         if (!firmware_has_feature(FW_FEATURE_CMO))
389                 return;
390
391         for_each_possible_cpu(cpu) {
392                 cmo_faults += lppaca_of(cpu).cmo_faults;
393                 cmo_fault_time += lppaca_of(cpu).cmo_fault_time;
394         }
395
396         seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
397         seq_printf(m, "cmo_fault_time_usec=%lu\n",
398                    cmo_fault_time / tb_ticks_per_usec);
399         seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
400         seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
401         seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
402 }
403
404 static void splpar_dispatch_data(struct seq_file *m)
405 {
406         int cpu;
407         unsigned long dispatches = 0;
408         unsigned long dispatch_dispersions = 0;
409
410         for_each_possible_cpu(cpu) {
411                 dispatches += lppaca_of(cpu).yield_count;
412                 dispatch_dispersions += lppaca_of(cpu).dispersion_count;
413         }
414
415         seq_printf(m, "dispatches=%lu\n", dispatches);
416         seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
417 }
418
419 static void parse_em_data(struct seq_file *m)
420 {
421         unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
422
423         if (plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS)
424                 seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]);
425 }
426
427 static int pseries_lparcfg_data(struct seq_file *m, void *v)
428 {
429         int partition_potential_processors;
430         int partition_active_processors;
431         struct device_node *rtas_node;
432         const int *lrdrp = NULL;
433
434         rtas_node = of_find_node_by_path("/rtas");
435         if (rtas_node)
436                 lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
437
438         if (lrdrp == NULL) {
439                 partition_potential_processors = vdso_data->processorCount;
440         } else {
441                 partition_potential_processors = *(lrdrp + 4);
442         }
443         of_node_put(rtas_node);
444
445         partition_active_processors = lparcfg_count_active_processors();
446
447         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
448                 /* this call handles the ibm,get-system-parameter contents */
449                 parse_system_parameter_string(m);
450                 parse_ppp_data(m);
451                 parse_mpp_data(m);
452                 parse_mpp_x_data(m);
453                 pseries_cmo_data(m);
454                 splpar_dispatch_data(m);
455
456                 seq_printf(m, "purr=%ld\n", get_purr());
457         } else {                /* non SPLPAR case */
458
459                 seq_printf(m, "system_active_processors=%d\n",
460                            partition_potential_processors);
461
462                 seq_printf(m, "system_potential_processors=%d\n",
463                            partition_potential_processors);
464
465                 seq_printf(m, "partition_max_entitled_capacity=%d\n",
466                            partition_potential_processors * 100);
467
468                 seq_printf(m, "partition_entitled_capacity=%d\n",
469                            partition_active_processors * 100);
470         }
471
472         seq_printf(m, "partition_active_processors=%d\n",
473                    partition_active_processors);
474
475         seq_printf(m, "partition_potential_processors=%d\n",
476                    partition_potential_processors);
477
478         seq_printf(m, "shared_processor_mode=%d\n", lppaca_of(0).shared_proc);
479
480         seq_printf(m, "slb_size=%d\n", mmu_slb_size);
481
482         parse_em_data(m);
483
484         return 0;
485 }
486
487 static ssize_t update_ppp(u64 *entitlement, u8 *weight)
488 {
489         struct hvcall_ppp_data ppp_data;
490         u8 new_weight;
491         u64 new_entitled;
492         ssize_t retval;
493
494         /* Get our current parameters */
495         retval = h_get_ppp(&ppp_data);
496         if (retval)
497                 return retval;
498
499         if (entitlement) {
500                 new_weight = ppp_data.weight;
501                 new_entitled = *entitlement;
502         } else if (weight) {
503                 new_weight = *weight;
504                 new_entitled = ppp_data.entitlement;
505         } else
506                 return -EINVAL;
507
508         pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
509                  __func__, ppp_data.entitlement, ppp_data.weight);
510
511         pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
512                  __func__, new_entitled, new_weight);
513
514         retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
515         return retval;
516 }
517
518 /**
519  * update_mpp
520  *
521  * Update the memory entitlement and weight for the partition.  Caller must
522  * specify either a new entitlement or weight, not both, to be updated
523  * since the h_set_mpp call takes both entitlement and weight as parameters.
524  */
525 static ssize_t update_mpp(u64 *entitlement, u8 *weight)
526 {
527         struct hvcall_mpp_data mpp_data;
528         u64 new_entitled;
529         u8 new_weight;
530         ssize_t rc;
531
532         if (entitlement) {
533                 /* Check with vio to ensure the new memory entitlement
534                  * can be handled.
535                  */
536                 rc = vio_cmo_entitlement_update(*entitlement);
537                 if (rc)
538                         return rc;
539         }
540
541         rc = h_get_mpp(&mpp_data);
542         if (rc)
543                 return rc;
544
545         if (entitlement) {
546                 new_weight = mpp_data.mem_weight;
547                 new_entitled = *entitlement;
548         } else if (weight) {
549                 new_weight = *weight;
550                 new_entitled = mpp_data.entitled_mem;
551         } else
552                 return -EINVAL;
553
554         pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
555                  __func__, mpp_data.entitled_mem, mpp_data.mem_weight);
556
557         pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
558                  __func__, new_entitled, new_weight);
559
560         rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
561         return rc;
562 }
563
564 /*
565  * Interface for changing system parameters (variable capacity weight
566  * and entitled capacity).  Format of input is "param_name=value";
567  * anything after value is ignored.  Valid parameters at this time are
568  * "partition_entitled_capacity" and "capacity_weight".  We use
569  * H_SET_PPP to alter parameters.
