]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/sparc/kernel/smp_64.c
sun4M: add include of slab.h for kzalloc
[karo-tx-linux.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
53
54 #include "cpumap.h"
55
56 int sparc64_multi_core __read_mostly;
57
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
64
65 static cpumask_t smp_commenced_mask;
66
67 void smp_info(struct seq_file *m)
68 {
69         int i;
70         
71         seq_printf(m, "State:\n");
72         for_each_online_cpu(i)
73                 seq_printf(m, "CPU%d:\t\tonline\n", i);
74 }
75
76 void smp_bogo(struct seq_file *m)
77 {
78         int i;
79         
80         for_each_online_cpu(i)
81                 seq_printf(m,
82                            "Cpu%dClkTck\t: %016lx\n",
83                            i, cpu_data(i).clock_tick);
84 }
85
86 extern void setup_sparc64_timer(void);
87
88 static volatile unsigned long callin_flag = 0;
89
90 void smp_callin(void)
91 {
92         int cpuid = hard_smp_processor_id();
93
94         __local_per_cpu_offset = __per_cpu_offset(cpuid);
95
96         if (tlb_type == hypervisor)
97                 sun4v_ktsb_register();
98
99         __flush_tlb_all();
100
101         setup_sparc64_timer();
102
103         if (cheetah_pcache_forced_on)
104                 cheetah_enable_pcache();
105
106         callin_flag = 1;
107         __asm__ __volatile__("membar #Sync\n\t"
108                              "flush  %%g6" : : : "memory");
109
110         /* Clear this or we will die instantly when we
111          * schedule back to this idler...
112          */
113         current_thread_info()->new_child = 0;
114
115         /* Attach to the address space of init_task. */
116         atomic_inc(&init_mm.mm_count);
117         current->active_mm = &init_mm;
118
119         /* inform the notifiers about the new cpu */
120         notify_cpu_starting(cpuid);
121
122         while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
123                 rmb();
124
125         set_cpu_online(cpuid, true);
126
127         /* idle thread is expected to have preempt disabled */
128         preempt_disable();
129
130         local_irq_enable();
131
132         cpu_startup_entry(CPUHP_ONLINE);
133 }
134
135 void cpu_panic(void)
136 {
137         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
138         panic("SMP bolixed\n");
139 }
140
141 /* This tick register synchronization scheme is taken entirely from
142  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
143  *
144  * The only change I've made is to rework it so that the master
145  * initiates the synchonization instead of the slave. -DaveM
146  */
147
148 #define MASTER  0
149 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
150
151 #define NUM_ROUNDS      64      /* magic value */
152 #define NUM_ITERS       5       /* likewise */
153
154 static DEFINE_SPINLOCK(itc_sync_lock);
155 static unsigned long go[SLAVE + 1];
156
157 #define DEBUG_TICK_SYNC 0
158
159 static inline long get_delta (long *rt, long *master)
160 {
161         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
162         unsigned long tcenter, t0, t1, tm;
163         unsigned long i;
164
165         for (i = 0; i < NUM_ITERS; i++) {
166                 t0 = tick_ops->get_tick();
167                 go[MASTER] = 1;
168                 membar_safe("#StoreLoad");
169                 while (!(tm = go[SLAVE]))
170                         rmb();
171                 go[SLAVE] = 0;
172                 wmb();
173                 t1 = tick_ops->get_tick();
174
175                 if (t1 - t0 < best_t1 - best_t0)
176                         best_t0 = t0, best_t1 = t1, best_tm = tm;
177         }
178
179         *rt = best_t1 - best_t0;
180         *master = best_tm - best_t0;
181
182         /* average best_t0 and best_t1 without overflow: */
183         tcenter = (best_t0/2 + best_t1/2);
184         if (best_t0 % 2 + best_t1 % 2 == 2)
185                 tcenter++;
186         return tcenter - best_tm;
187 }
188
189 void smp_synchronize_tick_client(void)
190 {
191         long i, delta, adj, adjust_latency = 0, done = 0;
192         unsigned long flags, rt, master_time_stamp;
193 #if DEBUG_TICK_SYNC
194         struct {
195                 long rt;        /* roundtrip time */
196                 long master;    /* master's timestamp */
197                 long diff;      /* difference between midpoint and master's timestamp */
198                 long lat;       /* estimate of itc adjustment latency */
199         } t[NUM_ROUNDS];
200 #endif
201
202         go[MASTER] = 1;
203
204         while (go[MASTER])
205                 rmb();
206
207         local_irq_save(flags);
208         {
209                 for (i = 0; i < NUM_ROUNDS; i++) {
210                         delta = get_delta(&rt, &master_time_stamp);
211                         if (delta == 0)
212                                 done = 1;       /* let's lock on to this... */
213
214                         if (!done) {
215                                 if (i > 0) {
216                                         adjust_latency += -delta;
217                                         adj = -delta + adjust_latency/4;
218                                 } else
219                                         adj = -delta;
220
221                                 tick_ops->add_tick(adj);
222                         }
223 #if DEBUG_TICK_SYNC
224                         t[i].rt = rt;
225                         t[i].master = master_time_stamp;
226                         t[i].diff = delta;
227                         t[i].lat = adjust_latency/4;
228 #endif
229                 }
230         }
231         local_irq_restore(flags);
232
233 #if DEBUG_TICK_SYNC
234         for (i = 0; i < NUM_ROUNDS; i++)
235                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
236                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
