]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/sparc64/kernel/prom.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/lethal/sh-2.6
[karo-tx-linux.git] / arch / sparc64 / kernel / prom.c
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras       August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  * 
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com 
9  *
10  *  Adapted for sparc64 by David S. Miller davem@davemloft.net
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <linux/mm.h>
22 #include <linux/bootmem.h>
23 #include <linux/module.h>
24
25 #include <asm/prom.h>
26 #include <asm/of_device.h>
27 #include <asm/oplib.h>
28 #include <asm/irq.h>
29 #include <asm/asi.h>
30 #include <asm/upa.h>
31 #include <asm/smp.h>
32
33 static struct device_node *allnodes;
34
35 /* use when traversing tree through the allnext, child, sibling,
36  * or parent members of struct device_node.
37  */
38 static DEFINE_RWLOCK(devtree_lock);
39
40 int of_device_is_compatible(const struct device_node *device,
41                             const char *compat)
42 {
43         const char* cp;
44         int cplen, l;
45
46         cp = of_get_property(device, "compatible", &cplen);
47         if (cp == NULL)
48                 return 0;
49         while (cplen > 0) {
50                 if (strncmp(cp, compat, strlen(compat)) == 0)
51                         return 1;
52                 l = strlen(cp) + 1;
53                 cp += l;
54                 cplen -= l;
55         }
56
57         return 0;
58 }
59 EXPORT_SYMBOL(of_device_is_compatible);
60
61 struct device_node *of_get_parent(const struct device_node *node)
62 {
63         struct device_node *np;
64
65         if (!node)
66                 return NULL;
67
68         np = node->parent;
69
70         return np;
71 }
72 EXPORT_SYMBOL(of_get_parent);
73
74 struct device_node *of_get_next_child(const struct device_node *node,
75         struct device_node *prev)
76 {
77         struct device_node *next;
78
79         next = prev ? prev->sibling : node->child;
80         for (; next != 0; next = next->sibling) {
81                 break;
82         }
83
84         return next;
85 }
86 EXPORT_SYMBOL(of_get_next_child);
87
88 struct device_node *of_find_node_by_path(const char *path)
89 {
90         struct device_node *np = allnodes;
91
92         for (; np != 0; np = np->allnext) {
93                 if (np->full_name != 0 && strcmp(np->full_name, path) == 0)
94                         break;
95         }
96
97         return np;
98 }
99 EXPORT_SYMBOL(of_find_node_by_path);
100
101 struct device_node *of_find_node_by_phandle(phandle handle)
102 {
103         struct device_node *np;
104
105         for (np = allnodes; np != 0; np = np->allnext)
106                 if (np->node == handle)
107                         break;
108
109         return np;
110 }
111 EXPORT_SYMBOL(of_find_node_by_phandle);
112
113 struct device_node *of_find_node_by_name(struct device_node *from,
114         const char *name)
115 {
116         struct device_node *np;
117
118         np = from ? from->allnext : allnodes;
119         for (; np != NULL; np = np->allnext)
120                 if (np->name != NULL && strcmp(np->name, name) == 0)
121                         break;
122
123         return np;
124 }
125 EXPORT_SYMBOL(of_find_node_by_name);
126
127 struct device_node *of_find_node_by_type(struct device_node *from,
128         const char *type)
129 {
130         struct device_node *np;
131
132         np = from ? from->allnext : allnodes;
133         for (; np != 0; np = np->allnext)
134                 if (np->type != 0 && strcmp(np->type, type) == 0)
135                         break;
136
137         return np;
138 }
139 EXPORT_SYMBOL(of_find_node_by_type);
140
141 struct device_node *of_find_compatible_node(struct device_node *from,
142         const char *type, const char *compatible)
143 {
144         struct device_node *np;
145
146         np = from ? from->allnext : allnodes;
147         for (; np != 0; np = np->allnext) {
148                 if (type != NULL
149                     && !(np->type != 0 && strcmp(np->type, type) == 0))
150                         continue;
151                 if (of_device_is_compatible(np, compatible))
152                         break;
153         }
154
155         return np;
156 }
157 EXPORT_SYMBOL(of_find_compatible_node);
158
159 struct property *of_find_property(const struct device_node *np,
160                                   const char *name,
161                                   int *lenp)
162 {
163         struct property *pp;
164
165         for (pp = np->properties; pp != 0; pp = pp->next) {
166                 if (strcasecmp(pp->name, name) == 0) {
167                         if (lenp != 0)
168                                 *lenp = pp->length;
169                         break;
170                 }
171         }
172         return pp;
173 }
174 EXPORT_SYMBOL(of_find_property);
175
176 /*
177  * Find a property with a given name for a given node
178  * and return the value.
