]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/platforms/powermac/nvram.c
Merge Paulus' tree
[karo-tx-linux.git] / arch / powerpc / platforms / powermac / nvram.c
1 /*
2  *  arch/ppc/platforms/pmac_nvram.c
3  *
4  *  Copyright (C) 2002 Benjamin Herrenschmidt (benh@kernel.crashing.org)
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  *  Todo: - add support for the OF persistent properties
12  */
13 #include <linux/config.h>
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/stddef.h>
17 #include <linux/string.h>
18 #include <linux/nvram.h>
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/adb.h>
24 #include <linux/pmu.h>
25 #include <linux/bootmem.h>
26 #include <linux/completion.h>
27 #include <linux/spinlock.h>
28 #include <asm/sections.h>
29 #include <asm/io.h>
30 #include <asm/system.h>
31 #include <asm/prom.h>
32 #include <asm/machdep.h>
33 #include <asm/nvram.h>
34
35 #define DEBUG
36
37 #ifdef DEBUG
38 #define DBG(x...) printk(x)
39 #else
40 #define DBG(x...)
41 #endif
42
43 #define NVRAM_SIZE              0x2000  /* 8kB of non-volatile RAM */
44
45 #define CORE99_SIGNATURE        0x5a
46 #define CORE99_ADLER_START      0x14
47
48 /* On Core99, nvram is either a sharp, a micron or an AMD flash */
49 #define SM_FLASH_STATUS_DONE    0x80
50 #define SM_FLASH_STATUS_ERR     0x38
51
52 #define SM_FLASH_CMD_ERASE_CONFIRM      0xd0
53 #define SM_FLASH_CMD_ERASE_SETUP        0x20
54 #define SM_FLASH_CMD_RESET              0xff
55 #define SM_FLASH_CMD_WRITE_SETUP        0x40
56 #define SM_FLASH_CMD_CLEAR_STATUS       0x50
57 #define SM_FLASH_CMD_READ_STATUS        0x70
58
59 /* CHRP NVRAM header */
60 struct chrp_header {
61   u8            signature;
62   u8            cksum;
63   u16           len;
64   char          name[12];
65   u8            data[0];
66 };
67
68 struct core99_header {
69   struct chrp_header    hdr;
70   u32                   adler;
71   u32                   generation;
72   u32                   reserved[2];
73 };
74
75 /*
76  * Read and write the non-volatile RAM on PowerMacs and CHRP machines.
77  */
78 static int nvram_naddrs;
79 static volatile unsigned char *nvram_data;
80 static int is_core_99;
81 static int core99_bank = 0;
82 static int nvram_partitions[3];
83 // XXX Turn that into a sem
84 static DEFINE_SPINLOCK(nv_lock);
85
86 extern int pmac_newworld;
87 extern int system_running;
88
89 static int (*core99_write_bank)(int bank, u8* datas);
90 static int (*core99_erase_bank)(int bank);
91
92 static char *nvram_image;
93
94
95 static unsigned char core99_nvram_read_byte(int addr)
96 {
97         if (nvram_image == NULL)
98                 return 0xff;
99         return nvram_image[addr];
100 }
101
102 static void core99_nvram_write_byte(int addr, unsigned char val)
103 {
104         if (nvram_image == NULL)
105                 return;
106         nvram_image[addr] = val;
107 }
108
109 static ssize_t core99_nvram_read(char *buf, size_t count, loff_t *index)
110 {
111         int i;
112
113         if (nvram_image == NULL)
114                 return -ENODEV;
115         if (*index > NVRAM_SIZE)
116                 return 0;
117
118         i = *index;
119         if (i + count > NVRAM_SIZE)
120                 count = NVRAM_SIZE - i;
121
122         memcpy(buf, &nvram_image[i], count);
123         *index = i + count;
124         return count;
125 }
126
127 static ssize_t core99_nvram_write(char *buf, size_t count, loff_t *index)
128 {
129         int i;
130
131         if (nvram_image == NULL)
132                 return -ENODEV;
133         if (*index > NVRAM_SIZE)
134                 return 0;
135
136         i = *index;
137         if (i + count > NVRAM_SIZE)
138                 count = NVRAM_SIZE - i;
139
140         memcpy(&nvram_image[i], buf, count);
141         *index = i + count;
142         return count;
143 }
144
145 static ssize_t core99_nvram_size(void)
146 {
147         if (nvram_image == NULL)
148                 return -ENODEV;
149         return NVRAM_SIZE;
150 }
151
152 #ifdef CONFIG_PPC32
153 static volatile unsigned char *nvram_addr;
154 static int nvram_mult;
155
156 static unsigned char direct_nvram_read_byte(int addr)
157 {
158         return in_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult]);
159 }
160
161 static void direct_nvram_write_byte(int addr, unsigned char val)
162 {