237 #endif
238
239         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
240                "(last diff %ld cycles, maxerr %lu cycles)\n",
241                smp_processor_id(), delta, rt);
242 }
243
244 static void smp_start_sync_tick_client(int cpu);
245
246 static void smp_synchronize_one_tick(int cpu)
247 {
248         unsigned long flags, i;
249
250         go[MASTER] = 0;
251
252         smp_start_sync_tick_client(cpu);
253
254         /* wait for client to be ready */
255         while (!go[MASTER])
256                 rmb();
257
258         /* now let the client proceed into his loop */
259         go[MASTER] = 0;
260         membar_safe("#StoreLoad");
261
262         spin_lock_irqsave(&itc_sync_lock, flags);
263         {
264                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
265                         while (!go[MASTER])
266                                 rmb();
267                         go[MASTER] = 0;
268                         wmb();
269                         go[SLAVE] = tick_ops->get_tick();
270                         membar_safe("#StoreLoad");
271                 }
272         }
273         spin_unlock_irqrestore(&itc_sync_lock, flags);
274 }
275
276 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
277 /* XXX Put this in some common place. XXX */
278 static unsigned long kimage_addr_to_ra(void *p)
279 {
280         unsigned long val = (unsigned long) p;
281
282         return kern_base + (val - KERNBASE);
283 }
284
285 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
286                                 void **descrp)
287 {
288         extern unsigned long sparc64_ttable_tl0;
289         extern unsigned long kern_locked_tte_data;
290         struct hvtramp_descr *hdesc;
291         unsigned long trampoline_ra;
292         struct trap_per_cpu *tb;
293         u64 tte_vaddr, tte_data;
294         unsigned long hv_err;
295         int i;
296
297         hdesc = kzalloc(sizeof(*hdesc) +
298                         (sizeof(struct hvtramp_mapping) *
299                          num_kernel_image_mappings - 1),
300                         GFP_KERNEL);
301         if (!hdesc) {
302                 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
303                        "hvtramp_descr.\n");
304                 return;
305         }
306         *descrp = hdesc;
307
308         hdesc->cpu = cpu;
309         hdesc->num_mappings = num_kernel_image_mappings;
310
311         tb = &trap_block[cpu];
312
313         hdesc->fault_info_va = (unsigned long) &tb->fault_info;
314         hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
315
316         hdesc->thread_reg = thread_reg;
317
318         tte_vaddr = (unsigned long) KERNBASE;
319         tte_data = kern_locked_tte_data;
320
321         for (i = 0; i < hdesc->num_mappings; i++) {
322                 hdesc->maps[i].vaddr = tte_vaddr;
323                 hdesc->maps[i].tte   = tte_data;
324                 tte_vaddr += 0x400000;
325                 tte_data  += 0x400000;
326         }
327
328         trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
329
330         hv_err = sun4v_cpu_start(cpu, trampoline_ra,
331                                  kimage_addr_to_ra(&sparc64_ttable_tl0),
332                                  __pa(hdesc));
333         if (hv_err)
334                 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
335                        "gives error %lu\n", hv_err);
336 }
337 #endif
338
339 extern unsigned long sparc64_cpu_startup;
340
341 /* The OBP cpu startup callback truncates the 3rd arg cookie to
342  * 32-bits (I think) so to be safe we have it read the pointer
343  * contained here so we work on >4GB machines. -DaveM
344  */
345 static struct thread_info *cpu_new_thread = NULL;
346
347 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
348 {
349         unsigned long entry =
350                 (unsigned long)(&sparc64_cpu_startup);
351         unsigned long cookie =
352                 (unsigned long)(&cpu_new_thread);
353         void *descr = NULL;
354         int timeout, ret;
355
356         callin_flag = 0;
357         cpu_new_thread = task_thread_info(idle);
358
359         if (tlb_type == hypervisor) {
360 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
361                 if (ldom_domaining_enabled)
362                         ldom_startcpu_cpuid(cpu,
363                                             (unsigned long) cpu_new_thread,
364                                             &descr);
365                 else
366 #endif
367                         prom_startcpu_cpuid(cpu, entry, cookie);
368         } else {
369                 struct device_node *dp = of_find_node_by_cpuid(cpu);
370
371                 prom_startcpu(dp->phandle, entry, cookie);
372         }
373
374         for (timeout = 0; timeout < 50000; timeout++) {
375                 if (callin_flag)
376                         break;
377                 udelay(100);
378         }
379
380         if (callin_flag) {
381                 ret = 0;
382         } else {
383                 printk("Processor %d is stuck.\n", cpu);
384                 ret = -ENODEV;
385         }
386         cpu_new_thread = NULL;
387
388         kfree(descr);
389
390         return ret;
391 }
392
393 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
394 {
395         u64 result, target;
396         int stuck, tmp;
397
398         if (this_is_starfire) {
399                 /* map to real upaid */
400                 cpu = (((cpu & 0x3c) << 1) |
401                         ((cpu & 0x40) >> 4) |
402                         (cpu & 0x3));
403         }
404
405         target = (cpu << 14) | 0x70;
406 again:
407         /* Ok, this is the real Spitfire Errata #54.
408          * One must read back from a UDB internal register
409          * after writes to the UDB interrupt dispatch, but
410          * before the membar Sync for that write.
