]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/sparc/net/bpf_jit_comp.c
Merge remote-tracking branch 'h8300/h8300-next'
[karo-tx-linux.git] / arch / sparc / net / bpf_jit_comp.c
1 #include <linux/moduleloader.h>
2 #include <linux/workqueue.h>
3 #include <linux/netdevice.h>
4 #include <linux/filter.h>
5 #include <linux/cache.h>
6 #include <linux/if_vlan.h>
7
8 #include <asm/cacheflush.h>
9 #include <asm/ptrace.h>
10
11 #include "bpf_jit.h"
12
13 int bpf_jit_enable __read_mostly;
14
15 static inline bool is_simm13(unsigned int value)
16 {
17         return value + 0x1000 < 0x2000;
18 }
19
20 static void bpf_flush_icache(void *start_, void *end_)
21 {
22 #ifdef CONFIG_SPARC64
23         /* Cheetah's I-cache is fully coherent.  */
24         if (tlb_type == spitfire) {
25                 unsigned long start = (unsigned long) start_;
26                 unsigned long end = (unsigned long) end_;
27
28                 start &= ~7UL;
29                 end = (end + 7UL) & ~7UL;
30                 while (start < end) {
31                         flushi(start);
32                         start += 32;
33                 }
34         }
35 #endif
36 }
37
38 #define SEEN_DATAREF 1 /* might call external helpers */
39 #define SEEN_XREG    2 /* ebx is used */
40 #define SEEN_MEM     4 /* use mem[] for temporary storage */
41
42 #define S13(X)          ((X) & 0x1fff)
43 #define IMMED           0x00002000
44 #define RD(X)           ((X) << 25)
45 #define RS1(X)          ((X) << 14)
46 #define RS2(X)          ((X))
47 #define OP(X)           ((X) << 30)
48 #define OP2(X)          ((X) << 22)
49 #define OP3(X)          ((X) << 19)
50 #define COND(X)         ((X) << 25)
51 #define F1(X)           OP(X)
52 #define F2(X, Y)        (OP(X) | OP2(Y))
53 #define F3(X, Y)        (OP(X) | OP3(Y))
54
55 #define CONDN           COND(0x0)
56 #define CONDE           COND(0x1)
57 #define CONDLE          COND(0x2)
58 #define CONDL           COND(0x3)
59 #define CONDLEU         COND(0x4)
60 #define CONDCS          COND(0x5)
61 #define CONDNEG         COND(0x6)
62 #define CONDVC          COND(0x7)
63 #define CONDA           COND(0x8)
64 #define CONDNE          COND(0x9)
65 #define CONDG           COND(0xa)
66 #define CONDGE          COND(0xb)
67 #define CONDGU          COND(0xc)
68 #define CONDCC          COND(0xd)
69 #define CONDPOS         COND(0xe)
70 #define CONDVS          COND(0xf)
71
72 #define CONDGEU         CONDCC
73 #define CONDLU          CONDCS
74
75 #define WDISP22(X)      (((X) >> 2) & 0x3fffff)
76
77 #define BA              (F2(0, 2) | CONDA)
78 #define BGU             (F2(0, 2) | CONDGU)
79 #define BLEU            (F2(0, 2) | CONDLEU)
80 #define BGEU            (F2(0, 2) | CONDGEU)
81 #define BLU             (F2(0, 2) | CONDLU)
82 #define BE              (F2(0, 2) | CONDE)
83 #define BNE             (F2(0, 2) | CONDNE)
84
85 #ifdef CONFIG_SPARC64
86 #define BE_PTR          (F2(0, 1) | CONDE | (2 << 20))
87 #else
88 #define BE_PTR          BE
89 #endif
90
91 #define SETHI(K, REG)   \
92         (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
93 #define OR_LO(K, REG)   \
94         (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
95
96 #define ADD             F3(2, 0x00)
97 #define AND             F3(2, 0x01)
98 #define ANDCC           F3(2, 0x11)
99 #define OR              F3(2, 0x02)
100 #define XOR             F3(2, 0x03)
101 #define SUB             F3(2, 0x04)
102 #define SUBCC           F3(2, 0x14)
103 #define MUL             F3(2, 0x0a)     /* umul */
104 #define DIV             F3(2, 0x0e)     /* udiv */
105 #define SLL             F3(2, 0x25)
106 #define SRL             F3(2, 0x26)
107 #define JMPL            F3(2, 0x38)
108 #define CALL            F1(1)
109 #define BR              F2(0, 0x01)
110 #define RD_Y            F3(2, 0x28)
111 #define WR_Y            F3(2, 0x30)
112
113 #define LD32            F3(3, 0x00)
114 #define LD8             F3(3, 0x01)
115 #define LD16            F3(3, 0x02)
116 #define LD64            F3(3, 0x0b)
117 #define ST32            F3(3, 0x04)
118
119 #ifdef CONFIG_SPARC64
120 #define LDPTR           LD64
121 #define BASE_STACKFRAME 176
122 #else
123 #define LDPTR           LD32
124 #define BASE_STACKFRAME 96
125 #endif
126
127 #define LD32I           (LD32 | IMMED)
128 #define LD8I            (LD8 | IMMED)
129 #define LD16I           (LD16 | IMMED)
130 #define LD64I           (LD64 | IMMED)
131 #define LDPTRI          (LDPTR | IMMED)
132 #define ST32I           (ST32 | IMMED)
133
134 #define emit_nop()              \
135 do {                            \
136         *prog++ = SETHI(0, G0); \
137 } while (0)
138
139 #define emit_neg()                                      \
140 do {    /* sub %g0, r_A, r_A */                         \
