]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/platforms/iseries/mf.c
Merge Paulus' tree
[karo-tx-linux.git] / arch / powerpc / platforms / iseries / mf.c
1 /*
2  * Copyright (C) 2001 Troy D. Armstrong  IBM Corporation
3  * Copyright (C) 2004-2005 Stephen Rothwell  IBM Corporation
4  *
5  * This modules exists as an interface between a Linux secondary partition
6  * running on an iSeries and the primary partition's Virtual Service
7  * Processor (VSP) object.  The VSP has final authority over powering on/off
8  * all partitions in the iSeries.  It also provides miscellaneous low-level
9  * machine facility type operations.
10  *
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
25  */
26
27 #include <linux/types.h>
28 #include <linux/errno.h>
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/bcd.h>
35 #include <linux/rtc.h>
36
37 #include <asm/time.h>
38 #include <asm/uaccess.h>
39 #include <asm/paca.h>
40 #include <asm/abs_addr.h>
41 #include <asm/iseries/vio.h>
42 #include <asm/iseries/mf.h>
43 #include <asm/iseries/hv_lp_config.h>
44 #include <asm/iseries/it_lp_queue.h>
45
46 #include "setup.h"
47
48 extern int piranha_simulator;
49
50 /*
51  * This is the structure layout for the Machine Facilites LPAR event
52  * flows.
53  */
54 struct vsp_cmd_data {
55         u64 token;
56         u16 cmd;
57         HvLpIndex lp_index;
58         u8 result_code;
59         u32 reserved;
60         union {
61                 u64 state;      /* GetStateOut */
62                 u64 ipl_type;   /* GetIplTypeOut, Function02SelectIplTypeIn */
63                 u64 ipl_mode;   /* GetIplModeOut, Function02SelectIplModeIn */
64                 u64 page[4];    /* GetSrcHistoryIn */
65                 u64 flag;       /* GetAutoIplWhenPrimaryIplsOut,
66                                    SetAutoIplWhenPrimaryIplsIn,
67                                    WhiteButtonPowerOffIn,
68                                    Function08FastPowerOffIn,
69                                    IsSpcnRackPowerIncompleteOut */
70                 struct {
71                         u64 token;
72                         u64 address_type;
73                         u64 side;
74                         u32 length;
75                         u32 offset;
76                 } kern;         /* SetKernelImageIn, GetKernelImageIn,
77                                    SetKernelCmdLineIn, GetKernelCmdLineIn */
78                 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
79                 u8 reserved[80];
80         } sub_data;
81 };
82
83 struct vsp_rsp_data {
84         struct completion com;
85         struct vsp_cmd_data *response;
86 };
87
88 struct alloc_data {
89         u16 size;
90         u16 type;
91         u32 count;
92         u16 reserved1;
93         u8 reserved2;
94         HvLpIndex target_lp;
95 };
96
97 struct ce_msg_data;
98
99 typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
100
101 struct ce_msg_comp_data {
102         ce_msg_comp_hdlr handler;
103         void *token;
104 };
105
106 struct ce_msg_data {
107         u8 ce_msg[12];
108         char reserved[4];
109         struct ce_msg_comp_data *completion;
110 };
111
112 struct io_mf_lp_event {
113         struct HvLpEvent hp_lp_event;
114         u16 subtype_result_code;
115         u16 reserved1;
116         u32 reserved2;
117         union {
118                 struct alloc_data alloc;
119                 struct ce_msg_data ce_msg;
120                 struct vsp_cmd_data vsp_cmd;
121         } data;
122 };
123
124 #define subtype_data(a, b, c, d)        \
125                 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
126
127 /*
128  * All outgoing event traffic is kept on a FIFO queue.  The first
129  * pointer points to the one that is outstanding, and all new
130  * requests get stuck on the end.  Also, we keep a certain number of
131  * preallocated pending events so that we can operate very early in
132  * the boot up sequence (before kmalloc is ready).
133  */
134 struct pending_event {
135         struct pending_event *next;
136         struct io_mf_lp_event event;
137         MFCompleteHandler hdlr;
138         char dma_data[72];
139         unsigned dma_data_length;
140         unsigned remote_address;
141 };
142 static spinlock_t pending_event_spinlock;
143 static struct pending_event *pending_event_head;
144 static struct pending_event *pending_event_tail;
145 static struct pending_event *pending_event_avail;
146 static struct pending_event pending_event_prealloc[16];
147
148 /*
149  * Put a pending event onto the available queue, so it can get reused.
150  * Attention! You must have the pending_event_spinlock before calling!
151  */
152 static void free_pending_event(struct pending_event *ev)
153 {
154         if (ev != NULL) {
155                 ev->next = pending_event_avail;
156                 pending_event_avail = ev;
157         }
158 }
159
160 /*
161  * Enqueue the outbound event onto the stack.  If the queue was
162  * empty to begin with, we must also issue it via the Hypervisor
163  * interface.  There is a section of code below that will touch
164  * the first stack pointer without the protection of the pending_event_spinlock.
165  * This is OK, because we know that nobody else will be modifying
166  * the first pointer when we do this.