411          * So we use the high UDB control register (ASI 0x7f,
412          * ADDR 0x20) for the dummy read. -DaveM
413          */
414         tmp = 0x40;
415         __asm__ __volatile__(
416         "wrpr   %1, %2, %%pstate\n\t"
417         "stxa   %4, [%0] %3\n\t"
418         "stxa   %5, [%0+%8] %3\n\t"
419         "add    %0, %8, %0\n\t"
420         "stxa   %6, [%0+%8] %3\n\t"
421         "membar #Sync\n\t"
422         "stxa   %%g0, [%7] %3\n\t"
423         "membar #Sync\n\t"
424         "mov    0x20, %%g1\n\t"
425         "ldxa   [%%g1] 0x7f, %%g0\n\t"
426         "membar #Sync"
427         : "=r" (tmp)
428         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
429           "r" (data0), "r" (data1), "r" (data2), "r" (target),
430           "r" (0x10), "0" (tmp)
431         : "g1");
432
433         /* NOTE: PSTATE_IE is still clear. */
434         stuck = 100000;
435         do {
436                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
437                         : "=r" (result)
438                         : "i" (ASI_INTR_DISPATCH_STAT));
439                 if (result == 0) {
440                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
441                                              : : "r" (pstate));
442                         return;
443                 }
444                 stuck -= 1;
445                 if (stuck == 0)
446                         break;
447         } while (result & 0x1);
448         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
449                              : : "r" (pstate));
450         if (stuck == 0) {
451                 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
452                        smp_processor_id(), result);
453         } else {
454                 udelay(2);
455                 goto again;
456         }
457 }
458
459 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
460 {
461         u64 *mondo, data0, data1, data2;
462         u16 *cpu_list;
463         u64 pstate;
464         int i;
465
466         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
467         cpu_list = __va(tb->cpu_list_pa);
468         mondo = __va(tb->cpu_mondo_block_pa);
469         data0 = mondo[0];
470         data1 = mondo[1];
471         data2 = mondo[2];
472         for (i = 0; i < cnt; i++)
473                 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
474 }
475
476 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
477  * packet, but we have no use for that.  However we do take advantage of
478  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
479  */
480 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
481 {
482         int nack_busy_id, is_jbus, need_more;
483         u64 *mondo, pstate, ver, busy_mask;
484         u16 *cpu_list;
485
486         cpu_list = __va(tb->cpu_list_pa);
487         mondo = __va(tb->cpu_mondo_block_pa);
488
489         /* Unfortunately, someone at Sun had the brilliant idea to make the
490          * busy/nack fields hard-coded by ITID number for this Ultra-III
491          * derivative processor.
492          */
493         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
494         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
495                    (ver >> 32) == __SERRANO_ID);
496
497         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
498
499 retry:
500         need_more = 0;
501         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
502                              : : "r" (pstate), "i" (PSTATE_IE));
503
504         /* Setup the dispatch data registers. */
505         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
506                              "stxa      %1, [%4] %6\n\t"
507                              "stxa      %2, [%5] %6\n\t"
508                              "membar    #Sync\n\t"
509                              : /* no outputs */
510                              : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
511                                "r" (0x40), "r" (0x50), "r" (0x60),
512                                "i" (ASI_INTR_W));
513
514         nack_busy_id = 0;
515         busy_mask = 0;
516         {
517                 int i;
518
519                 for (i = 0; i < cnt; i++) {
520                         u64 target, nr;
521
522                         nr = cpu_list[i];
523                         if (nr == 0xffff)
524                                 continue;
525
526                         target = (nr << 14) | 0x70;
527                         if (is_jbus) {
528                                 busy_mask |= (0x1UL << (nr * 2));
529                         } else {
530                                 target |= (nack_busy_id << 24);
531                                 busy_mask |= (0x1UL <<
532                                               (nack_busy_id * 2));
533                         }
534                         __asm__ __volatile__(
535                                 "stxa   %%g0, [%0] %1\n\t"
536                                 "membar #Sync\n\t"
537                                 : /* no outputs */
538                                 : "r" (target), "i" (ASI_INTR_W));
539                         nack_busy_id++;
540                         if (nack_busy_id == 32) {
541                                 need_more = 1;
542                                 break;
543                         }
544                 }
545         }
546
547         /* Now, poll for completion. */
548         {
549                 u64 dispatch_stat, nack_mask;
550                 long stuck;
551
552                 stuck = 100000 * nack_busy_id;
553                 nack_mask = busy_mask << 1;
554                 do {
555                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
556                                              : "=r" (dispatch_stat)
557                                              : "i" (ASI_INTR_DISPATCH_STAT));
558                         if (!(dispatch_stat & (busy_mask | nack_mask))) {
559                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
560                                                      : : "r" (pstate));
561                                 if (unlikely(need_more)) {
562                                         int i, this_cnt = 0;
563                                         for (i = 0; i < cnt; i++) {
564                                                 if (cpu_list[i] == 0xffff)
565                                                         continue;
566                                                 cpu_list[i] = 0xffff;
567                                                 this_cnt++;
568                                                 if (this_cnt == 32)
569                                                         break;
570                                         }
571                                         goto retry;
572                                 }
573                                 return;
574                         }
575                         if (!--stuck)
576                                 break;
577                 } while (dispatch_stat & busy_mask);
578
579                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
580                                      : : "r" (pstate));
581
582                 if (dispatch_stat & busy_mask) {
583                         /* Busy bits will not clear, continue instead
584                          * of freezing up on this cpu.
585                          */
586                         printk("CPU[%d]: mondo stuckage result[%016llx]\n",
587                                smp_processor_id(), dispatch_stat);
588                 } else {
589                         int i, this_busy_nack = 0;
590
591                         /* Delay some random time with interrupts enabled
592                          * to prevent deadlock.
593                          */
594                         udelay(2 * nack_busy_id);
595
596                         /* Clear out the mask bits for cpus which did not
597                          * NACK us.