141         *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);   \
142 } while (0)
143
144 #define emit_reg_move(FROM, TO)                         \
145 do {    /* or %g0, FROM, TO */                          \
146         *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);    \
147 } while (0)
148
149 #define emit_clear(REG)                                 \
150 do {    /* or %g0, %g0, REG */                          \
151         *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);     \
152 } while (0)
153
154 #define emit_set_const(K, REG)                                  \
155 do {    /* sethi %hi(K), REG */                                 \
156         *prog++ = SETHI(K, REG);                                \
157         /* or REG, %lo(K), REG */                               \
158         *prog++ = OR_LO(K, REG);                                \
159 } while (0)
160
161         /* Emit
162          *
163          *      OP      r_A, r_X, r_A
164          */
165 #define emit_alu_X(OPCODE)                                      \
166 do {                                                            \
167         seen |= SEEN_XREG;                                      \
168         *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);       \
169 } while (0)
170
171         /* Emit either:
172          *
173          *      OP      r_A, K, r_A
174          *
175          * or
176          *
177          *      sethi   %hi(K), r_TMP
178          *      or      r_TMP, %lo(K), r_TMP
179          *      OP      r_A, r_TMP, r_A
180          *
181          * depending upon whether K fits in a signed 13-bit
182          * immediate instruction field.  Emit nothing if K
183          * is zero.
184          */
185 #define emit_alu_K(OPCODE, K)                                   \
186 do {                                                            \
187         if (K || OPCODE == AND || OPCODE == MUL) {              \
188                 unsigned int _insn = OPCODE;                    \
189                 _insn |= RS1(r_A) | RD(r_A);                    \
190                 if (is_simm13(K)) {                             \
191                         *prog++ = _insn | IMMED | S13(K);       \
192                 } else {                                        \
193                         emit_set_const(K, r_TMP);               \
194                         *prog++ = _insn | RS2(r_TMP);           \
195                 }                                               \
196         }                                                       \
197 } while (0)
198
199 #define emit_loadimm(K, DEST)                                           \
200 do {                                                                    \
201         if (is_simm13(K)) {                                             \
202                 /* or %g0, K, DEST */                                   \
203                 *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);     \
204         } else {                                                        \
205                 emit_set_const(K, DEST);                                \
206         }                                                               \
207 } while (0)
208
209 #define emit_loadptr(BASE, STRUCT, FIELD, DEST)                         \
210 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
211         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));    \
212         *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);            \
213 } while (0)
214
215 #define emit_load32(BASE, STRUCT, FIELD, DEST)                          \
216 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
217         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));       \
218         *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);             \
219 } while (0)
220
221 #define emit_load16(BASE, STRUCT, FIELD, DEST)                          \
222 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
223         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));       \
224         *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);             \
225 } while (0)
226
227 #define __emit_load8(BASE, STRUCT, FIELD, DEST)                         \
228 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
229         *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);              \
230 } while (0)
231
232 #define emit_load8(BASE, STRUCT, FIELD, DEST)                           \
233 do {    BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));        \
234         __emit_load8(BASE, STRUCT, FIELD, DEST);                        \
235 } while (0)
236
237 #ifdef CONFIG_SPARC64
238 #define BIAS (STACK_BIAS - 4)
239 #else
240 #define BIAS (-4)
