]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
Merge remote-tracking branch 'samsung/for-next'
[karo-tx-linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
52 #define TCE32_TABLE_SIZE        ((0x10000000 / 0x1000) * 8)
53
54 #define POWERNV_IOMMU_DEFAULT_LEVELS    1
55 #define POWERNV_IOMMU_MAX_LEVELS        5
56
57 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
58
59 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
60                             const char *fmt, ...)
61 {
62         struct va_format vaf;
63         va_list args;
64         char pfix[32];
65
66         va_start(args, fmt);
67
68         vaf.fmt = fmt;
69         vaf.va = &args;
70
71         if (pe->flags & PNV_IODA_PE_DEV)
72                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
73         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
74                 sprintf(pfix, "%04x:%02x     ",
75                         pci_domain_nr(pe->pbus), pe->pbus->number);
76 #ifdef CONFIG_PCI_IOV
77         else if (pe->flags & PNV_IODA_PE_VF)
78                 sprintf(pfix, "%04x:%02x:%2x.%d",
79                         pci_domain_nr(pe->parent_dev->bus),
80                         (pe->rid & 0xff00) >> 8,
81                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
82 #endif /* CONFIG_PCI_IOV*/
83
84         printk("%spci %s: [PE# %.3d] %pV",
85                level, pfix, pe->pe_number, &vaf);
86
87         va_end(args);
88 }
89
90 #define pe_err(pe, fmt, ...)                                    \
91         pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
92 #define pe_warn(pe, fmt, ...)                                   \
93         pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
94 #define pe_info(pe, fmt, ...)                                   \
95         pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
96
97 static bool pnv_iommu_bypass_disabled __read_mostly;
98
99 static int __init iommu_setup(char *str)
100 {
101         if (!str)
102                 return -EINVAL;
103
104         while (*str) {
105                 if (!strncmp(str, "nobypass", 8)) {
106                         pnv_iommu_bypass_disabled = true;
107                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
108                         break;
109                 }
110                 str += strcspn(str, ",");
111                 if (*str == ',')
112                         str++;
113         }
114
115         return 0;
116 }
117 early_param("iommu", iommu_setup);
118
119 /*
120  * stdcix is only supposed to be used in hypervisor real mode as per
121  * the architecture spec
122  */
123 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
124 {
125         __asm__ __volatile__("stdcix %0,0,%1"
126                 : : "r" (val), "r" (paddr) : "memory");
127 }
128
129 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
130 {
131         return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
132                 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
133 }
134
135 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
136 {
137         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
138                 pr_warn("%s: Invalid PE %d on PHB#%x\n",
139                         __func__, pe_no, phb->hose->global_number);
140                 return;
141         }
142
143         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
144                 pr_debug("%s: PE %d was reserved on PHB#%x\n",
145                          __func__, pe_no, phb->hose->global_number);
146
147         phb->ioda.pe_array[pe_no].phb = phb;
148         phb->ioda.pe_array[pe_no].pe_number = pe_no;
149 }
150
151 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
152 {
153         unsigned long pe;
154
155         do {
156                 pe = find_next_zero_bit(phb->ioda.pe_alloc,
157                                         phb->ioda.total_pe, 0);
158                 if (pe >= phb->ioda.total_pe)
159                         return IODA_INVALID_PE;
160         } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
161
162         phb->ioda.pe_array[pe].phb = phb;
163         phb->ioda.pe_array[pe].pe_number = pe;
164         return pe;
165 }
166
167 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
168 {
169         WARN_ON(phb->ioda.pe_array[pe].pdev);
170
171         memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
172         clear_bit(pe, phb->ioda.pe_alloc);
173 }
174
175 /* The default M64 BAR is shared by all PEs */
176 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
177 {
178         const char *desc;
179         struct resource *r;
180         s64 rc;
181
182         /* Configure the default M64 BAR */
183         rc = opal_pci_set_phb_mem_window(phb->opal_id,
184                                          OPAL_M64_WINDOW_TYPE,
185                                          phb->ioda.m64_bar_idx,
186                                          phb->ioda.m64_base,
187                                          0, /* unused */
188                                          phb->ioda.m64_size);
189         if (rc != OPAL_SUCCESS) {
190                 desc = "configuring";
191                 goto fail;
192         }
193
194         /* Enable the default M64 BAR */
195         rc = opal_pci_phb_mmio_enable(phb->opal_id,
196                                       OPAL_M64_WINDOW_TYPE,
197                                       phb->ioda.m64_bar_idx,
198                                       OPAL_ENABLE_M64_SPLIT);
199         if (rc != OPAL_SUCCESS) {
200                 desc = "enabling";
201                 goto fail;
202         }
203
204         /* Mark the M64 BAR assigned */
205         set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
206
207         /*
208          * Strip off the segment used by the reserved PE, which is
209          * expected to be 0 or last one of PE capabicity.
210          */
211         r = &phb->hose->mem_resources[1];
212         if (phb->ioda.reserved_pe == 0)
213                 r->start += phb->ioda.m64_segsize;
214         else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
215                 r->end -= phb->ioda.m64_segsize;
216         else
217                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
218                         phb->ioda.reserved_pe);
219
220         return 0;
221
222 fail:
223         pr_warn("  Failure %lld %s M64 BAR#%d\n",
224                 rc, desc, phb->ioda.m64_bar_idx);
225         opal_pci_phb_mmio_enable(phb->opal_id,
226                                  OPAL_M64_WINDOW_TYPE,
227                                  phb->ioda.m64_bar_idx,
228                                  OPAL_DISABLE_M64);
229         return -EIO;
230 }
231
232 static void pnv_ioda2_reserve_dev_m64_pe(struct pci_dev *pdev,
233                                          unsigned long *pe_bitmap)
234 {
235         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
236         struct pnv_phb *phb = hose->private_data;
237         struct resource *r;
238         resource_size_t base, sgsz, start, end;
239         int segno, i;
240
241         base = phb->ioda.m64_base;
242         sgsz = phb->ioda.m64_segsize;
243         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
244                 r = &pdev->resource[i];
245                 if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
246                         continue;
247
248                 start = _ALIGN_DOWN(r->start - base, sgsz);
249                 end = _ALIGN_UP(r->end - base, sgsz);
250                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
251                         if (pe_bitmap)
252                                 set_bit(segno, pe_bitmap);
253                         else
254                                 pnv_ioda_reserve_pe(phb, segno);
255                 }
256         }
257 }
258
259 static void pnv_ioda2_reserve_m64_pe(struct pci_bus *bus,
260                                      unsigned long *pe_bitmap,
261                                      bool all)
262 {
263         struct pci_dev *pdev;
264
265         list_for_each_entry(pdev, &bus->devices, bus_list) {
266                 pnv_ioda2_reserve_dev_m64_pe(pdev, pe_bitmap);
267
268                 if (all && pdev->subordinate)
269                         pnv_ioda2_reserve_m64_pe(pdev->subordinate,
270                                                  pe_bitmap, all);
271         }
272 }
273
274 static int pnv_ioda2_pick_m64_pe(struct pci_bus *bus, bool all)
275 {
276         struct pci_controller *hose = pci_bus_to_host(bus);
277         struct pnv_phb *phb = hose->private_data;
278         struct pnv_ioda_pe *master_pe, *pe;
279         unsigned long size, *pe_alloc;
280         int i;
281
282         /* Root bus shouldn't use M64 */
283         if (pci_is_root_bus(bus))
284                 return IODA_INVALID_PE;
285
286         /* Allocate bitmap */
287         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
288         pe_alloc = kzalloc(size, GFP_KERNEL);
289         if (!pe_alloc) {
290                 pr_warn("%s: Out of memory !\n",
291                         __func__);
292                 return IODA_INVALID_PE;
293         }
294
295         /* Figure out reserved PE numbers by the PE */
296         pnv_ioda2_reserve_m64_pe(bus, pe_alloc, all);
297
298         /*
299          * the current bus might not own M64 window and that's all
300          * contributed by its child buses. For the case, we needn't
301          * pick M64 dependent PE#.
302          */
303         if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
304                 kfree(pe_alloc);
305                 return IODA_INVALID_PE;
306         }
307
308         /*
309          * Figure out the master PE and put all slave PEs to master
310          * PE's list to form compound PE.
311          */
312         master_pe = NULL;
313         i = -1;
314         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
315                 phb->ioda.total_pe) {
316                 pe = &phb->ioda.pe_array[i];
317
318                 if (!master_pe) {
319                         pe->flags |= PNV_IODA_PE_MASTER;
320                         INIT_LIST_HEAD(&pe->slaves);
321                         master_pe = pe;
322                 } else {
323                         pe->flags |= PNV_IODA_PE_SLAVE;
324                         pe->master = master_pe;
325                         list_add_tail(&pe->list, &master_pe->slaves);
326                 }
327         }
328
329         kfree(pe_alloc);
330         return master_pe->pe_number;
331 }
332
333 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
334 {
335         struct pci_controller *hose = phb->hose;
336         struct device_node *dn = hose->dn;
337         struct resource *res;
338         const u32 *r;
339         u64 pci_addr;
340
341         /* FIXME: Support M64 for P7IOC */
342         if (phb->type != PNV_PHB_IODA2) {
343                 pr_info("  Not support M64 window\n");
344                 return;
345         }
346
347         if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
348                 pr_info("  Firmware too old to support M64 window\n");
349                 return;
350         }
351
352         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
353         if (!r) {
354                 pr_info("  No <ibm,opal-m64-window> on %s\n",
355                         dn->full_name);
356                 return;
357         }
358
359         res = &hose->mem_resources[1];
360         res->start = of_translate_address(dn, r + 2);
361         res->end = res->start + of_read_number(r + 4, 2) - 1;
362         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
363         pci_addr = of_read_number(r, 2);
364         hose->mem_offset[1] = res->start - pci_addr;
365
366         phb->ioda.m64_size = resource_size(res);
367         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
368         phb->ioda.m64_base = pci_addr;
369
370         pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
371                         res->start, res->end, pci_addr);
372
373         /* Use last M64 BAR to cover M64 window */
374         phb->ioda.m64_bar_idx = 15;
375         phb->init_m64 = pnv_ioda2_init_m64;
376         phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
377         phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
378 }
379
380 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
381 {
382         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
383         struct pnv_ioda_pe *slave;
384         s64 rc;
385
386         /* Fetch master PE */
387         if (pe->flags & PNV_IODA_PE_SLAVE) {
388                 pe = pe->master;
389                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
390                         return;
391
392                 pe_no = pe->pe_number;
393         }
394
395         /* Freeze master PE */
396         rc = opal_pci_eeh_freeze_set(phb->opal_id,
397                                      pe_no,
398                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
399         if (rc != OPAL_SUCCESS) {
400                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
401                         __func__, rc, phb->hose->global_number, pe_no);
402                 return;
403         }
404
405         /* Freeze slave PEs */
406         if (!(pe->flags & PNV_IODA_PE_MASTER))
407                 return;
408
409         list_for_each_entry(slave, &pe->slaves, list) {
410                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
411                                              slave->pe_number,
412                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
413                 if (rc != OPAL_SUCCESS)
414                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
415                                 __func__, rc, phb->hose->global_number,
416                                 slave->pe_number);
417         }
418 }
419
420 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
421 {
422         struct pnv_ioda_pe *pe, *slave;
423         s64 rc;
424
425         /* Find master PE */
426         pe = &phb->ioda.pe_array[pe_no];
427         if (pe->flags & PNV_IODA_PE_SLAVE) {
428                 pe = pe->master;
429                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
430                 pe_no = pe->pe_number;
431         }
432
433         /* Clear frozen state for master PE */
434         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
435         if (rc != OPAL_SUCCESS) {
436                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
437                         __func__, rc, opt, phb->hose->global_number, pe_no);
438                 return -EIO;
439         }
440
441         if (!(pe->flags & PNV_IODA_PE_MASTER))
442                 return 0;
443
444         /* Clear frozen state for slave PEs */
445         list_for_each_entry(slave, &pe->slaves, list) {
446                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
447                                              slave->pe_number,
448                                              opt);
449                 if (rc != OPAL_SUCCESS) {
450                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
451                                 __func__, rc, opt, phb->hose->global_number,
452                                 slave->pe_number);
453                         return -EIO;
454                 }
455         }
456
457         return 0;
458 }
459
460 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
461 {
462         struct pnv_ioda_pe *slave, *pe;
463         u8 fstate, state;
464         __be16 pcierr;
465         s64 rc;
466
467         /* Sanity check on PE number */
468         if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
469                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
470
471         /*
472          * Fetch the master PE and the PE instance might be
473          * not initialized yet.
