]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge branch 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36
37 #include <asm/reg.h>
38 #include <asm/cputable.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/kvm_book3s.h>
45 #include <asm/mmu_context.h>
46 #include <asm/lppaca.h>
47 #include <asm/processor.h>
48 #include <asm/cputhreads.h>
49 #include <asm/page.h>
50 #include <asm/hvcall.h>
51 #include <asm/switch_to.h>
52 #include <asm/smp.h>
53 #include <asm/dbell.h>
54 #include <linux/gfp.h>
55 #include <linux/vmalloc.h>
56 #include <linux/highmem.h>
57 #include <linux/hugetlb.h>
58 #include <linux/module.h>
59
60 #include "book3s.h"
61
62 #define CREATE_TRACE_POINTS
63 #include "trace_hv.h"
64
65 /* #define EXIT_DEBUG */
66 /* #define EXIT_DEBUG_SIMPLE */
67 /* #define EXIT_DEBUG_INT */
68
69 /* Used to indicate that a guest page fault needs to be handled */
70 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
71
72 /* Used as a "null" value for timebase values */
73 #define TB_NIL  (~(u64)0)
74
75 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
76
77 static int dynamic_mt_modes = 6;
78 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
80 static int target_smt_mode;
81 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
82 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
83
84 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
85 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
86
87 static bool kvmppc_ipi_thread(int cpu)
88 {
89         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
90         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
91                 preempt_disable();
92                 if (cpu_first_thread_sibling(cpu) ==
93                     cpu_first_thread_sibling(smp_processor_id())) {
94                         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
95                         msg |= cpu_thread_in_core(cpu);
96                         smp_mb();
97                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
98                         preempt_enable();
99                         return true;
100                 }
101                 preempt_enable();
102         }
103
104 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
105         if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
106                 xics_wake_cpu(cpu);
107                 return true;
108         }
109 #endif
110
111         return false;
112 }
113
114 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
115 {
116         int cpu;
117         wait_queue_head_t *wqp;
118
119         wqp = kvm_arch_vcpu_wq(vcpu);
120         if (waitqueue_active(wqp)) {
121                 wake_up_interruptible(wqp);
122                 ++vcpu->stat.halt_wakeup;
123         }
124
125         if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
126                 return;
127
128         /* CPU points to the first thread of the core */
129         cpu = vcpu->cpu;
130         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
131                 smp_send_reschedule(cpu);
132 }
133
134 /*
135  * We use the vcpu_load/put functions to measure stolen time.
136  * Stolen time is counted as time when either the vcpu is able to
137  * run as part of a virtual core, but the task running the vcore
138  * is preempted or sleeping, or when the vcpu needs something done
139  * in the kernel by the task running the vcpu, but that task is
140  * preempted or sleeping.  Those two things have to be counted
141  * separately, since one of the vcpu tasks will take on the job
142  * of running the core, and the other vcpu tasks in the vcore will
143  * sleep waiting for it to do that, but that sleep shouldn't count
144  * as stolen time.
145  *
146  * Hence we accumulate stolen time when the vcpu can run as part of
147  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
148  * needs its task to do other things in the kernel (for example,
149  * service a page fault) in busy_stolen.  We don't accumulate
150  * stolen time for a vcore when it is inactive, or for a vcpu
151  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
152  * a misnomer; it means that the vcpu task is not executing in
153  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
154  * the kernel.  We don't have any way of dividing up that time
155  * between time that the vcpu is genuinely stopped, time that
156  * the task is actively working on behalf of the vcpu, and time
157  * that the task is preempted, so we don't count any of it as
158  * stolen.
159  *
160  * Updates to busy_stolen are protected by arch.tbacct_lock;
161  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
162  * lock.  The stolen times are measured in units of timebase ticks.
163  * (Note that the != TB_NIL checks below are purely defensive;
164  * they should never fail.)
165  */
166
167 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
168 {
169         unsigned long flags;
170
171         spin_lock_irqsave(&vc->stoltb_lock, flags);
172         vc->preempt_tb = mftb();
173         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
174 }
175
176 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
177 {
178         unsigned long flags;
179
180         spin_lock_irqsave(&vc->stoltb_lock, flags);
181         if (vc->preempt_tb != TB_NIL) {
182                 vc->stolen_tb += mftb() - vc->preempt_tb;
183                 vc->preempt_tb = TB_NIL;
184         }
185         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
186 }
187
188 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
189 {
190         struct kvmppc_vcore *vc = vcpu->arch.vcore;
191         unsigned long flags;
192
193         /*
194          * We can test vc->runner without taking the vcore lock,
195          * because only this task ever sets vc->runner to this
196          * vcpu, and once it is set to this vcpu, only this task
197          * ever sets it to NULL.
198          */
199         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
200                 kvmppc_core_end_stolen(vc);
201
202         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
203         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
204             vcpu->arch.busy_preempt != TB_NIL) {
205                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
206                 vcpu->arch.busy_preempt = TB_NIL;
207         }
208         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
209 }
210
211 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
212 {
213         struct kvmppc_vcore *vc = vcpu->arch.vcore;
214         unsigned long flags;
215
216         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
217                 kvmppc_core_start_stolen(vc);
218
219         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
220         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
221                 vcpu->arch.busy_preempt = mftb();
222         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
223 }
224
225 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
226 {
227         vcpu->arch.shregs.msr = msr;
228         kvmppc_end_cede(vcpu);
229 }
230
231 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
232 {
233         vcpu->arch.pvr = pvr;
234 }
235
236 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
237 {
238         unsigned long pcr = 0;
239         struct kvmppc_vcore *vc = vcpu->arch.vcore;
240
241         if (arch_compat) {
242                 switch (arch_compat) {
243                 case PVR_ARCH_205:
244                         /*
245                          * If an arch bit is set in PCR, all the defined
246                          * higher-order arch bits also have to be set.
247                          */
248                         pcr = PCR_ARCH_206 | PCR_ARCH_205;
249                         break;
250                 case PVR_ARCH_206:
251                 case PVR_ARCH_206p:
252                         pcr = PCR_ARCH_206;
253                         break;
254                 case PVR_ARCH_207:
255                         break;
256                 default:
257                         return -EINVAL;
258                 }
259
260                 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
261                         /* POWER7 can't emulate POWER8 */
262                         if (!(pcr & PCR_ARCH_206))
263                                 return -EINVAL;
264                         pcr &= ~PCR_ARCH_206;
265                 }
266         }
267
268         spin_lock(&vc->lock);
269         vc->arch_compat = arch_compat;
270         vc->pcr = pcr;
271         spin_unlock(&vc->lock);
272
273         return 0;
274 }
275
276 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
277 {
278         int r;
279
280         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
281         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
282                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
283         for (r = 0; r < 16; ++r)
284                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
285                        r, kvmppc_get_gpr(vcpu, r),
286                        r+16, kvmppc_get_gpr(vcpu, r+16));
287         pr_err("ctr = %.16lx  lr  = %.16lx\n",
288                vcpu->arch.ctr, vcpu->arch.lr);
289         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
290                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
291         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
292                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
293         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
294                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
295         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
296                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
297         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
298         pr_err("fault dar = %.16lx dsisr = %.8x\n",
299                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
300         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
301         for (r = 0; r < vcpu->arch.slb_max; ++r)
302                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
303                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
304         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
305                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
306                vcpu->arch.last_inst);
307 }
308
309 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
310 {
311         int r;
312         struct kvm_vcpu *v, *ret = NULL;
313
314         mutex_lock(&kvm->lock);
315         kvm_for_each_vcpu(r, v, kvm) {
316                 if (v->vcpu_id == id) {
317                         ret = v;
318                         break;
319                 }
320         }
321         mutex_unlock(&kvm->lock);
322         return ret;
323 }
324
325 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
326 {
327         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
328         vpa->yield_count = cpu_to_be32(1);
329 }
330
331 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
332                    unsigned long addr, unsigned long len)
333 {
334         /* check address is cacheline aligned */
335         if (addr & (L1_CACHE_BYTES - 1))
336                 return -EINVAL;
337         spin_lock(&vcpu->arch.vpa_update_lock);
338         if (v->next_gpa != addr || v->len != len) {
339                 v->next_gpa = addr;
340                 v->len = addr ? len : 0;
341                 v->update_pending = 1;
342         }
343         spin_unlock(&vcpu->arch.vpa_update_lock);
344         return 0;
345 }
346
347 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
348 struct reg_vpa {
349         u32 dummy;
350         union {
351                 __be16 hword;
352                 __be32 word;
353         } length;
354 };
355
356 static int vpa_is_registered(struct kvmppc_vpa *vpap)
357 {
358         if (vpap->update_pending)
359                 return vpap->next_gpa != 0;
360         return vpap->pinned_addr != NULL;
361 }
362
363 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
364                                        unsigned long flags,
365                                        unsigned long vcpuid, unsigned long vpa)
366 {
367         struct kvm *kvm = vcpu->kvm;
368         unsigned long len, nb;
369         void *va;
370         struct kvm_vcpu *tvcpu;
371         int err;
372         int subfunc;
373         struct kvmppc_vpa *vpap;
374
375         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
376         if (!tvcpu)
377                 return H_PARAMETER;
378
379         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
380         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
381             subfunc == H_VPA_REG_SLB) {
382                 /* Registering new area - address must be cache-line aligned */
383                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
384                         return H_PARAMETER;
385
386                 /* convert logical addr to kernel addr and read length */
387                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
388                 if (va == NULL)
389                         return H_PARAMETER;
390                 if (subfunc == H_VPA_REG_VPA)
391                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
392                 else
393                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
394                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
395
396                 /* Check length */
397                 if (len > nb || len < sizeof(struct reg_vpa))
398                         return H_PARAMETER;
399         } else {
400                 vpa = 0;
401                 len = 0;
402         }
403
404         err = H_PARAMETER;
405         vpap = NULL;
406         spin_lock(&tvcpu->arch.vpa_update_lock);
407
408         switch (subfunc) {
409         case H_VPA_REG_VPA:             /* register VPA */
410                 if (len < sizeof(struct lppaca))
411                         break;
412                 vpap = &tvcpu->arch.vpa;
413                 err = 0;
414                 break;
415
416         case H_VPA_REG_DTL:             /* register DTL */
417                 if (len < sizeof(struct dtl_entry))
418                         break;
419                 len -= len % sizeof(struct dtl_entry);
420
421                 /* Check that they have previously registered a VPA */
422                 err = H_RESOURCE;
423                 if (!vpa_is_registered(&tvcpu->arch.vpa))
424                         break;
425
426                 vpap = &tvcpu->arch.dtl;
427                 err = 0;
428                 break;
429
430         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
431                 /* Check that they have previously registered a VPA */
432                 err = H_RESOURCE;
433                 if (!vpa_is_registered(&tvcpu->arch.vpa))
434                         break;
435
436                 vpap = &tvcpu->arch.slb_shadow;
437                 err = 0;
438                 break;
439
440         case H_VPA_DEREG_VPA:           /* deregister VPA */
441                 /* Check they don't still have a DTL or SLB buf registered */
442                 err = H_RESOURCE;
443                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
444                     vpa_is_registered(&tvcpu->arch.slb_shadow))
445                         break;
446
447                 vpap = &tvcpu->arch.vpa;
448                 err = 0;
449                 break;
450
451         case H_VPA_DEREG_DTL:           /* deregister DTL */
452                 vpap = &tvcpu->arch.dtl;
453                 err = 0;
454                 break;
455
456         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
457                 vpap = &tvcpu->arch.slb_shadow;
458                 err = 0;
459                 break;
460         }
461
462         if (vpap) {
463                 vpap->next_gpa = vpa;
464                 vpap->len = len;
465                 vpap->update_pending = 1;
466         }
467
468         spin_unlock(&tvcpu->arch.vpa_update_lock);
469
470         return err;
471 }
472
473 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
474 {
475         struct kvm *kvm = vcpu->kvm;
476         void *va;
477         unsigned long nb;
478         unsigned long gpa;
479
480         /*
481          * We need to pin the page pointed to by vpap->next_gpa,
482          * but we can't call kvmppc_pin_guest_page under the lock
483          * as it does get_user_pages() and down_read().  So we
484          * have to drop the lock, pin the page, then get the lock
485          * again and check that a new area didn't get registered
486          * in the meantime.
487          */
488         for (;;) {
489                 gpa = vpap->next_gpa;
490                 spin_unlock(&vcpu->arch.vpa_update_lock);
491                 va = NULL;
492                 nb = 0;
493                 if (gpa)
494                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
495                 spin_lock(&vcpu->arch.vpa_update_lock);
496                 if (gpa == vpap->next_gpa)
497                         break;
498                 /* sigh... unpin that one and try again */
499                 if (va)
500                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
501         }
502
503         vpap->update_pending = 0;
504         if (va && nb < vpap->len) {
505                 /*
506                  * If it's now too short, it must be that userspace
507                  * has changed the mappings underlying guest memory,
508                  * so unregister the region.