167  */
168 static int signal_event(struct pending_event *ev)
169 {
170         int rc = 0;
171         unsigned long flags;
172         int go = 1;
173         struct pending_event *ev1;
174         HvLpEvent_Rc hv_rc;
175
176         /* enqueue the event */
177         if (ev != NULL) {
178                 ev->next = NULL;
179                 spin_lock_irqsave(&pending_event_spinlock, flags);
180                 if (pending_event_head == NULL)
181                         pending_event_head = ev;
182                 else {
183                         go = 0;
184                         pending_event_tail->next = ev;
185                 }
186                 pending_event_tail = ev;
187                 spin_unlock_irqrestore(&pending_event_spinlock, flags);
188         }
189
190         /* send the event */
191         while (go) {
192                 go = 0;
193
194                 /* any DMA data to send beforehand? */
195                 if (pending_event_head->dma_data_length > 0)
196                         HvCallEvent_dmaToSp(pending_event_head->dma_data,
197                                         pending_event_head->remote_address,
198                                         pending_event_head->dma_data_length,
199                                         HvLpDma_Direction_LocalToRemote);
200
201                 hv_rc = HvCallEvent_signalLpEvent(
202                                 &pending_event_head->event.hp_lp_event);
203                 if (hv_rc != HvLpEvent_Rc_Good) {
204                         printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
205                                         "failed with %d\n", (int)hv_rc);
206
207                         spin_lock_irqsave(&pending_event_spinlock, flags);
208                         ev1 = pending_event_head;
209                         pending_event_head = pending_event_head->next;
210                         if (pending_event_head != NULL)
211                                 go = 1;
212                         spin_unlock_irqrestore(&pending_event_spinlock, flags);
213
214                         if (ev1 == ev)
215                                 rc = -EIO;
216                         else if (ev1->hdlr != NULL)
217                                 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
218
219                         spin_lock_irqsave(&pending_event_spinlock, flags);
220                         free_pending_event(ev1);
221                         spin_unlock_irqrestore(&pending_event_spinlock, flags);
222                 }
223         }
224
225         return rc;
226 }
227
228 /*
229  * Allocate a new pending_event structure, and initialize it.
230  */
231 static struct pending_event *new_pending_event(void)
232 {
233         struct pending_event *ev = NULL;
234         HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
235         unsigned long flags;
236         struct HvLpEvent *hev;
237
238         spin_lock_irqsave(&pending_event_spinlock, flags);
239         if (pending_event_avail != NULL) {
240                 ev = pending_event_avail;
241                 pending_event_avail = pending_event_avail->next;
242         }
243         spin_unlock_irqrestore(&pending_event_spinlock, flags);
244         if (ev == NULL) {
245                 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
246                 if (ev == NULL) {
247                         printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
248                                         sizeof(struct pending_event));
249                         return NULL;
250                 }
251         }
252         memset(ev, 0, sizeof(struct pending_event));
253         hev = &ev->event.hp_lp_event;
254         hev->xFlags.xValid = 1;
255         hev->xFlags.xAckType = HvLpEvent_AckType_ImmediateAck;
256         hev->xFlags.xAckInd = HvLpEvent_AckInd_DoAck;
257         hev->xFlags.xFunction = HvLpEvent_Function_Int;
258         hev->xType = HvLpEvent_Type_MachineFac;
259         hev->xSourceLp = HvLpConfig_getLpIndex();
260         hev->xTargetLp = primary_lp;
261         hev->xSizeMinus1 = sizeof(ev->event) - 1;
262         hev->xRc = HvLpEvent_Rc_Good;
263         hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
264                         HvLpEvent_Type_MachineFac);
265         hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
266                         HvLpEvent_Type_MachineFac);
267
268         return ev;
269 }
270
271 static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
272 {
273         struct pending_event *ev = new_pending_event();
274         int rc;
275         struct vsp_rsp_data response;
276
277         if (ev == NULL)
278                 return -ENOMEM;
279
280         init_completion(&response.com);
281         response.response = vsp_cmd;
282         ev->event.hp_lp_event.xSubtype = 6;
283         ev->event.hp_lp_event.x.xSubtypeData =
284                 subtype_data('M', 'F',  'V',  'I');
285         ev->event.data.vsp_cmd.token = (u64)&response;
286         ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
287         ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
288         ev->event.data.vsp_cmd.result_code = 0xFF;
289         ev->event.data.vsp_cmd.reserved = 0;
290         memcpy(&(ev->event.data.vsp_cmd.sub_data),
291                         &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
292         mb();
293
294         rc = signal_event(ev);
295         if (rc == 0)
296                 wait_for_completion(&response.com);
297         return rc;
298 }
299
300
301 /*
302  * Send a 12-byte CE message to the primary partition VSP object
303  */
304 static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
305 {
306         struct pending_event *ev = new_pending_event();
307
308         if (ev == NULL)
309                 return -ENOMEM;
310
311         ev->event.hp_lp_event.xSubtype = 0;
312         ev->event.hp_lp_event.x.xSubtypeData =
313                 subtype_data('M',  'F',  'C',  'E');
314         memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
315         ev->event.data.ce_msg.completion = completion;
316         return signal_event(ev);
317 }
318
319 /*
320  * Send a 12-byte CE message (with no data) to the primary partition VSP object
321  */
322 static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
323 {
324         u8 ce_msg[12];
325
326         memset(ce_msg, 0, sizeof(ce_msg));
327         ce_msg[3] = ce_op;
328         return signal_ce_msg(ce_msg, completion);
329 }
330
331 /*
332  * Send a 12-byte CE message and DMA data to the primary partition VSP object
333  */
334 static int dma_and_signal_ce_msg(char *ce_msg,
335                 struct ce_msg_comp_data *completion, void *dma_data,
336                 unsigned dma_data_length, unsigned remote_address)
337 {
338         struct pending_event *ev = new_pending_event();
339
340         if (ev == NULL)
341                 return -ENOMEM;
342
343         ev->event.hp_lp_event.xSubtype = 0;
344         ev->event.hp_lp_event.x.xSubtypeData =
345                 subtype_data('M', 'F', 'C', 'E');
346         memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
347         ev->event.data.ce_msg.completion = completion;
348         memcpy(ev->dma_data, dma_data, dma_data_length);
349         ev->dma_data_length = dma_data_length;
350         ev->remote_address = remote_address;
351         return signal_event(ev);
352 }
353
354 /*
355  * Initiate a nice (hopefully) shutdown of Linux.  We simply are
356  * going to try and send the init process a SIGINT signal.  If
357  * this fails (why?), we'll simply force it off in a not-so-nice
358  * manner.