179  */
180 const void *of_get_property(const struct device_node *np, const char *name,
181                       int *lenp)
182 {
183         struct property *pp = of_find_property(np,name,lenp);
184         return pp ? pp->value : NULL;
185 }
186 EXPORT_SYMBOL(of_get_property);
187
188 int of_getintprop_default(struct device_node *np, const char *name, int def)
189 {
190         struct property *prop;
191         int len;
192
193         prop = of_find_property(np, name, &len);
194         if (!prop || len != 4)
195                 return def;
196
197         return *(int *) prop->value;
198 }
199 EXPORT_SYMBOL(of_getintprop_default);
200
201 int of_n_addr_cells(struct device_node *np)
202 {
203         const int* ip;
204         do {
205                 if (np->parent)
206                         np = np->parent;
207                 ip = of_get_property(np, "#address-cells", NULL);
208                 if (ip != NULL)
209                         return *ip;
210         } while (np->parent);
211         /* No #address-cells property for the root node, default to 2 */
212         return 2;
213 }
214 EXPORT_SYMBOL(of_n_addr_cells);
215
216 int of_n_size_cells(struct device_node *np)
217 {
218         const int* ip;
219         do {
220                 if (np->parent)
221                         np = np->parent;
222                 ip = of_get_property(np, "#size-cells", NULL);
223                 if (ip != NULL)
224                         return *ip;
225         } while (np->parent);
226         /* No #size-cells property for the root node, default to 1 */
227         return 1;
228 }
229 EXPORT_SYMBOL(of_n_size_cells);
230
231 int of_set_property(struct device_node *dp, const char *name, void *val, int len)
232 {
233         struct property **prevp;
234         void *new_val;
235         int err;
236
237         new_val = kmalloc(len, GFP_KERNEL);
238         if (!new_val)
239                 return -ENOMEM;
240
241         memcpy(new_val, val, len);
242
243         err = -ENODEV;
244
245         write_lock(&devtree_lock);
246         prevp = &dp->properties;
247         while (*prevp) {
248                 struct property *prop = *prevp;
249
250                 if (!strcasecmp(prop->name, name)) {
251                         void *old_val = prop->value;
252                         int ret;
253
254                         ret = prom_setprop(dp->node, name, val, len);
255                         err = -EINVAL;
256                         if (ret >= 0) {
257                                 prop->value = new_val;
258                                 prop->length = len;
259
260                                 if (OF_IS_DYNAMIC(prop))
261                                         kfree(old_val);
262
263                                 OF_MARK_DYNAMIC(prop);
264
265                                 err = 0;
266                         }
267                         break;
268                 }
269                 prevp = &(*prevp)->next;
270         }
271         write_unlock(&devtree_lock);
272
273         /* XXX Upate procfs if necessary... */
274
275         return err;
276 }
277 EXPORT_SYMBOL(of_set_property);
278
279 static unsigned int prom_early_allocated;
280
281 static void * __init prom_early_alloc(unsigned long size)
282 {
283         void *ret;
284
285         ret = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
286         if (ret != NULL)
287                 memset(ret, 0, size);
288
289         prom_early_allocated += size;
290
291         return ret;
292 }
293
294 #ifdef CONFIG_PCI
295 /* PSYCHO interrupt mapping support. */
296 #define PSYCHO_IMAP_A_SLOT0     0x0c00UL
297 #define PSYCHO_IMAP_B_SLOT0     0x0c20UL
298 static unsigned long psycho_pcislot_imap_offset(unsigned long ino)
299 {
300         unsigned int bus =  (ino & 0x10) >> 4;
301         unsigned int slot = (ino & 0x0c) >> 2;
302
303         if (bus == 0)
304                 return PSYCHO_IMAP_A_SLOT0 + (slot * 8);
305         else
306                 return PSYCHO_IMAP_B_SLOT0 + (slot * 8);
307 }
308
309 #define PSYCHO_IMAP_SCSI        0x1000UL
310 #define PSYCHO_IMAP_ETH         0x1008UL
311 #define PSYCHO_IMAP_BPP         0x1010UL
312 #define PSYCHO_IMAP_AU_REC      0x1018UL
313 #define PSYCHO_IMAP_AU_PLAY     0x1020UL
314 #define PSYCHO_IMAP_PFAIL       0x1028UL
315 #define PSYCHO_IMAP_KMS         0x1030UL
316 #define PSYCHO_IMAP_FLPY        0x1038UL
317 #define PSYCHO_IMAP_SHW         0x1040UL
318 #define PSYCHO_IMAP_KBD         0x1048UL
319 #define PSYCHO_IMAP_MS          0x1050UL
320 #define PSYCHO_IMAP_SER         0x1058UL
321 #define PSYCHO_IMAP_TIM0        0x1060UL