509                  */
510                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
511                 va = NULL;
512         }
513         if (vpap->pinned_addr)
514                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
515                                         vpap->dirty);
516         vpap->gpa = gpa;
517         vpap->pinned_addr = va;
518         vpap->dirty = false;
519         if (va)
520                 vpap->pinned_end = va + vpap->len;
521 }
522
523 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
524 {
525         if (!(vcpu->arch.vpa.update_pending ||
526               vcpu->arch.slb_shadow.update_pending ||
527               vcpu->arch.dtl.update_pending))
528                 return;
529
530         spin_lock(&vcpu->arch.vpa_update_lock);
531         if (vcpu->arch.vpa.update_pending) {
532                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
533                 if (vcpu->arch.vpa.pinned_addr)
534                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
535         }
536         if (vcpu->arch.dtl.update_pending) {
537                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
538                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
539                 vcpu->arch.dtl_index = 0;
540         }
541         if (vcpu->arch.slb_shadow.update_pending)
542                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
543         spin_unlock(&vcpu->arch.vpa_update_lock);
544 }
545
546 /*
547  * Return the accumulated stolen time for the vcore up until `now'.
548  * The caller should hold the vcore lock.
549  */
550 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
551 {
552         u64 p;
553         unsigned long flags;
554
555         spin_lock_irqsave(&vc->stoltb_lock, flags);
556         p = vc->stolen_tb;
557         if (vc->vcore_state != VCORE_INACTIVE &&
558             vc->preempt_tb != TB_NIL)
559                 p += now - vc->preempt_tb;
560         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
561         return p;
562 }
563
564 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
565                                     struct kvmppc_vcore *vc)
566 {
567         struct dtl_entry *dt;
568         struct lppaca *vpa;
569         unsigned long stolen;
570         unsigned long core_stolen;
571         u64 now;
572
573         dt = vcpu->arch.dtl_ptr;
574         vpa = vcpu->arch.vpa.pinned_addr;
575         now = mftb();
576         core_stolen = vcore_stolen_time(vc, now);
577         stolen = core_stolen - vcpu->arch.stolen_logged;
578         vcpu->arch.stolen_logged = core_stolen;
579         spin_lock_irq(&vcpu->arch.tbacct_lock);
580         stolen += vcpu->arch.busy_stolen;
581         vcpu->arch.busy_stolen = 0;
582         spin_unlock_irq(&vcpu->arch.tbacct_lock);
583         if (!dt || !vpa)
584                 return;
585         memset(dt, 0, sizeof(struct dtl_entry));
586         dt->dispatch_reason = 7;
587         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
588         dt->timebase = cpu_to_be64(now + vc->tb_offset);
589         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
590         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
591         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
592         ++dt;
593         if (dt == vcpu->arch.dtl.pinned_end)
594                 dt = vcpu->arch.dtl.pinned_addr;
595         vcpu->arch.dtl_ptr = dt;
596         /* order writing *dt vs. writing vpa->dtl_idx */
597         smp_wmb();
598         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
599         vcpu->arch.dtl.dirty = true;
600 }
601
602 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
603 {
604         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
605                 return true;
606         if ((!vcpu->arch.vcore->arch_compat) &&
607             cpu_has_feature(CPU_FTR_ARCH_207S))
608                 return true;
609         return false;
610 }
611
612 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
613                              unsigned long resource, unsigned long value1,
614                              unsigned long value2)
615 {
616         switch (resource) {
617         case H_SET_MODE_RESOURCE_SET_CIABR:
618                 if (!kvmppc_power8_compatible(vcpu))
619                         return H_P2;
620                 if (value2)
621                         return H_P4;
622                 if (mflags)
623                         return H_UNSUPPORTED_FLAG_START;
624                 /* Guests can't breakpoint the hypervisor */
625                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
626                         return H_P3;
627                 vcpu->arch.ciabr  = value1;
628                 return H_SUCCESS;
629         case H_SET_MODE_RESOURCE_SET_DAWR:
630                 if (!kvmppc_power8_compatible(vcpu))
631                         return H_P2;
632                 if (mflags)
633                         return H_UNSUPPORTED_FLAG_START;
634                 if (value2 & DABRX_HYP)
635                         return H_P4;
636                 vcpu->arch.dawr  = value1;
637                 vcpu->arch.dawrx = value2;
638                 return H_SUCCESS;
639         default:
640                 return H_TOO_HARD;
641         }
642 }
643
644 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
645 {
646         struct kvmppc_vcore *vcore = target->arch.vcore;
647
648         /*
649          * We expect to have been called by the real mode handler
650          * (kvmppc_rm_h_confer()) which would have directly returned
651          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
652          * have useful work to do and should not confer) so we don't
653          * recheck that here.
654          */
655
656         spin_lock(&vcore->lock);
657         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
658             vcore->vcore_state != VCORE_INACTIVE &&
659             vcore->runner)
660                 target = vcore->runner;
661         spin_unlock(&vcore->lock);
662
663         return kvm_vcpu_yield_to(target);
664 }
665
666 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
667 {
668         int yield_count = 0;
669         struct lppaca *lppaca;
670
671         spin_lock(&vcpu->arch.vpa_update_lock);
672         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
673         if (lppaca)
674                 yield_count = be32_to_cpu(lppaca->yield_count);
675         spin_unlock(&vcpu->arch.vpa_update_lock);
676         return yield_count;
677 }
678
679 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
680 {
681         unsigned long req = kvmppc_get_gpr(vcpu, 3);
682         unsigned long target, ret = H_SUCCESS;
683         int yield_count;
684         struct kvm_vcpu *tvcpu;
685         int idx, rc;
686
687         if (req <= MAX_HCALL_OPCODE &&
688             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
689                 return RESUME_HOST;
690
691         switch (req) {
692         case H_CEDE:
693                 break;
694         case H_PROD:
695                 target = kvmppc_get_gpr(vcpu, 4);
696                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
697                 if (!tvcpu) {
698                         ret = H_PARAMETER;
699                         break;
700                 }
701                 tvcpu->arch.prodded = 1;
702                 smp_mb();
703                 if (vcpu->arch.ceded) {
704                         if (waitqueue_active(&vcpu->wq)) {
705                                 wake_up_interruptible(&vcpu->wq);
706                                 vcpu->stat.halt_wakeup++;
707                         }
708                 }
709                 break;
710         case H_CONFER:
711                 target = kvmppc_get_gpr(vcpu, 4);
712                 if (target == -1)
713                         break;
714                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
715                 if (!tvcpu) {
716                         ret = H_PARAMETER;
717                         break;
718                 }
719                 yield_count = kvmppc_get_gpr(vcpu, 5);
720                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
721                         break;
722                 kvm_arch_vcpu_yield_to(tvcpu);
723                 break;
724         case H_REGISTER_VPA:
725                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
726                                         kvmppc_get_gpr(vcpu, 5),
727                                         kvmppc_get_gpr(vcpu, 6));
728                 break;
729         case H_RTAS:
730                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
731                         return RESUME_HOST;
732
733                 idx = srcu_read_lock(&vcpu->kvm->srcu);
734                 rc = kvmppc_rtas_hcall(vcpu);
735                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
736
737                 if (rc == -ENOENT)
738                         return RESUME_HOST;
739                 else if (rc == 0)
740                         break;
741
742                 /* Send the error out to userspace via KVM_RUN */
743                 return rc;
744         case H_LOGICAL_CI_LOAD:
745                 ret = kvmppc_h_logical_ci_load(vcpu);
746                 if (ret == H_TOO_HARD)
747                         return RESUME_HOST;
748                 break;
749         case H_LOGICAL_CI_STORE:
750                 ret = kvmppc_h_logical_ci_store(vcpu);
751                 if (ret == H_TOO_HARD)
752                         return RESUME_HOST;
753                 break;
754         case H_SET_MODE:
755                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
756                                         kvmppc_get_gpr(vcpu, 5),
757                                         kvmppc_get_gpr(vcpu, 6),
758                                         kvmppc_get_gpr(vcpu, 7));
759                 if (ret == H_TOO_HARD)
760                         return RESUME_HOST;
761                 break;
762         case H_XIRR:
763         case H_CPPR:
764         case H_EOI:
765         case H_IPI:
766         case H_IPOLL:
767         case H_XIRR_X:
768                 if (kvmppc_xics_enabled(vcpu)) {
769                         ret = kvmppc_xics_hcall(vcpu, req);
770                         break;
771                 } /* fallthrough */
772         default:
773                 return RESUME_HOST;
774         }
775         kvmppc_set_gpr(vcpu, 3, ret);
776         vcpu->arch.hcall_needed = 0;
777         return RESUME_GUEST;
778 }
779
780 static int kvmppc_hcall_impl_hv(unsigned long cmd)
781 {
782         switch (cmd) {
783         case H_CEDE:
784         case H_PROD:
785         case H_CONFER:
786         case H_REGISTER_VPA:
787         case H_SET_MODE:
788         case H_LOGICAL_CI_LOAD:
789         case H_LOGICAL_CI_STORE:
790 #ifdef CONFIG_KVM_XICS
791         case H_XIRR:
792         case H_CPPR:
793         case H_EOI:
794         case H_IPI:
795         case H_IPOLL:
796         case H_XIRR_X:
797 #endif
798                 return 1;
799         }
800
801         /* See if it's in the real-mode table */
802         return kvmppc_hcall_impl_hv_realmode(cmd);
803 }
804
805 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
806                                         struct kvm_vcpu *vcpu)
807 {
808         u32 last_inst;
809
810         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
811                                         EMULATE_DONE) {
812                 /*
813                  * Fetch failed, so return to guest and
814                  * try executing it again.
815                  */
816                 return RESUME_GUEST;
817         }
818
819         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
820                 run->exit_reason = KVM_EXIT_DEBUG;
821                 run->debug.arch.address = kvmppc_get_pc(vcpu);
822                 return RESUME_HOST;
823         } else {
824                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
825                 return RESUME_GUEST;
826         }
827 }
828
829 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
830                                  struct task_struct *tsk)
831 {
832         int r = RESUME_HOST;
833
834         vcpu->stat.sum_exits++;
835
836         run->exit_reason = KVM_EXIT_UNKNOWN;
837         run->ready_for_interrupt_injection = 1;
838         switch (vcpu->arch.trap) {
839         /* We're good on these - the host merely wanted to get our attention */
840         case BOOK3S_INTERRUPT_HV_DECREMENTER:
841                 vcpu->stat.dec_exits++;
842                 r = RESUME_GUEST;
843                 break;
844         case BOOK3S_INTERRUPT_EXTERNAL:
845         case BOOK3S_INTERRUPT_H_DOORBELL:
846                 vcpu->stat.ext_intr_exits++;
847                 r = RESUME_GUEST;
848                 break;
849         /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
850         case BOOK3S_INTERRUPT_HMI:
851         case BOOK3S_INTERRUPT_PERFMON:
852                 r = RESUME_GUEST;
853                 break;
854         case BOOK3S_INTERRUPT_MACHINE_CHECK:
855                 /*
856                  * Deliver a machine check interrupt to the guest.
857                  * We have to do this, even if the host has handled the
858                  * machine check, because machine checks use SRR0/1 and
859                  * the interrupt might have trashed guest state in them.
860                  */
861                 kvmppc_book3s_queue_irqprio(vcpu,
862                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
863                 r = RESUME_GUEST;
864                 break;
865         case BOOK3S_INTERRUPT_PROGRAM:
866         {
867                 ulong flags;
868                 /*
869                  * Normally program interrupts are delivered directly
870                  * to the guest by the hardware, but we can get here
871                  * as a result of a hypervisor emulation interrupt
872                  * (e40) getting turned into a 700 by BML RTAS.
873                  */
874                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
875                 kvmppc_core_queue_program(vcpu, flags);
876                 r = RESUME_GUEST;
877                 break;
878         }
879         case BOOK3S_INTERRUPT_SYSCALL:
880         {
881                 /* hcall - punt to userspace */
882                 int i;
883
884                 /* hypercall with MSR_PR has already been handled in rmode,
885                  * and never reaches here.
886                  */
887
888                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
889                 for (i = 0; i < 9; ++i)
890                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
891                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
892                 vcpu->arch.hcall_needed = 1;
893                 r = RESUME_HOST;
894                 break;
895         }
896         /*
897          * We get these next two if the guest accesses a page which it thinks
898          * it has mapped but which is not actually present, either because
899          * it is for an emulated I/O device or because the corresonding
900          * host page has been paged out.  Any other HDSI/HISI interrupts
901          * have been handled already.