163         out_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult], val);
164 }
165
166
167 static unsigned char indirect_nvram_read_byte(int addr)
168 {
169         unsigned char val;
170         unsigned long flags;
171
172         spin_lock_irqsave(&nv_lock, flags);
173         out_8(nvram_addr, addr >> 5);
174         val = in_8(&nvram_data[(addr & 0x1f) << 4]);
175         spin_unlock_irqrestore(&nv_lock, flags);
176
177         return val;
178 }
179
180 static void indirect_nvram_write_byte(int addr, unsigned char val)
181 {
182         unsigned long flags;
183
184         spin_lock_irqsave(&nv_lock, flags);
185         out_8(nvram_addr, addr >> 5);
186         out_8(&nvram_data[(addr & 0x1f) << 4], val);
187         spin_unlock_irqrestore(&nv_lock, flags);
188 }
189
190
191 #ifdef CONFIG_ADB_PMU
192
193 static void pmu_nvram_complete(struct adb_request *req)
194 {
195         if (req->arg)
196                 complete((struct completion *)req->arg);
197 }
198
199 static unsigned char pmu_nvram_read_byte(int addr)
200 {
201         struct adb_request req;
202         DECLARE_COMPLETION(req_complete); 
203         
204         req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL;
205         if (pmu_request(&req, pmu_nvram_complete, 3, PMU_READ_NVRAM,
206                         (addr >> 8) & 0xff, addr & 0xff))
207                 return 0xff;
208         if (system_state == SYSTEM_RUNNING)
209                 wait_for_completion(&req_complete);
210         while (!req.complete)
211                 pmu_poll();
212         return req.reply[0];
213 }
214
215 static void pmu_nvram_write_byte(int addr, unsigned char val)
216 {
217         struct adb_request req;
218         DECLARE_COMPLETION(req_complete); 
219         
220         req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL;
221         if (pmu_request(&req, pmu_nvram_complete, 4, PMU_WRITE_NVRAM,
222                         (addr >> 8) & 0xff, addr & 0xff, val))
223                 return;
224         if (system_state == SYSTEM_RUNNING)
225                 wait_for_completion(&req_complete);
226         while (!req.complete)
227                 pmu_poll();
228 }
229
230 #endif /* CONFIG_ADB_PMU */
231 #endif /* CONFIG_PPC32 */
232
233 static u8 chrp_checksum(struct chrp_header* hdr)
234 {
235         u8 *ptr;
236         u16 sum = hdr->signature;
237         for (ptr = (u8 *)&hdr->len; ptr < hdr->data; ptr++)
238                 sum += *ptr;
239         while (sum > 0xFF)
240                 sum = (sum & 0xFF) + (sum>>8);
241         return sum;
242 }
243
244 static u32 core99_calc_adler(u8 *buffer)
245 {
246         int cnt;
247         u32 low, high;
248
249         buffer += CORE99_ADLER_START;
250         low = 1;
251         high = 0;
252         for (cnt=0; cnt<(NVRAM_SIZE-CORE99_ADLER_START); cnt++) {
253                 if ((cnt % 5000) == 0) {
254                         high  %= 65521UL;
255                         high %= 65521UL;
256                 }
257                 low += buffer[cnt];
258                 high += low;
259         }
260         low  %= 65521UL;
261         high %= 65521UL;
262
263         return (high << 16) | low;
264 }
265
266 static u32 core99_check(u8* datas)
267 {
268         struct core99_header* hdr99 = (struct core99_header*)datas;
269
270         if (hdr99->hdr.signature != CORE99_SIGNATURE) {
271                 DBG("Invalid signature\n");
272                 return 0;
273         }
274         if (hdr99->hdr.cksum != chrp_checksum(&hdr99->hdr)) {
275                 DBG("Invalid checksum\n");
276                 return 0;
277         }
278         if (hdr99->adler != core99_calc_adler(datas)) {
279                 DBG("Invalid adler\n");
280                 return 0;
281         }
282         return hdr99->generation;
283 }
284
285 static int sm_erase_bank(int bank)
286 {
287         int stat, i;
288         unsigned long timeout;
289
290         u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE;
291
292         DBG("nvram: Sharp/Micron Erasing bank %d...\n", bank);
293
294         out_8(base, SM_FLASH_CMD_ERASE_SETUP);
295         out_8(base, SM_FLASH_CMD_ERASE_CONFIRM);
296         timeout = 0;
297         do {
298                 if (++timeout > 1000000) {
299                         printk(KERN_ERR "nvram: Sharp/Micron flash erase timeout !\n");