474          */
475         pe = &phb->ioda.pe_array[pe_no];
476         if (pe->flags & PNV_IODA_PE_SLAVE) {
477                 pe = pe->master;
478                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
479                 pe_no = pe->pe_number;
480         }
481
482         /* Check the master PE */
483         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
484                                         &state, &pcierr, NULL);
485         if (rc != OPAL_SUCCESS) {
486                 pr_warn("%s: Failure %lld getting "
487                         "PHB#%x-PE#%x state\n",
488                         __func__, rc,
489                         phb->hose->global_number, pe_no);
490                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
491         }
492
493         /* Check the slave PE */
494         if (!(pe->flags & PNV_IODA_PE_MASTER))
495                 return state;
496
497         list_for_each_entry(slave, &pe->slaves, list) {
498                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
499                                                 slave->pe_number,
500                                                 &fstate,
501                                                 &pcierr,
502                                                 NULL);
503                 if (rc != OPAL_SUCCESS) {
504                         pr_warn("%s: Failure %lld getting "
505                                 "PHB#%x-PE#%x state\n",
506                                 __func__, rc,
507                                 phb->hose->global_number, slave->pe_number);
508                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
509                 }
510
511                 /*
512                  * Override the result based on the ascending
513                  * priority.
514                  */
515                 if (fstate > state)
516                         state = fstate;
517         }
518
519         return state;
520 }
521
522 /* Currently those 2 are only used when MSIs are enabled, this will change
523  * but in the meantime, we need to protect them to avoid warnings
524  */
525 #ifdef CONFIG_PCI_MSI
526 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
527 {
528         struct pci_controller *hose = pci_bus_to_host(dev->bus);
529         struct pnv_phb *phb = hose->private_data;
530         struct pci_dn *pdn = pci_get_pdn(dev);
531
532         if (!pdn)
533                 return NULL;
534         if (pdn->pe_number == IODA_INVALID_PE)
535                 return NULL;
536         return &phb->ioda.pe_array[pdn->pe_number];
537 }
538 #endif /* CONFIG_PCI_MSI */
539
540 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
541                                   struct pnv_ioda_pe *parent,
542                                   struct pnv_ioda_pe *child,
543                                   bool is_add)
544 {
545         const char *desc = is_add ? "adding" : "removing";
546         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
547                               OPAL_REMOVE_PE_FROM_DOMAIN;
548         struct pnv_ioda_pe *slave;
549         long rc;
550
551         /* Parent PE affects child PE */
552         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
553                                 child->pe_number, op);
554         if (rc != OPAL_SUCCESS) {
555                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
556                         rc, desc);
557                 return -ENXIO;
558         }
559
560         if (!(child->flags & PNV_IODA_PE_MASTER))
561                 return 0;
562
563         /* Compound case: parent PE affects slave PEs */
564         list_for_each_entry(slave, &child->slaves, list) {
565                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
566                                         slave->pe_number, op);
567                 if (rc != OPAL_SUCCESS) {
568                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
569                                 rc, desc);
570                         return -ENXIO;
571                 }
572         }
573
574         return 0;
575 }
576
577 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
578                               struct pnv_ioda_pe *pe,
579                               bool is_add)
580 {
581         struct pnv_ioda_pe *slave;
582         struct pci_dev *pdev = NULL;
583         int ret;
584
585         /*
586          * Clear PE frozen state. If it's master PE, we need
587          * clear slave PE frozen state as well.
588          */
589         if (is_add) {
590                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
591                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
592                 if (pe->flags & PNV_IODA_PE_MASTER) {
593                         list_for_each_entry(slave, &pe->slaves, list)
594                                 opal_pci_eeh_freeze_clear(phb->opal_id,
595                                                           slave->pe_number,
596                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
597                 }
598         }
599
600         /*
601          * Associate PE in PELT. We need add the PE into the
602          * corresponding PELT-V as well. Otherwise, the error
603          * originated from the PE might contribute to other
604          * PEs.
605          */
606         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
607         if (ret)
608                 return ret;
609
610         /* For compound PEs, any one affects all of them */
611         if (pe->flags & PNV_IODA_PE_MASTER) {
612                 list_for_each_entry(slave, &pe->slaves, list) {
613                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
614                         if (ret)
615                                 return ret;
616                 }
617         }
618
619         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
620                 pdev = pe->pbus->self;
621         else if (pe->flags & PNV_IODA_PE_DEV)
622                 pdev = pe->pdev->bus->self;
623 #ifdef CONFIG_PCI_IOV
624         else if (pe->flags & PNV_IODA_PE_VF)
625                 pdev = pe->parent_dev;
626 #endif /* CONFIG_PCI_IOV */
627         while (pdev) {
628                 struct pci_dn *pdn = pci_get_pdn(pdev);
629                 struct pnv_ioda_pe *parent;
630
631                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
632                         parent = &phb->ioda.pe_array[pdn->pe_number];
633                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
634                         if (ret)
635                                 return ret;
636                 }
637
638                 pdev = pdev->bus->self;
639         }
640
641         return 0;
642 }
643
644 #ifdef CONFIG_PCI_IOV
645 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
646 {
647         struct pci_dev *parent;
648         uint8_t bcomp, dcomp, fcomp;
649         int64_t rc;
650         long rid_end, rid;
651
652         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
653         if (pe->pbus) {
654                 int count;
655
656                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
657                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
658                 parent = pe->pbus->self;
659                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
660                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
661                 else
662                         count = 1;
663
664                 switch(count) {
665                 case  1: bcomp = OpalPciBusAll;         break;
666                 case  2: bcomp = OpalPciBus7Bits;       break;
667                 case  4: bcomp = OpalPciBus6Bits;       break;
668                 case  8: bcomp = OpalPciBus5Bits;       break;
669                 case 16: bcomp = OpalPciBus4Bits;       break;
670                 case 32: bcomp = OpalPciBus3Bits;       break;
671                 default:
672                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
673                                 count);
674                         /* Do an exact match only */
675                         bcomp = OpalPciBusAll;
676                 }
677                 rid_end = pe->rid + (count << 8);
678         } else {
679                 if (pe->flags & PNV_IODA_PE_VF)
680                         parent = pe->parent_dev;
681                 else
682                         parent = pe->pdev->bus->self;
683                 bcomp = OpalPciBusAll;
684                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
685                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
686                 rid_end = pe->rid + 1;
687         }
688
689         /* Clear the reverse map */
690         for (rid = pe->rid; rid < rid_end; rid++)
691                 phb->ioda.pe_rmap[rid] = 0;
692
693         /* Release from all parents PELT-V */
694         while (parent) {
695                 struct pci_dn *pdn = pci_get_pdn(parent);
696                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
697                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
698                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
699                         /* XXX What to do in case of error ? */
700                 }
701                 parent = parent->bus->self;
702         }
703
704         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
705                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
706
707         /* Disassociate PE in PELT */
708         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
709                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
710         if (rc)
711                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
712         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
713                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
714         if (rc)
715                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
716
717         pe->pbus = NULL;
718         pe->pdev = NULL;
719         pe->parent_dev = NULL;
720
721         return 0;
722 }
723 #endif /* CONFIG_PCI_IOV */
724
725 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
726 {
727         struct pci_dev *parent;
728         uint8_t bcomp, dcomp, fcomp;
729         long rc, rid_end, rid;
730
731         /* Bus validation ? */
732         if (pe->pbus) {
733                 int count;
734
735                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
736                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
737                 parent = pe->pbus->self;
738                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
739                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
740                 else
741                         count = 1;
742
743                 switch(count) {
744                 case  1: bcomp = OpalPciBusAll;         break;
745                 case  2: bcomp = OpalPciBus7Bits;       break;
746                 case  4: bcomp = OpalPciBus6Bits;       break;
747                 case  8: bcomp = OpalPciBus5Bits;       break;
748                 case 16: bcomp = OpalPciBus4Bits;       break;
749                 case 32: bcomp = OpalPciBus3Bits;       break;
750                 default:
751                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
752                                 count);
753                         /* Do an exact match only */
754                         bcomp = OpalPciBusAll;
755                 }
756                 rid_end = pe->rid + (count << 8);
757         } else {
758 #ifdef CONFIG_PCI_IOV
759                 if (pe->flags & PNV_IODA_PE_VF)
760                         parent = pe->parent_dev;
761                 else
762 #endif /* CONFIG_PCI_IOV */
763                         parent = pe->pdev->bus->self;
764                 bcomp = OpalPciBusAll;
765                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
766                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
767                 rid_end = pe->rid + 1;
768         }
769
770         /*
771          * Associate PE in PELT. We need add the PE into the
772          * corresponding PELT-V as well. Otherwise, the error
773          * originated from the PE might contribute to other
774          * PEs.
775          */
776         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
777                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
778         if (rc) {
779                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
780                 return -ENXIO;
781         }
782
783         /* Configure PELTV */
784         pnv_ioda_set_peltv(phb, pe, true);
785
786         /* Setup reverse map */
787         for (rid = pe->rid; rid < rid_end; rid++)
788                 phb->ioda.pe_rmap[rid] = pe->pe_number;
789
790         /* Setup one MVTs on IODA1 */
791         if (phb->type != PNV_PHB_IODA1) {
792                 pe->mve_number = 0;
793                 goto out;
794         }
795
796         pe->mve_number = pe->pe_number;
797         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
798         if (rc != OPAL_SUCCESS) {
799                 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
800                        rc, pe->mve_number);
801                 pe->mve_number = -1;
802         } else {
803                 rc = opal_pci_set_mve_enable(phb->opal_id,
804                                              pe->mve_number, OPAL_ENABLE_MVE);
805                 if (rc) {
806                         pe_err(pe, "OPAL error %ld enabling MVE %d\n",
807                                rc, pe->mve_number);
808                         pe->mve_number = -1;
809                 }
810         }
811
812 out:
813         return 0;
814 }
815
816 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
817                                        struct pnv_ioda_pe *pe)
818 {
819         struct pnv_ioda_pe *lpe;
820
821         list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
822                 if (lpe->dma_weight < pe->dma_weight) {
823                         list_add_tail(&pe->dma_link, &lpe->dma_link);
824                         return;
825                 }
826         }
827         list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
828 }
829
830 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
831 {
832         /* This is quite simplistic. The "base" weight of a device
833          * is 10. 0 means no DMA is to be accounted for it.
834          */
835
836         /* If it's a bridge, no DMA */
837         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
838                 return 0;
839
840         /* Reduce the weight of slow USB controllers */
841         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
842             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
843             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
844                 return 3;
845
846         /* Increase the weight of RAID (includes Obsidian) */
847         if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
848                 return 15;
849
850         /* Default */
851         return 10;
852 }
853
854 #ifdef CONFIG_PCI_IOV
855 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
856 {
857         struct pci_dn *pdn = pci_get_pdn(dev);
858         int i;
859         struct resource *res, res2;
860         resource_size_t size;
861         u16 num_vfs;
862
863         if (!dev->is_physfn)
864                 return -EINVAL;
865
866         /*
867          * "offset" is in VFs.  The M64 windows are sized so that when they
868          * are segmented, each segment is the same size as the IOV BAR.