598                          */
599                         for (i = 0; i < cnt; i++) {
600                                 u64 check_mask, nr;
601
602                                 nr = cpu_list[i];
603                                 if (nr == 0xffff)
604                                         continue;
605
606                                 if (is_jbus)
607                                         check_mask = (0x2UL << (2*nr));
608                                 else
609                                         check_mask = (0x2UL <<
610                                                       this_busy_nack);
611                                 if ((dispatch_stat & check_mask) == 0)
612                                         cpu_list[i] = 0xffff;
613                                 this_busy_nack += 2;
614                                 if (this_busy_nack == 64)
615                                         break;
616                         }
617
618                         goto retry;
619                 }
620         }
621 }
622
623 /* Multi-cpu list version.  */
624 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
625 {
626         int retries, this_cpu, prev_sent, i, saw_cpu_error;
627         unsigned long status;
628         u16 *cpu_list;
629
630         this_cpu = smp_processor_id();
631
632         cpu_list = __va(tb->cpu_list_pa);
633
634         saw_cpu_error = 0;
635         retries = 0;
636         prev_sent = 0;
637         do {
638                 int forward_progress, n_sent;
639
640                 status = sun4v_cpu_mondo_send(cnt,
641                                               tb->cpu_list_pa,
642                                               tb->cpu_mondo_block_pa);
643
644                 /* HV_EOK means all cpus received the xcall, we're done.  */
645                 if (likely(status == HV_EOK))
646                         break;
647
648                 /* First, see if we made any forward progress.
649                  *
650                  * The hypervisor indicates successful sends by setting
651                  * cpu list entries to the value 0xffff.
652                  */
653                 n_sent = 0;
654                 for (i = 0; i < cnt; i++) {
655                         if (likely(cpu_list[i] == 0xffff))
656                                 n_sent++;
657                 }
658
659                 forward_progress = 0;
660                 if (n_sent > prev_sent)
661                         forward_progress = 1;
662
663                 prev_sent = n_sent;
664
665                 /* If we get a HV_ECPUERROR, then one or more of the cpus
666                  * in the list are in error state.  Use the cpu_state()
667                  * hypervisor call to find out which cpus are in error state.
668                  */
669                 if (unlikely(status == HV_ECPUERROR)) {
670                         for (i = 0; i < cnt; i++) {
671                                 long err;
672                                 u16 cpu;
673
674                                 cpu = cpu_list[i];
675                                 if (cpu == 0xffff)
676                                         continue;
677
678                                 err = sun4v_cpu_state(cpu);
679                                 if (err == HV_CPU_STATE_ERROR) {
680                                         saw_cpu_error = (cpu + 1);
681                                         cpu_list[i] = 0xffff;
682                                 }
683                         }
684                 } else if (unlikely(status != HV_EWOULDBLOCK))
685                         goto fatal_mondo_error;
686
687                 /* Don't bother rewriting the CPU list, just leave the
688                  * 0xffff and non-0xffff entries in there and the
689                  * hypervisor will do the right thing.
690                  *
691                  * Only advance timeout state if we didn't make any
692                  * forward progress.
693                  */
694                 if (unlikely(!forward_progress)) {
695                         if (unlikely(++retries > 10000))
696                                 goto fatal_mondo_timeout;
697
698                         /* Delay a little bit to let other cpus catch up
699                          * on their cpu mondo queue work.
700                          */
701                         udelay(2 * cnt);
702                 }
703         } while (1);
704
705         if (unlikely(saw_cpu_error))
706                 goto fatal_mondo_cpu_error;
707
708         return;
709
710 fatal_mondo_cpu_error:
711         printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
712                "(including %d) were in error state\n",
713                this_cpu, saw_cpu_error - 1);
714         return;
715
716 fatal_mondo_timeout:
717         printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
718                " progress after %d retries.\n",
719                this_cpu, retries);
720         goto dump_cpu_list_and_out;
721
722 fatal_mondo_error:
723         printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
724                this_cpu, status);
725         printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
726                "mondo_block_pa(%lx)\n",
727                this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
728
729 dump_cpu_list_and_out:
730         printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
731         for (i = 0; i < cnt; i++)
732                 printk("%u ", cpu_list[i]);
733         printk("]\n");
734 }
735
736 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
737
738 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
739 {
740         struct trap_per_cpu *tb;
741         int this_cpu, i, cnt;
742         unsigned long flags;
743         u16 *cpu_list;
744         u64 *mondo;
745
746         /* We have to do this whole thing with interrupts fully disabled.
747          * Otherwise if we send an xcall from interrupt context it will
748          * corrupt both our mondo block and cpu list state.
749          *
750          * One consequence of this is that we cannot use timeout mechanisms
751          * that depend upon interrupts being delivered locally.  So, for
752          * example, we cannot sample jiffies and expect it to advance.
753          *
754          * Fortunately, udelay() uses %stick/%tick so we can use that.
755          */
756         local_irq_save(flags);
757
758         this_cpu = smp_processor_id();
759         tb = &trap_block[this_cpu];
760
761         mondo = __va(tb->cpu_mondo_block_pa);
762         mondo[0] = data0;
763         mondo[1] = data1;
764         mondo[2] = data2;
765         wmb();
766
767         cpu_list = __va(tb->cpu_list_pa);
768
769         /* Setup the initial cpu list.  */
770         cnt = 0;
771         for_each_cpu(i, mask) {
772                 if (i == this_cpu || !cpu_online(i))
773                         continue;
774                 cpu_list[cnt++] = i;
775         }
776
777         if (cnt)
778                 xcall_deliver_impl(tb, cnt);
779
780         local_irq_restore(flags);
781 }
782
783 /* Send cross call to all processors mentioned in MASK_P
784  * except self.  Really, there are only two cases currently,
785  * "cpu_online_mask" and "mm_cpumask(mm)".