902          */
903         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
904                 r = RESUME_PAGE_FAULT;
905                 break;
906         case BOOK3S_INTERRUPT_H_INST_STORAGE:
907                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
908                 vcpu->arch.fault_dsisr = 0;
909                 r = RESUME_PAGE_FAULT;
910                 break;
911         /*
912          * This occurs if the guest executes an illegal instruction.
913          * If the guest debug is disabled, generate a program interrupt
914          * to the guest. If guest debug is enabled, we need to check
915          * whether the instruction is a software breakpoint instruction.
916          * Accordingly return to Guest or Host.
917          */
918         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
919                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
920                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
921                                 swab32(vcpu->arch.emul_inst) :
922                                 vcpu->arch.emul_inst;
923                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
924                         r = kvmppc_emulate_debug_inst(run, vcpu);
925                 } else {
926                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
927                         r = RESUME_GUEST;
928                 }
929                 break;
930         /*
931          * This occurs if the guest (kernel or userspace), does something that
932          * is prohibited by HFSCR.  We just generate a program interrupt to
933          * the guest.
934          */
935         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
936                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
937                 r = RESUME_GUEST;
938                 break;
939         default:
940                 kvmppc_dump_regs(vcpu);
941                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
942                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
943                         vcpu->arch.shregs.msr);
944                 run->hw.hardware_exit_reason = vcpu->arch.trap;
945                 r = RESUME_HOST;
946                 break;
947         }
948
949         return r;
950 }
951
952 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
953                                             struct kvm_sregs *sregs)
954 {
955         int i;
956
957         memset(sregs, 0, sizeof(struct kvm_sregs));
958         sregs->pvr = vcpu->arch.pvr;
959         for (i = 0; i < vcpu->arch.slb_max; i++) {
960                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
961                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
962         }
963
964         return 0;
965 }
966
967 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
968                                             struct kvm_sregs *sregs)
969 {
970         int i, j;
971
972         /* Only accept the same PVR as the host's, since we can't spoof it */
973         if (sregs->pvr != vcpu->arch.pvr)
974                 return -EINVAL;
975
976         j = 0;
977         for (i = 0; i < vcpu->arch.slb_nr; i++) {
978                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
979                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
980                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
981                         ++j;
982                 }
983         }
984         vcpu->arch.slb_max = j;
985
986         return 0;
987 }
988
989 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
990                 bool preserve_top32)
991 {
992         struct kvm *kvm = vcpu->kvm;
993         struct kvmppc_vcore *vc = vcpu->arch.vcore;
994         u64 mask;
995
996         mutex_lock(&kvm->lock);
997         spin_lock(&vc->lock);
998         /*
999          * If ILE (interrupt little-endian) has changed, update the
1000          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1001          */
1002         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1003                 struct kvm_vcpu *vcpu;
1004                 int i;
1005
1006                 kvm_for_each_vcpu(i, vcpu, kvm) {
1007                         if (vcpu->arch.vcore != vc)
1008                                 continue;
1009                         if (new_lpcr & LPCR_ILE)
1010                                 vcpu->arch.intr_msr |= MSR_LE;
1011                         else
1012                                 vcpu->arch.intr_msr &= ~MSR_LE;
1013                 }
1014         }
1015
1016         /*
1017          * Userspace can only modify DPFD (default prefetch depth),
1018          * ILE (interrupt little-endian) and TC (translation control).
1019          * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1020          */
1021         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1022         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1023                 mask |= LPCR_AIL;
1024
1025         /* Broken 32-bit version of LPCR must not clear top bits */
1026         if (preserve_top32)
1027                 mask &= 0xFFFFFFFF;
1028         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1029         spin_unlock(&vc->lock);
1030         mutex_unlock(&kvm->lock);
1031 }
1032
1033 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1034                                  union kvmppc_one_reg *val)
1035 {
1036         int r = 0;
1037         long int i;
1038
1039         switch (id) {
1040         case KVM_REG_PPC_DEBUG_INST:
1041                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1042                 break;
1043         case KVM_REG_PPC_HIOR:
1044                 *val = get_reg_val(id, 0);
1045                 break;
1046         case KVM_REG_PPC_DABR:
1047                 *val = get_reg_val(id, vcpu->arch.dabr);
1048                 break;
1049         case KVM_REG_PPC_DABRX:
1050                 *val = get_reg_val(id, vcpu->arch.dabrx);
1051                 break;
1052         case KVM_REG_PPC_DSCR:
1053                 *val = get_reg_val(id, vcpu->arch.dscr);
1054                 break;
1055         case KVM_REG_PPC_PURR:
1056                 *val = get_reg_val(id, vcpu->arch.purr);
1057                 break;
1058         case KVM_REG_PPC_SPURR:
1059                 *val = get_reg_val(id, vcpu->arch.spurr);
1060                 break;
1061         case KVM_REG_PPC_AMR:
1062                 *val = get_reg_val(id, vcpu->arch.amr);
1063                 break;
1064         case KVM_REG_PPC_UAMOR:
1065                 *val = get_reg_val(id, vcpu->arch.uamor);
1066                 break;
1067         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1068                 i = id - KVM_REG_PPC_MMCR0;
1069                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1070                 break;
1071         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1072                 i = id - KVM_REG_PPC_PMC1;
1073                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1074                 break;
1075         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1076                 i = id - KVM_REG_PPC_SPMC1;
1077                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1078                 break;
1079         case KVM_REG_PPC_SIAR:
1080                 *val = get_reg_val(id, vcpu->arch.siar);
1081                 break;
1082         case KVM_REG_PPC_SDAR:
1083                 *val = get_reg_val(id, vcpu->arch.sdar);
1084                 break;
1085         case KVM_REG_PPC_SIER:
1086                 *val = get_reg_val(id, vcpu->arch.sier);
1087                 break;
1088         case KVM_REG_PPC_IAMR:
1089                 *val = get_reg_val(id, vcpu->arch.iamr);
1090                 break;
1091         case KVM_REG_PPC_PSPB:
1092                 *val = get_reg_val(id, vcpu->arch.pspb);
1093                 break;
1094         case KVM_REG_PPC_DPDES:
1095                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1096                 break;
1097         case KVM_REG_PPC_DAWR:
1098                 *val = get_reg_val(id, vcpu->arch.dawr);
1099                 break;
1100         case KVM_REG_PPC_DAWRX:
1101                 *val = get_reg_val(id, vcpu->arch.dawrx);
1102                 break;
1103         case KVM_REG_PPC_CIABR:
1104                 *val = get_reg_val(id, vcpu->arch.ciabr);
1105                 break;
1106         case KVM_REG_PPC_CSIGR:
1107                 *val = get_reg_val(id, vcpu->arch.csigr);
1108                 break;
1109         case KVM_REG_PPC_TACR:
1110                 *val = get_reg_val(id, vcpu->arch.tacr);
1111                 break;
1112         case KVM_REG_PPC_TCSCR:
1113                 *val = get_reg_val(id, vcpu->arch.tcscr);
1114                 break;
1115         case KVM_REG_PPC_PID:
1116                 *val = get_reg_val(id, vcpu->arch.pid);
1117                 break;
1118         case KVM_REG_PPC_ACOP:
1119                 *val = get_reg_val(id, vcpu->arch.acop);
1120                 break;
1121         case KVM_REG_PPC_WORT:
1122                 *val = get_reg_val(id, vcpu->arch.wort);
1123                 break;
1124         case KVM_REG_PPC_VPA_ADDR:
1125                 spin_lock(&vcpu->arch.vpa_update_lock);
1126                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1127                 spin_unlock(&vcpu->arch.vpa_update_lock);
1128                 break;
1129         case KVM_REG_PPC_VPA_SLB:
1130                 spin_lock(&vcpu->arch.vpa_update_lock);
1131                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1132                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1133                 spin_unlock(&vcpu->arch.vpa_update_lock);
1134                 break;
1135         case KVM_REG_PPC_VPA_DTL:
1136                 spin_lock(&vcpu->arch.vpa_update_lock);
1137                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1138                 val->vpaval.length = vcpu->arch.dtl.len;
1139                 spin_unlock(&vcpu->arch.vpa_update_lock);
1140                 break;
1141         case KVM_REG_PPC_TB_OFFSET:
1142                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1143                 break;
1144         case KVM_REG_PPC_LPCR:
1145         case KVM_REG_PPC_LPCR_64:
1146                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1147                 break;
1148         case KVM_REG_PPC_PPR:
1149                 *val = get_reg_val(id, vcpu->arch.ppr);
1150                 break;
1151 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1152         case KVM_REG_PPC_TFHAR:
1153                 *val = get_reg_val(id, vcpu->arch.tfhar);
1154                 break;
1155         case KVM_REG_PPC_TFIAR:
1156                 *val = get_reg_val(id, vcpu->arch.tfiar);
1157                 break;
1158         case KVM_REG_PPC_TEXASR:
1159                 *val = get_reg_val(id, vcpu->arch.texasr);
1160                 break;
1161         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1162                 i = id - KVM_REG_PPC_TM_GPR0;
1163                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1164                 break;
1165         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1166         {
1167                 int j;
1168                 i = id - KVM_REG_PPC_TM_VSR0;
1169                 if (i < 32)
1170                         for (j = 0; j < TS_FPRWIDTH; j++)
1171                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1172                 else {
1173                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1174                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1175                         else
1176                                 r = -ENXIO;
1177                 }
1178                 break;
1179         }
1180         case KVM_REG_PPC_TM_CR:
1181                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1182                 break;
1183         case KVM_REG_PPC_TM_LR:
1184                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1185                 break;
1186         case KVM_REG_PPC_TM_CTR:
1187                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1188                 break;
1189         case KVM_REG_PPC_TM_FPSCR:
1190                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1191                 break;
1192         case KVM_REG_PPC_TM_AMR:
1193                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1194                 break;
1195         case KVM_REG_PPC_TM_PPR:
1196                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1197                 break;
1198         case KVM_REG_PPC_TM_VRSAVE:
1199                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1200                 break;
1201         case KVM_REG_PPC_TM_VSCR:
1202                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1203                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1204                 else
1205                         r = -ENXIO;
1206                 break;
1207         case KVM_REG_PPC_TM_DSCR:
1208                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1209                 break;
1210         case KVM_REG_PPC_TM_TAR:
1211                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1212                 break;
1213 #endif
1214         case KVM_REG_PPC_ARCH_COMPAT:
1215                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1216                 break;
1217         default:
1218                 r = -EINVAL;
1219                 break;
1220         }
1221
1222         return r;
1223 }
1224
1225 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1226                                  union kvmppc_one_reg *val)
1227 {
1228         int r = 0;
1229         long int i;
1230         unsigned long addr, len;
1231
1232         switch (id) {
1233         case KVM_REG_PPC_HIOR:
1234                 /* Only allow this to be set to zero */
1235                 if (set_reg_val(id, *val))
1236                         r = -EINVAL;
1237                 break;
1238         case KVM_REG_PPC_DABR:
1239                 vcpu->arch.dabr = set_reg_val(id, *val);
1240                 break;
1241         case KVM_REG_PPC_DABRX:
1242                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1243                 break;
1244         case KVM_REG_PPC_DSCR:
1245                 vcpu->arch.dscr = set_reg_val(id, *val);
1246                 break;
1247         case KVM_REG_PPC_PURR:
1248                 vcpu->arch.purr = set_reg_val(id, *val);
1249                 break;
1250         case KVM_REG_PPC_SPURR:
1251                 vcpu->arch.spurr = set_reg_val(id, *val);
1252                 break;
1253         case KVM_REG_PPC_AMR:
1254                 vcpu->arch.amr = set_reg_val(id, *val);
1255                 break;
1256         case KVM_REG_PPC_UAMOR:
1257                 vcpu->arch.uamor = set_reg_val(id, *val);
1258                 break;
1259         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1260                 i = id - KVM_REG_PPC_MMCR0;
1261                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1262                 break;
1263         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1264                 i = id - KVM_REG_PPC_PMC1;
1265                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1266                 break;
1267         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1268                 i = id - KVM_REG_PPC_SPMC1;
1269                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1270                 break;
1271         case KVM_REG_PPC_SIAR:
1272                 vcpu->arch.siar = set_reg_val(id, *val);
1273                 break;
1274         case KVM_REG_PPC_SDAR:
1275                 vcpu->arch.sdar = set_reg_val(id, *val);
1276                 break;
1277         case KVM_REG_PPC_SIER:
1278                 vcpu->arch.sier = set_reg_val(id, *val);
1279                 break;
1280         case KVM_REG_PPC_IAMR:
1281                 vcpu->arch.iamr = set_reg_val(id, *val);
1282                 break;
1283         case KVM_REG_PPC_PSPB:
1284                 vcpu->arch.pspb = set_reg_val(id, *val);
1285                 break;
1286         case KVM_REG_PPC_DPDES:
1287                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1288                 break;
1289         case KVM_REG_PPC_DAWR:
1290                 vcpu->arch.dawr = set_reg_val(id, *val);
1291                 break;
1292         case KVM_REG_PPC_DAWRX:
1293                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1294                 break;
1295         case KVM_REG_PPC_CIABR:
1296                 vcpu->arch.ciabr = set_reg_val(id, *val);
1297                 /* Don't allow setting breakpoints in hypervisor code */
1298                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1299                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1300                 break;
1301         case KVM_REG_PPC_CSIGR:
1302                 vcpu->arch.csigr = set_reg_val(id, *val);
1303                 break;
1304         case KVM_REG_PPC_TACR:
1305                 vcpu->arch.tacr = set_reg_val(id, *val);
1306                 break;
1307         case KVM_REG_PPC_TCSCR:
1308                 vcpu->arch.tcscr = set_reg_val(id, *val);
1309                 break;
1310         case KVM_REG_PPC_PID:
1311                 vcpu->arch.pid = set_reg_val(id, *val);