570  *
571  * This function should be invoked only on systems with
572  * FW_FEATURE_SPLPAR.
573  */
574 static ssize_t lparcfg_write(struct file *file, const char __user * buf,
575                              size_t count, loff_t * off)
576 {
577         int kbuf_sz = 64;
578         char kbuf[kbuf_sz];
579         char *tmp;
580         u64 new_entitled, *new_entitled_ptr = &new_entitled;
581         u8 new_weight, *new_weight_ptr = &new_weight;
582         ssize_t retval;
583
584         if (!firmware_has_feature(FW_FEATURE_SPLPAR))
585                 return -EINVAL;
586
587         if (count > kbuf_sz)
588                 return -EINVAL;
589
590         if (copy_from_user(kbuf, buf, count))
591                 return -EFAULT;
592
593         kbuf[count - 1] = '\0';
594         tmp = strchr(kbuf, '=');
595         if (!tmp)
596                 return -EINVAL;
597
598         *tmp++ = '\0';
599
600         if (!strcmp(kbuf, "partition_entitled_capacity")) {
601                 char *endp;
602                 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
603                 if (endp == tmp)
604                         return -EINVAL;
605
606                 retval = update_ppp(new_entitled_ptr, NULL);
607         } else if (!strcmp(kbuf, "capacity_weight")) {
608                 char *endp;
609                 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
610                 if (endp == tmp)
611                         return -EINVAL;
612
613                 retval = update_ppp(NULL, new_weight_ptr);
614         } else if (!strcmp(kbuf, "entitled_memory")) {
615                 char *endp;
616                 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
617                 if (endp == tmp)
618                         return -EINVAL;
619
620                 retval = update_mpp(new_entitled_ptr, NULL);
621         } else if (!strcmp(kbuf, "entitled_memory_weight")) {
622                 char *endp;
623                 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
624                 if (endp == tmp)
625                         return -EINVAL;
626
627                 retval = update_mpp(NULL, new_weight_ptr);
628         } else
629                 return -EINVAL;
630
631         if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
632                 retval = count;
633         } else if (retval == H_BUSY) {
634                 retval = -EBUSY;
635         } else if (retval == H_HARDWARE) {
636                 retval = -EIO;
637         } else if (retval == H_PARAMETER) {
638                 retval = -EINVAL;
639         }
640
641         return retval;
642 }
643
644 static int lparcfg_data(struct seq_file *m, void *v)
645 {
646         struct device_node *rootdn;
647         const char *model = "";
648         const char *system_id = "";
649         const char *tmp;
650         const unsigned int *lp_index_ptr;
651         unsigned int lp_index = 0;
652
653         seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS);
654
655         rootdn = of_find_node_by_path("/");
656         if (rootdn) {
657                 tmp = of_get_property(rootdn, "model", NULL);
658                 if (tmp)
659                         model = tmp;
660                 tmp = of_get_property(rootdn, "system-id", NULL);
661                 if (tmp)
662                         system_id = tmp;
663                 lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
664                                         NULL);
665                 if (lp_index_ptr)
666                         lp_index = *lp_index_ptr;
667                 of_node_put(rootdn);
668         }
669         seq_printf(m, "serial_number=%s\n", system_id);
670         seq_printf(m, "system_type=%s\n", model);
671         seq_printf(m, "partition_id=%d\n", (int)lp_index);
672
673         return pseries_lparcfg_data(m, v);
674 }
675
676 static int lparcfg_open(struct inode *inode, struct file *file)
677 {
678         return single_open(file, lparcfg_data, NULL);
679 }
680
681 static const struct file_operations lparcfg_fops = {
682         .owner          = THIS_MODULE,
683         .read           = seq_read,
684         .write          = lparcfg_write,
685         .open           = lparcfg_open,
686         .release        = single_release,
687         .llseek         = seq_lseek,
688 };
689
690 static int __init lparcfg_init(void)
691 {
692         struct proc_dir_entry *ent;
693         umode_t mode = S_IRUSR | S_IRGRP | S_IROTH;
694
695         /* Allow writing if we have FW_FEATURE_SPLPAR */
696         if (firmware_has_feature(FW_FEATURE_SPLPAR))
697                 mode |= S_IWUSR;
698
699         ent = proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_fops);
700         if (!ent) {
701                 printk(KERN_ERR "Failed to create powerpc/lparcfg\n");
702                 return -EIO;
703         }
704
705         proc_ppc64_lparcfg = ent;
706         return 0;
707 }
708
709 static void __exit lparcfg_cleanup(void)
710 {
711         if (proc_ppc64_lparcfg)
712                 remove_proc_entry("lparcfg", proc_ppc64_lparcfg->parent);
713 }
714
715 module_init(lparcfg_init);
716 module_exit(lparcfg_cleanup);
717 MODULE_DESCRIPTION("Interface for LPAR configuration data");
718 MODULE_AUTHOR("Dave Engebretsen");
719 MODULE_LICENSE("GPL");