869          * Each segment is in a separate PE, and the high order bits of the
870          * address are the PE number.  Therefore, each VF's BAR is in a
871          * separate PE, and changing the IOV BAR start address changes the
872          * range of PEs the VFs are in.
873          */
874         num_vfs = pdn->num_vfs;
875         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
876                 res = &dev->resource[i + PCI_IOV_RESOURCES];
877                 if (!res->flags || !res->parent)
878                         continue;
879
880                 if (!pnv_pci_is_mem_pref_64(res->flags))
881                         continue;
882
883                 /*
884                  * The actual IOV BAR range is determined by the start address
885                  * and the actual size for num_vfs VFs BAR.  This check is to
886                  * make sure that after shifting, the range will not overlap
887                  * with another device.
888                  */
889                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
890                 res2.flags = res->flags;
891                 res2.start = res->start + (size * offset);
892                 res2.end = res2.start + (size * num_vfs) - 1;
893
894                 if (res2.end > res->end) {
895                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
896                                 i, &res2, res, num_vfs, offset);
897                         return -EBUSY;
898                 }
899         }
900
901         /*
902          * After doing so, there would be a "hole" in the /proc/iomem when
903          * offset is a positive value. It looks like the device return some
904          * mmio back to the system, which actually no one could use it.
905          */
906         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
907                 res = &dev->resource[i + PCI_IOV_RESOURCES];
908                 if (!res->flags || !res->parent)
909                         continue;
910
911                 if (!pnv_pci_is_mem_pref_64(res->flags))
912                         continue;
913
914                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
915                 res2 = *res;
916                 res->start += size * offset;
917
918                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
919                          i, &res2, res, (offset > 0) ? "En" : "Dis",
920                          num_vfs, offset);
921                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
922         }
923         return 0;
924 }
925 #endif /* CONFIG_PCI_IOV */
926
927 #if 0
928 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
929 {
930         struct pci_controller *hose = pci_bus_to_host(dev->bus);
931         struct pnv_phb *phb = hose->private_data;
932         struct pci_dn *pdn = pci_get_pdn(dev);
933         struct pnv_ioda_pe *pe;
934         int pe_num;
935
936         if (!pdn) {
937                 pr_err("%s: Device tree node not associated properly\n",
938                            pci_name(dev));
939                 return NULL;
940         }
941         if (pdn->pe_number != IODA_INVALID_PE)
942                 return NULL;
943
944         /* PE#0 has been pre-set */
945         if (dev->bus->number == 0)
946                 pe_num = 0;
947         else
948                 pe_num = pnv_ioda_alloc_pe(phb);
949         if (pe_num == IODA_INVALID_PE) {
950                 pr_warning("%s: Not enough PE# available, disabling device\n",
951                            pci_name(dev));
952                 return NULL;
953         }
954
955         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
956          * pointer in the PE data structure, both should be destroyed at the
957          * same time. However, this needs to be looked at more closely again
958          * once we actually start removing things (Hotplug, SR-IOV, ...)
959          *
960          * At some point we want to remove the PDN completely anyways
961          */
962         pe = &phb->ioda.pe_array[pe_num];
963         pci_dev_get(dev);
964         pdn->pcidev = dev;
965         pdn->pe_number = pe_num;
966         pe->pdev = dev;
967         pe->pbus = NULL;
968         pe->tce32_seg = -1;
969         pe->mve_number = -1;
970         pe->rid = dev->bus->number << 8 | pdn->devfn;
971
972         pe_info(pe, "Associated device to PE\n");
973
974         if (pnv_ioda_configure_pe(phb, pe)) {
975                 /* XXX What do we do here ? */
976                 if (pe_num)
977                         pnv_ioda_free_pe(phb, pe_num);
978                 pdn->pe_number = IODA_INVALID_PE;
979                 pe->pdev = NULL;
980                 pci_dev_put(dev);
981                 return NULL;
982         }
983
984         /* Assign a DMA weight to the device */
985         pe->dma_weight = pnv_ioda_dma_weight(dev);
986         if (pe->dma_weight != 0) {
987                 phb->ioda.dma_weight += pe->dma_weight;
988                 phb->ioda.dma_pe_count++;
989         }
990
991         /* Link the PE */
992         pnv_ioda_link_pe_by_weight(phb, pe);
993
994         return pe;
995 }
996 #endif /* Useful for SRIOV case */
997
998 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
999 {
1000         struct pci_dev *dev;
1001
1002         list_for_each_entry(dev, &bus->devices, bus_list) {
1003                 struct pci_dn *pdn = pci_get_pdn(dev);
1004
1005                 if (pdn == NULL) {
1006                         pr_warn("%s: No device node associated with device !\n",
1007                                 pci_name(dev));
1008                         continue;
1009                 }
1010                 pdn->pe_number = pe->pe_number;
1011                 pe->dma_weight += pnv_ioda_dma_weight(dev);
1012                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1013                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1014         }
1015 }
1016
1017 /*
1018  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1019  * single PCI bus. Another one that contains the primary PCI bus and its
1020  * subordinate PCI devices and buses. The second type of PE is normally
1021  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1022  */
1023 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1024 {
1025         struct pci_controller *hose = pci_bus_to_host(bus);
1026         struct pnv_phb *phb = hose->private_data;
1027         struct pnv_ioda_pe *pe;
1028         int pe_num = IODA_INVALID_PE;
1029
1030         /* Check if PE is determined by M64 */
1031         if (phb->pick_m64_pe)
1032                 pe_num = phb->pick_m64_pe(bus, all);
1033
1034         /* The PE number isn't pinned by M64 */
1035         if (pe_num == IODA_INVALID_PE)
1036                 pe_num = pnv_ioda_alloc_pe(phb);
1037
1038         if (pe_num == IODA_INVALID_PE) {
1039                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1040                         __func__, pci_domain_nr(bus), bus->number);
1041                 return;
1042         }
1043
1044         pe = &phb->ioda.pe_array[pe_num];
1045         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1046         pe->pbus = bus;
1047         pe->pdev = NULL;
1048         pe->tce32_seg = -1;
1049         pe->mve_number = -1;
1050         pe->rid = bus->busn_res.start << 8;
1051         pe->dma_weight = 0;
1052
1053         if (all)
1054                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1055                         bus->busn_res.start, bus->busn_res.end, pe_num);
1056         else
1057                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1058                         bus->busn_res.start, pe_num);
1059
1060         if (pnv_ioda_configure_pe(phb, pe)) {
1061                 /* XXX What do we do here ? */
1062                 if (pe_num)
1063                         pnv_ioda_free_pe(phb, pe_num);
1064                 pe->pbus = NULL;
1065                 return;
1066         }
1067
1068         /* Associate it with all child devices */
1069         pnv_ioda_setup_same_PE(bus, pe);
1070
1071         /* Put PE to the list */
1072         list_add_tail(&pe->list, &phb->ioda.pe_list);
1073
1074         /* Account for one DMA PE if at least one DMA capable device exist
1075          * below the bridge
1076          */
1077         if (pe->dma_weight != 0) {
1078                 phb->ioda.dma_weight += pe->dma_weight;
1079                 phb->ioda.dma_pe_count++;
1080         }
1081
1082         /* Link the PE */
1083         pnv_ioda_link_pe_by_weight(phb, pe);
1084 }
1085
1086 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1087 {
1088         struct pci_dev *dev;
1089
1090         pnv_ioda_setup_bus_PE(bus, false);
1091
1092         list_for_each_entry(dev, &bus->devices, bus_list) {
1093                 if (dev->subordinate) {
1094                         if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1095                                 pnv_ioda_setup_bus_PE(dev->subordinate, true);
1096                         else
1097                                 pnv_ioda_setup_PEs(dev->subordinate);
1098                 }
1099         }
1100 }
1101
1102 /*
1103  * Configure PEs so that the downstream PCI buses and devices
1104  * could have their associated PE#. Unfortunately, we didn't
1105  * figure out the way to identify the PLX bridge yet. So we
1106  * simply put the PCI bus and the subordinate behind the root
1107  * port to PE# here. The game rule here is expected to be changed
1108  * as soon as we can detected PLX bridge correctly.