1312                 break;
1313         case KVM_REG_PPC_ACOP:
1314                 vcpu->arch.acop = set_reg_val(id, *val);
1315                 break;
1316         case KVM_REG_PPC_WORT:
1317                 vcpu->arch.wort = set_reg_val(id, *val);
1318                 break;
1319         case KVM_REG_PPC_VPA_ADDR:
1320                 addr = set_reg_val(id, *val);
1321                 r = -EINVAL;
1322                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1323                               vcpu->arch.dtl.next_gpa))
1324                         break;
1325                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1326                 break;
1327         case KVM_REG_PPC_VPA_SLB:
1328                 addr = val->vpaval.addr;
1329                 len = val->vpaval.length;
1330                 r = -EINVAL;
1331                 if (addr && !vcpu->arch.vpa.next_gpa)
1332                         break;
1333                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1334                 break;
1335         case KVM_REG_PPC_VPA_DTL:
1336                 addr = val->vpaval.addr;
1337                 len = val->vpaval.length;
1338                 r = -EINVAL;
1339                 if (addr && (len < sizeof(struct dtl_entry) ||
1340                              !vcpu->arch.vpa.next_gpa))
1341                         break;
1342                 len -= len % sizeof(struct dtl_entry);
1343                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1344                 break;
1345         case KVM_REG_PPC_TB_OFFSET:
1346                 /* round up to multiple of 2^24 */
1347                 vcpu->arch.vcore->tb_offset =
1348                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1349                 break;
1350         case KVM_REG_PPC_LPCR:
1351                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1352                 break;
1353         case KVM_REG_PPC_LPCR_64:
1354                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1355                 break;
1356         case KVM_REG_PPC_PPR:
1357                 vcpu->arch.ppr = set_reg_val(id, *val);
1358                 break;
1359 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1360         case KVM_REG_PPC_TFHAR:
1361                 vcpu->arch.tfhar = set_reg_val(id, *val);
1362                 break;
1363         case KVM_REG_PPC_TFIAR:
1364                 vcpu->arch.tfiar = set_reg_val(id, *val);
1365                 break;
1366         case KVM_REG_PPC_TEXASR:
1367                 vcpu->arch.texasr = set_reg_val(id, *val);
1368                 break;
1369         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1370                 i = id - KVM_REG_PPC_TM_GPR0;
1371                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1372                 break;
1373         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1374         {
1375                 int j;
1376                 i = id - KVM_REG_PPC_TM_VSR0;
1377                 if (i < 32)
1378                         for (j = 0; j < TS_FPRWIDTH; j++)
1379                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1380                 else
1381                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1382                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1383                         else
1384                                 r = -ENXIO;
1385                 break;
1386         }
1387         case KVM_REG_PPC_TM_CR:
1388                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1389                 break;
1390         case KVM_REG_PPC_TM_LR:
1391                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1392                 break;
1393         case KVM_REG_PPC_TM_CTR:
1394                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1395                 break;
1396         case KVM_REG_PPC_TM_FPSCR:
1397                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1398                 break;
1399         case KVM_REG_PPC_TM_AMR:
1400                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1401                 break;
1402         case KVM_REG_PPC_TM_PPR:
1403                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1404                 break;
1405         case KVM_REG_PPC_TM_VRSAVE:
1406                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1407                 break;
1408         case KVM_REG_PPC_TM_VSCR:
1409                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1410                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1411                 else
1412                         r = - ENXIO;
1413                 break;
1414         case KVM_REG_PPC_TM_DSCR:
1415                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1416                 break;
1417         case KVM_REG_PPC_TM_TAR:
1418                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1419                 break;
1420 #endif
1421         case KVM_REG_PPC_ARCH_COMPAT:
1422                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1423                 break;
1424         default:
1425                 r = -EINVAL;
1426                 break;
1427         }
1428
1429         return r;
1430 }
1431
1432 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1433 {
1434         struct kvmppc_vcore *vcore;
1435
1436         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1437
1438         if (vcore == NULL)
1439                 return NULL;
1440
1441         INIT_LIST_HEAD(&vcore->runnable_threads);
1442         spin_lock_init(&vcore->lock);
1443         spin_lock_init(&vcore->stoltb_lock);
1444         init_waitqueue_head(&vcore->wq);
1445         vcore->preempt_tb = TB_NIL;
1446         vcore->lpcr = kvm->arch.lpcr;
1447         vcore->first_vcpuid = core * threads_per_subcore;
1448         vcore->kvm = kvm;
1449         INIT_LIST_HEAD(&vcore->preempt_list);
1450
1451         return vcore;
1452 }
1453
1454 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1455 static struct debugfs_timings_element {
1456         const char *name;
1457         size_t offset;
1458 } timings[] = {
1459         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1460         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1461         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1462         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1463         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1464 };
1465
1466 #define N_TIMINGS       (sizeof(timings) / sizeof(timings[0]))
1467
1468 struct debugfs_timings_state {
1469         struct kvm_vcpu *vcpu;
1470         unsigned int    buflen;
1471         char            buf[N_TIMINGS * 100];
1472 };
1473
1474 static int debugfs_timings_open(struct inode *inode, struct file *file)
1475 {
1476         struct kvm_vcpu *vcpu = inode->i_private;
1477         struct debugfs_timings_state *p;
1478
1479         p = kzalloc(sizeof(*p), GFP_KERNEL);
1480         if (!p)
1481                 return -ENOMEM;
1482
1483         kvm_get_kvm(vcpu->kvm);
1484         p->vcpu = vcpu;
1485         file->private_data = p;
1486
1487         return nonseekable_open(inode, file);
1488 }
1489
1490 static int debugfs_timings_release(struct inode *inode, struct file *file)
1491 {
1492         struct debugfs_timings_state *p = file->private_data;
1493
1494         kvm_put_kvm(p->vcpu->kvm);
1495         kfree(p);
1496         return 0;
1497 }
1498
1499 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1500                                     size_t len, loff_t *ppos)
1501 {
1502         struct debugfs_timings_state *p = file->private_data;
1503         struct kvm_vcpu *vcpu = p->vcpu;
1504         char *s, *buf_end;
1505         struct kvmhv_tb_accumulator tb;
1506         u64 count;
1507         loff_t pos;
1508         ssize_t n;
1509         int i, loops;
1510         bool ok;
1511
1512         if (!p->buflen) {
1513                 s = p->buf;
1514                 buf_end = s + sizeof(p->buf);
1515                 for (i = 0; i < N_TIMINGS; ++i) {
1516                         struct kvmhv_tb_accumulator *acc;
1517
1518                         acc = (struct kvmhv_tb_accumulator *)
1519                                 ((unsigned long)vcpu + timings[i].offset);
1520                         ok = false;
1521                         for (loops = 0; loops < 1000; ++loops) {
1522                                 count = acc->seqcount;
1523                                 if (!(count & 1)) {
1524                                         smp_rmb();
1525                                         tb = *acc;
1526                                         smp_rmb();
1527                                         if (count == acc->seqcount) {
1528                                                 ok = true;
1529                                                 break;
1530                                         }
1531                                 }
1532                                 udelay(1);
1533                         }
1534                         if (!ok)
1535                                 snprintf(s, buf_end - s, "%s: stuck\n",
1536                                         timings[i].name);
1537                         else
1538                                 snprintf(s, buf_end - s,
1539                                         "%s: %llu %llu %llu %llu\n",
1540                                         timings[i].name, count / 2,
1541                                         tb_to_ns(tb.tb_total),
1542                                         tb_to_ns(tb.tb_min),
1543                                         tb_to_ns(tb.tb_max));
1544                         s += strlen(s);
1545                 }
1546                 p->buflen = s - p->buf;
1547         }
1548
1549         pos = *ppos;
1550         if (pos >= p->buflen)
1551                 return 0;
1552         if (len > p->buflen - pos)
1553                 len = p->buflen - pos;
1554         n = copy_to_user(buf, p->buf + pos, len);
1555         if (n) {
1556                 if (n == len)
1557                         return -EFAULT;
1558                 len -= n;
1559         }
1560         *ppos = pos + len;
1561         return len;
1562 }
1563
1564 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1565                                      size_t len, loff_t *ppos)
1566 {
1567         return -EACCES;
1568 }
1569
1570 static const struct file_operations debugfs_timings_ops = {
1571         .owner   = THIS_MODULE,
1572         .open    = debugfs_timings_open,
1573         .release = debugfs_timings_release,
1574         .read    = debugfs_timings_read,
1575         .write   = debugfs_timings_write,
1576         .llseek  = generic_file_llseek,
1577 };
1578
1579 /* Create a debugfs directory for the vcpu */
1580 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1581 {
1582         char buf[16];
1583         struct kvm *kvm = vcpu->kvm;
1584
1585         snprintf(buf, sizeof(buf), "vcpu%u", id);
1586         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1587                 return;
1588         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1589         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1590                 return;
1591         vcpu->arch.debugfs_timings =
1592                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1593                                     vcpu, &debugfs_timings_ops);
1594 }
1595
1596 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1597 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1598 {
1599 }
1600 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1601
1602 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1603                                                    unsigned int id)
1604 {
1605         struct kvm_vcpu *vcpu;
1606         int err = -EINVAL;
1607         int core;
1608         struct kvmppc_vcore *vcore;
1609
1610         core = id / threads_per_subcore;
1611         if (core >= KVM_MAX_VCORES)
1612                 goto out;
1613
1614         err = -ENOMEM;
1615         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1616         if (!vcpu)
1617                 goto out;
1618
1619         err = kvm_vcpu_init(vcpu, kvm, id);
1620         if (err)
1621                 goto free_vcpu;
1622
1623         vcpu->arch.shared = &vcpu->arch.shregs;
1624 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1625         /*
1626          * The shared struct is never shared on HV,
1627          * so we can always use host endianness
1628          */
1629 #ifdef __BIG_ENDIAN__
1630         vcpu->arch.shared_big_endian = true;
1631 #else
1632         vcpu->arch.shared_big_endian = false;
1633 #endif
1634 #endif
1635         vcpu->arch.mmcr[0] = MMCR0_FC;
1636         vcpu->arch.ctrl = CTRL_RUNLATCH;
1637         /* default to host PVR, since we can't spoof it */
1638         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1639         spin_lock_init(&vcpu->arch.vpa_update_lock);
1640         spin_lock_init(&vcpu->arch.tbacct_lock);
1641         vcpu->arch.busy_preempt = TB_NIL;
1642         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1643
1644         kvmppc_mmu_book3s_hv_init(vcpu);
1645
1646         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1647
1648         init_waitqueue_head(&vcpu->arch.cpu_run);
1649
1650         mutex_lock(&kvm->lock);
1651         vcore = kvm->arch.vcores[core];
1652         if (!vcore) {
1653                 vcore = kvmppc_vcore_create(kvm, core);
1654                 kvm->arch.vcores[core] = vcore;
1655                 kvm->arch.online_vcores++;
1656         }
1657         mutex_unlock(&kvm->lock);
1658
1659         if (!vcore)
1660                 goto free_vcpu;
1661
1662         spin_lock(&vcore->lock);
1663         ++vcore->num_threads;
1664         spin_unlock(&vcore->lock);
1665         vcpu->arch.vcore = vcore;
1666         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1667         vcpu->arch.thread_cpu = -1;
1668
1669         vcpu->arch.cpu_type = KVM_CPU_3S_64;
1670         kvmppc_sanity_check(vcpu);
1671
1672         debugfs_vcpu_init(vcpu, id);
1673
1674         return vcpu;
1675
1676 free_vcpu:
1677         kmem_cache_free(kvm_vcpu_cache, vcpu);
1678 out:
1679         return ERR_PTR(err);
1680 }
1681
1682 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1683 {
1684         if (vpa->pinned_addr)
1685                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1686                                         vpa->dirty);
1687 }
1688
1689 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1690 {
1691         spin_lock(&vcpu->arch.vpa_update_lock);
1692         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1693         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1694         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1695         spin_unlock(&vcpu->arch.vpa_update_lock);
1696         kvm_vcpu_uninit(vcpu);
1697         kmem_cache_free(kvm_vcpu_cache, vcpu);
1698 }
1699
1700 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1701 {
1702         /* Indicate we want to get back into the guest */
1703         return 1;
1704 }
1705
1706 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1707 {
1708         unsigned long dec_nsec, now;
1709
1710         now = get_tb();
1711         if (now > vcpu->arch.dec_expires) {
1712                 /* decrementer has already gone negative */
1713                 kvmppc_core_queue_dec(vcpu);
1714                 kvmppc_core_prepare_to_enter(vcpu);
1715                 return;
1716         }
1717         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1718                    / tb_ticks_per_sec;
1719         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1720                       HRTIMER_MODE_REL);
1721         vcpu->arch.timer_running = 1;
1722 }
1723
1724 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1725 {
1726         vcpu->arch.ceded = 0;
1727         if (vcpu->arch.timer_running) {
1728                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1729                 vcpu->arch.timer_running = 0;
1730         }
1731 }
1732
1733 extern void __kvmppc_vcore_entry(void);
1734
1735 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1736                                    struct kvm_vcpu *vcpu)
1737 {
1738         u64 now;
1739
1740         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1741                 return;
1742         spin_lock_irq(&vcpu->arch.tbacct_lock);
1743         now = mftb();
1744         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1745                 vcpu->arch.stolen_logged;
1746         vcpu->arch.busy_preempt = now;
1747         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1748         spin_unlock_irq(&vcpu->arch.tbacct_lock);
1749         --vc->n_runnable;
1750         list_del(&vcpu->arch.run_list);
1751 }
1752
1753 static int kvmppc_grab_hwthread(int cpu)
1754 {
1755         struct paca_struct *tpaca;
1756         long timeout = 10000;
1757
1758         tpaca = &paca[cpu];
1759
1760         /* Ensure the thread won't go into the kernel if it wakes */
1761         tpaca->kvm_hstate.kvm_vcpu = NULL;
1762         tpaca->kvm_hstate.kvm_vcore = NULL;
1763         tpaca->kvm_hstate.napping = 0;
1764         smp_wmb();
1765         tpaca->kvm_hstate.hwthread_req = 1;
1766
1767         /*
1768          * If the thread is already executing in the kernel (e.g. handling
1769          * a stray interrupt), wait for it to get back to nap mode.