241 #endif
242
243 #define emit_ldmem(OFF, DEST)                                           \
244 do {    *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);       \
245 } while (0)
246
247 #define emit_stmem(OFF, SRC)                                            \
248 do {    *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);        \
249 } while (0)
250
251 #ifdef CONFIG_SMP
252 #ifdef CONFIG_SPARC64
253 #define emit_load_cpu(REG)                                              \
254         emit_load16(G6, struct thread_info, cpu, REG)
255 #else
256 #define emit_load_cpu(REG)                                              \
257         emit_load32(G6, struct thread_info, cpu, REG)
258 #endif
259 #else
260 #define emit_load_cpu(REG)      emit_clear(REG)
261 #endif
262
263 #define emit_skb_loadptr(FIELD, DEST) \
264         emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
265 #define emit_skb_load32(FIELD, DEST) \
266         emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
267 #define emit_skb_load16(FIELD, DEST) \
268         emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
269 #define __emit_skb_load8(FIELD, DEST) \
270         __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
271 #define emit_skb_load8(FIELD, DEST) \
272         emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
273
274 #define emit_jmpl(BASE, IMM_OFF, LREG) \
275         *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
276
277 #define emit_call(FUNC)                                 \
278 do {    void *_here = image + addrs[i] - 8;             \
279         unsigned int _off = (void *)(FUNC) - _here;     \
280         *prog++ = CALL | (((_off) >> 2) & 0x3fffffff);  \
281         emit_nop();                                     \
282 } while (0)
283
284 #define emit_branch(BR_OPC, DEST)                       \
285 do {    unsigned int _here = addrs[i] - 8;              \
286         *prog++ = BR_OPC | WDISP22((DEST) - _here);     \
287 } while (0)
288
289 #define emit_branch_off(BR_OPC, OFF)                    \
290 do {    *prog++ = BR_OPC | WDISP22(OFF);                \
291 } while (0)
292
293 #define emit_jump(DEST)         emit_branch(BA, DEST)
294
295 #define emit_read_y(REG)        *prog++ = RD_Y | RD(REG)
296 #define emit_write_y(REG)       *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
297
298 #define emit_cmp(R1, R2) \
299         *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
300
301 #define emit_cmpi(R1, IMM) \
302         *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
303
304 #define emit_btst(R1, R2) \
305         *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
306
307 #define emit_btsti(R1, IMM) \
308         *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
309
310 #define emit_sub(R1, R2, R3) \
311         *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
312
313 #define emit_subi(R1, IMM, R3) \
314         *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
315
316 #define emit_add(R1, R2, R3) \
317         *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
318
319 #define emit_addi(R1, IMM, R3) \
320         *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
321
322 #define emit_and(R1, R2, R3) \
323         *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
324
325 #define emit_andi(R1, IMM, R3) \
326         *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
327
328 #define emit_alloc_stack(SZ) \
329         *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
330
331 #define emit_release_stack(SZ) \
332         *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
333
334 /* A note about branch offset calculations.  The addrs[] array,
335  * indexed by BPF instruction, records the address after all the
336  * sparc instructions emitted for that BPF instruction.
337  *
338  * The most common case is to emit a branch at the end of such
339  * a code sequence.  So this would be two instructions, the
340  * branch and it's delay slot.
341  *
342  * Therefore by default the branch emitters calculate the branch
343  * offset field as:
344  *
345  *      destination - (addrs[i] - 8)
346  *
347  * This "addrs[i] - 8" is the address of the branch itself or
348  * what "." would be in assembler notation.  The "8" part is
349  * how we take into consideration the branch and it's delay
350  * slot mentioned above.
351  *
352  * Sometimes we need to emit a branch earlier in the code
353  * sequence.  And in these situations we adjust "destination"
354  * to accomodate this difference.  For example, if we needed
355  * to emit a branch (and it's delay slot) right before the
356  * final instruction emitted for a BPF opcode, we'd use
357  * "destination + 4" instead of just plain "destination" above.