1109  */
1110 static void pnv_pci_ioda_setup_PEs(void)
1111 {
1112         struct pci_controller *hose, *tmp;
1113         struct pnv_phb *phb;
1114
1115         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1116                 phb = hose->private_data;
1117
1118                 /* M64 layout might affect PE allocation */
1119                 if (phb->reserve_m64_pe)
1120                         phb->reserve_m64_pe(hose->bus, NULL, true);
1121
1122                 pnv_ioda_setup_PEs(hose->bus);
1123         }
1124 }
1125
1126 #ifdef CONFIG_PCI_IOV
1127 static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1128 {
1129         struct pci_bus        *bus;
1130         struct pci_controller *hose;
1131         struct pnv_phb        *phb;
1132         struct pci_dn         *pdn;
1133         int                    i, j;
1134
1135         bus = pdev->bus;
1136         hose = pci_bus_to_host(bus);
1137         phb = hose->private_data;
1138         pdn = pci_get_pdn(pdev);
1139
1140         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1141                 for (j = 0; j < M64_PER_IOV; j++) {
1142                         if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1143                                 continue;
1144                         opal_pci_phb_mmio_enable(phb->opal_id,
1145                                 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1146                         clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1147                         pdn->m64_wins[i][j] = IODA_INVALID_M64;
1148                 }
1149
1150         return 0;
1151 }
1152
1153 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1154 {
1155         struct pci_bus        *bus;
1156         struct pci_controller *hose;
1157         struct pnv_phb        *phb;
1158         struct pci_dn         *pdn;
1159         unsigned int           win;
1160         struct resource       *res;
1161         int                    i, j;
1162         int64_t                rc;
1163         int                    total_vfs;
1164         resource_size_t        size, start;
1165         int                    pe_num;
1166         int                    vf_groups;
1167         int                    vf_per_group;
1168
1169         bus = pdev->bus;
1170         hose = pci_bus_to_host(bus);
1171         phb = hose->private_data;
1172         pdn = pci_get_pdn(pdev);
1173         total_vfs = pci_sriov_get_totalvfs(pdev);
1174
1175         /* Initialize the m64_wins to IODA_INVALID_M64 */
1176         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1177                 for (j = 0; j < M64_PER_IOV; j++)
1178                         pdn->m64_wins[i][j] = IODA_INVALID_M64;
1179
1180         if (pdn->m64_per_iov == M64_PER_IOV) {
1181                 vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1182                 vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1183                         roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1184         } else {
1185                 vf_groups = 1;
1186                 vf_per_group = 1;
1187         }
1188
1189         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1190                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1191                 if (!res->flags || !res->parent)
1192                         continue;
1193
1194                 if (!pnv_pci_is_mem_pref_64(res->flags))
1195                         continue;
1196
1197                 for (j = 0; j < vf_groups; j++) {
1198                         do {
1199                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1200                                                 phb->ioda.m64_bar_idx + 1, 0);
1201
1202                                 if (win >= phb->ioda.m64_bar_idx + 1)
1203                                         goto m64_failed;
1204                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1205
1206                         pdn->m64_wins[i][j] = win;
1207
1208                         if (pdn->m64_per_iov == M64_PER_IOV) {
1209                                 size = pci_iov_resource_size(pdev,
1210                                                         PCI_IOV_RESOURCES + i);
1211                                 size = size * vf_per_group;
1212                                 start = res->start + size * j;
1213                         } else {
1214                                 size = resource_size(res);
1215                                 start = res->start;
1216                         }
1217
1218                         /* Map the M64 here */
1219                         if (pdn->m64_per_iov == M64_PER_IOV) {
1220                                 pe_num = pdn->offset + j;
1221                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1222                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1223                                                 pdn->m64_wins[i][j], 0);
1224                         }
1225
1226                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1227                                                  OPAL_M64_WINDOW_TYPE,
1228                                                  pdn->m64_wins[i][j],
1229                                                  start,
1230                                                  0, /* unused */
1231                                                  size);
1232
1233
1234                         if (rc != OPAL_SUCCESS) {
1235                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1236                                         win, rc);
1237                                 goto m64_failed;
1238                         }
1239
1240                         if (pdn->m64_per_iov == M64_PER_IOV)
1241                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1242                                      OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1243                         else
1244                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1245                                      OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
1246
1247                         if (rc != OPAL_SUCCESS) {
1248                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1249                                         win, rc);
1250                                 goto m64_failed;
1251                         }
1252                 }
1253         }
1254         return 0;
1255
1256 m64_failed:
1257         pnv_pci_vf_release_m64(pdev);
1258         return -EBUSY;
1259 }
1260
1261 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1262                 int num);
1263 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1264
1265 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1266 {
1267         struct iommu_table    *tbl;
1268         int64_t               rc;
1269
1270         tbl = pe->table_group.tables[0];
1271         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1272         if (rc)
1273                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1274
1275         pnv_pci_ioda2_set_bypass(pe, false);
1276         if (pe->table_group.group) {
1277                 iommu_group_put(pe->table_group.group);
1278                 BUG_ON(pe->table_group.group);
1279         }
1280         pnv_pci_ioda2_table_free_pages(tbl);
1281         iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1282 }
1283
1284 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1285 {
1286         struct pci_bus        *bus;
1287         struct pci_controller *hose;
1288         struct pnv_phb        *phb;
1289         struct pnv_ioda_pe    *pe, *pe_n;
1290         struct pci_dn         *pdn;
1291         u16                    vf_index;
1292         int64_t                rc;
1293
1294         bus = pdev->bus;
1295         hose = pci_bus_to_host(bus);
1296         phb = hose->private_data;
1297         pdn = pci_get_pdn(pdev);
1298
1299         if (!pdev->is_physfn)
1300                 return;
1301
1302         if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1303                 int   vf_group;
1304                 int   vf_per_group;
1305                 int   vf_index1;
1306
1307                 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1308
1309                 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1310                         for (vf_index = vf_group * vf_per_group;
1311                                 vf_index < (vf_group + 1) * vf_per_group &&
1312                                 vf_index < num_vfs;
1313                                 vf_index++)
1314                                 for (vf_index1 = vf_group * vf_per_group;
1315                                         vf_index1 < (vf_group + 1) * vf_per_group &&
1316                                         vf_index1 < num_vfs;
1317                                         vf_index1++){
1318
1319                                         rc = opal_pci_set_peltv(phb->opal_id,
1320                                                 pdn->offset + vf_index,
1321                                                 pdn->offset + vf_index1,
1322                                                 OPAL_REMOVE_PE_FROM_DOMAIN);
1323
1324                                         if (rc)
1325                                             dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1326                                                 __func__,
1327                                                 pdn->offset + vf_index1, rc);
1328                                 }
1329         }
1330
1331         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1332                 if (pe->parent_dev != pdev)
1333                         continue;
1334
1335                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1336
1337                 /* Remove from list */
1338                 mutex_lock(&phb->ioda.pe_list_mutex);
1339                 list_del(&pe->list);
1340                 mutex_unlock(&phb->ioda.pe_list_mutex);
1341
1342                 pnv_ioda_deconfigure_pe(phb, pe);
1343
1344                 pnv_ioda_free_pe(phb, pe->pe_number);
1345         }
1346 }
1347
1348 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1349 {
1350         struct pci_bus        *bus;
1351         struct pci_controller *hose;
1352         struct pnv_phb        *phb;
1353         struct pci_dn         *pdn;
1354         struct pci_sriov      *iov;
1355         u16 num_vfs;
1356
1357         bus = pdev->bus;
1358         hose = pci_bus_to_host(bus);
1359         phb = hose->private_data;
1360         pdn = pci_get_pdn(pdev);
1361         iov = pdev->sriov;
1362         num_vfs = pdn->num_vfs;
1363
1364         /* Release VF PEs */
1365         pnv_ioda_release_vf_PE(pdev, num_vfs);
1366
1367         if (phb->type == PNV_PHB_IODA2) {
1368                 if (pdn->m64_per_iov == 1)
1369                         pnv_pci_vf_resource_shift(pdev, -pdn->offset);
1370
1371                 /* Release M64 windows */
1372                 pnv_pci_vf_release_m64(pdev);
1373
1374                 /* Release PE numbers */
1375                 bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1376                 pdn->offset = 0;
1377         }
1378 }
1379
1380 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1381                                        struct pnv_ioda_pe *pe);
1382 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1383 {
1384         struct pci_bus        *bus;
1385         struct pci_controller *hose;
1386         struct pnv_phb        *phb;
1387         struct pnv_ioda_pe    *pe;
1388         int                    pe_num;
1389         u16                    vf_index;
1390         struct pci_dn         *pdn;
1391         int64_t                rc;
1392
1393         bus = pdev->bus;
1394         hose = pci_bus_to_host(bus);
1395         phb = hose->private_data;
1396         pdn = pci_get_pdn(pdev);
1397
1398         if (!pdev->is_physfn)
1399                 return;
1400
1401         /* Reserve PE for each VF */
1402         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1403                 pe_num = pdn->offset + vf_index;
1404
1405                 pe = &phb->ioda.pe_array[pe_num];
1406                 pe->pe_number = pe_num;
1407                 pe->phb = phb;
1408                 pe->flags = PNV_IODA_PE_VF;
1409                 pe->pbus = NULL;
1410                 pe->parent_dev = pdev;
1411                 pe->tce32_seg = -1;
1412                 pe->mve_number = -1;
1413                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1414                            pci_iov_virtfn_devfn(pdev, vf_index);
1415
1416                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1417                         hose->global_number, pdev->bus->number,
1418                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1419                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1420
1421                 if (pnv_ioda_configure_pe(phb, pe)) {
1422                         /* XXX What do we do here ? */
1423                         if (pe_num)
1424                                 pnv_ioda_free_pe(phb, pe_num);
1425                         pe->pdev = NULL;
1426                         continue;
1427                 }
1428
1429                 /* Put PE to the list */
1430                 mutex_lock(&phb->ioda.pe_list_mutex);
1431                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1432                 mutex_unlock(&phb->ioda.pe_list_mutex);
1433
1434                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1435         }
1436
1437         if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1438                 int   vf_group;
1439                 int   vf_per_group;
1440                 int   vf_index1;
1441
1442                 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1443
1444                 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1445                         for (vf_index = vf_group * vf_per_group;
1446                              vf_index < (vf_group + 1) * vf_per_group &&
1447                              vf_index < num_vfs;
1448                              vf_index++) {
1449                                 for (vf_index1 = vf_group * vf_per_group;
1450                                      vf_index1 < (vf_group + 1) * vf_per_group &&
1451                                      vf_index1 < num_vfs;
1452                                      vf_index1++) {
1453
1454                                         rc = opal_pci_set_peltv(phb->opal_id,
1455                                                 pdn->offset + vf_index,
1456                                                 pdn->offset + vf_index1,
1457                                                 OPAL_ADD_PE_TO_DOMAIN);
1458
1459                                         if (rc)
1460                                             dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1461                                                 __func__,
1462                                                 pdn->offset + vf_index1, rc);
1463                                 }
1464                         }
1465                 }
1466         }
1467 }
1468
1469 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1470 {
1471         struct pci_bus        *bus;
1472         struct pci_controller *hose;
1473         struct pnv_phb        *phb;
1474         struct pci_dn         *pdn;
1475         int                    ret;
1476
1477         bus = pdev->bus;
1478         hose = pci_bus_to_host(bus);
1479         phb = hose->private_data;
1480         pdn = pci_get_pdn(pdev);
1481
1482         if (phb->type == PNV_PHB_IODA2) {
1483                 /* Calculate available PE for required VFs */
1484                 mutex_lock(&phb->ioda.pe_alloc_mutex);
1485                 pdn->offset = bitmap_find_next_zero_area(
1486                         phb->ioda.pe_alloc, phb->ioda.total_pe,
1487                         0, num_vfs, 0);
1488                 if (pdn->offset >= phb->ioda.total_pe) {
1489                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1490                         dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1491                         pdn->offset = 0;
1492                         return -EBUSY;
1493                 }
1494                 bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1495                 pdn->num_vfs = num_vfs;
1496                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1497
1498                 /* Assign M64 window accordingly */
1499                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1500                 if (ret) {
1501                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1502                         goto m64_failed;
1503                 }
1504
1505                 /*
1506                  * When using one M64 BAR to map one IOV BAR, we need to shift
1507                  * the IOV BAR according to the PE# allocated to the VFs.
1508                  * Otherwise, the PE# for the VF will conflict with others.
1509                  */
1510                 if (pdn->m64_per_iov == 1) {
1511                         ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1512                         if (ret)
1513                                 goto m64_failed;
1514                 }
1515         }
1516
1517         /* Setup VF PEs */
1518         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1519
1520         return 0;
1521
1522 m64_failed:
1523         bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1524         pdn->offset = 0;
1525
1526         return ret;
1527 }
1528
1529 int pcibios_sriov_disable(struct pci_dev *pdev)
1530 {
1531         pnv_pci_sriov_disable(pdev);
1532
1533         /* Release PCI data */
1534         remove_dev_pci_data(pdev);
1535         return 0;
1536 }
1537
1538 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1539 {
1540         /* Allocate PCI data */
1541         add_dev_pci_data(pdev);
1542
1543         pnv_pci_sriov_enable(pdev, num_vfs);
1544         return 0;
1545 }
1546 #endif /* CONFIG_PCI_IOV */
1547
1548 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1549 {
1550         struct pci_dn *pdn = pci_get_pdn(pdev);
1551         struct pnv_ioda_pe *pe;
1552
1553         /*
1554          * The function can be called while the PE#
1555          * hasn't been assigned. Do nothing for the
1556          * case.
1557          */
1558         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1559                 return;
1560
1561         pe = &phb->ioda.pe_array[pdn->pe_number];
1562         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1563         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1564         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1565         /*
1566          * Note: iommu_add_device() will fail here as
1567          * for physical PE: the device is already added by now;
1568          * for virtual PE: sysfs entries are not ready yet and
1569          * tce_iommu_bus_notifier will add the device to a group later.
1570          */
1571 }
1572
1573 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1574 {
1575         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1576         struct pnv_phb *phb = hose->private_data;
1577         struct pci_dn *pdn = pci_get_pdn(pdev);
1578         struct pnv_ioda_pe *pe;
1579         uint64_t top;
1580         bool bypass = false;
1581
1582         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1583                 return -ENODEV;;
1584
1585         pe = &phb->ioda.pe_array[pdn->pe_number];
1586         if (pe->tce_bypass_enabled) {
1587                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1588                 bypass = (dma_mask >= top);
1589         }
1590
1591         if (bypass) {
1592                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1593                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1594         } else {
1595                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1596                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1597         }
1598         *pdev->dev.dma_mask = dma_mask;
1599         return 0;
1600 }
1601
1602 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1603 {
1604         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1605         struct pnv_phb *phb = hose->private_data;
1606         struct pci_dn *pdn = pci_get_pdn(pdev);
1607         struct pnv_ioda_pe *pe;
1608         u64 end, mask;
1609
1610         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1611                 return 0;
1612
1613         pe = &phb->ioda.pe_array[pdn->pe_number];
1614         if (!pe->tce_bypass_enabled)
1615                 return __dma_get_required_mask(&pdev->dev);
1616
1617
1618         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1619         mask = 1ULL << (fls64(end) - 1);
1620         mask += mask - 1;
1621
1622         return mask;
1623 }
1624
1625 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1626                                    struct pci_bus *bus)
1627 {
1628         struct pci_dev *dev;
1629
1630         list_for_each_entry(dev, &bus->devices, bus_list) {
1631                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1632                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1633                 iommu_add_device(&dev->dev);
1634
1635                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1636                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1637         }
1638 }
1639
1640 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1641                 unsigned long index, unsigned long npages, bool rm)
1642 {
1643         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1644                         &tbl->it_group_list, struct iommu_table_group_link,
1645                         next);
1646         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1647                         struct pnv_ioda_pe, table_group);
1648         __be64 __iomem *invalidate = rm ?