322 #define PSYCHO_IMAP_TIM1        0x1068UL
323 #define PSYCHO_IMAP_UE          0x1070UL
324 #define PSYCHO_IMAP_CE          0x1078UL
325 #define PSYCHO_IMAP_A_ERR       0x1080UL
326 #define PSYCHO_IMAP_B_ERR       0x1088UL
327 #define PSYCHO_IMAP_PMGMT       0x1090UL
328 #define PSYCHO_IMAP_GFX         0x1098UL
329 #define PSYCHO_IMAP_EUPA        0x10a0UL
330
331 static unsigned long __psycho_onboard_imap_off[] = {
332 /*0x20*/        PSYCHO_IMAP_SCSI,
333 /*0x21*/        PSYCHO_IMAP_ETH,
334 /*0x22*/        PSYCHO_IMAP_BPP,
335 /*0x23*/        PSYCHO_IMAP_AU_REC,
336 /*0x24*/        PSYCHO_IMAP_AU_PLAY,
337 /*0x25*/        PSYCHO_IMAP_PFAIL,
338 /*0x26*/        PSYCHO_IMAP_KMS,
339 /*0x27*/        PSYCHO_IMAP_FLPY,
340 /*0x28*/        PSYCHO_IMAP_SHW,
341 /*0x29*/        PSYCHO_IMAP_KBD,
342 /*0x2a*/        PSYCHO_IMAP_MS,
343 /*0x2b*/        PSYCHO_IMAP_SER,
344 /*0x2c*/        PSYCHO_IMAP_TIM0,
345 /*0x2d*/        PSYCHO_IMAP_TIM1,
346 /*0x2e*/        PSYCHO_IMAP_UE,
347 /*0x2f*/        PSYCHO_IMAP_CE,
348 /*0x30*/        PSYCHO_IMAP_A_ERR,
349 /*0x31*/        PSYCHO_IMAP_B_ERR,
350 /*0x32*/        PSYCHO_IMAP_PMGMT,
351 /*0x33*/        PSYCHO_IMAP_GFX,
352 /*0x34*/        PSYCHO_IMAP_EUPA,
353 };
354 #define PSYCHO_ONBOARD_IRQ_BASE         0x20
355 #define PSYCHO_ONBOARD_IRQ_LAST         0x34
356 #define psycho_onboard_imap_offset(__ino) \
357         __psycho_onboard_imap_off[(__ino) - PSYCHO_ONBOARD_IRQ_BASE]
358
359 #define PSYCHO_ICLR_A_SLOT0     0x1400UL
360 #define PSYCHO_ICLR_SCSI        0x1800UL
361
362 #define psycho_iclr_offset(ino)                                       \
363         ((ino & 0x20) ? (PSYCHO_ICLR_SCSI + (((ino) & 0x1f) << 3)) :  \
364                         (PSYCHO_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
365
366 static unsigned int psycho_irq_build(struct device_node *dp,
367                                      unsigned int ino,
368                                      void *_data)
369 {
370         unsigned long controller_regs = (unsigned long) _data;
371         unsigned long imap, iclr;
372         unsigned long imap_off, iclr_off;
373         int inofixup = 0;
374
375         ino &= 0x3f;
376         if (ino < PSYCHO_ONBOARD_IRQ_BASE) {
377                 /* PCI slot */
378                 imap_off = psycho_pcislot_imap_offset(ino);
379         } else {
380                 /* Onboard device */
381                 if (ino > PSYCHO_ONBOARD_IRQ_LAST) {
382                         prom_printf("psycho_irq_build: Wacky INO [%x]\n", ino);
383                         prom_halt();
384                 }
385                 imap_off = psycho_onboard_imap_offset(ino);
386         }
387
388         /* Now build the IRQ bucket. */
389         imap = controller_regs + imap_off;
390
391         iclr_off = psycho_iclr_offset(ino);
392         iclr = controller_regs + iclr_off;
393
394         if ((ino & 0x20) == 0)
395                 inofixup = ino & 0x03;
396
397         return build_irq(inofixup, iclr, imap);
398 }
399
400 static void __init psycho_irq_trans_init(struct device_node *dp)
401 {
402         const struct linux_prom64_registers *regs;
403
404         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
405         dp->irq_trans->irq_build = psycho_irq_build;
406
407         regs = of_get_property(dp, "reg", NULL);
408         dp->irq_trans->data = (void *) regs[2].phys_addr;
409 }
410
411 #define sabre_read(__reg) \
412 ({      u64 __ret; \
413         __asm__ __volatile__("ldxa [%1] %2, %0" \
414                              : "=r" (__ret) \
415                              : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
416                              : "memory"); \
417         __ret; \
418 })
419
420 struct sabre_irq_data {
421         unsigned long controller_regs;
422         unsigned int pci_first_busno;
423 };
424 #define SABRE_CONFIGSPACE       0x001000000UL
425 #define SABRE_WRSYNC            0x1c20UL
426
427 #define SABRE_CONFIG_BASE(CONFIG_SPACE) \
428         (CONFIG_SPACE | (1UL << 24))
429 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG)    \
430         (((unsigned long)(BUS)   << 16) |       \
431          ((unsigned long)(DEVFN) << 8)  |       \
432          ((unsigned long)(REG)))
433
434 /* When a device lives behind a bridge deeper in the PCI bus topology
435  * than APB, a special sequence must run to make sure all pending DMA
436  * transfers at the time of IRQ delivery are visible in the coherency
437  * domain by the cpu.  This sequence is to perform a read on the far
438  * side of the non-APB bridge, then perform a read of Sabre's DMA
439  * write-sync register.