358  *
359  * This is why you see all of these funny emit_branch() and
360  * emit_jump() calls with adjusted offsets.
361  */
362
363 void bpf_jit_compile(struct bpf_prog *fp)
364 {
365         unsigned int cleanup_addr, proglen, oldproglen = 0;
366         u32 temp[8], *prog, *func, seen = 0, pass;
367         const struct sock_filter *filter = fp->insns;
368         int i, flen = fp->len, pc_ret0 = -1;
369         unsigned int *addrs;
370         void *image;
371
372         if (!bpf_jit_enable)
373                 return;
374
375         addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
376         if (addrs == NULL)
377                 return;
378
379         /* Before first pass, make a rough estimation of addrs[]
380          * each bpf instruction is translated to less than 64 bytes
381          */
382         for (proglen = 0, i = 0; i < flen; i++) {
383                 proglen += 64;
384                 addrs[i] = proglen;
385         }
386         cleanup_addr = proglen; /* epilogue address */
387         image = NULL;
388         for (pass = 0; pass < 10; pass++) {
389                 u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
390
391                 /* no prologue/epilogue for trivial filters (RET something) */
392                 proglen = 0;
393                 prog = temp;
394
395                 /* Prologue */
396                 if (seen_or_pass0) {
397                         if (seen_or_pass0 & SEEN_MEM) {
398                                 unsigned int sz = BASE_STACKFRAME;
399                                 sz += BPF_MEMWORDS * sizeof(u32);
400                                 emit_alloc_stack(sz);
401                         }
402
403                         /* Make sure we dont leek kernel memory. */
404                         if (seen_or_pass0 & SEEN_XREG)
405                                 emit_clear(r_X);
406
407                         /* If this filter needs to access skb data,
408                          * load %o4 and %o5 with:
409                          *  %o4 = skb->len - skb->data_len
410                          *  %o5 = skb->data
411                          * And also back up %o7 into r_saved_O7 so we can
412                          * invoke the stubs using 'call'.
413                          */
414                         if (seen_or_pass0 & SEEN_DATAREF) {
415                                 emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
416                                 emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
417                                 emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
418                                 emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
419                         }
420                 }
421                 emit_reg_move(O7, r_saved_O7);
422
423                 switch (filter[0].code) {
424                 case BPF_RET | BPF_K:
425                 case BPF_LD | BPF_W | BPF_LEN:
426                 case BPF_LD | BPF_W | BPF_ABS:
427                 case BPF_LD | BPF_H | BPF_ABS:
428                 case BPF_LD | BPF_B | BPF_ABS:
429                         /* The first instruction sets the A register (or is
430                          * a "RET 'constant'")
431                          */
432                         break;
433                 default:
434                         /* Make sure we dont leak kernel information to the
435                          * user.
436                          */
437                         emit_clear(r_A); /* A = 0 */
438                 }
439
440                 for (i = 0; i < flen; i++) {
441                         unsigned int K = filter[i].k;
442                         unsigned int t_offset;
443                         unsigned int f_offset;
444                         u32 t_op, f_op;
445                         u16 code = bpf_anc_helper(&filter[i]);
446                         int ilen;
447
448                         switch (code) {
449                         case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
450                                 emit_alu_X(ADD);
451                                 break;
452                         case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
453                                 emit_alu_K(ADD, K);
454                                 break;
455                         case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
456                                 emit_alu_X(SUB);
457                                 break;
458                         case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
459                                 emit_alu_K(SUB, K);
460                                 break;
461                         case BPF_ALU | BPF_AND | BPF_X: /* A &= X */
462                                 emit_alu_X(AND);
463                                 break;
464                         case BPF_ALU | BPF_AND | BPF_K: /* A &= K */
465                                 emit_alu_K(AND, K);
466                                 break;
467                         case BPF_ALU | BPF_OR | BPF_X:  /* A |= X */
468                                 emit_alu_X(OR);
469                                 break;
470                         case BPF_ALU | BPF_OR | BPF_K:  /* A |= K */
471                                 emit_alu_K(OR, K);
472                                 break;
473                         case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
474                         case BPF_ALU | BPF_XOR | BPF_X:
475                                 emit_alu_X(XOR);
476                                 break;
477                         case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
478                                 emit_alu_K(XOR, K);
479                                 break;
480                         case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */
481                                 emit_alu_X(SLL);
482                                 break;
483                         case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */
484                                 emit_alu_K(SLL, K);
485                                 break;
486                         case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */
487                                 emit_alu_X(SRL);
488                                 break;
489                         case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */
490                                 emit_alu_K(SRL, K);
491                                 break;
492                         case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
493                                 emit_alu_X(MUL);
494                                 break;
495                         case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
496                                 emit_alu_K(MUL, K);
497                                 break;
498                         case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/
499                                 if (K == 1)
500                                         break;
501                                 emit_write_y(G0);
502 #ifdef CONFIG_SPARC32
503                                 /* The Sparc v8 architecture requires
504                                  * three instructions between a %y
505                                  * register write and the first use.