300                         break;
301                 }
302                 out_8(base, SM_FLASH_CMD_READ_STATUS);
303                 stat = in_8(base);
304         } while (!(stat & SM_FLASH_STATUS_DONE));
305
306         out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
307         out_8(base, SM_FLASH_CMD_RESET);
308
309         for (i=0; i<NVRAM_SIZE; i++)
310                 if (base[i] != 0xff) {
311                         printk(KERN_ERR "nvram: Sharp/Micron flash erase failed !\n");
312                         return -ENXIO;
313                 }
314         return 0;
315 }
316
317 static int sm_write_bank(int bank, u8* datas)
318 {
319         int i, stat = 0;
320         unsigned long timeout;
321
322         u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE;
323
324         DBG("nvram: Sharp/Micron Writing bank %d...\n", bank);
325
326         for (i=0; i<NVRAM_SIZE; i++) {
327                 out_8(base+i, SM_FLASH_CMD_WRITE_SETUP);
328                 udelay(1);
329                 out_8(base+i, datas[i]);
330                 timeout = 0;
331                 do {
332                         if (++timeout > 1000000) {
333                                 printk(KERN_ERR "nvram: Sharp/Micron flash write timeout !\n");
334                                 break;
335                         }
336                         out_8(base, SM_FLASH_CMD_READ_STATUS);
337                         stat = in_8(base);
338                 } while (!(stat & SM_FLASH_STATUS_DONE));
339                 if (!(stat & SM_FLASH_STATUS_DONE))
340                         break;
341         }
342         out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
343         out_8(base, SM_FLASH_CMD_RESET);
344         for (i=0; i<NVRAM_SIZE; i++)
345                 if (base[i] != datas[i]) {
346                         printk(KERN_ERR "nvram: Sharp/Micron flash write failed !\n");
347                         return -ENXIO;
348                 }
349         return 0;
350 }
351
352 static int amd_erase_bank(int bank)
353 {
354         int i, stat = 0;
355         unsigned long timeout;
356
357         u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE;
358
359         DBG("nvram: AMD Erasing bank %d...\n", bank);
360
361         /* Unlock 1 */
362         out_8(base+0x555, 0xaa);
363         udelay(1);
364         /* Unlock 2 */
365         out_8(base+0x2aa, 0x55);
366         udelay(1);
367
368         /* Sector-Erase */
369         out_8(base+0x555, 0x80);
370         udelay(1);
371         out_8(base+0x555, 0xaa);
372         udelay(1);
373         out_8(base+0x2aa, 0x55);
374         udelay(1);
375         out_8(base, 0x30);
376         udelay(1);
377
378         timeout = 0;
379         do {
380                 if (++timeout > 1000000) {
381                         printk(KERN_ERR "nvram: AMD flash erase timeout !\n");
382                         break;
383                 }
384                 stat = in_8(base) ^ in_8(base);
385         } while (stat != 0);
386         
387         /* Reset */
388         out_8(base, 0xf0);
389         udelay(1);
390         
391         for (i=0; i<NVRAM_SIZE; i++)
392                 if (base[i] != 0xff) {
393                         printk(KERN_ERR "nvram: AMD flash erase failed !\n");
394                         return -ENXIO;
395                 }
396         return 0;
397 }
398
399 static int amd_write_bank(int bank, u8* datas)
400 {
401         int i, stat = 0;
402         unsigned long timeout;
403
404         u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE;
405
406         DBG("nvram: AMD Writing bank %d...\n", bank);
407
408         for (i=0; i<NVRAM_SIZE; i++) {
409                 /* Unlock 1 */
410                 out_8(base+0x555, 0xaa);
411                 udelay(1);
412                 /* Unlock 2 */
413                 out_8(base+0x2aa, 0x55);
414                 udelay(1);
415
416                 /* Write single word */
417                 out_8(base+0x555, 0xa0);
418                 udelay(1);
419                 out_8(base+i, datas[i]);
420                 
421                 timeout = 0;
422                 do {
423                         if (++timeout > 1000000) {
424                                 printk(KERN_ERR "nvram: AMD flash write timeout !\n");
425                                 break;