359  */
360 static int shutdown(void)
361 {
362         int rc = kill_proc(1, SIGINT, 1);
363
364         if (rc) {
365                 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
366                                 "hard shutdown commencing\n", rc);
367                 mf_power_off();
368         } else
369                 printk(KERN_INFO "mf.c: init has been successfully notified "
370                                 "to proceed with shutdown\n");
371         return rc;
372 }
373
374 /*
375  * The primary partition VSP object is sending us a new
376  * event flow.  Handle it...
377  */
378 static void handle_int(struct io_mf_lp_event *event)
379 {
380         struct ce_msg_data *ce_msg_data;
381         struct ce_msg_data *pce_msg_data;
382         unsigned long flags;
383         struct pending_event *pev;
384
385         /* ack the interrupt */
386         event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
387         HvCallEvent_ackLpEvent(&event->hp_lp_event);
388
389         /* process interrupt */
390         switch (event->hp_lp_event.xSubtype) {
391         case 0: /* CE message */
392                 ce_msg_data = &event->data.ce_msg;
393                 switch (ce_msg_data->ce_msg[3]) {
394                 case 0x5B:      /* power control notification */
395                         if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
396                                 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
397                                 if (shutdown() == 0)
398                                         signal_ce_msg_simple(0xDB, NULL);
399                         }
400                         break;
401                 case 0xC0:      /* get time */
402                         spin_lock_irqsave(&pending_event_spinlock, flags);
403                         pev = pending_event_head;
404                         if (pev != NULL)
405                                 pending_event_head = pending_event_head->next;
406                         spin_unlock_irqrestore(&pending_event_spinlock, flags);
407                         if (pev == NULL)
408                                 break;
409                         pce_msg_data = &pev->event.data.ce_msg;
410                         if (pce_msg_data->ce_msg[3] != 0x40)
411                                 break;
412                         if (pce_msg_data->completion != NULL) {
413                                 ce_msg_comp_hdlr handler =
414                                         pce_msg_data->completion->handler;
415                                 void *token = pce_msg_data->completion->token;
416
417                                 if (handler != NULL)
418                                         (*handler)(token, ce_msg_data);
419                         }
420                         spin_lock_irqsave(&pending_event_spinlock, flags);
421                         free_pending_event(pev);
422                         spin_unlock_irqrestore(&pending_event_spinlock, flags);
423                         /* send next waiting event */
424                         if (pending_event_head != NULL)
425                                 signal_event(NULL);
426                         break;
427                 }
428                 break;
429         case 1: /* IT sys shutdown */
430                 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
431                 shutdown();
432                 break;
433         }
434 }
435
436 /*
437  * The primary partition VSP object is acknowledging the receipt
438  * of a flow we sent to them.  If there are other flows queued
439  * up, we must send another one now...
440  */
441 static void handle_ack(struct io_mf_lp_event *event)
442 {
443         unsigned long flags;
444         struct pending_event *two = NULL;
445         unsigned long free_it = 0;
446         struct ce_msg_data *ce_msg_data;
447         struct ce_msg_data *pce_msg_data;
448         struct vsp_rsp_data *rsp;
449
450         /* handle current event */
451         if (pending_event_head == NULL) {
452                 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
453                 return;
454         }
455
456         switch (event->hp_lp_event.xSubtype) {
457         case 0:     /* CE msg */
458                 ce_msg_data = &event->data.ce_msg;
459                 if (ce_msg_data->ce_msg[3] != 0x40) {
460                         free_it = 1;
461                         break;
462                 }
463                 if (ce_msg_data->ce_msg[2] == 0)
464                         break;
465                 free_it = 1;
466                 pce_msg_data = &pending_event_head->event.data.ce_msg;
467                 if (pce_msg_data->completion != NULL) {
468                         ce_msg_comp_hdlr handler =
469                                 pce_msg_data->completion->handler;
470                         void *token = pce_msg_data->completion->token;
471
472                         if (handler != NULL)
473                                 (*handler)(token, ce_msg_data);
474                 }
475                 break;
476         case 4: /* allocate */
477         case 5: /* deallocate */
478                 if (pending_event_head->hdlr != NULL)
479                         (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
480                 free_it = 1;
481                 break;
482         case 6:
483                 free_it = 1;
484                 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
485                 if (rsp == NULL) {
486                         printk(KERN_ERR "mf.c: no rsp\n");
487                         break;
488                 }
489                 if (rsp->response != NULL)
490                         memcpy(rsp->response, &event->data.vsp_cmd,
491                                         sizeof(event->data.vsp_cmd));
492                 complete(&rsp->com);
493                 break;
494         }
495
496         /* remove from queue */
497         spin_lock_irqsave(&pending_event_spinlock, flags);
498         if ((pending_event_head != NULL) && (free_it == 1)) {
499                 struct pending_event *oldHead = pending_event_head;
500
501                 pending_event_head = pending_event_head->next;
502                 two = pending_event_head;
503                 free_pending_event(oldHead);
504         }
505         spin_unlock_irqrestore(&pending_event_spinlock, flags);
506
507         /* send next waiting event */
508         if (two != NULL)
509                 signal_event(NULL);
510 }
511
512 /*
513  * This is the generic event handler we are registering with
514  * the Hypervisor.  Ensure the flows are for us, and then
515  * parse it enough to know if it is an interrupt or an
516  * acknowledge.