1770          * The smp_mb() is to ensure that our setting of hwthread_req
1771          * is visible before we look at hwthread_state, so if this
1772          * races with the code at system_reset_pSeries and the thread
1773          * misses our setting of hwthread_req, we are sure to see its
1774          * setting of hwthread_state, and vice versa.
1775          */
1776         smp_mb();
1777         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1778                 if (--timeout <= 0) {
1779                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1780                         return -EBUSY;
1781                 }
1782                 udelay(1);
1783         }
1784         return 0;
1785 }
1786
1787 static void kvmppc_release_hwthread(int cpu)
1788 {
1789         struct paca_struct *tpaca;
1790
1791         tpaca = &paca[cpu];
1792         tpaca->kvm_hstate.hwthread_req = 0;
1793         tpaca->kvm_hstate.kvm_vcpu = NULL;
1794         tpaca->kvm_hstate.kvm_vcore = NULL;
1795         tpaca->kvm_hstate.kvm_split_mode = NULL;
1796 }
1797
1798 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1799 {
1800         int cpu;
1801         struct paca_struct *tpaca;
1802         struct kvmppc_vcore *mvc = vc->master_vcore;
1803
1804         cpu = vc->pcpu;
1805         if (vcpu) {
1806                 if (vcpu->arch.timer_running) {
1807                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1808                         vcpu->arch.timer_running = 0;
1809                 }
1810                 cpu += vcpu->arch.ptid;
1811                 vcpu->cpu = mvc->pcpu;
1812                 vcpu->arch.thread_cpu = cpu;
1813         }
1814         tpaca = &paca[cpu];
1815         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1816         tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1817         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1818         smp_wmb();
1819         tpaca->kvm_hstate.kvm_vcore = mvc;
1820         if (cpu != smp_processor_id())
1821                 kvmppc_ipi_thread(cpu);
1822 }
1823
1824 static void kvmppc_wait_for_nap(void)
1825 {
1826         int cpu = smp_processor_id();
1827         int i, loops;
1828
1829         for (loops = 0; loops < 1000000; ++loops) {
1830                 /*
1831                  * Check if all threads are finished.
1832                  * We set the vcore pointer when starting a thread
1833                  * and the thread clears it when finished, so we look
1834                  * for any threads that still have a non-NULL vcore ptr.
1835                  */
1836                 for (i = 1; i < threads_per_subcore; ++i)
1837                         if (paca[cpu + i].kvm_hstate.kvm_vcore)
1838                                 break;
1839                 if (i == threads_per_subcore) {
1840                         HMT_medium();
1841                         return;
1842                 }
1843                 HMT_low();
1844         }
1845         HMT_medium();
1846         for (i = 1; i < threads_per_subcore; ++i)
1847                 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1848                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1849 }
1850
1851 /*
1852  * Check that we are on thread 0 and that any other threads in
1853  * this core are off-line.  Then grab the threads so they can't
1854  * enter the kernel.
1855  */
1856 static int on_primary_thread(void)
1857 {
1858         int cpu = smp_processor_id();
1859         int thr;
1860
1861         /* Are we on a primary subcore? */
1862         if (cpu_thread_in_subcore(cpu))
1863                 return 0;
1864
1865         thr = 0;
1866         while (++thr < threads_per_subcore)
1867                 if (cpu_online(cpu + thr))
1868                         return 0;
1869
1870         /* Grab all hw threads so they can't go into the kernel */
1871         for (thr = 1; thr < threads_per_subcore; ++thr) {
1872                 if (kvmppc_grab_hwthread(cpu + thr)) {
1873                         /* Couldn't grab one; let the others go */
1874                         do {
1875                                 kvmppc_release_hwthread(cpu + thr);
1876                         } while (--thr > 0);
1877                         return 0;
1878                 }
1879         }
1880         return 1;
1881 }
1882
1883 /*
1884  * A list of virtual cores for each physical CPU.
1885  * These are vcores that could run but their runner VCPU tasks are
1886  * (or may be) preempted.
1887  */
1888 struct preempted_vcore_list {
1889         struct list_head        list;
1890         spinlock_t              lock;
1891 };
1892
1893 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
1894
1895 static void init_vcore_lists(void)
1896 {
1897         int cpu;
1898
1899         for_each_possible_cpu(cpu) {
1900                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
1901                 spin_lock_init(&lp->lock);
1902                 INIT_LIST_HEAD(&lp->list);
1903         }
1904 }
1905
1906 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
1907 {
1908         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
1909
1910         vc->vcore_state = VCORE_PREEMPT;
1911         vc->pcpu = smp_processor_id();
1912         if (vc->num_threads < threads_per_subcore) {
1913                 spin_lock(&lp->lock);
1914                 list_add_tail(&vc->preempt_list, &lp->list);
1915                 spin_unlock(&lp->lock);
1916         }
1917
1918         /* Start accumulating stolen time */
1919         kvmppc_core_start_stolen(vc);
1920 }
1921
1922 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
1923 {
1924         struct preempted_vcore_list *lp;
1925
1926         kvmppc_core_end_stolen(vc);
1927         if (!list_empty(&vc->preempt_list)) {
1928                 lp = &per_cpu(preempted_vcores, vc->pcpu);
1929                 spin_lock(&lp->lock);
1930                 list_del_init(&vc->preempt_list);
1931                 spin_unlock(&lp->lock);
1932         }
1933         vc->vcore_state = VCORE_INACTIVE;
1934 }
1935
1936 /*
1937  * This stores information about the virtual cores currently
1938  * assigned to a physical core.
1939  */
1940 struct core_info {
1941         int             n_subcores;
1942         int             max_subcore_threads;
1943         int             total_threads;
1944         int             subcore_threads[MAX_SUBCORES];
1945         struct kvm      *subcore_vm[MAX_SUBCORES];
1946         struct list_head vcs[MAX_SUBCORES];
1947 };
1948
1949 /*
1950  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
1951  * respectively in 2-way micro-threading (split-core) mode.
1952  */
1953 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
1954
1955 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
1956 {
1957         int sub;
1958
1959         memset(cip, 0, sizeof(*cip));
1960         cip->n_subcores = 1;
1961         cip->max_subcore_threads = vc->num_threads;
1962         cip->total_threads = vc->num_threads;
1963         cip->subcore_threads[0] = vc->num_threads;
1964         cip->subcore_vm[0] = vc->kvm;
1965         for (sub = 0; sub < MAX_SUBCORES; ++sub)
1966                 INIT_LIST_HEAD(&cip->vcs[sub]);
1967         list_add_tail(&vc->preempt_list, &cip->vcs[0]);
1968 }
1969
1970 static bool subcore_config_ok(int n_subcores, int n_threads)
1971 {
1972         /* Can only dynamically split if unsplit to begin with */
1973         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
1974                 return false;
1975         if (n_subcores > MAX_SUBCORES)
1976                 return false;
1977         if (n_subcores > 1) {
1978                 if (!(dynamic_mt_modes & 2))
1979                         n_subcores = 4;
1980                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
1981                         return false;
1982         }
1983
1984         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
1985 }
1986
1987 static void init_master_vcore(struct kvmppc_vcore *vc)
1988 {
1989         vc->master_vcore = vc;
1990         vc->entry_exit_map = 0;
1991         vc->in_guest = 0;
1992         vc->napping_threads = 0;
1993         vc->conferring_threads = 0;
1994 }
1995
1996 /*
1997  * See if the existing subcores can be split into 3 (or fewer) subcores
1998  * of at most two threads each, so we can fit in another vcore.  This
1999  * assumes there are at most two subcores and at most 6 threads in total.
2000  */
2001 static bool can_split_piggybacked_subcores(struct core_info *cip)
2002 {
2003         int sub, new_sub;
2004         int large_sub = -1;
2005         int thr;
2006         int n_subcores = cip->n_subcores;
2007         struct kvmppc_vcore *vc, *vcnext;
2008         struct kvmppc_vcore *master_vc = NULL;
2009
2010         for (sub = 0; sub < cip->n_subcores; ++sub) {
2011                 if (cip->subcore_threads[sub] <= 2)
2012                         continue;
2013                 if (large_sub >= 0)
2014                         return false;
2015                 large_sub = sub;
2016                 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2017                                       preempt_list);
2018                 if (vc->num_threads > 2)
2019                         return false;
2020                 n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
2021         }
2022         if (n_subcores > 3 || large_sub < 0)
2023                 return false;
2024
2025         /*
2026          * Seems feasible, so go through and move vcores to new subcores.
2027          * Note that when we have two or more vcores in one subcore,
2028          * all those vcores must have only one thread each.
2029          */
2030         new_sub = cip->n_subcores;
2031         thr = 0;
2032         sub = large_sub;
2033         list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
2034                 if (thr >= 2) {
2035                         list_del(&vc->preempt_list);
2036                         list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
2037                         /* vc->num_threads must be 1 */
2038                         if (++cip->subcore_threads[new_sub] == 1) {
2039                                 cip->subcore_vm[new_sub] = vc->kvm;
2040                                 init_master_vcore(vc);
2041                                 master_vc = vc;
2042                                 ++cip->n_subcores;
2043                         } else {
2044                                 vc->master_vcore = master_vc;
2045                                 ++new_sub;
2046                         }
2047                 }
2048                 thr += vc->num_threads;
2049         }
2050         cip->subcore_threads[large_sub] = 2;
2051         cip->max_subcore_threads = 2;
2052
2053         return true;
2054 }
2055
2056 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2057 {
2058         int n_threads = vc->num_threads;
2059         int sub;
2060
2061         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2062                 return false;
2063
2064         if (n_threads < cip->max_subcore_threads)
2065                 n_threads = cip->max_subcore_threads;
2066         if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
2067                 cip->max_subcore_threads = n_threads;
2068         } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
2069                    vc->num_threads <= 2) {
2070                 /*
2071                  * We may be able to fit another subcore in by
2072                  * splitting an existing subcore with 3 or 4
2073                  * threads into two 2-thread subcores, or one
2074                  * with 5 or 6 threads into three subcores.