786  */
787 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
788 {
789         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
790
791         xcall_deliver(data0, data1, data2, mask);
792 }
793
794 /* Send cross call to all processors except self. */
795 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
796 {
797         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
798 }
799
800 extern unsigned long xcall_sync_tick;
801
802 static void smp_start_sync_tick_client(int cpu)
803 {
804         xcall_deliver((u64) &xcall_sync_tick, 0, 0,
805                       cpumask_of(cpu));
806 }
807
808 extern unsigned long xcall_call_function;
809
810 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
811 {
812         xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
813 }
814
815 extern unsigned long xcall_call_function_single;
816
817 void arch_send_call_function_single_ipi(int cpu)
818 {
819         xcall_deliver((u64) &xcall_call_function_single, 0, 0,
820                       cpumask_of(cpu));
821 }
822
823 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
824 {
825         clear_softint(1 << irq);
826         generic_smp_call_function_interrupt();
827 }
828
829 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
830 {
831         clear_softint(1 << irq);
832         generic_smp_call_function_single_interrupt();
833 }
834
835 static void tsb_sync(void *info)
836 {
837         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
838         struct mm_struct *mm = info;
839
840         /* It is not valid to test "current->active_mm == mm" here.
841          *
842          * The value of "current" is not changed atomically with
843          * switch_mm().  But that's OK, we just need to check the
844          * current cpu's trap block PGD physical address.
845          */
846         if (tp->pgd_paddr == __pa(mm->pgd))
847                 tsb_context_switch(mm);
848 }
849
850 void smp_tsb_sync(struct mm_struct *mm)
851 {
852         smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
853 }
854
855 extern unsigned long xcall_flush_tlb_mm;
856 extern unsigned long xcall_flush_tlb_page;
857 extern unsigned long xcall_flush_tlb_kernel_range;
858 extern unsigned long xcall_fetch_glob_regs;
859 extern unsigned long xcall_fetch_glob_pmu;
860 extern unsigned long xcall_fetch_glob_pmu_n4;
861 extern unsigned long xcall_receive_signal;
862 extern unsigned long xcall_new_mmu_context_version;
863 #ifdef CONFIG_KGDB
864 extern unsigned long xcall_kgdb_capture;
865 #endif
866
867 #ifdef DCACHE_ALIASING_POSSIBLE
868 extern unsigned long xcall_flush_dcache_page_cheetah;
869 #endif
870 extern unsigned long xcall_flush_dcache_page_spitfire;
871
872 #ifdef CONFIG_DEBUG_DCFLUSH
873 extern atomic_t dcpage_flushes;
874 extern atomic_t dcpage_flushes_xcall;
875 #endif
876
877 static inline void __local_flush_dcache_page(struct page *page)
878 {
879 #ifdef DCACHE_ALIASING_POSSIBLE
880         __flush_dcache_page(page_address(page),
881                             ((tlb_type == spitfire) &&
882                              page_mapping(page) != NULL));
883 #else
884         if (page_mapping(page) != NULL &&
885             tlb_type == spitfire)
886                 __flush_icache_page(__pa(page_address(page)));
887 #endif
888 }
889
890 void smp_flush_dcache_page_impl(struct page *page, int cpu)
891 {
892         int this_cpu;
893
894         if (tlb_type == hypervisor)
895                 return;
896
897 #ifdef CONFIG_DEBUG_DCFLUSH
898         atomic_inc(&dcpage_flushes);
899 #endif
900
901         this_cpu = get_cpu();
902
903         if (cpu == this_cpu) {
904                 __local_flush_dcache_page(page);
905         } else if (cpu_online(cpu)) {
906                 void *pg_addr = page_address(page);
907                 u64 data0 = 0;
908
909                 if (tlb_type == spitfire) {
910                         data0 = ((u64)&xcall_flush_dcache_page_spitfire);
911                         if (page_mapping(page) != NULL)
912                                 data0 |= ((u64)1 << 32);
913                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
914 #ifdef DCACHE_ALIASING_POSSIBLE
915                         data0 = ((u64)&xcall_flush_dcache_page_cheetah);
916 #endif
917                 }
918                 if (data0) {
919                         xcall_deliver(data0, __pa(pg_addr),
920                                       (u64) pg_addr, cpumask_of(cpu));
921 #ifdef CONFIG_DEBUG_DCFLUSH
922                         atomic_inc(&dcpage_flushes_xcall);
923 #endif
924                 }
925         }
926
927         put_cpu();
928 }
929
930 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
931 {
932         void *pg_addr;
933         u64 data0;
934
935         if (tlb_type == hypervisor)
936                 return;
937
938         preempt_disable();
939
940 #ifdef CONFIG_DEBUG_DCFLUSH
941         atomic_inc(&dcpage_flushes);
942 #endif
943         data0 = 0;
944         pg_addr = page_address(page);
945         if (tlb_type == spitfire) {
946                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
947                 if (page_mapping(page) != NULL)
948                         data0 |= ((u64)1 << 32);
949         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
950 #ifdef DCACHE_ALIASING_POSSIBLE
951                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
952 #endif
953         }
954         if (data0) {
955                 xcall_deliver(data0, __pa(pg_addr),
956                               (u64) pg_addr, cpu_online_mask);
957 #ifdef CONFIG_DEBUG_DCFLUSH
958                 atomic_inc(&dcpage_flushes_xcall);
959 #endif
960         }
961         __local_flush_dcache_page(page);
962
963         preempt_enable();
964 }
965
966 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
967 {
968         struct mm_struct *mm;
969         unsigned long flags;
970
971         clear_softint(1 << irq);
972
973         /* See if we need to allocate a new TLB context because
974          * the version of the one we are using is now out of date.