517  */
518 static void hv_handler(struct HvLpEvent *event, struct pt_regs *regs)
519 {
520         if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
521                 switch(event->xFlags.xFunction) {
522                 case HvLpEvent_Function_Ack:
523                         handle_ack((struct io_mf_lp_event *)event);
524                         break;
525                 case HvLpEvent_Function_Int:
526                         handle_int((struct io_mf_lp_event *)event);
527                         break;
528                 default:
529                         printk(KERN_ERR "mf.c: non ack/int event received\n");
530                         break;
531                 }
532         } else
533                 printk(KERN_ERR "mf.c: alien event received\n");
534 }
535
536 /*
537  * Global kernel interface to allocate and seed events into the
538  * Hypervisor.
539  */
540 void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
541                 unsigned size, unsigned count, MFCompleteHandler hdlr,
542                 void *user_token)
543 {
544         struct pending_event *ev = new_pending_event();
545         int rc;
546
547         if (ev == NULL) {
548                 rc = -ENOMEM;
549         } else {
550                 ev->event.hp_lp_event.xSubtype = 4;
551                 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
552                 ev->event.hp_lp_event.x.xSubtypeData =
553                         subtype_data('M', 'F', 'M', 'A');
554                 ev->event.data.alloc.target_lp = target_lp;
555                 ev->event.data.alloc.type = type;
556                 ev->event.data.alloc.size = size;
557                 ev->event.data.alloc.count = count;
558                 ev->hdlr = hdlr;
559                 rc = signal_event(ev);
560         }
561         if ((rc != 0) && (hdlr != NULL))
562                 (*hdlr)(user_token, rc);
563 }
564 EXPORT_SYMBOL(mf_allocate_lp_events);
565
566 /*
567  * Global kernel interface to unseed and deallocate events already in
568  * Hypervisor.
569  */
570 void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
571                 unsigned count, MFCompleteHandler hdlr, void *user_token)
572 {
573         struct pending_event *ev = new_pending_event();
574         int rc;
575
576         if (ev == NULL)
577                 rc = -ENOMEM;
578         else {
579                 ev->event.hp_lp_event.xSubtype = 5;
580                 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
581                 ev->event.hp_lp_event.x.xSubtypeData =
582                         subtype_data('M', 'F', 'M', 'D');
583                 ev->event.data.alloc.target_lp = target_lp;
584                 ev->event.data.alloc.type = type;
585                 ev->event.data.alloc.count = count;
586                 ev->hdlr = hdlr;
587                 rc = signal_event(ev);
588         }
589         if ((rc != 0) && (hdlr != NULL))
590                 (*hdlr)(user_token, rc);
591 }
592 EXPORT_SYMBOL(mf_deallocate_lp_events);
593
594 /*
595  * Global kernel interface to tell the VSP object in the primary
596  * partition to power this partition off.
597  */
598 void mf_power_off(void)
599 {
600         printk(KERN_INFO "mf.c: Down it goes...\n");
601         signal_ce_msg_simple(0x4d, NULL);
602         for (;;)
603                 ;
604 }
605
606 /*
607  * Global kernel interface to tell the VSP object in the primary
608  * partition to reboot this partition.
609  */
610 void mf_reboot(void)
611 {
612         printk(KERN_INFO "mf.c: Preparing to bounce...\n");
613         signal_ce_msg_simple(0x4e, NULL);
614         for (;;)
615                 ;
616 }
617
618 /*
619  * Display a single word SRC onto the VSP control panel.
620  */
621 void mf_display_src(u32 word)
622 {
623         u8 ce[12];
624
625         memset(ce, 0, sizeof(ce));
626         ce[3] = 0x4a;
627         ce[7] = 0x01;
628         ce[8] = word >> 24;
629         ce[9] = word >> 16;
630         ce[10] = word >> 8;
631         ce[11] = word;
632         signal_ce_msg(ce, NULL);
633 }
634
635 /*
636  * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
637  */
638 void mf_display_progress(u16 value)
639 {
640         u8 ce[12];
641         u8 src[72];
642
643         memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
644         memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
645                 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
646                 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
647                 "\x00\x00\x00\x00PROGxxxx                        ",
648                 72);
649         src[6] = value >> 8;
650         src[7] = value & 255;
651         src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
652         src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
653         src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
654         src[47] = "0123456789ABCDEF"[value & 15];
655         dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
656 }
657
658 /*
659  * Clear the VSP control panel.  Used to "erase" an SRC that was
660  * previously displayed.