440  */
441 static void sabre_wsync_handler(unsigned int ino, void *_arg1, void *_arg2)
442 {
443         unsigned int phys_hi = (unsigned int) (unsigned long) _arg1;
444         struct sabre_irq_data *irq_data = _arg2;
445         unsigned long controller_regs = irq_data->controller_regs;
446         unsigned long sync_reg = controller_regs + SABRE_WRSYNC;
447         unsigned long config_space = controller_regs + SABRE_CONFIGSPACE;
448         unsigned int bus, devfn;
449         u16 _unused;
450
451         config_space = SABRE_CONFIG_BASE(config_space);
452
453         bus = (phys_hi >> 16) & 0xff;
454         devfn = (phys_hi >> 8) & 0xff;
455
456         config_space |= SABRE_CONFIG_ENCODE(bus, devfn, 0x00);
457
458         __asm__ __volatile__("membar #Sync\n\t"
459                              "lduha [%1] %2, %0\n\t"
460                              "membar #Sync"
461                              : "=r" (_unused)
462                              : "r" ((u16 *) config_space),
463                                "i" (ASI_PHYS_BYPASS_EC_E_L)
464                              : "memory");
465
466         sabre_read(sync_reg);
467 }
468
469 #define SABRE_IMAP_A_SLOT0      0x0c00UL
470 #define SABRE_IMAP_B_SLOT0      0x0c20UL
471 #define SABRE_IMAP_SCSI         0x1000UL
472 #define SABRE_IMAP_ETH          0x1008UL
473 #define SABRE_IMAP_BPP          0x1010UL
474 #define SABRE_IMAP_AU_REC       0x1018UL
475 #define SABRE_IMAP_AU_PLAY      0x1020UL
476 #define SABRE_IMAP_PFAIL        0x1028UL
477 #define SABRE_IMAP_KMS          0x1030UL
478 #define SABRE_IMAP_FLPY         0x1038UL
479 #define SABRE_IMAP_SHW          0x1040UL
480 #define SABRE_IMAP_KBD          0x1048UL
481 #define SABRE_IMAP_MS           0x1050UL
482 #define SABRE_IMAP_SER          0x1058UL
483 #define SABRE_IMAP_UE           0x1070UL
484 #define SABRE_IMAP_CE           0x1078UL
485 #define SABRE_IMAP_PCIERR       0x1080UL
486 #define SABRE_IMAP_GFX          0x1098UL
487 #define SABRE_IMAP_EUPA         0x10a0UL
488 #define SABRE_ICLR_A_SLOT0      0x1400UL
489 #define SABRE_ICLR_B_SLOT0      0x1480UL
490 #define SABRE_ICLR_SCSI         0x1800UL
491 #define SABRE_ICLR_ETH          0x1808UL
492 #define SABRE_ICLR_BPP          0x1810UL
493 #define SABRE_ICLR_AU_REC       0x1818UL
494 #define SABRE_ICLR_AU_PLAY      0x1820UL
495 #define SABRE_ICLR_PFAIL        0x1828UL
496 #define SABRE_ICLR_KMS          0x1830UL
497 #define SABRE_ICLR_FLPY         0x1838UL
498 #define SABRE_ICLR_SHW          0x1840UL
499 #define SABRE_ICLR_KBD          0x1848UL
500 #define SABRE_ICLR_MS           0x1850UL
501 #define SABRE_ICLR_SER          0x1858UL
502 #define SABRE_ICLR_UE           0x1870UL
503 #define SABRE_ICLR_CE           0x1878UL
504 #define SABRE_ICLR_PCIERR       0x1880UL
505
506 static unsigned long sabre_pcislot_imap_offset(unsigned long ino)
507 {
508         unsigned int bus =  (ino & 0x10) >> 4;
509         unsigned int slot = (ino & 0x0c) >> 2;
510
511         if (bus == 0)
512                 return SABRE_IMAP_A_SLOT0 + (slot * 8);
513         else
514                 return SABRE_IMAP_B_SLOT0 + (slot * 8);
515 }
516
517 static unsigned long __sabre_onboard_imap_off[] = {
518 /*0x20*/        SABRE_IMAP_SCSI,
519 /*0x21*/        SABRE_IMAP_ETH,
520 /*0x22*/        SABRE_IMAP_BPP,
521 /*0x23*/        SABRE_IMAP_AU_REC,
522 /*0x24*/        SABRE_IMAP_AU_PLAY,
523 /*0x25*/        SABRE_IMAP_PFAIL,
524 /*0x26*/        SABRE_IMAP_KMS,
525 /*0x27*/        SABRE_IMAP_FLPY,
526 /*0x28*/        SABRE_IMAP_SHW,
527 /*0x29*/        SABRE_IMAP_KBD,
528 /*0x2a*/        SABRE_IMAP_MS,
529 /*0x2b*/        SABRE_IMAP_SER,
530 /*0x2c*/        0 /* reserved */,
531 /*0x2d*/        0 /* reserved */,
532 /*0x2e*/        SABRE_IMAP_UE,
533 /*0x2f*/        SABRE_IMAP_CE,
534 /*0x30*/        SABRE_IMAP_PCIERR,
535 /*0x31*/        0 /* reserved */,
536 /*0x32*/        0 /* reserved */,
537 /*0x33*/        SABRE_IMAP_GFX,
538 /*0x34*/        SABRE_IMAP_EUPA,
539 };
540 #define SABRE_ONBOARD_IRQ_BASE          0x20
541 #define SABRE_ONBOARD_IRQ_LAST          0x30
542 #define sabre_onboard_imap_offset(__ino) \
543         __sabre_onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
544
545 #define sabre_iclr_offset(ino)                                        \
546         ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) :  \