2075                  * We can only do this if those subcores have
2076                  * piggybacked virtual cores.
2077                  */
2078                 if (!can_split_piggybacked_subcores(cip))
2079                         return false;
2080         } else {
2081                 return false;
2082         }
2083
2084         sub = cip->n_subcores;
2085         ++cip->n_subcores;
2086         cip->total_threads += vc->num_threads;
2087         cip->subcore_threads[sub] = vc->num_threads;
2088         cip->subcore_vm[sub] = vc->kvm;
2089         init_master_vcore(vc);
2090         list_del(&vc->preempt_list);
2091         list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
2092
2093         return true;
2094 }
2095
2096 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
2097                                   struct core_info *cip, int sub)
2098 {
2099         struct kvmppc_vcore *vc;
2100         int n_thr;
2101
2102         vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2103                               preempt_list);
2104
2105         /* require same VM and same per-core reg values */
2106         if (pvc->kvm != vc->kvm ||
2107             pvc->tb_offset != vc->tb_offset ||
2108             pvc->pcr != vc->pcr ||
2109             pvc->lpcr != vc->lpcr)
2110                 return false;
2111
2112         /* P8 guest with > 1 thread per core would see wrong TIR value */
2113         if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2114             (vc->num_threads > 1 || pvc->num_threads > 1))
2115                 return false;
2116
2117         n_thr = cip->subcore_threads[sub] + pvc->num_threads;
2118         if (n_thr > cip->max_subcore_threads) {
2119                 if (!subcore_config_ok(cip->n_subcores, n_thr))
2120                         return false;
2121                 cip->max_subcore_threads = n_thr;
2122         }
2123
2124         cip->total_threads += pvc->num_threads;
2125         cip->subcore_threads[sub] = n_thr;
2126         pvc->master_vcore = vc;
2127         list_del(&pvc->preempt_list);
2128         list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2129
2130         return true;
2131 }
2132
2133 /*
2134  * Work out whether it is possible to piggyback the execution of
2135  * vcore *pvc onto the execution of the other vcores described in *cip.
2136  */
2137 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2138                           int target_threads)
2139 {
2140         int sub;
2141
2142         if (cip->total_threads + pvc->num_threads > target_threads)
2143                 return false;
2144         for (sub = 0; sub < cip->n_subcores; ++sub)
2145                 if (cip->subcore_threads[sub] &&
2146                     can_piggyback_subcore(pvc, cip, sub))
2147                         return true;
2148
2149         if (can_dynamic_split(pvc, cip))
2150                 return true;
2151
2152         return false;
2153 }
2154
2155 static void prepare_threads(struct kvmppc_vcore *vc)
2156 {
2157         struct kvm_vcpu *vcpu, *vnext;
2158
2159         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2160                                  arch.run_list) {
2161                 if (signal_pending(vcpu->arch.run_task))
2162                         vcpu->arch.ret = -EINTR;
2163                 else if (vcpu->arch.vpa.update_pending ||
2164                          vcpu->arch.slb_shadow.update_pending ||
2165                          vcpu->arch.dtl.update_pending)
2166                         vcpu->arch.ret = RESUME_GUEST;
2167                 else
2168                         continue;
2169                 kvmppc_remove_runnable(vc, vcpu);
2170                 wake_up(&vcpu->arch.cpu_run);
2171         }
2172 }
2173
2174 static void collect_piggybacks(struct core_info *cip, int target_threads)
2175 {
2176         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2177         struct kvmppc_vcore *pvc, *vcnext;
2178
2179         spin_lock(&lp->lock);
2180         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2181                 if (!spin_trylock(&pvc->lock))
2182                         continue;
2183                 prepare_threads(pvc);
2184                 if (!pvc->n_runnable) {
2185                         list_del_init(&pvc->preempt_list);
2186                         if (pvc->runner == NULL) {
2187                                 pvc->vcore_state = VCORE_INACTIVE;
2188                                 kvmppc_core_end_stolen(pvc);
2189                         }
2190                         spin_unlock(&pvc->lock);
2191                         continue;
2192                 }
2193                 if (!can_piggyback(pvc, cip, target_threads)) {
2194                         spin_unlock(&pvc->lock);
2195                         continue;
2196                 }
2197                 kvmppc_core_end_stolen(pvc);
2198                 pvc->vcore_state = VCORE_PIGGYBACK;
2199                 if (cip->total_threads >= target_threads)
2200                         break;
2201         }
2202         spin_unlock(&lp->lock);
2203 }
2204
2205 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2206 {
2207         int still_running = 0;
2208         u64 now;
2209         long ret;
2210         struct kvm_vcpu *vcpu, *vnext;
2211
2212         spin_lock(&vc->lock);
2213         now = get_tb();
2214         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2215                                  arch.run_list) {
2216                 /* cancel pending dec exception if dec is positive */
2217                 if (now < vcpu->arch.dec_expires &&
2218                     kvmppc_core_pending_dec(vcpu))
2219                         kvmppc_core_dequeue_dec(vcpu);
2220
2221                 trace_kvm_guest_exit(vcpu);
2222
2223                 ret = RESUME_GUEST;
2224                 if (vcpu->arch.trap)
2225                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2226                                                     vcpu->arch.run_task);
2227
2228                 vcpu->arch.ret = ret;
2229                 vcpu->arch.trap = 0;
2230
2231                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2232                         if (vcpu->arch.pending_exceptions)
2233                                 kvmppc_core_prepare_to_enter(vcpu);
2234                         if (vcpu->arch.ceded)
2235                                 kvmppc_set_timer(vcpu);
2236                         else
2237                                 ++still_running;
2238                 } else {
2239                         kvmppc_remove_runnable(vc, vcpu);
2240                         wake_up(&vcpu->arch.cpu_run);
2241                 }
2242         }
2243         list_del_init(&vc->preempt_list);
2244         if (!is_master) {
2245                 if (still_running > 0) {
2246                         kvmppc_vcore_preempt(vc);
2247                 } else if (vc->runner) {
2248                         vc->vcore_state = VCORE_PREEMPT;
2249                         kvmppc_core_start_stolen(vc);
2250                 } else {
2251                         vc->vcore_state = VCORE_INACTIVE;
2252                 }
2253                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2254                         /* make sure there's a candidate runner awake */
2255                         vcpu = list_first_entry(&vc->runnable_threads,
2256                                                 struct kvm_vcpu, arch.run_list);
2257                         wake_up(&vcpu->arch.cpu_run);
2258                 }
2259         }
2260         spin_unlock(&vc->lock);
2261 }
2262
2263 /*
2264  * Run a set of guest threads on a physical core.
2265  * Called with vc->lock held.
2266  */
2267 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2268 {
2269         struct kvm_vcpu *vcpu, *vnext;
2270         int i;
2271         int srcu_idx;
2272         struct core_info core_info;
2273         struct kvmppc_vcore *pvc, *vcnext;
2274         struct kvm_split_mode split_info, *sip;
2275         int split, subcore_size, active;
2276         int sub;
2277         bool thr0_done;
2278         unsigned long cmd_bit, stat_bit;
2279         int pcpu, thr;
2280         int target_threads;
2281
2282         /*
2283          * Remove from the list any threads that have a signal pending
2284          * or need a VPA update done
2285          */
2286         prepare_threads(vc);
2287
2288         /* if the runner is no longer runnable, let the caller pick a new one */
2289         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2290                 return;
2291
2292         /*
2293          * Initialize *vc.
2294          */
2295         init_master_vcore(vc);
2296         vc->preempt_tb = TB_NIL;
2297
2298         /*
2299          * Make sure we are running on primary threads, and that secondary
2300          * threads are offline.  Also check if the number of threads in this
2301          * guest are greater than the current system threads per guest.
2302          */
2303         if ((threads_per_core > 1) &&
2304             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2305                 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2306                                          arch.run_list) {
2307                         vcpu->arch.ret = -EBUSY;
2308                         kvmppc_remove_runnable(vc, vcpu);
2309                         wake_up(&vcpu->arch.cpu_run);
2310                 }
2311                 goto out;
2312         }
2313
2314         /*
2315          * See if we could run any other vcores on the physical core
2316          * along with this one.
2317          */
2318         init_core_info(&core_info, vc);
2319         pcpu = smp_processor_id();
2320         target_threads = threads_per_subcore;
2321         if (target_smt_mode && target_smt_mode < target_threads)
2322                 target_threads = target_smt_mode;
2323         if (vc->num_threads < target_threads)
2324                 collect_piggybacks(&core_info, target_threads);
2325
2326         /* Decide on micro-threading (split-core) mode */
2327         subcore_size = threads_per_subcore;
2328         cmd_bit = stat_bit = 0;
2329         split = core_info.n_subcores;
2330         sip = NULL;
2331         if (split > 1) {
2332                 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2333                 if (split == 2 && (dynamic_mt_modes & 2)) {
2334                         cmd_bit = HID0_POWER8_1TO2LPAR;
2335                         stat_bit = HID0_POWER8_2LPARMODE;
2336                 } else {
2337                         split = 4;
2338                         cmd_bit = HID0_POWER8_1TO4LPAR;
2339                         stat_bit = HID0_POWER8_4LPARMODE;
2340                 }
2341                 subcore_size = MAX_SMT_THREADS / split;
2342                 sip = &split_info;
2343                 memset(&split_info, 0, sizeof(split_info));
2344                 split_info.rpr = mfspr(SPRN_RPR);
2345                 split_info.pmmar = mfspr(SPRN_PMMAR);
2346                 split_info.ldbar = mfspr(SPRN_LDBAR);
2347                 split_info.subcore_size = subcore_size;
2348                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2349                         split_info.master_vcs[sub] =
2350                                 list_first_entry(&core_info.vcs[sub],
2351                                         struct kvmppc_vcore, preempt_list);
2352                 /* order writes to split_info before kvm_split_mode pointer */
2353                 smp_wmb();
2354         }
2355         pcpu = smp_processor_id();
2356         for (thr = 0; thr < threads_per_subcore; ++thr)
2357                 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2358
2359         /* Initiate micro-threading (split-core) if required */
2360         if (cmd_bit) {
2361                 unsigned long hid0 = mfspr(SPRN_HID0);
2362
2363                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2364                 mb();
2365                 mtspr(SPRN_HID0, hid0);
2366                 isync();
2367                 for (;;) {
2368                         hid0 = mfspr(SPRN_HID0);
2369                         if (hid0 & stat_bit)
2370                                 break;
2371                         cpu_relax();
2372                 }
2373         }
2374
2375         /* Start all the threads */
2376         active = 0;
2377         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2378                 thr = subcore_thread_map[sub];
2379                 thr0_done = false;
2380                 active |= 1 << thr;
2381                 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2382                         pvc->pcpu = pcpu + thr;
2383                         list_for_each_entry(vcpu, &pvc->runnable_threads,
2384                                             arch.run_list) {
2385                                 kvmppc_start_thread(vcpu, pvc);
2386                                 kvmppc_create_dtl_entry(vcpu, pvc);
2387                                 trace_kvm_guest_enter(vcpu);
2388                                 if (!vcpu->arch.ptid)
2389                                         thr0_done = true;
2390                                 active |= 1 << (thr + vcpu->arch.ptid);
2391                         }
2392                         /*
2393                          * We need to start the first thread of each subcore
2394                          * even if it doesn't have a vcpu.
2395                          */
2396                         if (pvc->master_vcore == pvc && !thr0_done)
2397                                 kvmppc_start_thread(NULL, pvc);
2398                         thr += pvc->num_threads;
2399                 }
2400         }
2401
2402         /*
2403          * Ensure that split_info.do_nap is set after setting
2404          * the vcore pointer in the PACA of the secondaries.
2405          */
2406         smp_mb();
2407         if (cmd_bit)
2408                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2409
2410         /*
2411          * When doing micro-threading, poke the inactive threads as well.
2412          * This gets them to the nap instruction after kvm_do_nap,
2413          * which reduces the time taken to unsplit later.