661  */
662 void mf_clear_src(void)
663 {
664         signal_ce_msg_simple(0x4b, NULL);
665 }
666
667 /*
668  * Initialization code here.
669  */
670 void mf_init(void)
671 {
672         int i;
673
674         /* initialize */
675         spin_lock_init(&pending_event_spinlock);
676         for (i = 0;
677              i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc);
678              ++i)
679                 free_pending_event(&pending_event_prealloc[i]);
680         HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
681
682         /* virtual continue ack */
683         signal_ce_msg_simple(0x57, NULL);
684
685         /* initialization complete */
686         printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
687                         "initialized\n");
688 }
689
690 struct rtc_time_data {
691         struct completion com;
692         struct ce_msg_data ce_msg;
693         int rc;
694 };
695
696 static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
697 {
698         struct rtc_time_data *rtc = token;
699
700         memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
701         rtc->rc = 0;
702         complete(&rtc->com);
703 }
704
705 static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
706 {
707         tm->tm_wday = 0;
708         tm->tm_yday = 0;
709         tm->tm_isdst = 0;
710         if (rc) {
711                 tm->tm_sec = 0;
712                 tm->tm_min = 0;
713                 tm->tm_hour = 0;
714                 tm->tm_mday = 15;
715                 tm->tm_mon = 5;
716                 tm->tm_year = 52;
717                 return rc;
718         }
719
720         if ((ce_msg[2] == 0xa9) ||
721             (ce_msg[2] == 0xaf)) {
722                 /* TOD clock is not set */
723                 tm->tm_sec = 1;
724                 tm->tm_min = 1;
725                 tm->tm_hour = 1;
726                 tm->tm_mday = 10;
727                 tm->tm_mon = 8;
728                 tm->tm_year = 71;
729                 mf_set_rtc(tm);
730         }
731         {
732                 u8 year = ce_msg[5];
733                 u8 sec = ce_msg[6];
734                 u8 min = ce_msg[7];
735                 u8 hour = ce_msg[8];
736                 u8 day = ce_msg[10];
737                 u8 mon = ce_msg[11];
738
739                 BCD_TO_BIN(sec);
740                 BCD_TO_BIN(min);
741                 BCD_TO_BIN(hour);
742                 BCD_TO_BIN(day);
743                 BCD_TO_BIN(mon);
744                 BCD_TO_BIN(year);
745
746                 if (year <= 69)
747                         year += 100;
748
749                 tm->tm_sec = sec;
750                 tm->tm_min = min;
751                 tm->tm_hour = hour;
752                 tm->tm_mday = day;
753                 tm->tm_mon = mon;
754                 tm->tm_year = year;
755         }
756
757         return 0;
758 }
759
760 int mf_get_rtc(struct rtc_time *tm)
761 {
762         struct ce_msg_comp_data ce_complete;
763         struct rtc_time_data rtc_data;
764         int rc;
765
766         memset(&ce_complete, 0, sizeof(ce_complete));
767         memset(&rtc_data, 0, sizeof(rtc_data));
768         init_completion(&rtc_data.com);
769         ce_complete.handler = &get_rtc_time_complete;
770         ce_complete.token = &rtc_data;
771         rc = signal_ce_msg_simple(0x40, &ce_complete);
772         if (rc)
773                 return rc;
774         wait_for_completion(&rtc_data.com);
775         return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
776 }
777
778 struct boot_rtc_time_data {
779         int busy;
780         struct ce_msg_data ce_msg;
781         int rc;
782 };
783
784 static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
785 {
786         struct boot_rtc_time_data *rtc = token;
787
788         memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
789         rtc->rc = 0;
790         rtc->busy = 0;
791 }
792
793 int mf_get_boot_rtc(struct rtc_time *tm)
794 {
795         struct ce_msg_comp_data ce_complete;
796         struct boot_rtc_time_data rtc_data;
797         int rc;
798
799         memset(&ce_complete, 0, sizeof(ce_complete));
800         memset(&rtc_data, 0, sizeof(rtc_data));
801         rtc_data.busy = 1;
802         ce_complete.handler = &get_boot_rtc_time_complete;
803         ce_complete.token = &rtc_data;
804         rc = signal_ce_msg_simple(0x40, &ce_complete);
805         if (rc)
806                 return rc;
807         /* We need to poll here as we are not yet taking interrupts */
808         while (rtc_data.busy) {
809                 if (hvlpevent_is_pending())
810                         process_hvlpevents(NULL);
811         }
812         return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
813 }
814
815 int mf_set_rtc(struct rtc_time *tm)
816 {
817         char ce_time[12];
818         u8 day, mon, hour, min, sec, y1, y2;
819         unsigned year;
820
821         year = 1900 + tm->tm_year;
822         y1 = year / 100;
823         y2 = year % 100;
824
825         sec = tm->tm_sec;
826         min = tm->tm_min;
827         hour = tm->tm_hour;
828         day = tm->tm_mday;
829         mon = tm->tm_mon + 1;
830
831         BIN_TO_BCD(sec);
832         BIN_TO_BCD(min);
833         BIN_TO_BCD(hour);
834         BIN_TO_BCD(mon);
835         BIN_TO_BCD(day);
836         BIN_TO_BCD(y1);
837         BIN_TO_BCD(y2);