506                                  */
507                                 emit_nop();
508                                 emit_nop();
509                                 emit_nop();
510 #endif
511                                 emit_alu_K(DIV, K);
512                                 break;
513                         case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
514                                 emit_cmpi(r_X, 0);
515                                 if (pc_ret0 > 0) {
516                                         t_offset = addrs[pc_ret0 - 1];
517 #ifdef CONFIG_SPARC32
518                                         emit_branch(BE, t_offset + 20);
519 #else
520                                         emit_branch(BE, t_offset + 8);
521 #endif
522                                         emit_nop(); /* delay slot */
523                                 } else {
524                                         emit_branch_off(BNE, 16);
525                                         emit_nop();
526 #ifdef CONFIG_SPARC32
527                                         emit_jump(cleanup_addr + 20);
528 #else
529                                         emit_jump(cleanup_addr + 8);
530 #endif
531                                         emit_clear(r_A);
532                                 }
533                                 emit_write_y(G0);
534 #ifdef CONFIG_SPARC32
535                                 /* The Sparc v8 architecture requires
536                                  * three instructions between a %y
537                                  * register write and the first use.
538                                  */
539                                 emit_nop();
540                                 emit_nop();
541                                 emit_nop();
542 #endif
543                                 emit_alu_X(DIV);
544                                 break;
545                         case BPF_ALU | BPF_NEG:
546                                 emit_neg();
547                                 break;
548                         case BPF_RET | BPF_K:
549                                 if (!K) {
550                                         if (pc_ret0 == -1)
551                                                 pc_ret0 = i;
552                                         emit_clear(r_A);
553                                 } else {
554                                         emit_loadimm(K, r_A);
555                                 }
556                                 /* Fallthrough */
557                         case BPF_RET | BPF_A:
558                                 if (seen_or_pass0) {
559                                         if (i != flen - 1) {
560                                                 emit_jump(cleanup_addr);
561                                                 emit_nop();
562                                                 break;
563                                         }
564                                         if (seen_or_pass0 & SEEN_MEM) {
565                                                 unsigned int sz = BASE_STACKFRAME;
566                                                 sz += BPF_MEMWORDS * sizeof(u32);
567                                                 emit_release_stack(sz);
568                                         }
569                                 }
570                                 /* jmpl %r_saved_O7 + 8, %g0 */
571                                 emit_jmpl(r_saved_O7, 8, G0);
572                                 emit_reg_move(r_A, O0); /* delay slot */
573                                 break;
574                         case BPF_MISC | BPF_TAX:
575                                 seen |= SEEN_XREG;
576                                 emit_reg_move(r_A, r_X);
577                                 break;
578                         case BPF_MISC | BPF_TXA:
579                                 seen |= SEEN_XREG;
580                                 emit_reg_move(r_X, r_A);
581                                 break;
582                         case BPF_ANC | SKF_AD_CPU:
583                                 emit_load_cpu(r_A);
584                                 break;
585                         case BPF_ANC | SKF_AD_PROTOCOL:
586                                 emit_skb_load16(protocol, r_A);
587                                 break;
588                         case BPF_ANC | SKF_AD_PKTTYPE:
589                                 __emit_skb_load8(__pkt_type_offset, r_A);
590                                 emit_andi(r_A, PKT_TYPE_MAX, r_A);
591                                 emit_alu_K(SRL, 5);
592                                 break;
593                         case BPF_ANC | SKF_AD_IFINDEX:
594                                 emit_skb_loadptr(dev, r_A);
595                                 emit_cmpi(r_A, 0);
596                                 emit_branch(BE_PTR, cleanup_addr + 4);
597                                 emit_nop();
598                                 emit_load32(r_A, struct net_device, ifindex, r_A);
599                                 break;
600                         case BPF_ANC | SKF_AD_MARK:
601                                 emit_skb_load32(mark, r_A);
602                                 break;
603                         case BPF_ANC | SKF_AD_QUEUE:
604                                 emit_skb_load16(queue_mapping, r_A);
605                                 break;
606                         case BPF_ANC | SKF_AD_HATYPE:
607                                 emit_skb_loadptr(dev, r_A);
608                                 emit_cmpi(r_A, 0);
609                                 emit_branch(BE_PTR, cleanup_addr + 4);
610                                 emit_nop();