2414          */
2415         if (split > 1)
2416                 for (thr = 1; thr < threads_per_subcore; ++thr)
2417                         if (!(active & (1 << thr)))
2418                                 kvmppc_ipi_thread(pcpu + thr);
2419
2420         vc->vcore_state = VCORE_RUNNING;
2421         preempt_disable();
2422
2423         trace_kvmppc_run_core(vc, 0);
2424
2425         for (sub = 0; sub < core_info.n_subcores; ++sub)
2426                 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2427                         spin_unlock(&pvc->lock);
2428
2429         kvm_guest_enter();
2430
2431         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2432
2433         __kvmppc_vcore_entry();
2434
2435         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2436
2437         spin_lock(&vc->lock);
2438         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2439         vc->vcore_state = VCORE_EXITING;
2440
2441         /* wait for secondary threads to finish writing their state to memory */
2442         kvmppc_wait_for_nap();
2443
2444         /* Return to whole-core mode if we split the core earlier */
2445         if (split > 1) {
2446                 unsigned long hid0 = mfspr(SPRN_HID0);
2447                 unsigned long loops = 0;
2448
2449                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2450                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2451                 mb();
2452                 mtspr(SPRN_HID0, hid0);
2453                 isync();
2454                 for (;;) {
2455                         hid0 = mfspr(SPRN_HID0);
2456                         if (!(hid0 & stat_bit))
2457                                 break;
2458                         cpu_relax();
2459                         ++loops;
2460                 }
2461                 split_info.do_nap = 0;
2462         }
2463
2464         /* Let secondaries go back to the offline loop */
2465         for (i = 0; i < threads_per_subcore; ++i) {
2466                 kvmppc_release_hwthread(pcpu + i);
2467                 if (sip && sip->napped[i])
2468                         kvmppc_ipi_thread(pcpu + i);
2469         }
2470
2471         spin_unlock(&vc->lock);
2472
2473         /* make sure updates to secondary vcpu structs are visible now */
2474         smp_mb();
2475         kvm_guest_exit();
2476
2477         for (sub = 0; sub < core_info.n_subcores; ++sub)
2478                 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2479                                          preempt_list)
2480                         post_guest_process(pvc, pvc == vc);
2481
2482         spin_lock(&vc->lock);
2483         preempt_enable();
2484
2485  out:
2486         vc->vcore_state = VCORE_INACTIVE;
2487         trace_kvmppc_run_core(vc, 1);
2488 }
2489
2490 /*
2491  * Wait for some other vcpu thread to execute us, and
2492  * wake us up when we need to handle something in the host.
2493  */
2494 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2495                                  struct kvm_vcpu *vcpu, int wait_state)
2496 {
2497         DEFINE_WAIT(wait);
2498
2499         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2500         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2501                 spin_unlock(&vc->lock);
2502                 schedule();
2503                 spin_lock(&vc->lock);
2504         }
2505         finish_wait(&vcpu->arch.cpu_run, &wait);
2506 }
2507
2508 /*
2509  * All the vcpus in this vcore are idle, so wait for a decrementer
2510  * or external interrupt to one of the vcpus.  vc->lock is held.
2511  */
2512 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2513 {
2514         struct kvm_vcpu *vcpu;
2515         int do_sleep = 1;
2516
2517         DEFINE_WAIT(wait);
2518
2519         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2520
2521         /*
2522          * Check one last time for pending exceptions and ceded state after
2523          * we put ourselves on the wait queue
2524          */
2525         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2526                 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
2527                         do_sleep = 0;
2528                         break;
2529                 }
2530         }
2531
2532         if (!do_sleep) {
2533                 finish_wait(&vc->wq, &wait);
2534                 return;
2535         }
2536
2537         vc->vcore_state = VCORE_SLEEPING;
2538         trace_kvmppc_vcore_blocked(vc, 0);
2539         spin_unlock(&vc->lock);
2540         schedule();
2541         finish_wait(&vc->wq, &wait);
2542         spin_lock(&vc->lock);
2543         vc->vcore_state = VCORE_INACTIVE;
2544         trace_kvmppc_vcore_blocked(vc, 1);
2545 }
2546
2547 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2548 {
2549         int n_ceded;
2550         struct kvmppc_vcore *vc;
2551         struct kvm_vcpu *v, *vn;
2552
2553         trace_kvmppc_run_vcpu_enter(vcpu);
2554
2555         kvm_run->exit_reason = 0;
2556         vcpu->arch.ret = RESUME_GUEST;
2557         vcpu->arch.trap = 0;
2558         kvmppc_update_vpas(vcpu);
2559
2560         /*
2561          * Synchronize with other threads in this virtual core
2562          */
2563         vc = vcpu->arch.vcore;
2564         spin_lock(&vc->lock);
2565         vcpu->arch.ceded = 0;
2566         vcpu->arch.run_task = current;
2567         vcpu->arch.kvm_run = kvm_run;
2568         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2569         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2570         vcpu->arch.busy_preempt = TB_NIL;
2571         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
2572         ++vc->n_runnable;
2573
2574         /*
2575          * This happens the first time this is called for a vcpu.
2576          * If the vcore is already running, we may be able to start
2577          * this thread straight away and have it join in.
2578          */
2579         if (!signal_pending(current)) {
2580                 if (vc->vcore_state == VCORE_PIGGYBACK) {
2581                         struct kvmppc_vcore *mvc = vc->master_vcore;
2582                         if (spin_trylock(&mvc->lock)) {
2583                                 if (mvc->vcore_state == VCORE_RUNNING &&
2584                                     !VCORE_IS_EXITING(mvc)) {
2585                                         kvmppc_create_dtl_entry(vcpu, vc);
2586                                         kvmppc_start_thread(vcpu, vc);
2587                                         trace_kvm_guest_enter(vcpu);
2588                                 }
2589                                 spin_unlock(&mvc->lock);
2590                         }
2591                 } else if (vc->vcore_state == VCORE_RUNNING &&
2592                            !VCORE_IS_EXITING(vc)) {
2593                         kvmppc_create_dtl_entry(vcpu, vc);
2594                         kvmppc_start_thread(vcpu, vc);
2595                         trace_kvm_guest_enter(vcpu);
2596                 } else if (vc->vcore_state == VCORE_SLEEPING) {
2597                         wake_up(&vc->wq);
2598                 }
2599
2600         }
2601
2602         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2603                !signal_pending(current)) {
2604                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2605                         kvmppc_vcore_end_preempt(vc);
2606
2607                 if (vc->vcore_state != VCORE_INACTIVE) {
2608                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2609                         continue;
2610                 }
2611                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
2612                                          arch.run_list) {
2613                         kvmppc_core_prepare_to_enter(v);
2614                         if (signal_pending(v->arch.run_task)) {
2615                                 kvmppc_remove_runnable(vc, v);
2616                                 v->stat.signal_exits++;
2617                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2618                                 v->arch.ret = -EINTR;
2619                                 wake_up(&v->arch.cpu_run);
2620                         }
2621                 }
2622                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2623                         break;
2624                 n_ceded = 0;
2625                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2626                         if (!v->arch.pending_exceptions)
2627                                 n_ceded += v->arch.ceded;
2628                         else
2629                                 v->arch.ceded = 0;
2630                 }
2631                 vc->runner = vcpu;
2632                 if (n_ceded == vc->n_runnable) {
2633                         kvmppc_vcore_blocked(vc);
2634                 } else if (need_resched()) {
2635                         kvmppc_vcore_preempt(vc);
2636                         /* Let something else run */
2637                         cond_resched_lock(&vc->lock);
2638                         if (vc->vcore_state == VCORE_PREEMPT)
2639                                 kvmppc_vcore_end_preempt(vc);
2640                 } else {
2641                         kvmppc_run_core(vc);
2642                 }
2643                 vc->runner = NULL;
2644         }
2645
2646         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2647                (vc->vcore_state == VCORE_RUNNING ||
2648                 vc->vcore_state == VCORE_EXITING ||
2649                 vc->vcore_state == VCORE_PIGGYBACK))
2650                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2651
2652         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2653                 kvmppc_vcore_end_preempt(vc);
2654
2655         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2656                 kvmppc_remove_runnable(vc, vcpu);
2657                 vcpu->stat.signal_exits++;
2658                 kvm_run->exit_reason = KVM_EXIT_INTR;
2659                 vcpu->arch.ret = -EINTR;
2660         }
2661
2662         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2663                 /* Wake up some vcpu to run the core */
2664                 v = list_first_entry(&vc->runnable_threads,
2665                                      struct kvm_vcpu, arch.run_list);
2666                 wake_up(&v->arch.cpu_run);
2667         }
2668
2669         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2670         spin_unlock(&vc->lock);
2671         return vcpu->arch.ret;
2672 }
2673
2674 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2675 {
2676         int r;
2677         int srcu_idx;
2678
2679         if (!vcpu->arch.sane) {
2680                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2681                 return -EINVAL;
2682         }
2683
2684         kvmppc_core_prepare_to_enter(vcpu);
2685
2686         /* No need to go into the guest when all we'll do is come back out */
2687         if (signal_pending(current)) {
2688                 run->exit_reason = KVM_EXIT_INTR;
2689                 return -EINTR;
2690         }
2691
2692         atomic_inc(&vcpu->kvm->arch.vcpus_running);
2693         /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2694         smp_mb();
2695
2696         /* On the first time here, set up HTAB and VRMA */
2697         if (!vcpu->kvm->arch.hpte_setup_done) {
2698                 r = kvmppc_hv_setup_htab_rma(vcpu);
2699                 if (r)
2700                         goto out;
2701         }
2702
2703         flush_fp_to_thread(current);
2704         flush_altivec_to_thread(current);
2705         flush_vsx_to_thread(current);
2706         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2707         vcpu->arch.pgdir = current->mm->pgd;
2708         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2709
2710         do {
2711                 r = kvmppc_run_vcpu(run, vcpu);
2712
2713                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2714                     !(vcpu->arch.shregs.msr & MSR_PR)) {
2715                         trace_kvm_hcall_enter(vcpu);
2716                         r = kvmppc_pseries_do_hcall(vcpu);
2717                         trace_kvm_hcall_exit(vcpu, r);
2718                         kvmppc_core_prepare_to_enter(vcpu);
2719                 } else if (r == RESUME_PAGE_FAULT) {
2720                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2721                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
2722                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2723                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2724                 }
2725         } while (is_kvmppc_resume_guest(r));
2726
2727  out:
2728         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2729         atomic_dec(&vcpu->kvm->arch.vcpus_running);
2730         return r;
2731 }
2732
2733 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2734                                      int linux_psize)
2735 {
2736         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2737
2738         if (!def->shift)
2739                 return;
2740         (*sps)->page_shift = def->shift;
2741         (*sps)->slb_enc = def->sllp;
2742         (*sps)->enc[0].page_shift = def->shift;
2743         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2744         /*
2745          * Add 16MB MPSS support if host supports it
2746          */
2747         if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2748                 (*sps)->enc[1].page_shift = 24;
2749                 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2750         }
2751         (*sps)++;
2752 }
2753
2754 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2755                                          struct kvm_ppc_smmu_info *info)
2756 {
2757         struct kvm_ppc_one_seg_page_size *sps;
2758
2759         info->flags = KVM_PPC_PAGE_SIZES_REAL;
2760         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2761                 info->flags |= KVM_PPC_1T_SEGMENTS;
2762         info->slb_size = mmu_slb_size;
2763
2764         /* We only support these sizes for now, and no muti-size segments */
2765         sps = &info->sps[0];
2766         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2767         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2768         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2769
2770         return 0;
2771 }
2772
2773 /*
2774  * Get (and clear) the dirty memory log for a memory slot.
2775  */
2776 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2777                                          struct kvm_dirty_log *log)
2778 {
2779         struct kvm_memslots *slots;
2780         struct kvm_memory_slot *memslot;
2781         int r;
2782         unsigned long n;
2783
2784         mutex_lock(&kvm->slots_lock);
2785
2786         r = -EINVAL;
2787         if (log->slot >= KVM_USER_MEM_SLOTS)
2788                 goto out;
2789
2790         slots = kvm_memslots(kvm);
2791         memslot = id_to_memslot(slots, log->slot);
2792         r = -ENOENT;
2793         if (!memslot->dirty_bitmap)
2794                 goto out;
2795
2796         n = kvm_dirty_bitmap_bytes(memslot);
2797         memset(memslot->dirty_bitmap, 0, n);
2798
2799         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2800         if (r)
2801                 goto out;
2802
2803         r = -EFAULT;
2804         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2805                 goto out;
2806
2807         r = 0;
2808 out:
2809         mutex_unlock(&kvm->slots_lock);
2810         return r;
2811 }
2812
2813 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2814                                         struct kvm_memory_slot *dont)
2815 {
2816         if (!dont || free->arch.rmap != dont->arch.rmap) {
2817                 vfree(free->arch.rmap);
2818                 free->arch.rmap = NULL;
2819         }
2820 }
2821
2822 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2823                                          unsigned long npages)
2824 {
2825         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2826         if (!slot->arch.rmap)
2827                 return -ENOMEM;
2828
2829         return 0;
2830 }
2831
2832 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2833                                         struct kvm_memory_slot *memslot,
2834                                         const struct kvm_userspace_memory_region *mem)
2835 {
2836         return 0;
2837 }
2838
2839 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2840                                 const struct kvm_userspace_memory_region *mem,
2841                                 const struct kvm_memory_slot *old,
2842                                 const struct kvm_memory_slot *new)
2843 {
2844         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2845         struct kvm_memslots *slots;
2846         struct kvm_memory_slot *memslot;
2847
2848         if (npages && old->npages) {
2849                 /*
2850                  * If modifying a memslot, reset all the rmap dirty bits.