975          */
976         mm = current->active_mm;
977         if (unlikely(!mm || (mm == &init_mm)))
978                 return;
979
980         spin_lock_irqsave(&mm->context.lock, flags);
981
982         if (unlikely(!CTX_VALID(mm->context)))
983                 get_new_mmu_context(mm);
984
985         spin_unlock_irqrestore(&mm->context.lock, flags);
986
987         load_secondary_context(mm);
988         __flush_tlb_mm(CTX_HWBITS(mm->context),
989                        SECONDARY_CONTEXT);
990 }
991
992 void smp_new_mmu_context_version(void)
993 {
994         smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
995 }
996
997 #ifdef CONFIG_KGDB
998 void kgdb_roundup_cpus(unsigned long flags)
999 {
1000         smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1001 }
1002 #endif
1003
1004 void smp_fetch_global_regs(void)
1005 {
1006         smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1007 }
1008
1009 void smp_fetch_global_pmu(void)
1010 {
1011         if (tlb_type == hypervisor &&
1012             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1013                 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1014         else
1015                 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1016 }
1017
1018 /* We know that the window frames of the user have been flushed
1019  * to the stack before we get here because all callers of us
1020  * are flush_tlb_*() routines, and these run after flush_cache_*()
1021  * which performs the flushw.
1022  *
1023  * The SMP TLB coherency scheme we use works as follows:
1024  *
1025  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026  *    space has (potentially) executed on, this is the heuristic
1027  *    we use to avoid doing cross calls.
1028  *
1029  *    Also, for flushing from kswapd and also for clones, we
1030  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1031  *
1032  * 2) TLB context numbers are shared globally across all processors
1033  *    in the system, this allows us to play several games to avoid
1034  *    cross calls.
1035  *
1036  *    One invariant is that when a cpu switches to a process, and
1037  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1038  *    current cpu's bit set, that tlb context is flushed locally.
1039  *
1040  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1041  *    cross calls when we want to flush the currently running process's
1042  *    tlb state.  This is done by clearing all cpu bits except the current
1043  *    processor's in current->mm->cpu_vm_mask and performing the
1044  *    flush locally only.  This will force any subsequent cpus which run
1045  *    this task to flush the context from the local tlb if the process
1046  *    migrates to another cpu (again).
1047  *
1048  * 3) For shared address spaces (threads) and swapping we bite the
1049  *    bullet for most cases and perform the cross call (but only to
1050  *    the cpus listed in cpu_vm_mask).
1051  *
1052  *    The performance gain from "optimizing" away the cross call for threads is
1053  *    questionable (in theory the big win for threads is the massive sharing of
1054  *    address space state across processors).
1055  */
1056
1057 /* This currently is only used by the hugetlb arch pre-fault
1058  * hook on UltraSPARC-III+ and later when changing the pagesize
1059  * bits of the context register for an address space.
1060  */
1061 void smp_flush_tlb_mm(struct mm_struct *mm)
1062 {
1063         u32 ctx = CTX_HWBITS(mm->context);
1064         int cpu = get_cpu();
1065
1066         if (atomic_read(&mm->mm_users) == 1) {
1067                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1068                 goto local_flush_and_out;
1069         }
1070
1071         smp_cross_call_masked(&xcall_flush_tlb_mm,
1072                               ctx, 0, 0,
1073                               mm_cpumask(mm));
1074
1075 local_flush_and_out:
1076         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1077
1078         put_cpu();
1079 }
1080
1081 struct tlb_pending_info {
1082         unsigned long ctx;
1083         unsigned long nr;
1084         unsigned long *vaddrs;
1085 };
1086
1087 static void tlb_pending_func(void *info)
1088 {
1089         struct tlb_pending_info *t = info;
1090
1091         __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1092 }
1093
1094 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1095 {
1096         u32 ctx = CTX_HWBITS(mm->context);
1097         struct tlb_pending_info info;
1098         int cpu = get_cpu();
1099
1100         info.ctx = ctx;
1101         info.nr = nr;
1102         info.vaddrs = vaddrs;
1103
1104         if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1105                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1106         else
1107                 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1108                                        &info, 1);
1109
1110         __flush_tlb_pending(ctx, nr, vaddrs);
1111
1112         put_cpu();
1113 }
1114
1115 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1116 {
1117         unsigned long context = CTX_HWBITS(mm->context);
1118         int cpu = get_cpu();
1119
1120         if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1121                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1122         else
1123                 smp_cross_call_masked(&xcall_flush_tlb_page,
1124                                       context, vaddr, 0,
1125                                       mm_cpumask(mm));
1126         __flush_tlb_page(context, vaddr);
1127
1128         put_cpu();
1129 }
1130
1131 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1132 {
1133         start &= PAGE_MASK;
1134         end    = PAGE_ALIGN(end);
1135         if (start != end) {
1136                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1137                                0, start, end);
1138
1139                 __flush_tlb_kernel_range(start, end);
1140         }
1141 }
1142
1143 /* CPU capture. */
1144 /* #define CAPTURE_DEBUG */
1145 extern unsigned long xcall_capture;
1146
1147 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1148 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1149 static unsigned long penguins_are_doing_time;
1150
1151 void smp_capture(void)
1152 {
1153         int result = atomic_add_ret(1, &smp_capture_depth);
1154
1155         if (result == 1) {
1156                 int ncpus = num_online_cpus();
1157
1158 #ifdef CAPTURE_DEBUG
1159                 printk("CPU[%d]: Sending penguins to jail...",
1160                        smp_processor_id());
1161 #endif
1162                 penguins_are_doing_time = 1;
1163                 atomic_inc(&smp_capture_registry);
1164                 smp_cross_call(&xcall_capture, 0, 0, 0);
1165                 while (atomic_read(&smp_capture_registry) != ncpus)
1166                         rmb();
1167 #ifdef CAPTURE_DEBUG
1168                 printk("done\n");
1169 #endif
1170         }
1171 }
1172
1173 void smp_release(void)
1174 {
1175         if (atomic_dec_and_test(&smp_capture_depth)) {
1176 #ifdef CAPTURE_DEBUG
1177                 printk("CPU[%d]: Giving pardon to "
1178                        "imprisoned penguins\n",
1179                        smp_processor_id());
1180 #endif
1181                 penguins_are_doing_time = 0;
1182                 membar_safe("#StoreLoad");
1183                 atomic_dec(&smp_capture_registry);
1184         }
1185 }
1186
1187 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1188  * set, so they can service tlb flush xcalls...