1649                 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1650                 pe->phb->ioda.tce_inval_reg;
1651         unsigned long start, end, inc;
1652         const unsigned shift = tbl->it_page_shift;
1653
1654         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1655         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1656                         npages - 1);
1657
1658         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1659         if (tbl->it_busno) {
1660                 start <<= shift;
1661                 end <<= shift;
1662                 inc = 128ull << shift;
1663                 start |= tbl->it_busno;
1664                 end |= tbl->it_busno;
1665         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1666                 /* p7ioc-style invalidation, 2 TCEs per write */
1667                 start |= (1ull << 63);
1668                 end |= (1ull << 63);
1669                 inc = 16;
1670         } else {
1671                 /* Default (older HW) */
1672                 inc = 128;
1673         }
1674
1675         end |= inc - 1; /* round up end to be different than start */
1676
1677         mb(); /* Ensure above stores are visible */
1678         while (start <= end) {
1679                 if (rm)
1680                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1681                 else
1682                         __raw_writeq(cpu_to_be64(start), invalidate);
1683                 start += inc;
1684         }
1685
1686         /*
1687          * The iommu layer will do another mb() for us on build()
1688          * and we don't care on free()
1689          */
1690 }
1691
1692 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1693                 long npages, unsigned long uaddr,
1694                 enum dma_data_direction direction,
1695                 struct dma_attrs *attrs)
1696 {
1697         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1698                         attrs);
1699
1700         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1701                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1702
1703         return ret;
1704 }
1705
1706 #ifdef CONFIG_IOMMU_API
1707 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1708                 unsigned long *hpa, enum dma_data_direction *direction)
1709 {
1710         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1711
1712         if (!ret && (tbl->it_type &
1713                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1714                 pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1715
1716         return ret;
1717 }
1718 #endif
1719
1720 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1721                 long npages)
1722 {
1723         pnv_tce_free(tbl, index, npages);
1724
1725         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1726                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1727 }
1728
1729 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1730         .set = pnv_ioda1_tce_build,
1731 #ifdef CONFIG_IOMMU_API
1732         .exchange = pnv_ioda1_tce_xchg,
1733 #endif
1734         .clear = pnv_ioda1_tce_free,
1735         .get = pnv_tce_get,
1736 };
1737
1738 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1739 {
1740         /* 01xb - invalidate TCEs that match the specified PE# */
1741         unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1742         struct pnv_phb *phb = pe->phb;
1743
1744         if (!phb->ioda.tce_inval_reg)
1745                 return;
1746
1747         mb(); /* Ensure above stores are visible */
1748         __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1749 }
1750
1751 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1752                 __be64 __iomem *invalidate, unsigned shift,
1753                 unsigned long index, unsigned long npages)
1754 {
1755         unsigned long start, end, inc;
1756
1757         /* We'll invalidate DMA address in PE scope */
1758         start = 0x2ull << 60;
1759         start |= (pe_number & 0xFF);
1760         end = start;
1761
1762         /* Figure out the start, end and step */
1763         start |= (index << shift);
1764         end |= ((index + npages - 1) << shift);
1765         inc = (0x1ull << shift);
1766         mb();
1767
1768         while (start <= end) {
1769                 if (rm)
1770                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1771                 else
1772                         __raw_writeq(cpu_to_be64(start), invalidate);
1773                 start += inc;
1774         }
1775 }
1776
1777 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1778                 unsigned long index, unsigned long npages, bool rm)
1779 {
1780         struct iommu_table_group_link *tgl;
1781
1782         list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1783                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1784                                 struct pnv_ioda_pe, table_group);
1785                 __be64 __iomem *invalidate = rm ?
1786                         (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1787                         pe->phb->ioda.tce_inval_reg;
1788
1789                 pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1790                         invalidate, tbl->it_page_shift,
1791                         index, npages);
1792         }
1793 }
1794
1795 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1796                 long npages, unsigned long uaddr,
1797                 enum dma_data_direction direction,
1798                 struct dma_attrs *attrs)
1799 {
1800         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1801                         attrs);
1802
1803         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1804                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1805
1806         return ret;
1807 }
1808
1809 #ifdef CONFIG_IOMMU_API
1810 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1811                 unsigned long *hpa, enum dma_data_direction *direction)
1812 {
1813         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1814
1815         if (!ret && (tbl->it_type &
1816                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1817                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1818
1819         return ret;
1820 }
1821 #endif
1822
1823 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1824                 long npages)
1825 {
1826         pnv_tce_free(tbl, index, npages);
1827
1828         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1829                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1830 }
1831
1832 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1833 {
1834         pnv_pci_ioda2_table_free_pages(tbl);
1835         iommu_free_table(tbl, "pnv");
1836 }
1837
1838 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1839         .set = pnv_ioda2_tce_build,
1840 #ifdef CONFIG_IOMMU_API
1841         .exchange = pnv_ioda2_tce_xchg,
1842 #endif
1843         .clear = pnv_ioda2_tce_free,
1844         .get = pnv_tce_get,
1845         .free = pnv_ioda2_table_free,
1846 };
1847
1848 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1849                                       struct pnv_ioda_pe *pe, unsigned int base,
1850                                       unsigned int segs)
1851 {
1852
1853         struct page *tce_mem = NULL;
1854         struct iommu_table *tbl;
1855         unsigned int i;
1856         int64_t rc;
1857         void *addr;
1858
1859         /* XXX FIXME: Handle 64-bit only DMA devices */
1860         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1861         /* XXX FIXME: Allocate multi-level tables on PHB3 */
1862
1863         /* We shouldn't already have a 32-bit DMA associated */
1864         if (WARN_ON(pe->tce32_seg >= 0))
1865                 return;
1866
1867         tbl = pnv_pci_table_alloc(phb->hose->node);
1868         iommu_register_group(&pe->table_group, phb->hose->global_number,
1869                         pe->pe_number);
1870         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1871
1872         /* Grab a 32-bit TCE table */
1873         pe->tce32_seg = base;
1874         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1875                 (base << 28), ((base + segs) << 28) - 1);
1876
1877         /* XXX Currently, we allocate one big contiguous table for the
1878          * TCEs. We only really need one chunk per 256M of TCE space
1879          * (ie per segment) but that's an optimization for later, it
1880          * requires some added smarts with our get/put_tce implementation
1881          */
1882         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1883                                    get_order(TCE32_TABLE_SIZE * segs));
1884         if (!tce_mem) {
1885                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1886                 goto fail;
1887         }
1888         addr = page_address(tce_mem);
1889         memset(addr, 0, TCE32_TABLE_SIZE * segs);
1890
1891         /* Configure HW */
1892         for (i = 0; i < segs; i++) {
1893                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1894                                               pe->pe_number,
1895                                               base + i, 1,
1896                                               __pa(addr) + TCE32_TABLE_SIZE * i,
1897                                               TCE32_TABLE_SIZE, 0x1000);
1898                 if (rc) {
1899                         pe_err(pe, " Failed to configure 32-bit TCE table,"
1900                                " err %ld\n", rc);
1901                         goto fail;
1902                 }
1903         }
1904
1905         /* Setup linux iommu table */
1906         pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1907                                   base << 28, IOMMU_PAGE_SHIFT_4K);
1908
1909         /* OPAL variant of P7IOC SW invalidated TCEs */
1910         if (phb->ioda.tce_inval_reg)
1911                 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1912                                  TCE_PCI_SWINV_FREE   |
1913                                  TCE_PCI_SWINV_PAIR);
1914
1915         tbl->it_ops = &pnv_ioda1_iommu_ops;
1916         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1917         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1918         iommu_init_table(tbl, phb->hose->node);
1919
1920         if (pe->flags & PNV_IODA_PE_DEV) {
1921                 /*
1922                  * Setting table base here only for carrying iommu_group
1923                  * further down to let iommu_add_device() do the job.
1924                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
1925                  */
1926                 set_iommu_table_base(&pe->pdev->dev, tbl);
1927                 iommu_add_device(&pe->pdev->dev);
1928         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
1929                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1930
1931         return;
1932  fail:
1933         /* XXX Failure: Try to fallback to 64-bit only ? */
1934         if (pe->tce32_seg >= 0)
1935                 pe->tce32_seg = -1;
1936         if (tce_mem)
1937                 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1938         if (tbl) {
1939                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1940                 iommu_free_table(tbl, "pnv");
1941         }
1942 }
1943
1944 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1945                 int num, struct iommu_table *tbl)
1946 {
1947         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1948                         table_group);
1949         struct pnv_phb *phb = pe->phb;
1950         int64_t rc;
1951         const unsigned long size = tbl->it_indirect_levels ?
1952                         tbl->it_level_size : tbl->it_size;
1953         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1954         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1955
1956         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
1957                         start_addr, start_addr + win_size - 1,
1958                         IOMMU_PAGE_SIZE(tbl));
1959
1960         /*
1961          * Map TCE table through TVT. The TVE index is the PE number
1962          * shifted by 1 bit for 32-bits DMA space.
1963          */
1964         rc = opal_pci_map_pe_dma_window(phb->opal_id,
1965                         pe->pe_number,
1966                         (pe->pe_number << 1) + num,
1967                         tbl->it_indirect_levels + 1,
1968                         __pa(tbl->it_base),
1969                         size << 3,
1970                         IOMMU_PAGE_SIZE(tbl));
1971         if (rc) {
1972                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
1973                 return rc;
1974         }
1975
1976         pnv_pci_link_table_and_group(phb->hose->node, num,
1977                         tbl, &pe->table_group);
1978         pnv_pci_ioda2_tce_invalidate_entire(pe);
1979
1980         return 0;
1981 }
1982
1983 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1984 {
1985         uint16_t window_id = (pe->pe_number << 1 ) + 1;
1986         int64_t rc;
1987
1988         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1989         if (enable) {
1990                 phys_addr_t top = memblock_end_of_DRAM();
1991
1992                 top = roundup_pow_of_two(top);
1993                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1994                                                      pe->pe_number,
1995                                                      window_id,
1996                                                      pe->tce_bypass_base,
1997                                                      top);
1998         } else {
1999                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2000                                                      pe->pe_number,
2001                                                      window_id,
2002                                                      pe->tce_bypass_base,
2003                                                      0);
2004         }
2005         if (rc)
2006                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2007         else
2008                 pe->tce_bypass_enabled = enable;
2009 }
2010
2011 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2012                 __u32 page_shift, __u64 window_size, __u32 levels,
2013                 struct iommu_table *tbl);
2014
2015 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2016                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2017                 struct iommu_table **ptbl)
2018 {
2019         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2020                         table_group);
2021         int nid = pe->phb->hose->node;
2022         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2023         long ret;
2024         struct iommu_table *tbl;
2025
2026         tbl = pnv_pci_table_alloc(nid);
2027         if (!tbl)
2028                 return -ENOMEM;
2029
2030         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2031                         bus_offset, page_shift, window_size,
2032                         levels, tbl);
2033         if (ret) {
2034                 iommu_free_table(tbl, "pnv");
2035                 return ret;
2036         }
2037
2038         tbl->it_ops = &pnv_ioda2_iommu_ops;
2039         if (pe->phb->ioda.tce_inval_reg)
2040                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2041
2042         *ptbl = tbl;
2043
2044         return 0;
2045 }
2046
2047 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2048 {
2049         struct iommu_table *tbl = NULL;
2050         long rc;
2051
2052         /*
2053          * crashkernel= specifies the kdump kernel's maximum memory at
2054          * some offset and there is no guaranteed the result is a power
2055          * of 2, which will cause errors later.