2851                  * If this is a new memslot, we don't need to do anything
2852                  * since the rmap array starts out as all zeroes,
2853                  * i.e. no pages are dirty.
2854                  */
2855                 slots = kvm_memslots(kvm);
2856                 memslot = id_to_memslot(slots, mem->slot);
2857                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2858         }
2859 }
2860
2861 /*
2862  * Update LPCR values in kvm->arch and in vcores.
2863  * Caller must hold kvm->lock.
2864  */
2865 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2866 {
2867         long int i;
2868         u32 cores_done = 0;
2869
2870         if ((kvm->arch.lpcr & mask) == lpcr)
2871                 return;
2872
2873         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2874
2875         for (i = 0; i < KVM_MAX_VCORES; ++i) {
2876                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2877                 if (!vc)
2878                         continue;
2879                 spin_lock(&vc->lock);
2880                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2881                 spin_unlock(&vc->lock);
2882                 if (++cores_done >= kvm->arch.online_vcores)
2883                         break;
2884         }
2885 }
2886
2887 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2888 {
2889         return;
2890 }
2891
2892 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2893 {
2894         int err = 0;
2895         struct kvm *kvm = vcpu->kvm;
2896         unsigned long hva;
2897         struct kvm_memory_slot *memslot;
2898         struct vm_area_struct *vma;
2899         unsigned long lpcr = 0, senc;
2900         unsigned long psize, porder;
2901         int srcu_idx;
2902
2903         mutex_lock(&kvm->lock);
2904         if (kvm->arch.hpte_setup_done)
2905                 goto out;       /* another vcpu beat us to it */
2906
2907         /* Allocate hashed page table (if not done already) and reset it */
2908         if (!kvm->arch.hpt_virt) {
2909                 err = kvmppc_alloc_hpt(kvm, NULL);
2910                 if (err) {
2911                         pr_err("KVM: Couldn't alloc HPT\n");
2912                         goto out;
2913                 }
2914         }
2915
2916         /* Look up the memslot for guest physical address 0 */
2917         srcu_idx = srcu_read_lock(&kvm->srcu);
2918         memslot = gfn_to_memslot(kvm, 0);
2919
2920         /* We must have some memory at 0 by now */
2921         err = -EINVAL;
2922         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2923                 goto out_srcu;
2924
2925         /* Look up the VMA for the start of this memory slot */
2926         hva = memslot->userspace_addr;
2927         down_read(&current->mm->mmap_sem);
2928         vma = find_vma(current->mm, hva);
2929         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2930                 goto up_out;
2931
2932         psize = vma_kernel_pagesize(vma);
2933         porder = __ilog2(psize);
2934
2935         up_read(&current->mm->mmap_sem);
2936
2937         /* We can handle 4k, 64k or 16M pages in the VRMA */
2938         err = -EINVAL;
2939         if (!(psize == 0x1000 || psize == 0x10000 ||
2940               psize == 0x1000000))
2941                 goto out_srcu;
2942
2943         /* Update VRMASD field in the LPCR */
2944         senc = slb_pgsize_encoding(psize);
2945         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2946                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
2947         /* the -4 is to account for senc values starting at 0x10 */
2948         lpcr = senc << (LPCR_VRMASD_SH - 4);
2949
2950         /* Create HPTEs in the hash page table for the VRMA */
2951         kvmppc_map_vrma(vcpu, memslot, porder);
2952
2953         kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2954
2955         /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2956         smp_wmb();
2957         kvm->arch.hpte_setup_done = 1;
2958         err = 0;
2959  out_srcu:
2960         srcu_read_unlock(&kvm->srcu, srcu_idx);
2961  out:
2962         mutex_unlock(&kvm->lock);
2963         return err;
2964
2965  up_out:
2966         up_read(&current->mm->mmap_sem);
2967         goto out_srcu;
2968 }
2969
2970 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2971 {
2972         unsigned long lpcr, lpid;
2973         char buf[32];
2974
2975         /* Allocate the guest's logical partition ID */
2976
2977         lpid = kvmppc_alloc_lpid();
2978         if ((long)lpid < 0)
2979                 return -ENOMEM;
2980         kvm->arch.lpid = lpid;
2981
2982         /*
2983          * Since we don't flush the TLB when tearing down a VM,
2984          * and this lpid might have previously been used,
2985          * make sure we flush on each core before running the new VM.
2986          */
2987         cpumask_setall(&kvm->arch.need_tlb_flush);
2988
2989         /* Start out with the default set of hcalls enabled */
2990         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
2991                sizeof(kvm->arch.enabled_hcalls));
2992
2993         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2994
2995         /* Init LPCR for virtual RMA mode */
2996         kvm->arch.host_lpid = mfspr(SPRN_LPID);
2997         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2998         lpcr &= LPCR_PECE | LPCR_LPES;
2999         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3000                 LPCR_VPM0 | LPCR_VPM1;
3001         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3002                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3003         /* On POWER8 turn on online bit to enable PURR/SPURR */
3004         if (cpu_has_feature(CPU_FTR_ARCH_207S))
3005                 lpcr |= LPCR_ONL;
3006         kvm->arch.lpcr = lpcr;
3007
3008         /*
3009          * Track that we now have a HV mode VM active. This blocks secondary
3010          * CPU threads from coming online.
3011          */
3012         kvm_hv_vm_activated();
3013
3014         /*
3015          * Create a debugfs directory for the VM
3016          */
3017         snprintf(buf, sizeof(buf), "vm%d", current->pid);
3018         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3019         if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3020                 kvmppc_mmu_debugfs_init(kvm);
3021
3022         return 0;
3023 }
3024
3025 static void kvmppc_free_vcores(struct kvm *kvm)
3026 {
3027         long int i;
3028
3029         for (i = 0; i < KVM_MAX_VCORES; ++i)
3030                 kfree(kvm->arch.vcores[i]);
3031         kvm->arch.online_vcores = 0;
3032 }
3033
3034 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3035 {
3036         debugfs_remove_recursive(kvm->arch.debugfs_dir);
3037
3038         kvm_hv_vm_deactivated();
3039
3040         kvmppc_free_vcores(kvm);
3041
3042         kvmppc_free_hpt(kvm);
3043 }
3044
3045 /* We don't need to emulate any privileged instructions or dcbz */
3046 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3047                                      unsigned int inst, int *advance)
3048 {
3049         return EMULATE_FAIL;
3050 }
3051
3052 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3053                                         ulong spr_val)
3054 {
3055         return EMULATE_FAIL;
3056 }
3057
3058 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3059                                         ulong *spr_val)
3060 {
3061         return EMULATE_FAIL;
3062 }
3063
3064 static int kvmppc_core_check_processor_compat_hv(void)
3065 {
3066         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3067             !cpu_has_feature(CPU_FTR_ARCH_206))
3068                 return -EIO;
3069         return 0;
3070 }
3071
3072 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3073                                  unsigned int ioctl, unsigned long arg)
3074 {
3075         struct kvm *kvm __maybe_unused = filp->private_data;
3076         void __user *argp = (void __user *)arg;
3077         long r;
3078
3079         switch (ioctl) {
3080
3081         case KVM_PPC_ALLOCATE_HTAB: {
3082                 u32 htab_order;
3083
3084                 r = -EFAULT;
3085                 if (get_user(htab_order, (u32 __user *)argp))
3086                         break;
3087                 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3088                 if (r)
3089                         break;
3090                 r = -EFAULT;
3091                 if (put_user(htab_order, (u32 __user *)argp))
3092                         break;
3093                 r = 0;
3094                 break;
3095         }
3096
3097         case KVM_PPC_GET_HTAB_FD: {
3098                 struct kvm_get_htab_fd ghf;
3099
3100                 r = -EFAULT;
3101                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
3102                         break;
3103                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3104                 break;
3105         }
3106
3107         default:
3108                 r = -ENOTTY;
3109         }
3110
3111         return r;
3112 }
3113
3114 /*
3115  * List of hcall numbers to enable by default.
3116  * For compatibility with old userspace, we enable by default
3117  * all hcalls that were implemented before the hcall-enabling
3118  * facility was added.  Note this list should not include H_RTAS.
3119  */
3120 static unsigned int default_hcall_list[] = {
3121         H_REMOVE,
3122         H_ENTER,
3123         H_READ,
3124         H_PROTECT,
3125         H_BULK_REMOVE,
3126         H_GET_TCE,
3127         H_PUT_TCE,
3128         H_SET_DABR,
3129         H_SET_XDABR,
3130         H_CEDE,
3131         H_PROD,
3132         H_CONFER,
3133         H_REGISTER_VPA,
3134 #ifdef CONFIG_KVM_XICS
3135         H_EOI,
3136         H_CPPR,
3137         H_IPI,
3138         H_IPOLL,
3139         H_XIRR,
3140         H_XIRR_X,
3141 #endif
3142         0
3143 };
3144
3145 static void init_default_hcalls(void)
3146 {
3147         int i;
3148         unsigned int hcall;
3149
3150         for (i = 0; default_hcall_list[i]; ++i) {
3151                 hcall = default_hcall_list[i];
3152                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3153                 __set_bit(hcall / 4, default_enabled_hcalls);
3154         }
3155 }
3156
3157 static struct kvmppc_ops kvm_ops_hv = {
3158         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3159         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3160         .get_one_reg = kvmppc_get_one_reg_hv,
3161         .set_one_reg = kvmppc_set_one_reg_hv,
3162         .vcpu_load   = kvmppc_core_vcpu_load_hv,
3163         .vcpu_put    = kvmppc_core_vcpu_put_hv,
3164         .set_msr     = kvmppc_set_msr_hv,
3165         .vcpu_run    = kvmppc_vcpu_run_hv,
3166         .vcpu_create = kvmppc_core_vcpu_create_hv,
3167         .vcpu_free   = kvmppc_core_vcpu_free_hv,
3168         .check_requests = kvmppc_core_check_requests_hv,
3169         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
3170         .flush_memslot  = kvmppc_core_flush_memslot_hv,
3171         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3172         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
3173         .unmap_hva = kvm_unmap_hva_hv,
3174         .unmap_hva_range = kvm_unmap_hva_range_hv,
3175         .age_hva  = kvm_age_hva_hv,
3176         .test_age_hva = kvm_test_age_hva_hv,
3177         .set_spte_hva = kvm_set_spte_hva_hv,
3178         .mmu_destroy  = kvmppc_mmu_destroy_hv,
3179         .free_memslot = kvmppc_core_free_memslot_hv,
3180         .create_memslot = kvmppc_core_create_memslot_hv,
3181         .init_vm =  kvmppc_core_init_vm_hv,
3182         .destroy_vm = kvmppc_core_destroy_vm_hv,
3183         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3184         .emulate_op = kvmppc_core_emulate_op_hv,
3185         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3186         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3187         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3188         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3189         .hcall_implemented = kvmppc_hcall_impl_hv,
3190 };
3191
3192 static int kvmppc_book3s_init_hv(void)
3193 {
3194         int r;
3195         /*
3196          * FIXME!! Do we need to check on all cpus ?
3197          */
3198         r = kvmppc_core_check_processor_compat_hv();
3199         if (r < 0)
3200                 return -ENODEV;
3201
3202         kvm_ops_hv.owner = THIS_MODULE;
3203         kvmppc_hv_ops = &kvm_ops_hv;
3204
3205         init_default_hcalls();
3206
3207         init_vcore_lists();
3208
3209         r = kvmppc_mmu_hv_init();
3210         return r;
3211 }
3212
3213 static void kvmppc_book3s_exit_hv(void)
3214 {
3215         kvmppc_hv_ops = NULL;
3216 }
3217
3218 module_init(kvmppc_book3s_init_hv);
3219 module_exit(kvmppc_book3s_exit_hv);
3220 MODULE_LICENSE("GPL");
3221 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3222 MODULE_ALIAS("devname:kvm");