611                                 emit_load16(r_A, struct net_device, type, r_A);
612                                 break;
613                         case BPF_ANC | SKF_AD_RXHASH:
614                                 emit_skb_load32(hash, r_A);
615                                 break;
616                         case BPF_ANC | SKF_AD_VLAN_TAG:
617                         case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
618                                 emit_skb_load16(vlan_tci, r_A);
619                                 if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) {
620                                         emit_alu_K(SRL, 12);
621                                         emit_andi(r_A, 1, r_A);
622                                 } else {
623                                         emit_loadimm(~VLAN_TAG_PRESENT, r_TMP);
624                                         emit_and(r_A, r_TMP, r_A);
625                                 }
626                                 break;
627                         case BPF_LD | BPF_W | BPF_LEN:
628                                 emit_skb_load32(len, r_A);
629                                 break;
630                         case BPF_LDX | BPF_W | BPF_LEN:
631                                 emit_skb_load32(len, r_X);
632                                 break;
633                         case BPF_LD | BPF_IMM:
634                                 emit_loadimm(K, r_A);
635                                 break;
636                         case BPF_LDX | BPF_IMM:
637                                 emit_loadimm(K, r_X);
638                                 break;
639                         case BPF_LD | BPF_MEM:
640                                 seen |= SEEN_MEM;
641                                 emit_ldmem(K * 4, r_A);
642                                 break;
643                         case BPF_LDX | BPF_MEM:
644                                 seen |= SEEN_MEM | SEEN_XREG;
645                                 emit_ldmem(K * 4, r_X);
646                                 break;
647                         case BPF_ST:
648                                 seen |= SEEN_MEM;
649                                 emit_stmem(K * 4, r_A);
650                                 break;
651                         case BPF_STX:
652                                 seen |= SEEN_MEM | SEEN_XREG;
653                                 emit_stmem(K * 4, r_X);
654                                 break;
655
656 #define CHOOSE_LOAD_FUNC(K, func) \
657         ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
658
659                         case BPF_LD | BPF_W | BPF_ABS:
660                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
661 common_load:                    seen |= SEEN_DATAREF;
662                                 emit_loadimm(K, r_OFF);
663                                 emit_call(func);
664                                 break;
665                         case BPF_LD | BPF_H | BPF_ABS:
666                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
667                                 goto common_load;
668                         case BPF_LD | BPF_B | BPF_ABS:
669                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
670                                 goto common_load;
671                         case BPF_LDX | BPF_B | BPF_MSH:
672                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
673                                 goto common_load;
674                         case BPF_LD | BPF_W | BPF_IND:
675                                 func = bpf_jit_load_word;
676 common_load_ind:                seen |= SEEN_DATAREF | SEEN_XREG;
677                                 if (K) {
678                                         if (is_simm13(K)) {
679                                                 emit_addi(r_X, K, r_OFF);
680                                         } else {
681                                                 emit_loadimm(K, r_TMP);
682                                                 emit_add(r_X, r_TMP, r_OFF);
683                                         }
684                                 } else {
685                                         emit_reg_move(r_X, r_OFF);
686                                 }
687                                 emit_call(func);
688                                 break;
689                         case BPF_LD | BPF_H | BPF_IND:
690                                 func = bpf_jit_load_half;
691                                 goto common_load_ind;
692                         case BPF_LD | BPF_B | BPF_IND:
693                                 func = bpf_jit_load_byte;
694                                 goto common_load_ind;
695                         case BPF_JMP | BPF_JA:
696                                 emit_jump(addrs[i + K]);
697                                 emit_nop();
698                                 break;
699
700 #define COND_SEL(CODE, TOP, FOP)        \
701         case CODE:                      \
702                 t_op = TOP;             \
703                 f_op = FOP;             \
704                 goto cond_branch
705
706                         COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
707                         COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
708                         COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
709                         COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
710                         COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
711                         COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
712                         COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