547                         (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
548
549 static int sabre_device_needs_wsync(struct device_node *dp)
550 {
551         struct device_node *parent = dp->parent;
552         const char *parent_model, *parent_compat;
553
554         /* This traversal up towards the root is meant to
555          * handle two cases:
556          *
557          * 1) non-PCI bus sitting under PCI, such as 'ebus'
558          * 2) the PCI controller interrupts themselves, which
559          *    will use the sabre_irq_build but do not need
560          *    the DMA synchronization handling
561          */
562         while (parent) {
563                 if (!strcmp(parent->type, "pci"))
564                         break;
565                 parent = parent->parent;
566         }
567
568         if (!parent)
569                 return 0;
570
571         parent_model = of_get_property(parent,
572                                        "model", NULL);
573         if (parent_model &&
574             (!strcmp(parent_model, "SUNW,sabre") ||
575              !strcmp(parent_model, "SUNW,simba")))
576                 return 0;
577
578         parent_compat = of_get_property(parent,
579                                         "compatible", NULL);
580         if (parent_compat &&
581             (!strcmp(parent_compat, "pci108e,a000") ||
582              !strcmp(parent_compat, "pci108e,a001")))
583                 return 0;
584
585         return 1;
586 }
587
588 static unsigned int sabre_irq_build(struct device_node *dp,
589                                     unsigned int ino,
590                                     void *_data)
591 {
592         struct sabre_irq_data *irq_data = _data;
593         unsigned long controller_regs = irq_data->controller_regs;
594         const struct linux_prom_pci_registers *regs;
595         unsigned long imap, iclr;
596         unsigned long imap_off, iclr_off;
597         int inofixup = 0;
598         int virt_irq;
599
600         ino &= 0x3f;
601         if (ino < SABRE_ONBOARD_IRQ_BASE) {
602                 /* PCI slot */
603                 imap_off = sabre_pcislot_imap_offset(ino);
604         } else {
605                 /* onboard device */
606                 if (ino > SABRE_ONBOARD_IRQ_LAST) {
607                         prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino);
608                         prom_halt();
609                 }
610                 imap_off = sabre_onboard_imap_offset(ino);
611         }
612
613         /* Now build the IRQ bucket. */
614         imap = controller_regs + imap_off;
615
616         iclr_off = sabre_iclr_offset(ino);
617         iclr = controller_regs + iclr_off;
618
619         if ((ino & 0x20) == 0)
620                 inofixup = ino & 0x03;
621
622         virt_irq = build_irq(inofixup, iclr, imap);
623
624         /* If the parent device is a PCI<->PCI bridge other than
625          * APB, we have to install a pre-handler to ensure that
626          * all pending DMA is drained before the interrupt handler
627          * is run.
628          */
629         regs = of_get_property(dp, "reg", NULL);
630         if (regs && sabre_device_needs_wsync(dp)) {
631                 irq_install_pre_handler(virt_irq,
632                                         sabre_wsync_handler,
633                                         (void *) (long) regs->phys_hi,
634                                         (void *) irq_data);
635         }
636
637         return virt_irq;
638 }
639
640 static void __init sabre_irq_trans_init(struct device_node *dp)
641 {
642         const struct linux_prom64_registers *regs;
643         struct sabre_irq_data *irq_data;
644         const u32 *busrange;
645
646         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
647         dp->irq_trans->irq_build = sabre_irq_build;
648
649         irq_data = prom_early_alloc(sizeof(struct sabre_irq_data));
650
651         regs = of_get_property(dp, "reg", NULL);
652         irq_data->controller_regs = regs[0].phys_addr;
653
654         busrange = of_get_property(dp, "bus-range", NULL);
655         irq_data->pci_first_busno = busrange[0];
656
657         dp->irq_trans->data = irq_data;
658 }
659
660 /* SCHIZO interrupt mapping support.  Unlike Psycho, for this controller the
661  * imap/iclr registers are per-PBM.