1189  */
1190 extern void prom_world(int);
1191
1192 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1193 {
1194         clear_softint(1 << irq);
1195
1196         preempt_disable();
1197
1198         __asm__ __volatile__("flushw");
1199         prom_world(1);
1200         atomic_inc(&smp_capture_registry);
1201         membar_safe("#StoreLoad");
1202         while (penguins_are_doing_time)
1203                 rmb();
1204         atomic_dec(&smp_capture_registry);
1205         prom_world(0);
1206
1207         preempt_enable();
1208 }
1209
1210 /* /proc/profile writes can call this, don't __init it please. */
1211 int setup_profiling_timer(unsigned int multiplier)
1212 {
1213         return -EINVAL;
1214 }
1215
1216 void __init smp_prepare_cpus(unsigned int max_cpus)
1217 {
1218 }
1219
1220 void smp_prepare_boot_cpu(void)
1221 {
1222 }
1223
1224 void __init smp_setup_processor_id(void)
1225 {
1226         if (tlb_type == spitfire)
1227                 xcall_deliver_impl = spitfire_xcall_deliver;
1228         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1229                 xcall_deliver_impl = cheetah_xcall_deliver;
1230         else
1231                 xcall_deliver_impl = hypervisor_xcall_deliver;
1232 }
1233
1234 void smp_fill_in_sib_core_maps(void)
1235 {
1236         unsigned int i;
1237
1238         for_each_present_cpu(i) {
1239                 unsigned int j;
1240
1241                 cpumask_clear(&cpu_core_map[i]);
1242                 if (cpu_data(i).core_id == 0) {
1243                         cpumask_set_cpu(i, &cpu_core_map[i]);
1244                         continue;
1245                 }
1246
1247                 for_each_present_cpu(j) {
1248                         if (cpu_data(i).core_id ==
1249                             cpu_data(j).core_id)
1250                                 cpumask_set_cpu(j, &cpu_core_map[i]);
1251                 }
1252         }
1253
1254         for_each_present_cpu(i) {
1255                 unsigned int j;
1256
1257                 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1258                 if (cpu_data(i).proc_id == -1) {
1259                         cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1260                         continue;
1261                 }
1262
1263                 for_each_present_cpu(j) {
1264                         if (cpu_data(i).proc_id ==
1265                             cpu_data(j).proc_id)
1266                                 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1267                 }
1268         }
1269 }
1270
1271 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1272 {
1273         int ret = smp_boot_one_cpu(cpu, tidle);
1274
1275         if (!ret) {
1276                 cpumask_set_cpu(cpu, &smp_commenced_mask);
1277                 while (!cpu_online(cpu))
1278                         mb();
1279                 if (!cpu_online(cpu)) {
1280                         ret = -ENODEV;
1281                 } else {
1282                         /* On SUN4V, writes to %tick and %stick are
1283                          * not allowed.