838
839         memset(ce_time, 0, sizeof(ce_time));
840         ce_time[3] = 0x41;
841         ce_time[4] = y1;
842         ce_time[5] = y2;
843         ce_time[6] = sec;
844         ce_time[7] = min;
845         ce_time[8] = hour;
846         ce_time[10] = day;
847         ce_time[11] = mon;
848
849         return signal_ce_msg(ce_time, NULL);
850 }
851
852 #ifdef CONFIG_PROC_FS
853
854 static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
855                 int count, int *eof, void *data)
856 {
857         int len;
858         char *p;
859         struct vsp_cmd_data vsp_cmd;
860         int rc;
861         dma_addr_t dma_addr;
862
863         /* The HV appears to return no more than 256 bytes of command line */
864         if (off >= 256)
865                 return 0;
866         if ((off + count) > 256)
867                 count = 256 - off;
868
869         dma_addr = dma_map_single(iSeries_vio_dev, page, off + count,
870                         DMA_FROM_DEVICE);
871         if (dma_mapping_error(dma_addr))
872                 return -ENOMEM;
873         memset(page, 0, off + count);
874         memset(&vsp_cmd, 0, sizeof(vsp_cmd));
875         vsp_cmd.cmd = 33;
876         vsp_cmd.sub_data.kern.token = dma_addr;
877         vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
878         vsp_cmd.sub_data.kern.side = (u64)data;
879         vsp_cmd.sub_data.kern.length = off + count;
880         mb();
881         rc = signal_vsp_instruction(&vsp_cmd);
882         dma_unmap_single(iSeries_vio_dev, dma_addr, off + count,
883                         DMA_FROM_DEVICE);
884         if (rc)
885                 return rc;
886         if (vsp_cmd.result_code != 0)
887                 return -ENOMEM;
888         p = page;
889         len = 0;
890         while (len < (off + count)) {
891                 if ((*p == '\0') || (*p == '\n')) {
892                         if (*p == '\0')
893                                 *p = '\n';
894                         p++;
895                         len++;
896                         *eof = 1;
897                         break;
898                 }
899                 p++;
900                 len++;
901         }
902
903         if (len < off) {
904                 *eof = 1;
905                 len = 0;
906         }
907         return len;
908 }
909
910 #if 0
911 static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
912 {
913         struct vsp_cmd_data vsp_cmd;
914         int rc;
915         int len = *size;
916         dma_addr_t dma_addr;
917
918         dma_addr = dma_map_single(iSeries_vio_dev, buffer, len,
919                         DMA_FROM_DEVICE);
920         memset(buffer, 0, len);
921         memset(&vsp_cmd, 0, sizeof(vsp_cmd));
922         vsp_cmd.cmd = 32;
923         vsp_cmd.sub_data.kern.token = dma_addr;
924         vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
925         vsp_cmd.sub_data.kern.side = side;
926         vsp_cmd.sub_data.kern.offset = offset;
927         vsp_cmd.sub_data.kern.length = len;
928         mb();
929         rc = signal_vsp_instruction(&vsp_cmd);
930         if (rc == 0) {
931                 if (vsp_cmd.result_code == 0)
932                         *size = vsp_cmd.sub_data.length_out;
933                 else
934                         rc = -ENOMEM;
935         }
936
937         dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE);
938
939         return rc;
940 }
941
942 static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
943                 int count, int *eof, void *data)
944 {
945         int sizeToGet = count;
946
947         if (!capable(CAP_SYS_ADMIN))
948                 return -EACCES;
949
950         if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
951                 if (sizeToGet != 0) {
952                         *start = page + off;
953                         return sizeToGet;
954                 }
955                 *eof = 1;
956                 return 0;
957         }
958         *eof = 1;
959         return 0;
960 }
961 #endif
962
963 static int proc_mf_dump_side(char *page, char **start, off_t off,
964                 int count, int *eof, void *data)
965 {
966         int len;
967         char mf_current_side = ' ';
968         struct vsp_cmd_data vsp_cmd;
969
970         memset(&vsp_cmd, 0, sizeof(vsp_cmd));
971         vsp_cmd.cmd = 2;
972         vsp_cmd.sub_data.ipl_type = 0;
973         mb();
974
975         if (signal_vsp_instruction(&vsp_cmd) == 0) {
976                 if (vsp_cmd.result_code == 0) {
977                         switch (vsp_cmd.sub_data.ipl_type) {
978                         case 0: mf_current_side = 'A';
979                                 break;
980                         case 1: mf_current_side = 'B';
981                                 break;
982                         case 2: mf_current_side = 'C';
983                                 break;
984                         default:        mf_current_side = 'D';
985                                 break;
986                         }
987                 }
988         }
989
990         len = sprintf(page, "%c\n", mf_current_side);
991
992         if (len <= (off + count))
993                 *eof = 1;
994         *start = page + off;
995         len -= off;
996         if (len > count)
997                 len = count;
998         if (len < 0)