2056          */
2057         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2058
2059         /*
2060          * In memory constrained environments, e.g. kdump kernel, the
2061          * DMA window can be larger than available memory, which will
2062          * cause errors later.
2063          */
2064         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2065
2066         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2067                         IOMMU_PAGE_SHIFT_4K,
2068                         window_size,
2069                         POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2070         if (rc) {
2071                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2072                                 rc);
2073                 return rc;
2074         }
2075
2076         iommu_init_table(tbl, pe->phb->hose->node);
2077
2078         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2079         if (rc) {
2080                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2081                                 rc);
2082                 pnv_ioda2_table_free(tbl);
2083                 return rc;
2084         }
2085
2086         if (!pnv_iommu_bypass_disabled)
2087                 pnv_pci_ioda2_set_bypass(pe, true);
2088
2089         /* OPAL variant of PHB3 invalidated TCEs */
2090         if (pe->phb->ioda.tce_inval_reg)
2091                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2092
2093         /*
2094          * Setting table base here only for carrying iommu_group
2095          * further down to let iommu_add_device() do the job.
2096          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2097          */
2098         if (pe->flags & PNV_IODA_PE_DEV)
2099                 set_iommu_table_base(&pe->pdev->dev, tbl);
2100
2101         return 0;
2102 }
2103
2104 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2105 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2106                 int num)
2107 {
2108         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2109                         table_group);
2110         struct pnv_phb *phb = pe->phb;
2111         long ret;
2112
2113         pe_info(pe, "Removing DMA window #%d\n", num);
2114
2115         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2116                         (pe->pe_number << 1) + num,
2117                         0/* levels */, 0/* table address */,
2118                         0/* table size */, 0/* page size */);
2119         if (ret)
2120                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2121         else
2122                 pnv_pci_ioda2_tce_invalidate_entire(pe);
2123
2124         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2125
2126         return ret;
2127 }
2128 #endif
2129
2130 #ifdef CONFIG_IOMMU_API
2131 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2132                 __u64 window_size, __u32 levels)
2133 {
2134         unsigned long bytes = 0;
2135         const unsigned window_shift = ilog2(window_size);
2136         unsigned entries_shift = window_shift - page_shift;
2137         unsigned table_shift = entries_shift + 3;
2138         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2139         unsigned long direct_table_size;
2140
2141         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2142                         (window_size > memory_hotplug_max()) ||
2143                         !is_power_of_2(window_size))
2144                 return 0;
2145
2146         /* Calculate a direct table size from window_size and levels */
2147         entries_shift = (entries_shift + levels - 1) / levels;
2148         table_shift = entries_shift + 3;
2149         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2150         direct_table_size =  1UL << table_shift;
2151
2152         for ( ; levels; --levels) {
2153                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2154
2155                 tce_table_size /= direct_table_size;
2156                 tce_table_size <<= 3;
2157                 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2158         }
2159
2160         return bytes;
2161 }
2162
2163 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2164 {
2165         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2166                                                 table_group);
2167         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2168         struct iommu_table *tbl = pe->table_group.tables[0];
2169
2170         pnv_pci_ioda2_set_bypass(pe, false);
2171         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2172         pnv_ioda2_table_free(tbl);
2173 }
2174
2175 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2176 {
2177         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2178                                                 table_group);
2179
2180         pnv_pci_ioda2_setup_default_config(pe);
2181 }
2182
2183 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2184         .get_table_size = pnv_pci_ioda2_get_table_size,
2185         .create_table = pnv_pci_ioda2_create_table,
2186         .set_window = pnv_pci_ioda2_set_window,
2187         .unset_window = pnv_pci_ioda2_unset_window,
2188         .take_ownership = pnv_ioda2_take_ownership,
2189         .release_ownership = pnv_ioda2_release_ownership,
2190 };
2191 #endif
2192
2193 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2194 {
2195         const __be64 *swinvp;
2196
2197         /* OPAL variant of PHB3 invalidated TCEs */
2198         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2199         if (!swinvp)
2200                 return;
2201
2202         phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2203         phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2204 }
2205
2206 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2207                 unsigned levels, unsigned long limit,
2208                 unsigned long *current_offset, unsigned long *total_allocated)
2209 {
2210         struct page *tce_mem = NULL;
2211         __be64 *addr, *tmp;
2212         unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2213         unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2214         unsigned entries = 1UL << (shift - 3);
2215         long i;
2216
2217         tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2218         if (!tce_mem) {
2219                 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2220                 return NULL;
2221         }
2222         addr = page_address(tce_mem);
2223         memset(addr, 0, allocated);
2224         *total_allocated += allocated;
2225
2226         --levels;
2227         if (!levels) {
2228                 *current_offset += allocated;
2229                 return addr;
2230         }
2231
2232         for (i = 0; i < entries; ++i) {
2233                 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2234                                 levels, limit, current_offset, total_allocated);
2235                 if (!tmp)
2236                         break;
2237
2238                 addr[i] = cpu_to_be64(__pa(tmp) |
2239                                 TCE_PCI_READ | TCE_PCI_WRITE);
2240
2241                 if (*current_offset >= limit)
2242                         break;
2243         }
2244
2245         return addr;
2246 }
2247
2248 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2249                 unsigned long size, unsigned level);
2250
2251 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2252                 __u32 page_shift, __u64 window_size, __u32 levels,
2253                 struct iommu_table *tbl)
2254 {
2255         void *addr;
2256         unsigned long offset = 0, level_shift, total_allocated = 0;
2257         const unsigned window_shift = ilog2(window_size);
2258         unsigned entries_shift = window_shift - page_shift;
2259         unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2260         const unsigned long tce_table_size = 1UL << table_shift;
2261
2262         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2263                 return -EINVAL;
2264
2265         if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2266                 return -EINVAL;
2267
2268         /* Adjust direct table size from window_size and levels */
2269         entries_shift = (entries_shift + levels - 1) / levels;
2270         level_shift = entries_shift + 3;
2271         level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2272
2273         /* Allocate TCE table */
2274         addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2275                         levels, tce_table_size, &offset, &total_allocated);
2276
2277         /* addr==NULL means that the first level allocation failed */
2278         if (!addr)
2279                 return -ENOMEM;
2280
2281         /*
2282          * First level was allocated but some lower level failed as
2283          * we did not allocate as much as we wanted,
2284          * release partially allocated table.
2285          */
2286         if (offset < tce_table_size) {
2287                 pnv_pci_ioda2_table_do_free_pages(addr,
2288                                 1ULL << (level_shift - 3), levels - 1);
2289                 return -ENOMEM;
2290         }
2291
2292         /* Setup linux iommu table */
2293         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2294                         page_shift);
2295         tbl->it_level_size = 1ULL << (level_shift - 3);
2296         tbl->it_indirect_levels = levels - 1;
2297         tbl->it_allocated_size = total_allocated;
2298
2299         pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2300                         window_size, tce_table_size, bus_offset);
2301
2302         return 0;
2303 }
2304
2305 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2306                 unsigned long size, unsigned level)
2307 {
2308         const unsigned long addr_ul = (unsigned long) addr &
2309                         ~(TCE_PCI_READ | TCE_PCI_WRITE);
2310
2311         if (level) {
2312                 long i;
2313                 u64 *tmp = (u64 *) addr_ul;
2314
2315                 for (i = 0; i < size; ++i) {
2316                         unsigned long hpa = be64_to_cpu(tmp[i]);
2317
2318                         if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2319                                 continue;
2320
2321                         pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2322                                         level - 1);
2323                 }
2324         }
2325
2326         free_pages(addr_ul, get_order(size << 3));
2327 }
2328
2329 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2330 {
2331         const unsigned long size = tbl->it_indirect_levels ?
2332                         tbl->it_level_size : tbl->it_size;
2333
2334         if (!tbl->it_size)
2335                 return;
2336
2337         pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2338                         tbl->it_indirect_levels);
2339 }
2340
2341 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2342                                        struct pnv_ioda_pe *pe)
2343 {
2344         int64_t rc;
2345
2346         /* We shouldn't already have a 32-bit DMA associated */
2347         if (WARN_ON(pe->tce32_seg >= 0))
2348                 return;
2349
2350         /* TVE #1 is selected by PCI address bit 59 */
2351         pe->tce_bypass_base = 1ull << 59;
2352
2353         iommu_register_group(&pe->table_group, phb->hose->global_number,
2354                         pe->pe_number);
2355
2356         /* The PE will reserve all possible 32-bits space */
2357         pe->tce32_seg = 0;
2358         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2359                 phb->ioda.m32_pci_base);
2360
2361         /* Setup linux iommu table */
2362         pe->table_group.tce32_start = 0;
2363         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2364         pe->table_group.max_dynamic_windows_supported =
2365                         IOMMU_TABLE_GROUP_MAX_TABLES;
2366         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2367         pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2368 #ifdef CONFIG_IOMMU_API
2369         pe->table_group.ops = &pnv_pci_ioda2_ops;
2370 #endif
2371
2372         rc = pnv_pci_ioda2_setup_default_config(pe);
2373         if (rc) {
2374                 if (pe->tce32_seg >= 0)
2375                         pe->tce32_seg = -1;
2376                 return;
2377         }
2378
2379         if (pe->flags & PNV_IODA_PE_DEV)
2380                 iommu_add_device(&pe->pdev->dev);
2381         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2382                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2383 }
2384
2385 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2386 {
2387         struct pci_controller *hose = phb->hose;
2388         unsigned int residual, remaining, segs, tw, base;
2389         struct pnv_ioda_pe *pe;
2390
2391         /* If we have more PE# than segments available, hand out one
2392          * per PE until we run out and let the rest fail. If not,
2393          * then we assign at least one segment per PE, plus more based
2394          * on the amount of devices under that PE
2395          */
2396         if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2397                 residual = 0;
2398         else
2399                 residual = phb->ioda.tce32_count -
2400                         phb->ioda.dma_pe_count;
2401
2402         pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2403                 hose->global_number, phb->ioda.tce32_count);
2404         pr_info("PCI: %d PE# for a total weight of %d\n",
2405                 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2406
2407         pnv_pci_ioda_setup_opal_tce_kill(phb);
2408
2409         /* Walk our PE list and configure their DMA segments, hand them
2410          * out one base segment plus any residual segments based on
2411          * weight
2412          */
2413         remaining = phb->ioda.tce32_count;
2414         tw = phb->ioda.dma_weight;
2415         base = 0;
2416         list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2417                 if (!pe->dma_weight)
2418                         continue;
2419                 if (!remaining) {
2420                         pe_warn(pe, "No DMA32 resources available\n");
2421                         continue;
2422                 }
2423                 segs = 1;
2424                 if (residual) {
2425                         segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
2426                         if (segs > remaining)
2427                                 segs = remaining;
2428                 }
2429
2430                 /*
2431                  * For IODA2 compliant PHB3, we needn't care about the weight.
2432                  * The all available 32-bits DMA space will be assigned to
2433                  * the specific PE.