662  */
663 #define SCHIZO_IMAP_BASE        0x1000UL
664 #define SCHIZO_ICLR_BASE        0x1400UL
665
666 static unsigned long schizo_imap_offset(unsigned long ino)
667 {
668         return SCHIZO_IMAP_BASE + (ino * 8UL);
669 }
670
671 static unsigned long schizo_iclr_offset(unsigned long ino)
672 {
673         return SCHIZO_ICLR_BASE + (ino * 8UL);
674 }
675
676 static unsigned long schizo_ino_to_iclr(unsigned long pbm_regs,
677                                         unsigned int ino)
678 {
679
680         return pbm_regs + schizo_iclr_offset(ino);
681 }
682
683 static unsigned long schizo_ino_to_imap(unsigned long pbm_regs,
684                                         unsigned int ino)
685 {
686         return pbm_regs + schizo_imap_offset(ino);
687 }
688
689 #define schizo_read(__reg) \
690 ({      u64 __ret; \
691         __asm__ __volatile__("ldxa [%1] %2, %0" \
692                              : "=r" (__ret) \
693                              : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
694                              : "memory"); \
695         __ret; \
696 })
697 #define schizo_write(__reg, __val) \
698         __asm__ __volatile__("stxa %0, [%1] %2" \
699                              : /* no outputs */ \
700                              : "r" (__val), "r" (__reg), \
701                                "i" (ASI_PHYS_BYPASS_EC_E) \
702                              : "memory")
703
704 static void tomatillo_wsync_handler(unsigned int ino, void *_arg1, void *_arg2)
705 {
706         unsigned long sync_reg = (unsigned long) _arg2;
707         u64 mask = 1UL << (ino & IMAP_INO);
708         u64 val;
709         int limit;
710
711         schizo_write(sync_reg, mask);
712
713         limit = 100000;
714         val = 0;
715         while (--limit) {
716                 val = schizo_read(sync_reg);
717                 if (!(val & mask))
718                         break;
719         }
720         if (limit <= 0) {
721                 printk("tomatillo_wsync_handler: DMA won't sync [%lx:%lx]\n",
722                        val, mask);
723         }
724
725         if (_arg1) {
726                 static unsigned char cacheline[64]
727                         __attribute__ ((aligned (64)));
728
729                 __asm__ __volatile__("rd %%fprs, %0\n\t"
730                                      "or %0, %4, %1\n\t"
731                                      "wr %1, 0x0, %%fprs\n\t"
732                                      "stda %%f0, [%5] %6\n\t"
733                                      "wr %0, 0x0, %%fprs\n\t"
734                                      "membar #Sync"
735                                      : "=&r" (mask), "=&r" (val)
736                                      : "0" (mask), "1" (val),
737                                      "i" (FPRS_FEF), "r" (&cacheline[0]),
738                                      "i" (ASI_BLK_COMMIT_P));
739         }
740 }
741
742 struct schizo_irq_data {
743         unsigned long pbm_regs;
744         unsigned long sync_reg;
745         u32 portid;
746         int chip_version;
747 };
748
749 static unsigned int schizo_irq_build(struct device_node *dp,
750                                      unsigned int ino,
751                                      void *_data)
752 {
753         struct schizo_irq_data *irq_data = _data;
754         unsigned long pbm_regs = irq_data->pbm_regs;
755         unsigned long imap, iclr;
756         int ign_fixup;
757         int virt_irq;
758         int is_tomatillo;
759
760         ino &= 0x3f;
761
762         /* Now build the IRQ bucket. */
763         imap = schizo_ino_to_imap(pbm_regs, ino);
764         iclr = schizo_ino_to_iclr(pbm_regs, ino);
765
766         /* On Schizo, no inofixup occurs.  This is because each
767          * INO has it's own IMAP register.  On Psycho and Sabre
768          * there is only one IMAP register for each PCI slot even
769          * though four different INOs can be generated by each
770          * PCI slot.
771          *
772          * But, for JBUS variants (essentially, Tomatillo), we have
773          * to fixup the lowest bit of the interrupt group number.
774          */
775         ign_fixup = 0;
776
777         is_tomatillo = (irq_data->sync_reg != 0UL);
778
779         if (is_tomatillo) {
780                 if (irq_data->portid & 1)
781                         ign_fixup = (1 << 6);
782         }
783
784         virt_irq = build_irq(ign_fixup, iclr, imap);
785
786         if (is_tomatillo) {
787                 irq_install_pre_handler(virt_irq,
788                                         tomatillo_wsync_handler,
789                                         ((irq_data->chip_version <= 4) ?
790                                          (void *) 1 : (void *) 0),
791                                         (void *) irq_data->sync_reg);
792         }
793
794         return virt_irq;
795 }
796
797 static void __init __schizo_irq_trans_init(struct device_node *dp,
798                                            int is_tomatillo)
799 {
800         const struct linux_prom64_registers *regs;
801         struct schizo_irq_data *irq_data;
802
803         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
804         dp->irq_trans->irq_build = schizo_irq_build;
805
806         irq_data = prom_early_alloc(sizeof(struct schizo_irq_data));
807
808         regs = of_get_property(dp, "reg", NULL);
809         dp->irq_trans->data = irq_data;
810
811         irq_data->pbm_regs = regs[0].phys_addr;
812         if (is_tomatillo)
813                 irq_data->sync_reg = regs[3].phys_addr + 0x1a18UL;
814         else
815                 irq_data->sync_reg = 0UL;
816         irq_data->portid = of_getintprop_default(dp, "portid", 0);
817         irq_data->chip_version = of_getintprop_default(dp, "version#", 0);
818 }
819
820 static void __init schizo_irq_trans_init(struct device_node *dp)
821 {
822         __schizo_irq_trans_init(dp, 0);
823 }
824
825 static void __init tomatillo_irq_trans_init(struct device_node *dp)
826 {
827         __schizo_irq_trans_init(dp, 1);
828 }
829
830 static unsigned int pci_sun4v_irq_build(struct device_node *dp,
831                                         unsigned int devino,
832                                         void *_data)