999                 len = 0;
1000         return len;
1001 }
1002
1003 static int proc_mf_change_side(struct file *file, const char __user *buffer,
1004                 unsigned long count, void *data)
1005 {
1006         char side;
1007         u64 newSide;
1008         struct vsp_cmd_data vsp_cmd;
1009
1010         if (!capable(CAP_SYS_ADMIN))
1011                 return -EACCES;
1012
1013         if (count == 0)
1014                 return 0;
1015
1016         if (get_user(side, buffer))
1017                 return -EFAULT;
1018
1019         switch (side) {
1020         case 'A':       newSide = 0;
1021                         break;
1022         case 'B':       newSide = 1;
1023                         break;
1024         case 'C':       newSide = 2;
1025                         break;
1026         case 'D':       newSide = 3;
1027                         break;
1028         default:
1029                 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1030                 return -EINVAL;
1031         }
1032
1033         memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1034         vsp_cmd.sub_data.ipl_type = newSide;
1035         vsp_cmd.cmd = 10;
1036
1037         (void)signal_vsp_instruction(&vsp_cmd);
1038
1039         return count;
1040 }
1041
1042 #if 0
1043 static void mf_getSrcHistory(char *buffer, int size)
1044 {
1045         struct IplTypeReturnStuff return_stuff;
1046         struct pending_event *ev = new_pending_event();
1047         int rc = 0;
1048         char *pages[4];
1049
1050         pages[0] = kmalloc(4096, GFP_ATOMIC);
1051         pages[1] = kmalloc(4096, GFP_ATOMIC);
1052         pages[2] = kmalloc(4096, GFP_ATOMIC);
1053         pages[3] = kmalloc(4096, GFP_ATOMIC);
1054         if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1055                          || (pages[2] == NULL) || (pages[3] == NULL))
1056                 return -ENOMEM;
1057
1058         return_stuff.xType = 0;
1059         return_stuff.xRc = 0;
1060         return_stuff.xDone = 0;
1061         ev->event.hp_lp_event.xSubtype = 6;
1062         ev->event.hp_lp_event.x.xSubtypeData =
1063                 subtype_data('M', 'F', 'V', 'I');
1064         ev->event.data.vsp_cmd.xEvent = &return_stuff;
1065         ev->event.data.vsp_cmd.cmd = 4;
1066         ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1067         ev->event.data.vsp_cmd.result_code = 0xFF;
1068         ev->event.data.vsp_cmd.reserved = 0;
1069         ev->event.data.vsp_cmd.sub_data.page[0] = iseries_hv_addr(pages[0]);
1070         ev->event.data.vsp_cmd.sub_data.page[1] = iseries_hv_addr(pages[1]);
1071         ev->event.data.vsp_cmd.sub_data.page[2] = iseries_hv_addr(pages[2]);
1072         ev->event.data.vsp_cmd.sub_data.page[3] = iseries_hv_addr(pages[3]);
1073         mb();
1074         if (signal_event(ev) != 0)
1075                 return;
1076
1077         while (return_stuff.xDone != 1)
1078                 udelay(10);
1079         if (return_stuff.xRc == 0)
1080                 memcpy(buffer, pages[0], size);
1081         kfree(pages[0]);
1082         kfree(pages[1]);
1083         kfree(pages[2]);
1084         kfree(pages[3]);
1085 }
1086 #endif
1087
1088 static int proc_mf_dump_src(char *page, char **start, off_t off,
1089                 int count, int *eof, void *data)
1090 {
1091 #if 0
1092         int len;
1093
1094         mf_getSrcHistory(page, count);
1095         len = count;
1096         len -= off;
1097         if (len < count) {
1098                 *eof = 1;
1099                 if (len <= 0)
1100                         return 0;
1101         } else
1102                 len = count;
1103         *start = page + off;
1104         return len;
1105 #else
1106         return 0;
1107 #endif
1108 }
1109
1110 static int proc_mf_change_src(struct file *file, const char __user *buffer,
1111                 unsigned long count, void *data)
1112 {
1113         char stkbuf[10];
1114
1115         if (!capable(CAP_SYS_ADMIN))
1116                 return -EACCES;
1117
1118         if ((count < 4) && (count != 1)) {
1119                 printk(KERN_ERR "mf_proc: invalid src\n");
1120                 return -EINVAL;
1121         }
1122
1123         if (count > (sizeof(stkbuf) - 1))
1124                 count = sizeof(stkbuf) - 1;
1125         if (copy_from_user(stkbuf, buffer, count))
1126                 return -EFAULT;
1127
1128         if ((count == 1) && (*stkbuf == '\0'))
1129                 mf_clear_src();
1130         else
1131                 mf_display_src(*(u32 *)stkbuf);
1132
1133         return count;
1134 }
1135
1136 static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1137                 unsigned long count, void *data)
1138 {
1139         struct vsp_cmd_data vsp_cmd;
1140         dma_addr_t dma_addr;
1141         char *page;
1142         int ret = -EACCES;
1143
1144         if (!capable(CAP_SYS_ADMIN))
1145                 goto out;
1146
1147         dma_addr = 0;
1148         page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1149                         GFP_ATOMIC);
1150         ret = -ENOMEM;
1151         if (page == NULL)
1152                 goto out;
1153
1154         ret = -EFAULT;
1155         if (copy_from_user(page, buffer, count))
1156                 goto out_free;
1157
1158         memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1159         vsp_cmd.cmd = 31;