713                         COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
714
715 cond_branch:                    f_offset = addrs[i + filter[i].jf];
716                                 t_offset = addrs[i + filter[i].jt];
717
718                                 /* same targets, can avoid doing the test :) */
719                                 if (filter[i].jt == filter[i].jf) {
720                                         emit_jump(t_offset);
721                                         emit_nop();
722                                         break;
723                                 }
724
725                                 switch (code) {
726                                 case BPF_JMP | BPF_JGT | BPF_X:
727                                 case BPF_JMP | BPF_JGE | BPF_X:
728                                 case BPF_JMP | BPF_JEQ | BPF_X:
729                                         seen |= SEEN_XREG;
730                                         emit_cmp(r_A, r_X);
731                                         break;
732                                 case BPF_JMP | BPF_JSET | BPF_X:
733                                         seen |= SEEN_XREG;
734                                         emit_btst(r_A, r_X);
735                                         break;
736                                 case BPF_JMP | BPF_JEQ | BPF_K:
737                                 case BPF_JMP | BPF_JGT | BPF_K:
738                                 case BPF_JMP | BPF_JGE | BPF_K:
739                                         if (is_simm13(K)) {
740                                                 emit_cmpi(r_A, K);
741                                         } else {
742                                                 emit_loadimm(K, r_TMP);
743                                                 emit_cmp(r_A, r_TMP);
744                                         }
745                                         break;
746                                 case BPF_JMP | BPF_JSET | BPF_K:
747                                         if (is_simm13(K)) {
748                                                 emit_btsti(r_A, K);
749                                         } else {
750                                                 emit_loadimm(K, r_TMP);
751                                                 emit_btst(r_A, r_TMP);
752                                         }
753                                         break;
754                                 }
755                                 if (filter[i].jt != 0) {
756                                         if (filter[i].jf)
757                                                 t_offset += 8;
758                                         emit_branch(t_op, t_offset);
759                                         emit_nop(); /* delay slot */
760                                         if (filter[i].jf) {
761                                                 emit_jump(f_offset);
762                                                 emit_nop();
763                                         }
764                                         break;
765                                 }
766                                 emit_branch(f_op, f_offset);
767                                 emit_nop(); /* delay slot */
768                                 break;
769
770                         default:
771                                 /* hmm, too complex filter, give up with jit compiler */
772                                 goto out;
773                         }
774                         ilen = (void *) prog - (void *) temp;
775                         if (image) {
776                                 if (unlikely(proglen + ilen > oldproglen)) {
777                                         pr_err("bpb_jit_compile fatal error\n");
778                                         kfree(addrs);
779                                         module_memfree(image);
780                                         return;
781                                 }
782                                 memcpy(image + proglen, temp, ilen);
783                         }
784                         proglen += ilen;
785                         addrs[i] = proglen;
786                         prog = temp;
787                 }
788                 /* last bpf instruction is always a RET :
789                  * use it to give the cleanup instruction(s) addr
790                  */
791                 cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
792                 if (seen_or_pass0 & SEEN_MEM)
793                         cleanup_addr -= 4; /* add %sp, X, %sp; */
794
795                 if (image) {
796                         if (proglen != oldproglen)
797                                 pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
798                                        proglen, oldproglen);
799                         break;
800                 }
801                 if (proglen == oldproglen) {
802                         image = module_alloc(proglen);
803                         if (!image)
804                                 goto out;
805                 }
806                 oldproglen = proglen;
807         }
808
809         if (bpf_jit_enable > 1)
810                 bpf_jit_dump(flen, proglen, pass + 1, image);
811
812         if (image) {
813                 bpf_flush_icache(image, image + proglen);
814                 fp->bpf_func = (void *)image;
815                 fp->jited = 1;
816         }
817 out:
818         kfree(addrs);
819         return;
820 }
821
822 void bpf_jit_free(struct bpf_prog *fp)
823 {
824         if (fp->jited)
825                 module_memfree(fp->bpf_func);
826
827         bpf_prog_unlock_free(fp);
828 }