1284                          */
1285                         if (tlb_type != hypervisor)
1286                                 smp_synchronize_one_tick(cpu);
1287                 }
1288         }
1289         return ret;
1290 }
1291
1292 #ifdef CONFIG_HOTPLUG_CPU
1293 void cpu_play_dead(void)
1294 {
1295         int cpu = smp_processor_id();
1296         unsigned long pstate;
1297
1298         idle_task_exit();
1299
1300         if (tlb_type == hypervisor) {
1301                 struct trap_per_cpu *tb = &trap_block[cpu];
1302
1303                 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1304                                 tb->cpu_mondo_pa, 0);
1305                 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1306                                 tb->dev_mondo_pa, 0);
1307                 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1308                                 tb->resum_mondo_pa, 0);
1309                 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1310                                 tb->nonresum_mondo_pa, 0);
1311         }
1312
1313         cpumask_clear_cpu(cpu, &smp_commenced_mask);
1314         membar_safe("#Sync");
1315
1316         local_irq_disable();
1317
1318         __asm__ __volatile__(
1319                 "rdpr   %%pstate, %0\n\t"
1320                 "wrpr   %0, %1, %%pstate"
1321                 : "=r" (pstate)
1322                 : "i" (PSTATE_IE));
1323
1324         while (1)
1325                 barrier();
1326 }
1327
1328 int __cpu_disable(void)
1329 {
1330         int cpu = smp_processor_id();
1331         cpuinfo_sparc *c;
1332         int i;
1333
1334         for_each_cpu(i, &cpu_core_map[cpu])
1335                 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1336         cpumask_clear(&cpu_core_map[cpu]);
1337
1338         for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1339                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1340         cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1341
1342         c = &cpu_data(cpu);
1343
1344         c->core_id = 0;
1345         c->proc_id = -1;
1346
1347         smp_wmb();
1348
1349         /* Make sure no interrupts point to this cpu.  */
1350         fixup_irqs();
1351
1352         local_irq_enable();
1353         mdelay(1);
1354         local_irq_disable();
1355
1356         set_cpu_online(cpu, false);
1357
1358         cpu_map_rebuild();
1359
1360         return 0;
1361 }
1362
1363 void __cpu_die(unsigned int cpu)
1364 {
1365         int i;
1366
1367         for (i = 0; i < 100; i++) {
1368                 smp_rmb();
1369                 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1370                         break;
1371                 msleep(100);
1372         }
1373         if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1374                 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1375         } else {
1376 #if defined(CONFIG_SUN_LDOMS)
1377                 unsigned long hv_err;
1378                 int limit = 100;
1379
1380                 do {
1381                         hv_err = sun4v_cpu_stop(cpu);
1382                         if (hv_err == HV_EOK) {
1383                                 set_cpu_present(cpu, false);
1384                                 break;
1385                         }
1386                 } while (--limit > 0);
1387                 if (limit <= 0) {
1388                         printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1389                                hv_err);
1390                 }
1391 #endif
1392         }
1393 }
1394 #endif
1395
1396 void __init smp_cpus_done(unsigned int max_cpus)
1397 {
1398         pcr_arch_init();
1399 }
1400
1401 void smp_send_reschedule(int cpu)
1402 {
1403         if (cpu == smp_processor_id()) {
1404                 WARN_ON_ONCE(preemptible());
1405                 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1406         } else {
1407                 xcall_deliver((u64) &xcall_receive_signal,
1408                               0, 0, cpumask_of(cpu));
1409         }
1410 }
1411
1412 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1413 {
1414         clear_softint(1 << irq);
1415         scheduler_ipi();
1416 }
1417
1418 /* This is a nop because we capture all other cpus
1419  * anyways when making the PROM active.
1420  */
1421 void smp_send_stop(void)
1422 {
1423 }
1424
1425 /**
1426  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1427  * @cpu: cpu to allocate for
1428  * @size: size allocation in bytes
1429  * @align: alignment
1430  *
1431  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1432  * does the right thing for NUMA regardless of the current
1433  * configuration.
1434  *
1435  * RETURNS:
1436  * Pointer to the allocated area on success, NULL on failure.
1437  */
1438 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1439                                         size_t align)
1440 {
1441         const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1442 #ifdef CONFIG_NEED_MULTIPLE_NODES
1443         int node = cpu_to_node(cpu);
1444         void *ptr;
1445
1446         if (!node_online(node) || !NODE_DATA(node)) {
1447                 ptr = __alloc_bootmem(size, align, goal);
1448                 pr_info("cpu %d has no node %d or node-local memory\n",
1449                         cpu, node);
1450                 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1451                          cpu, size, __pa(ptr));
1452         } else {
1453                 ptr = __alloc_bootmem_node(NODE_DATA(node),
1454                                            size, align, goal);
1455                 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1456                          "%016lx\n", cpu, size, node, __pa(ptr));
1457         }
1458         return ptr;
1459 #else
1460         return __alloc_bootmem(size, align, goal);
1461 #endif
1462 }
1463
1464 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1465 {
1466         free_bootmem(__pa(ptr), size);
1467 }
1468
1469 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1470 {
1471         if (cpu_to_node(from) == cpu_to_node(to))
1472                 return LOCAL_DISTANCE;
1473         else
1474                 return REMOTE_DISTANCE;
1475 }
1476
1477 static void __init pcpu_populate_pte(unsigned long addr)
1478 {
1479         pgd_t *pgd = pgd_offset_k(addr);
1480         pud_t *pud;
1481         pmd_t *pmd;
1482
1483         pud = pud_offset(pgd, addr);
1484         if (pud_none(*pud)) {
1485                 pmd_t *new;
1486
1487                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1488                 pud_populate(&init_mm, pud, new);
1489         }
1490
1491         pmd = pmd_offset(pud, addr);
1492         if (!pmd_present(*pmd)) {
1493                 pte_t *new;
1494
1495                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1496                 pmd_populate_kernel(&init_mm, pmd, new);
1497         }
1498 }
1499
1500 void __init setup_per_cpu_areas(void)
1501 {
1502         unsigned long delta;
1503         unsigned int cpu;
1504         int rc = -EINVAL;
1505
1506         if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1507                 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1508                                             PERCPU_DYNAMIC_RESERVE, 4 << 20,
1509                                             pcpu_cpu_distance,
1510                                             pcpu_alloc_bootmem,
1511                                             pcpu_free_bootmem);
1512                 if (rc)
1513                         pr_warning("PERCPU: %s allocator failed (%d), "
1514                                    "falling back to page size\n",
1515                                    pcpu_fc_names[pcpu_chosen_fc], rc);
1516         }
1517         if (rc < 0)
1518                 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1519                                            pcpu_alloc_bootmem,
1520                                            pcpu_free_bootmem,
1521                                            pcpu_populate_pte);
1522         if (rc < 0)
1523                 panic("cannot initialize percpu area (err=%d)", rc);
1524
1525         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1526         for_each_possible_cpu(cpu)
1527                 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1528
1529         /* Setup %g5 for the boot cpu.  */
1530         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1531
1532         of_fill_in_cpu_data();
1533         if (tlb_type == hypervisor)
1534                 mdesc_fill_in_cpu_data(cpu_all_mask);
1535 }