2434                  */
2435                 if (phb->type == PNV_PHB_IODA1) {
2436                         pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2437                                 pe->dma_weight, segs);
2438                         pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2439                 } else {
2440                         pe_info(pe, "Assign DMA32 space\n");
2441                         segs = 0;
2442                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
2443                 }
2444
2445                 remaining -= segs;
2446                 base += segs;
2447         }
2448 }
2449
2450 #ifdef CONFIG_PCI_MSI
2451 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2452 {
2453         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2454         struct irq_chip *chip = irq_data_get_irq_chip(d);
2455         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2456                                            ioda.irq_chip);
2457         int64_t rc;
2458
2459         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2460         WARN_ON_ONCE(rc);
2461
2462         icp_native_eoi(d);
2463 }
2464
2465
2466 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2467 {
2468         struct irq_data *idata;
2469         struct irq_chip *ichip;
2470
2471         if (phb->type != PNV_PHB_IODA2)
2472                 return;
2473
2474         if (!phb->ioda.irq_chip_init) {
2475                 /*
2476                  * First time we setup an MSI IRQ, we need to setup the
2477                  * corresponding IRQ chip to route correctly.
2478                  */
2479                 idata = irq_get_irq_data(virq);
2480                 ichip = irq_data_get_irq_chip(idata);
2481                 phb->ioda.irq_chip_init = 1;
2482                 phb->ioda.irq_chip = *ichip;
2483                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2484         }
2485         irq_set_chip(virq, &phb->ioda.irq_chip);
2486 }
2487
2488 #ifdef CONFIG_CXL_BASE
2489
2490 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2491 {
2492         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2493
2494         return of_node_get(hose->dn);
2495 }
2496 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2497
2498 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2499 {
2500         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2501         struct pnv_phb *phb = hose->private_data;
2502         struct pnv_ioda_pe *pe;
2503         int rc;
2504
2505         pe = pnv_ioda_get_pe(dev);
2506         if (!pe)
2507                 return -ENODEV;
2508
2509         pe_info(pe, "Switching PHB to CXL\n");
2510
2511         rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2512         if (rc)
2513                 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2514
2515         return rc;
2516 }
2517 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2518
2519 /* Find PHB for cxl dev and allocate MSI hwirqs?
2520  * Returns the absolute hardware IRQ number
2521  */
2522 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2523 {
2524         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2525         struct pnv_phb *phb = hose->private_data;
2526         int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2527
2528         if (hwirq < 0) {
2529                 dev_warn(&dev->dev, "Failed to find a free MSI\n");
2530                 return -ENOSPC;
2531         }
2532
2533         return phb->msi_base + hwirq;
2534 }
2535 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2536
2537 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2538 {
2539         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2540         struct pnv_phb *phb = hose->private_data;
2541
2542         msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2543 }
2544 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2545
2546 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2547                                   struct pci_dev *dev)
2548 {
2549         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2550         struct pnv_phb *phb = hose->private_data;
2551         int i, hwirq;
2552
2553         for (i = 1; i < CXL_IRQ_RANGES; i++) {
2554                 if (!irqs->range[i])
2555                         continue;
2556                 pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2557                          i, irqs->offset[i],
2558                          irqs->range[i]);
2559                 hwirq = irqs->offset[i] - phb->msi_base;
2560                 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2561                                        irqs->range[i]);
2562         }
2563 }
2564 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2565
2566 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2567                                struct pci_dev *dev, int num)
2568 {
2569         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2570         struct pnv_phb *phb = hose->private_data;
2571         int i, hwirq, try;
2572
2573         memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2574
2575         /* 0 is reserved for the multiplexed PSL DSI interrupt */
2576         for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2577                 try = num;
2578                 while (try) {
2579                         hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2580                         if (hwirq >= 0)
2581                                 break;
2582                         try /= 2;
2583                 }
2584                 if (!try)
2585                         goto fail;
2586
2587                 irqs->offset[i] = phb->msi_base + hwirq;
2588                 irqs->range[i] = try;
2589                 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2590                          i, irqs->offset[i], irqs->range[i]);
2591                 num -= try;
2592         }
2593         if (num)
2594                 goto fail;
2595
2596         return 0;
2597 fail:
2598         pnv_cxl_release_hwirq_ranges(irqs, dev);
2599         return -ENOSPC;
2600 }
2601 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2602
2603 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2604 {
2605         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2606         struct pnv_phb *phb = hose->private_data;
2607
2608         return phb->msi_bmp.irq_count;
2609 }
2610 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2611
2612 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2613                            unsigned int virq)
2614 {
2615         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2616         struct pnv_phb *phb = hose->private_data;
2617         unsigned int xive_num = hwirq - phb->msi_base;
2618         struct pnv_ioda_pe *pe;
2619         int rc;
2620
2621         if (!(pe = pnv_ioda_get_pe(dev)))
2622                 return -ENODEV;
2623
2624         /* Assign XIVE to PE */
2625         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2626         if (rc) {
2627                 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2628                         "hwirq 0x%x XIVE 0x%x PE\n",
2629                         pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2630                 return -EIO;
2631         }
2632         set_msi_irq_chip(phb, virq);
2633
2634         return 0;
2635 }
2636 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2637 #endif
2638
2639 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2640                                   unsigned int hwirq, unsigned int virq,
2641                                   unsigned int is_64, struct msi_msg *msg)
2642 {
2643         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2644         unsigned int xive_num = hwirq - phb->msi_base;
2645         __be32 data;
2646         int rc;
2647
2648         /* No PE assigned ? bail out ... no MSI for you ! */
2649         if (pe == NULL)
2650                 return -ENXIO;
2651
2652         /* Check if we have an MVE */
2653         if (pe->mve_number < 0)
2654                 return -ENXIO;
2655
2656         /* Force 32-bit MSI on some broken devices */
2657         if (dev->no_64bit_msi)
2658                 is_64 = 0;
2659
2660         /* Assign XIVE to PE */
2661         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2662         if (rc) {
2663                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2664                         pci_name(dev), rc, xive_num);
2665                 return -EIO;
2666         }
2667
2668         if (is_64) {
2669                 __be64 addr64;
2670
2671                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2672                                      &addr64, &data);
2673                 if (rc) {
2674                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2675                                 pci_name(dev), rc);
2676                         return -EIO;
2677                 }
2678                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2679                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2680         } else {
2681                 __be32 addr32;
2682
2683                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2684                                      &addr32, &data);
2685                 if (rc) {
2686                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2687                                 pci_name(dev), rc);
2688                         return -EIO;
2689                 }
2690                 msg->address_hi = 0;
2691                 msg->address_lo = be32_to_cpu(addr32);
2692         }
2693         msg->data = be32_to_cpu(data);
2694
2695         set_msi_irq_chip(phb, virq);
2696
2697         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2698                  " address=%x_%08x data=%x PE# %d\n",
2699                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2700                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2701
2702         return 0;
2703 }
2704
2705 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2706 {
2707         unsigned int count;
2708         const __be32 *prop = of_get_property(phb->hose->dn,
2709                                              "ibm,opal-msi-ranges", NULL);
2710         if (!prop) {
2711                 /* BML Fallback */
2712                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2713         }
2714         if (!prop)
2715                 return;
2716
2717         phb->msi_base = be32_to_cpup(prop);
2718         count = be32_to_cpup(prop + 1);
2719         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2720                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2721                        phb->hose->global_number);
2722                 return;
2723         }
2724
2725         phb->msi_setup = pnv_pci_ioda_msi_setup;
2726         phb->msi32_support = 1;
2727         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2728                 count, phb->msi_base);
2729 }
2730 #else
2731 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2732 #endif /* CONFIG_PCI_MSI */
2733
2734 #ifdef CONFIG_PCI_IOV
2735 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2736 {
2737         struct pci_controller *hose;
2738         struct pnv_phb *phb;
2739         struct resource *res;
2740         int i;
2741         resource_size_t size;
2742         struct pci_dn *pdn;
2743         int mul, total_vfs;
2744
2745         if (!pdev->is_physfn || pdev->is_added)
2746                 return;
2747
2748         hose = pci_bus_to_host(pdev->bus);
2749         phb = hose->private_data;
2750
2751         pdn = pci_get_pdn(pdev);
2752         pdn->vfs_expanded = 0;
2753
2754         total_vfs = pci_sriov_get_totalvfs(pdev);
2755         pdn->m64_per_iov = 1;
2756         mul = phb->ioda.total_pe;
2757
2758         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2759                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2760                 if (!res->flags || res->parent)
2761                         continue;
2762                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2763                         dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2764                                  i, res);
2765                         continue;
2766                 }
2767
2768                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2769
2770                 /* bigger than 64M */
2771                 if (size > (1 << 26)) {
2772                         dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2773                                  i, res);
2774                         pdn->m64_per_iov = M64_PER_IOV;
2775                         mul = roundup_pow_of_two(total_vfs);
2776                         break;
2777                 }
2778         }
2779
2780         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2781                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2782                 if (!res->flags || res->parent)
2783                         continue;
2784                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2785                         dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2786                                  i, res);
2787                         continue;
2788                 }
2789
2790                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2791                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2792                 res->end = res->start + size * mul - 1;
2793                 dev_dbg(&pdev->dev, "                       %pR\n", res);
2794                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2795                          i, res, mul);
2796         }
2797         pdn->vfs_expanded = mul;
2798 }
2799 #endif /* CONFIG_PCI_IOV */
2800
2801 /*
2802  * This function is supposed to be called on basis of PE from top
2803  * to bottom style. So the the I/O or MMIO segment assigned to
2804  * parent PE could be overrided by its child PEs if necessary.
2805  */
2806 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2807                                   struct pnv_ioda_pe *pe)
2808 {
2809         struct pnv_phb *phb = hose->private_data;
2810         struct pci_bus_region region;
2811         struct resource *res;
2812         int i, index;
2813         int rc;
2814
2815         /*
2816          * NOTE: We only care PCI bus based PE for now. For PCI
2817          * device based PE, for example SRIOV sensitive VF should
2818          * be figured out later.