833 {
834         u32 devhandle = (u32) (unsigned long) _data;
835
836         return sun4v_build_irq(devhandle, devino);
837 }
838
839 static void __init pci_sun4v_irq_trans_init(struct device_node *dp)
840 {
841         const struct linux_prom64_registers *regs;
842
843         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
844         dp->irq_trans->irq_build = pci_sun4v_irq_build;
845
846         regs = of_get_property(dp, "reg", NULL);
847         dp->irq_trans->data = (void *) (unsigned long)
848                 ((regs->phys_addr >> 32UL) & 0x0fffffff);
849 }
850
851 struct fire_irq_data {
852         unsigned long pbm_regs;
853         u32 portid;
854 };
855
856 #define FIRE_IMAP_BASE  0x001000
857 #define FIRE_ICLR_BASE  0x001400
858
859 static unsigned long fire_imap_offset(unsigned long ino)
860 {
861         return FIRE_IMAP_BASE + (ino * 8UL);
862 }
863
864 static unsigned long fire_iclr_offset(unsigned long ino)
865 {
866         return FIRE_ICLR_BASE + (ino * 8UL);
867 }
868
869 static unsigned long fire_ino_to_iclr(unsigned long pbm_regs,
870                                             unsigned int ino)
871 {
872         return pbm_regs + fire_iclr_offset(ino);
873 }
874
875 static unsigned long fire_ino_to_imap(unsigned long pbm_regs,
876                                             unsigned int ino)
877 {
878         return pbm_regs + fire_imap_offset(ino);
879 }
880
881 static unsigned int fire_irq_build(struct device_node *dp,
882                                          unsigned int ino,
883                                          void *_data)
884 {
885         struct fire_irq_data *irq_data = _data;
886         unsigned long pbm_regs = irq_data->pbm_regs;
887         unsigned long imap, iclr;
888         unsigned long int_ctrlr;
889
890         ino &= 0x3f;
891
892         /* Now build the IRQ bucket. */
893         imap = fire_ino_to_imap(pbm_regs, ino);
894         iclr = fire_ino_to_iclr(pbm_regs, ino);
895
896         /* Set the interrupt controller number.  */
897         int_ctrlr = 1 << 6;
898         upa_writeq(int_ctrlr, imap);
899
900         /* The interrupt map registers do not have an INO field
901          * like other chips do.  They return zero in the INO
902          * field, and the interrupt controller number is controlled
903          * in bits 6 to 9.  So in order for build_irq() to get
904          * the INO right we pass it in as part of the fixup
905          * which will get added to the map register zero value
906          * read by build_irq().
907          */
908         ino |= (irq_data->portid << 6);
909         ino -= int_ctrlr;
910         return build_irq(ino, iclr, imap);
911 }
912
913 static void __init fire_irq_trans_init(struct device_node *dp)
914 {
915         const struct linux_prom64_registers *regs;
916         struct fire_irq_data *irq_data;
917
918         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
919         dp->irq_trans->irq_build = fire_irq_build;
920
921         irq_data = prom_early_alloc(sizeof(struct fire_irq_data));
922
923         regs = of_get_property(dp, "reg", NULL);
924         dp->irq_trans->data = irq_data;
925
926         irq_data->pbm_regs = regs[0].phys_addr;
927         irq_data->portid = of_getintprop_default(dp, "portid", 0);
928 }
929 #endif /* CONFIG_PCI */
930
931 #ifdef CONFIG_SBUS
932 /* INO number to IMAP register offset for SYSIO external IRQ's.
933  * This should conform to both Sunfire/Wildfire server and Fusion
934  * desktop designs.
935  */
936 #define SYSIO_IMAP_SLOT0        0x2c04UL
937 #define SYSIO_IMAP_SLOT1        0x2c0cUL
938 #define SYSIO_IMAP_SLOT2        0x2c14UL
939 #define SYSIO_IMAP_SLOT3        0x2c1cUL
940 #define SYSIO_IMAP_SCSI         0x3004UL
941 #define SYSIO_IMAP_ETH          0x300cUL
942 #define SYSIO_IMAP_BPP          0x3014UL
943 #define SYSIO_IMAP_AUDIO        0x301cUL
944 #define SYSIO_IMAP_PFAIL        0x3024UL
945 #define SYSIO_IMAP_KMS          0x302cUL
946 #define SYSIO_IMAP_FLPY         0x3034UL
947 #define SYSIO_IMAP_SHW          0x303cUL
948 #define SYSIO_IMAP_KBD          0x3044UL
949 #define SYSIO_IMAP_MS           0x304cUL
950 #define SYSIO_IMAP_SER          0x3054UL
951 #define SYSIO_IMAP_TIM0         0x3064UL
952 #define SYSIO_IMAP_TIM1         0x306cUL
953 #define SYSIO_IMAP_UE           0x3074UL
954 #define SYSIO_IMAP_CE           0x307cUL
955 #define SYSIO_IMAP_SBERR        0x3084UL
956 #define SYSIO_IMAP_PMGMT        0x308cUL
957 #define SYSIO_IMAP_GFX          0x3094UL
958 #define SYSIO_IMAP_EUPA         0x309cUL
959
960 #define bogon     ((unsigned long) -1)
961 static unsigned long sysio_irq_offsets[] = {
962         /* SBUS Slot 0 --> 3, level 1 --> 7 */
963         SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
964         SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
965         SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
966         SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
967         SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
968         SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
969         SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
970         SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
971
972         /* Onboard devices (not relevant/used on SunFire). */
973         SYSIO_IMAP_SCSI,
974         SYSIO_IMAP_ETH,
975         SYSIO_IMAP_BPP,
976         bogon,
977         SYSIO_IMAP_AUDIO,
978         SYSIO_IMAP_PFAIL,
979         bogon,
980         bogon,
981         SYSIO_IMAP_KMS,
982         SYSIO_IMAP_FLPY,
983         SYSIO_IMAP_SHW,
984         SYSIO_IMAP_KBD,
985         SYSIO_IMAP_MS,
986         SYSIO_IMAP_SER,
987         bogon,
988         bogon,
989         SYSIO_IMAP_TIM0,
990         SYSIO_IMAP_TIM1,
991         bogon,
992         bogon,
993         SYSIO_IMAP_UE,
994         SYSIO_IMAP_CE,
995         SYSIO_IMAP_SBERR,
996         SYSIO_IMAP_PMGMT,
997         SYSIO_IMAP_GFX,
998         SYSIO_IMAP_EUPA,
999 };
1000
1001 #undef bogon
1002
1003 #define NUM_SYSIO_OFFSETS ARRAY_SIZE(sysio_irq_offsets)
1004
1005 /* Convert Interrupt Mapping register pointer to associated
1006  * Interrupt Clear register pointer, SYSIO specific version.