426                         }
427                         stat = in_8(base) ^ in_8(base);
428                 } while (stat != 0);
429                 if (stat != 0)
430                         break;
431         }
432
433         /* Reset */
434         out_8(base, 0xf0);
435         udelay(1);
436
437         for (i=0; i<NVRAM_SIZE; i++)
438                 if (base[i] != datas[i]) {
439                         printk(KERN_ERR "nvram: AMD flash write failed !\n");
440                         return -ENXIO;
441                 }
442         return 0;
443 }
444
445 static void __init lookup_partitions(void)
446 {
447         u8 buffer[17];
448         int i, offset;
449         struct chrp_header* hdr;
450
451         if (pmac_newworld) {
452                 nvram_partitions[pmac_nvram_OF] = -1;
453                 nvram_partitions[pmac_nvram_XPRAM] = -1;
454                 nvram_partitions[pmac_nvram_NR] = -1;
455                 hdr = (struct chrp_header *)buffer;
456
457                 offset = 0;
458                 buffer[16] = 0;
459                 do {
460                         for (i=0;i<16;i++)
461                                 buffer[i] = ppc_md.nvram_read_val(offset+i);
462                         if (!strcmp(hdr->name, "common"))
463                                 nvram_partitions[pmac_nvram_OF] = offset + 0x10;
464                         if (!strcmp(hdr->name, "APL,MacOS75")) {
465                                 nvram_partitions[pmac_nvram_XPRAM] = offset + 0x10;
466                                 nvram_partitions[pmac_nvram_NR] = offset + 0x110;
467                         }
468                         offset += (hdr->len * 0x10);
469                 } while(offset < NVRAM_SIZE);
470         } else {
471                 nvram_partitions[pmac_nvram_OF] = 0x1800;
472                 nvram_partitions[pmac_nvram_XPRAM] = 0x1300;
473                 nvram_partitions[pmac_nvram_NR] = 0x1400;
474         }
475         DBG("nvram: OF partition at 0x%x\n", nvram_partitions[pmac_nvram_OF]);
476         DBG("nvram: XP partition at 0x%x\n", nvram_partitions[pmac_nvram_XPRAM]);
477         DBG("nvram: NR partition at 0x%x\n", nvram_partitions[pmac_nvram_NR]);
478 }
479
480 static void core99_nvram_sync(void)
481 {
482         struct core99_header* hdr99;
483         unsigned long flags;
484
485         if (!is_core_99 || !nvram_data || !nvram_image)
486                 return;
487
488         spin_lock_irqsave(&nv_lock, flags);
489         if (!memcmp(nvram_image, (u8*)nvram_data + core99_bank*NVRAM_SIZE,
490                 NVRAM_SIZE))
491                 goto bail;
492
493         DBG("Updating nvram...\n");
494
495         hdr99 = (struct core99_header*)nvram_image;
496         hdr99->generation++;
497         hdr99->hdr.signature = CORE99_SIGNATURE;
498         hdr99->hdr.cksum = chrp_checksum(&hdr99->hdr);
499         hdr99->adler = core99_calc_adler(nvram_image);
500         core99_bank = core99_bank ? 0 : 1;
501         if (core99_erase_bank)
502                 if (core99_erase_bank(core99_bank)) {
503                         printk("nvram: Error erasing bank %d\n", core99_bank);
504                         goto bail;
505                 }
506         if (core99_write_bank)
507                 if (core99_write_bank(core99_bank, nvram_image))
508                         printk("nvram: Error writing bank %d\n", core99_bank);
509  bail:
510         spin_unlock_irqrestore(&nv_lock, flags);
511
512 #ifdef DEBUG
513         mdelay(2000);
514 #endif
515 }
516
517 static int __init core99_nvram_setup(struct device_node *dp)
518 {
519         int i;
520         u32 gen_bank0, gen_bank1;
521
522         if (nvram_naddrs < 1) {
523                 printk(KERN_ERR "nvram: no address\n");
524                 return -EINVAL;
525         }
526         nvram_image = alloc_bootmem(NVRAM_SIZE);
527         if (nvram_image == NULL) {
528                 printk(KERN_ERR "nvram: can't allocate ram image\n");
529                 return -ENOMEM;
530         }
531         nvram_data = ioremap(dp->addrs[0].address, NVRAM_SIZE*2);
532         nvram_naddrs = 1; /* Make sure we get the correct case */
533
534         DBG("nvram: Checking bank 0...\n");
535
536         gen_bank0 = core99_check((u8 *)nvram_data);
537         gen_bank1 = core99_check((u8 *)nvram_data + NVRAM_SIZE);
