]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/sparc/kernel/sun4m_smp.c
sun4M: add include of slab.h for kzalloc
[karo-tx-linux.git] / arch / sparc / kernel / sun4m_smp.c
1 /*
2  *  sun4m SMP support.
3  *
4  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
5  */
6
7 #include <linux/clockchips.h>
8 #include <linux/interrupt.h>
9 #include <linux/profile.h>
10 #include <linux/delay.h>
11 #include <linux/sched.h>
12 #include <linux/cpu.h>
13
14 #include <asm/cacheflush.h>
15 #include <asm/switch_to.h>
16 #include <asm/tlbflush.h>
17 #include <asm/timer.h>
18 #include <asm/oplib.h>
19
20 #include "irq.h"
21 #include "kernel.h"
22
23 #define IRQ_IPI_SINGLE          12
24 #define IRQ_IPI_MASK            13
25 #define IRQ_IPI_RESCHED         14
26 #define IRQ_CROSS_CALL          15
27
28 static inline unsigned long
29 swap_ulong(volatile unsigned long *ptr, unsigned long val)
30 {
31         __asm__ __volatile__("swap [%1], %0\n\t" :
32                              "=&r" (val), "=&r" (ptr) :
33                              "0" (val), "1" (ptr));
34         return val;
35 }
36
37 void sun4m_cpu_pre_starting(void *arg)
38 {
39 }
40
41 void sun4m_cpu_pre_online(void *arg)
42 {
43         int cpuid = hard_smp_processor_id();
44
45         /* Allow master to continue. The master will then give us the
46          * go-ahead by setting the smp_commenced_mask and will wait without
47          * timeouts until our setup is completed fully (signified by
48          * our bit being set in the cpu_online_mask).
49          */
50         swap_ulong(&cpu_callin_map[cpuid], 1);
51
52         /* XXX: What's up with all the flushes? */
53         local_ops->cache_all();
54         local_ops->tlb_all();
55
56         /* Fix idle thread fields. */
57         __asm__ __volatile__("ld [%0], %%g6\n\t"
58                              : : "r" (&current_set[cpuid])
59                              : "memory" /* paranoid */);
60
61         /* Attach to the address space of init_task. */
62         atomic_inc(&init_mm.mm_count);
63         current->active_mm = &init_mm;
64
65         while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
66                 mb();
67 }
68
69 /*
70  *      Cycle through the processors asking the PROM to start each one.
71  */
72 void __init smp4m_boot_cpus(void)
73 {
74         sun4m_unmask_profile_irq();
75         local_ops->cache_all();
76 }
77
78 int smp4m_boot_one_cpu(int i, struct task_struct *idle)
79 {
80         unsigned long *entry = &sun4m_cpu_startup;
81         int timeout;
82         int cpu_node;
83
84         cpu_find_by_mid(i, &cpu_node);
85         current_set[i] = task_thread_info(idle);
86
87         /* See trampoline.S for details... */
88         entry += ((i - 1) * 3);
89
90         /*
91          * Initialize the contexts table
92          * Since the call to prom_startcpu() trashes the structure,
93          * we need to re-initialize it for each cpu
94          */
95         smp_penguin_ctable.which_io = 0;
96         smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
97         smp_penguin_ctable.reg_size = 0;
98
99         /* whirrr, whirrr, whirrrrrrrrr... */
100         printk(KERN_INFO "Starting CPU %d at %p\n", i, entry);
101         local_ops->cache_all();
102         prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry);
103
104         /* wheee... it's going... */
105         for (timeout = 0; timeout < 10000; timeout++) {
106                 if (cpu_callin_map[i])
107                         break;
108                 udelay(200);
109         }
110
111         if (!(cpu_callin_map[i])) {
112                 printk(KERN_ERR "Processor %d is stuck.\n", i);
113                 return -ENODEV;
114         }
115
116         local_ops->cache_all();
117         return 0;
118 }
119
120 void __init smp4m_smp_done(void)
121 {
122         int i, first;
123         int *prev;
124
125         /* setup cpu list for irq rotation */
126         first = 0;
127         prev = &first;
128         for_each_online_cpu(i) {
129                 *prev = i;
130                 prev = &cpu_data(i).next;
131         }
132         *prev = first;
133         local_ops->cache_all();
134
135         /* Ok, they are spinning and ready to go. */
136 }
137
138 static void sun4m_send_ipi(int cpu, int level)
139 {
140         sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set);
141 }
142
143 static void sun4m_ipi_resched(int cpu)
144 {
145         sun4m_send_ipi(cpu, IRQ_IPI_RESCHED);
146 }
147
148 static void sun4m_ipi_single(int cpu)
149 {