2819          */
2820         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2821
2822         pci_bus_for_each_resource(pe->pbus, res, i) {
2823                 if (!res || !res->flags ||
2824                     res->start > res->end)
2825                         continue;
2826
2827                 if (res->flags & IORESOURCE_IO) {
2828                         region.start = res->start - phb->ioda.io_pci_base;
2829                         region.end   = res->end - phb->ioda.io_pci_base;
2830                         index = region.start / phb->ioda.io_segsize;
2831
2832                         while (index < phb->ioda.total_pe &&
2833                                region.start <= region.end) {
2834                                 phb->ioda.io_segmap[index] = pe->pe_number;
2835                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2836                                         pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2837                                 if (rc != OPAL_SUCCESS) {
2838                                         pr_err("%s: OPAL error %d when mapping IO "
2839                                                "segment #%d to PE#%d\n",
2840                                                __func__, rc, index, pe->pe_number);
2841                                         break;
2842                                 }
2843
2844                                 region.start += phb->ioda.io_segsize;
2845                                 index++;
2846                         }
2847                 } else if ((res->flags & IORESOURCE_MEM) &&
2848                            !pnv_pci_is_mem_pref_64(res->flags)) {
2849                         region.start = res->start -
2850                                        hose->mem_offset[0] -
2851                                        phb->ioda.m32_pci_base;
2852                         region.end   = res->end -
2853                                        hose->mem_offset[0] -
2854                                        phb->ioda.m32_pci_base;
2855                         index = region.start / phb->ioda.m32_segsize;
2856
2857                         while (index < phb->ioda.total_pe &&
2858                                region.start <= region.end) {
2859                                 phb->ioda.m32_segmap[index] = pe->pe_number;
2860                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2861                                         pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2862                                 if (rc != OPAL_SUCCESS) {
2863                                         pr_err("%s: OPAL error %d when mapping M32 "
2864                                                "segment#%d to PE#%d",
2865                                                __func__, rc, index, pe->pe_number);
2866                                         break;
2867                                 }
2868
2869                                 region.start += phb->ioda.m32_segsize;
2870                                 index++;
2871                         }
2872                 }
2873         }
2874 }
2875
2876 static void pnv_pci_ioda_setup_seg(void)
2877 {
2878         struct pci_controller *tmp, *hose;
2879         struct pnv_phb *phb;
2880         struct pnv_ioda_pe *pe;
2881
2882         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2883                 phb = hose->private_data;
2884                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2885                         pnv_ioda_setup_pe_seg(hose, pe);
2886                 }
2887         }
2888 }
2889
2890 static void pnv_pci_ioda_setup_DMA(void)
2891 {
2892         struct pci_controller *hose, *tmp;
2893         struct pnv_phb *phb;
2894
2895         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2896                 pnv_ioda_setup_dma(hose->private_data);
2897
2898                 /* Mark the PHB initialization done */
2899                 phb = hose->private_data;
2900                 phb->initialized = 1;
2901         }
2902 }
2903
2904 static void pnv_pci_ioda_create_dbgfs(void)
2905 {
2906 #ifdef CONFIG_DEBUG_FS
2907         struct pci_controller *hose, *tmp;
2908         struct pnv_phb *phb;
2909         char name[16];
2910
2911         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2912                 phb = hose->private_data;
2913
2914                 sprintf(name, "PCI%04x", hose->global_number);
2915                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2916                 if (!phb->dbgfs)
2917                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
2918                                 __func__, hose->global_number);
2919         }
2920 #endif /* CONFIG_DEBUG_FS */
2921 }
2922
2923 static void pnv_pci_ioda_fixup(void)
2924 {
2925         pnv_pci_ioda_setup_PEs();
2926         pnv_pci_ioda_setup_seg();
2927         pnv_pci_ioda_setup_DMA();
2928
2929         pnv_pci_ioda_create_dbgfs();
2930
2931 #ifdef CONFIG_EEH
2932         eeh_init();
2933         eeh_addr_cache_build();
2934 #endif
2935 }
2936
2937 /*
2938  * Returns the alignment for I/O or memory windows for P2P
2939  * bridges. That actually depends on how PEs are segmented.
2940  * For now, we return I/O or M32 segment size for PE sensitive
2941  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2942  * 1MiB for memory) will be returned.
2943  *
2944  * The current PCI bus might be put into one PE, which was
2945  * create against the parent PCI bridge. For that case, we
2946  * needn't enlarge the alignment so that we can save some
2947  * resources.
2948  */
2949 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2950                                                 unsigned long type)
2951 {
2952         struct pci_dev *bridge;
2953         struct pci_controller *hose = pci_bus_to_host(bus);
2954         struct pnv_phb *phb = hose->private_data;
2955         int num_pci_bridges = 0;
2956
2957         bridge = bus->self;
2958         while (bridge) {
2959                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2960                         num_pci_bridges++;
2961                         if (num_pci_bridges >= 2)
2962                                 return 1;
2963                 }
2964
2965                 bridge = bridge->bus->self;
2966         }
2967
2968         /* We fail back to M32 if M64 isn't supported */
2969         if (phb->ioda.m64_segsize &&
2970             pnv_pci_is_mem_pref_64(type))
2971                 return phb->ioda.m64_segsize;
2972         if (type & IORESOURCE_MEM)
2973                 return phb->ioda.m32_segsize;
2974
2975         return phb->ioda.io_segsize;
2976 }
2977
2978 #ifdef CONFIG_PCI_IOV
2979 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
2980                                                       int resno)
2981 {
2982         struct pci_dn *pdn = pci_get_pdn(pdev);
2983         resource_size_t align, iov_align;
2984
2985         iov_align = resource_size(&pdev->resource[resno]);
2986         if (iov_align)
2987                 return iov_align;
2988
2989         align = pci_iov_resource_size(pdev, resno);
2990         if (pdn->vfs_expanded)
2991                 return pdn->vfs_expanded * align;
2992
2993         return align;
2994 }
2995 #endif /* CONFIG_PCI_IOV */
2996
2997 /* Prevent enabling devices for which we couldn't properly
2998  * assign a PE
2999  */
3000 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3001 {
3002         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3003         struct pnv_phb *phb = hose->private_data;
3004         struct pci_dn *pdn;
3005
3006         /* The function is probably called while the PEs have
3007          * not be created yet. For example, resource reassignment
3008          * during PCI probe period. We just skip the check if
3009          * PEs isn't ready.
3010          */
3011         if (!phb->initialized)
3012                 return true;
3013
3014         pdn = pci_get_pdn(dev);
3015         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3016                 return false;
3017
3018         return true;
3019 }
3020
3021 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
3022                                u32 devfn)
3023 {
3024         return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
3025 }
3026
3027 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3028 {
3029         struct pnv_phb *phb = hose->private_data;
3030
3031         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3032                        OPAL_ASSERT_RESET);
3033 }
3034
3035 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3036        .dma_dev_setup = pnv_pci_dma_dev_setup,
3037 #ifdef CONFIG_PCI_MSI
3038        .setup_msi_irqs = pnv_setup_msi_irqs,
3039        .teardown_msi_irqs = pnv_teardown_msi_irqs,
3040 #endif
3041        .enable_device_hook = pnv_pci_enable_device_hook,
3042        .window_alignment = pnv_pci_window_alignment,
3043        .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3044        .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3045        .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3046        .shutdown = pnv_pci_ioda_shutdown,
3047 };
3048
3049 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3050                                          u64 hub_id, int ioda_type)
3051 {
3052         struct pci_controller *hose;
3053         struct pnv_phb *phb;
3054         unsigned long size, m32map_off, pemap_off, iomap_off = 0;
3055         const __be64 *prop64;
3056         const __be32 *prop32;
3057         int len;
3058         u64 phb_id;
3059         void *aux;
3060         long rc;
3061
3062         pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3063
3064         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3065         if (!prop64) {
3066                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3067                 return;
3068         }
3069         phb_id = be64_to_cpup(prop64);
3070         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3071
3072         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3073
3074         /* Allocate PCI controller */
3075         phb->hose = hose = pcibios_alloc_controller(np);
3076         if (!phb->hose) {
3077                 pr_err("  Can't allocate PCI controller for %s\n",
3078                        np->full_name);
3079                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3080                 return;
3081         }
3082
3083         spin_lock_init(&phb->lock);
3084         prop32 = of_get_property(np, "bus-range", &len);
3085         if (prop32 && len == 8) {
3086                 hose->first_busno = be32_to_cpu(prop32[0]);
3087                 hose->last_busno = be32_to_cpu(prop32[1]);
3088         } else {
3089                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3090                 hose->first_busno = 0;
3091                 hose->last_busno = 0xff;
3092         }
3093         hose->private_data = phb;
3094         phb->hub_id = hub_id;
3095         phb->opal_id = phb_id;
3096         phb->type = ioda_type;
3097         mutex_init(&phb->ioda.pe_alloc_mutex);
3098
3099         /* Detect specific models for error handling */
3100         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3101                 phb->model = PNV_PHB_MODEL_P7IOC;
3102         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3103                 phb->model = PNV_PHB_MODEL_PHB3;
3104         else
3105                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3106
3107         /* Parse 32-bit and IO ranges (if any) */
3108         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3109
3110         /* Get registers */
3111         phb->regs = of_iomap(np, 0);
3112         if (phb->regs == NULL)
3113                 pr_err("  Failed to map registers !\n");
3114
3115         /* Initialize more IODA stuff */
3116         phb->ioda.total_pe = 1;
3117         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3118         if (prop32)
3119                 phb->ioda.total_pe = be32_to_cpup(prop32);
3120         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3121         if (prop32)
3122                 phb->ioda.reserved_pe = be32_to_cpup(prop32);
3123
3124         /* Parse 64-bit MMIO range */
3125         pnv_ioda_parse_m64_window(phb);
3126
3127         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3128         /* FW Has already off top 64k of M32 space (MSI space) */
3129         phb->ioda.m32_size += 0x10000;
3130
3131         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
3132         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3133         phb->ioda.io_size = hose->pci_io_size;
3134         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
3135         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3136
3137         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3138         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
3139         m32map_off = size;
3140         size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
3141         if (phb->type == PNV_PHB_IODA1) {
3142                 iomap_off = size;
3143                 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
3144         }
3145         pemap_off = size;
3146         size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
3147         aux = memblock_virt_alloc(size, 0);
3148         phb->ioda.pe_alloc = aux;
3149         phb->ioda.m32_segmap = aux + m32map_off;
3150         if (phb->type == PNV_PHB_IODA1)
3151                 phb->ioda.io_segmap = aux + iomap_off;
3152         phb->ioda.pe_array = aux + pemap_off;
3153         set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
3154
3155         INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
3156         INIT_LIST_HEAD(&phb->ioda.pe_list);
3157         mutex_init(&phb->ioda.pe_list_mutex);
3158
3159         /* Calculate how many 32-bit TCE segments we have */
3160         phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
3161
3162 #if 0 /* We should really do that ... */
3163         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3164                                          window_type,
3165                                          window_num,
3166                                          starting_real_address,
3167                                          starting_pci_address,
3168                                          segment_size);
3169 #endif
3170
3171         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3172                 phb->ioda.total_pe, phb->ioda.reserved_pe,
3173                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3174         if (phb->ioda.m64_size)
3175                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3176                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3177         if (phb->ioda.io_size)
3178                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3179                         phb->ioda.io_size, phb->ioda.io_segsize);
3180
3181
3182         phb->hose->ops = &pnv_pci_ops;
3183         phb->get_pe_state = pnv_ioda_get_pe_state;
3184         phb->freeze_pe = pnv_ioda_freeze_pe;
3185         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3186
3187         /* Setup RID -> PE mapping function */
3188         phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
3189
3190         /* Setup TCEs */
3191         phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3192
3193         /* Setup MSI support */
3194         pnv_pci_init_ioda_msis(phb);
3195
3196         /*
3197          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3198          * to let the PCI core do resource assignment. It's supposed
3199          * that the PCI core will do correct I/O and MMIO alignment
3200          * for the P2P bridge bars so that each PCI bus (excluding
3201          * the child P2P bridges) can form individual PE.
3202          */
3203         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3204         hose->controller_ops = pnv_pci_ioda_controller_ops;
3205
3206 #ifdef CONFIG_PCI_IOV
3207         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3208         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3209 #endif
3210
3211         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3212
3213         /* Reset IODA tables to a clean state */
3214         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3215         if (rc)
3216                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3217
3218         /* If we're running in kdump kerenl, the previous kerenl never
3219          * shutdown PCI devices correctly. We already got IODA table
3220          * cleaned out. So we have to issue PHB reset to stop all PCI
3221          * transactions from previous kerenl.
3222          */
3223         if (is_kdump_kernel()) {
3224                 pr_info("  Issue PHB reset ...\n");
3225                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3226                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3227         }
3228
3229         /* Remove M64 resource if we can't configure it successfully */
3230         if (!phb->init_m64 || phb->init_m64(phb))
3231                 hose->mem_resources[1].flags = 0;
3232 }
3233
3234 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3235 {
3236         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3237 }
3238
3239 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3240 {
3241         struct device_node *phbn;
3242         const __be64 *prop64;
3243         u64 hub_id;
3244
3245         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3246
3247         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3248         if (!prop64) {
3249                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3250                 return;
3251         }
3252         hub_id = be64_to_cpup(prop64);
3253         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3254
3255         /* Count child PHBs */
3256         for_each_child_of_node(np, phbn) {
3257                 /* Look for IODA1 PHBs */
3258                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3259                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3260         }
3261 }