1160         vsp_cmd.sub_data.kern.token = dma_addr;
1161         vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1162         vsp_cmd.sub_data.kern.side = (u64)data;
1163         vsp_cmd.sub_data.kern.length = count;
1164         mb();
1165         (void)signal_vsp_instruction(&vsp_cmd);
1166         ret = count;
1167
1168 out_free:
1169         dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1170 out:
1171         return ret;
1172 }
1173
1174 static ssize_t proc_mf_change_vmlinux(struct file *file,
1175                                       const char __user *buf,
1176                                       size_t count, loff_t *ppos)
1177 {
1178         struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
1179         ssize_t rc;
1180         dma_addr_t dma_addr;
1181         char *page;
1182         struct vsp_cmd_data vsp_cmd;
1183
1184         rc = -EACCES;
1185         if (!capable(CAP_SYS_ADMIN))
1186                 goto out;
1187
1188         dma_addr = 0;
1189         page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1190                         GFP_ATOMIC);
1191         rc = -ENOMEM;
1192         if (page == NULL) {
1193                 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1194                 goto out;
1195         }
1196         rc = -EFAULT;
1197         if (copy_from_user(page, buf, count))
1198                 goto out_free;
1199
1200         memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1201         vsp_cmd.cmd = 30;
1202         vsp_cmd.sub_data.kern.token = dma_addr;
1203         vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1204         vsp_cmd.sub_data.kern.side = (u64)dp->data;
1205         vsp_cmd.sub_data.kern.offset = *ppos;
1206         vsp_cmd.sub_data.kern.length = count;
1207         mb();
1208         rc = signal_vsp_instruction(&vsp_cmd);
1209         if (rc)
1210                 goto out_free;
1211         rc = -ENOMEM;
1212         if (vsp_cmd.result_code != 0)
1213                 goto out_free;
1214
1215         *ppos += count;
1216         rc = count;
1217 out_free:
1218         dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1219 out:
1220         return rc;
1221 }
1222
1223 static struct file_operations proc_vmlinux_operations = {
1224         .write          = proc_mf_change_vmlinux,
1225 };
1226
1227 static int __init mf_proc_init(void)
1228 {
1229         struct proc_dir_entry *mf_proc_root;
1230         struct proc_dir_entry *ent;
1231         struct proc_dir_entry *mf;
1232         char name[2];
1233         int i;
1234
1235         mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1236         if (!mf_proc_root)
1237                 return 1;
1238
1239         name[1] = '\0';
1240         for (i = 0; i < 4; i++) {
1241                 name[0] = 'A' + i;
1242                 mf = proc_mkdir(name, mf_proc_root);
1243                 if (!mf)
1244                         return 1;
1245
1246                 ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1247                 if (!ent)
1248                         return 1;
1249                 ent->nlink = 1;
1250                 ent->data = (void *)(long)i;
1251                 ent->read_proc = proc_mf_dump_cmdline;
1252                 ent->write_proc = proc_mf_change_cmdline;
1253
1254                 if (i == 3)     /* no vmlinux entry for 'D' */
1255                         continue;
1256
1257                 ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf);
1258                 if (!ent)
1259                         return 1;
1260                 ent->nlink = 1;
1261                 ent->data = (void *)(long)i;
1262                 ent->proc_fops = &proc_vmlinux_operations;
1263         }
1264
1265         ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1266         if (!ent)
1267                 return 1;
1268         ent->nlink = 1;
1269         ent->data = (void *)0;
1270         ent->read_proc = proc_mf_dump_side;
1271         ent->write_proc = proc_mf_change_side;
1272
1273         ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1274         if (!ent)
1275                 return 1;
1276         ent->nlink = 1;
1277         ent->data = (void *)0;
1278         ent->read_proc = proc_mf_dump_src;
1279         ent->write_proc = proc_mf_change_src;
1280
1281         return 0;
1282 }
1283
1284 __initcall(mf_proc_init);
1285
1286 #endif /* CONFIG_PROC_FS */
1287
1288 /*
1289  * Get the RTC from the virtual service processor
1290  * This requires flowing LpEvents to the primary partition
1291  */
1292 void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1293 {
1294         if (piranha_simulator)
1295                 return;
1296
1297         mf_get_rtc(rtc_tm);
1298         rtc_tm->tm_mon--;
1299 }
1300
1301 /*
1302  * Set the RTC in the virtual service processor
1303  * This requires flowing LpEvents to the primary partition
1304  */
1305 int iSeries_set_rtc_time(struct rtc_time *tm)
1306 {
1307         mf_set_rtc(tm);
1308         return 0;
1309 }
1310
1311 unsigned long iSeries_get_boot_time(void)
1312 {
1313         struct rtc_time tm;
1314
1315         if (piranha_simulator)
1316                 return 0;
1317
1318         mf_get_boot_rtc(&tm);
1319         return mktime(tm.tm_year + 1900, tm.tm_mon, tm.tm_mday,
1320                       tm.tm_hour, tm.tm_min, tm.tm_sec);
1321 }