150         sun4m_send_ipi(cpu, IRQ_IPI_SINGLE);
151 }
152
153 static void sun4m_ipi_mask_one(int cpu)
154 {
155         sun4m_send_ipi(cpu, IRQ_IPI_MASK);
156 }
157
158 static struct smp_funcall {
159         smpfunc_t func;
160         unsigned long arg1;
161         unsigned long arg2;
162         unsigned long arg3;
163         unsigned long arg4;
164         unsigned long arg5;
165         unsigned long processors_in[SUN4M_NCPUS];  /* Set when ipi entered. */
166         unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
167 } ccall_info;
168
169 static DEFINE_SPINLOCK(cross_call_lock);
170
171 /* Cross calls must be serialized, at least currently. */
172 static void sun4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1,
173                              unsigned long arg2, unsigned long arg3,
174                              unsigned long arg4)
175 {
176                 register int ncpus = SUN4M_NCPUS;
177                 unsigned long flags;
178
179                 spin_lock_irqsave(&cross_call_lock, flags);
180
181                 /* Init function glue. */
182                 ccall_info.func = func;
183                 ccall_info.arg1 = arg1;
184                 ccall_info.arg2 = arg2;
185                 ccall_info.arg3 = arg3;
186                 ccall_info.arg4 = arg4;
187                 ccall_info.arg5 = 0;
188
189                 /* Init receive/complete mapping, plus fire the IPI's off. */
190                 {
191                         register int i;
192
193                         cpumask_clear_cpu(smp_processor_id(), &mask);
194                         cpumask_and(&mask, cpu_online_mask, &mask);
195                         for (i = 0; i < ncpus; i++) {
196                                 if (cpumask_test_cpu(i, &mask)) {
197                                         ccall_info.processors_in[i] = 0;
198                                         ccall_info.processors_out[i] = 0;
199                                         sun4m_send_ipi(i, IRQ_CROSS_CALL);
200                                 } else {
201                                         ccall_info.processors_in[i] = 1;
202                                         ccall_info.processors_out[i] = 1;
203                                 }
204                         }
205                 }
206
207                 {
208                         register int i;
209
210                         i = 0;
211                         do {
212                                 if (!cpumask_test_cpu(i, &mask))
213                                         continue;
214                                 while (!ccall_info.processors_in[i])
215                                         barrier();
216                         } while (++i < ncpus);
217
218                         i = 0;
219                         do {
220                                 if (!cpumask_test_cpu(i, &mask))
221                                         continue;
222                                 while (!ccall_info.processors_out[i])
223                                         barrier();
224                         } while (++i < ncpus);
225                 }
226                 spin_unlock_irqrestore(&cross_call_lock, flags);
227 }
228
229 /* Running cross calls. */
230 void smp4m_cross_call_irq(void)
231 {
232         int i = smp_processor_id();
233
234         ccall_info.processors_in[i] = 1;
235         ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
236                         ccall_info.arg4, ccall_info.arg5);
237         ccall_info.processors_out[i] = 1;
238 }
239
240 void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
241 {
242         struct pt_regs *old_regs;
243         struct clock_event_device *ce;
244         int cpu = smp_processor_id();
245
246         old_regs = set_irq_regs(regs);
247
248         ce = &per_cpu(sparc32_clockevent, cpu);
249
250         if (ce->mode & CLOCK_EVT_MODE_PERIODIC)
251                 sun4m_clear_profile_irq(cpu);
252         else
253                 sparc_config.load_profile_irq(cpu, 0); /* Is this needless? */
254
255         irq_enter();
256         ce->event_handler(ce);
257         irq_exit();
258
259         set_irq_regs(old_regs);
260 }
261
262 static const struct sparc32_ipi_ops sun4m_ipi_ops = {
263         .cross_call = sun4m_cross_call,
264         .resched    = sun4m_ipi_resched,
265         .single     = sun4m_ipi_single,
266         .mask_one   = sun4m_ipi_mask_one,
267 };
268
269 void __init sun4m_init_smp(void)
270 {
271         sparc32_ipi_ops = &sun4m_ipi_ops;
272 }