538         core99_bank = (gen_bank0 < gen_bank1) ? 1 : 0;
539
540         DBG("nvram: gen0=%d, gen1=%d\n", gen_bank0, gen_bank1);
541         DBG("nvram: Active bank is: %d\n", core99_bank);
542
543         for (i=0; i<NVRAM_SIZE; i++)
544                 nvram_image[i] = nvram_data[i + core99_bank*NVRAM_SIZE];
545
546         ppc_md.nvram_read_val   = core99_nvram_read_byte;
547         ppc_md.nvram_write_val  = core99_nvram_write_byte;
548         ppc_md.nvram_read       = core99_nvram_read;
549         ppc_md.nvram_write      = core99_nvram_write;
550         ppc_md.nvram_size       = core99_nvram_size;
551         ppc_md.nvram_sync       = core99_nvram_sync;
552         /* 
553          * Maybe we could be smarter here though making an exclusive list
554          * of known flash chips is a bit nasty as older OF didn't provide us
555          * with a useful "compatible" entry. A solution would be to really
556          * identify the chip using flash id commands and base ourselves on
557          * a list of known chips IDs
558          */
559         if (device_is_compatible(dp, "amd-0137")) {
560                 core99_erase_bank = amd_erase_bank;
561                 core99_write_bank = amd_write_bank;
562         } else {
563                 core99_erase_bank = sm_erase_bank;
564                 core99_write_bank = sm_write_bank;
565         }
566         return 0;
567 }
568
569 int __init pmac_nvram_init(void)
570 {
571         struct device_node *dp;
572         int err = 0;
573
574         nvram_naddrs = 0;
575
576         dp = find_devices("nvram");
577         if (dp == NULL) {
578                 printk(KERN_ERR "Can't find NVRAM device\n");
579                 return -ENODEV;
580         }
581         nvram_naddrs = dp->n_addrs;
582         is_core_99 = device_is_compatible(dp, "nvram,flash");
583         if (is_core_99)
584                 err = core99_nvram_setup(dp);
585 #ifdef CONFIG_PPC32
586         else if (_machine == _MACH_chrp && nvram_naddrs == 1) {
587                 nvram_data = ioremap(dp->addrs[0].address + isa_mem_base,
588                                      dp->addrs[0].size);
589                 nvram_mult = 1;
590                 ppc_md.nvram_read_val   = direct_nvram_read_byte;
591                 ppc_md.nvram_write_val  = direct_nvram_write_byte;
592         } else if (nvram_naddrs == 1) {
593                 nvram_data = ioremap(dp->addrs[0].address, dp->addrs[0].size);
594                 nvram_mult = (dp->addrs[0].size + NVRAM_SIZE - 1) / NVRAM_SIZE;
595                 ppc_md.nvram_read_val   = direct_nvram_read_byte;
596                 ppc_md.nvram_write_val  = direct_nvram_write_byte;
597         } else if (nvram_naddrs == 2) {
598                 nvram_addr = ioremap(dp->addrs[0].address, dp->addrs[0].size);
599                 nvram_data = ioremap(dp->addrs[1].address, dp->addrs[1].size);
600                 ppc_md.nvram_read_val   = indirect_nvram_read_byte;
601                 ppc_md.nvram_write_val  = indirect_nvram_write_byte;
602         } else if (nvram_naddrs == 0 && sys_ctrler == SYS_CTRLER_PMU) {
603 #ifdef CONFIG_ADB_PMU
604                 nvram_naddrs = -1;
605                 ppc_md.nvram_read_val   = pmu_nvram_read_byte;
606                 ppc_md.nvram_write_val  = pmu_nvram_write_byte;
607 #endif /* CONFIG_ADB_PMU */
608         }
609 #endif
610         else {
611                 printk(KERN_ERR "Incompatible type of NVRAM\n");
612                 return -ENXIO;
613         }
614         lookup_partitions();
615         return err;
616 }
617
618 int pmac_get_partition(int partition)
619 {
620         return nvram_partitions[partition];
621 }
622
623 u8 pmac_xpram_read(int xpaddr)
624 {
625         int offset = pmac_get_partition(pmac_nvram_XPRAM);
626
627         if (offset < 0 || xpaddr < 0 || xpaddr > 0x100)
628                 return 0xff;
629
630         return ppc_md.nvram_read_val(xpaddr + offset);
631 }
632
633 void pmac_xpram_write(int xpaddr, u8 data)
634 {
635         int offset = pmac_get_partition(pmac_nvram_XPRAM);
636
637         if (offset < 0 || xpaddr < 0 || xpaddr > 0x100)
638                 return;
639
640         ppc_md.nvram_write_val(xpaddr + offset, data);
641 }
642
643 EXPORT_SYMBOL(pmac_get_partition);
644 EXPORT_SYMBOL(pmac_xpram_read);
645 EXPORT_SYMBOL(pmac_xpram_write);