1007  */
1008 #define SYSIO_ICLR_UNUSED0      0x3400UL
1009 #define SYSIO_ICLR_SLOT0        0x340cUL
1010 #define SYSIO_ICLR_SLOT1        0x344cUL
1011 #define SYSIO_ICLR_SLOT2        0x348cUL
1012 #define SYSIO_ICLR_SLOT3        0x34ccUL
1013 static unsigned long sysio_imap_to_iclr(unsigned long imap)
1014 {
1015         unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0;
1016         return imap + diff;
1017 }
1018
1019 static unsigned int sbus_of_build_irq(struct device_node *dp,
1020                                       unsigned int ino,
1021                                       void *_data)
1022 {
1023         unsigned long reg_base = (unsigned long) _data;
1024         const struct linux_prom_registers *regs;
1025         unsigned long imap, iclr;
1026         int sbus_slot = 0;
1027         int sbus_level = 0;
1028
1029         ino &= 0x3f;
1030
1031         regs = of_get_property(dp, "reg", NULL);
1032         if (regs)
1033                 sbus_slot = regs->which_io;
1034
1035         if (ino < 0x20)
1036                 ino += (sbus_slot * 8);
1037
1038         imap = sysio_irq_offsets[ino];
1039         if (imap == ((unsigned long)-1)) {
1040                 prom_printf("get_irq_translations: Bad SYSIO INO[%x]\n",
1041                             ino);
1042                 prom_halt();
1043         }
1044         imap += reg_base;
1045
1046         /* SYSIO inconsistency.  For external SLOTS, we have to select
1047          * the right ICLR register based upon the lower SBUS irq level
1048          * bits.
1049          */
1050         if (ino >= 0x20) {
1051                 iclr = sysio_imap_to_iclr(imap);
1052         } else {
1053                 sbus_level = ino & 0x7;
1054
1055                 switch(sbus_slot) {
1056                 case 0:
1057                         iclr = reg_base + SYSIO_ICLR_SLOT0;
1058                         break;
1059                 case 1:
1060                         iclr = reg_base + SYSIO_ICLR_SLOT1;
1061                         break;
1062                 case 2:
1063                         iclr = reg_base + SYSIO_ICLR_SLOT2;
1064                         break;
1065                 default:
1066                 case 3:
1067                         iclr = reg_base + SYSIO_ICLR_SLOT3;
1068                         break;
1069                 };
1070
1071                 iclr += ((unsigned long)sbus_level - 1UL) * 8UL;
1072         }
1073         return build_irq(sbus_level, iclr, imap);
1074 }
1075
1076 static void __init sbus_irq_trans_init(struct device_node *dp)
1077 {
1078         const struct linux_prom64_registers *regs;
1079
1080         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
1081         dp->irq_trans->irq_build = sbus_of_build_irq;
1082
1083         regs = of_get_property(dp, "reg", NULL);
1084         dp->irq_trans->data = (void *) (unsigned long) regs->phys_addr;
1085 }
1086 #endif /* CONFIG_SBUS */
1087
1088
1089 static unsigned int central_build_irq(struct device_node *dp,
1090                                       unsigned int ino,
1091                                       void *_data)
1092 {
1093         struct device_node *central_dp = _data;
1094         struct of_device *central_op = of_find_device_by_node(central_dp);
1095         struct resource *res;
1096         unsigned long imap, iclr;
1097         u32 tmp;
1098
1099         if (!strcmp(dp->name, "eeprom")) {
1100                 res = &central_op->resource[5];
1101         } else if (!strcmp(dp->name, "zs")) {
1102                 res = &central_op->resource[4];
1103         } else if (!strcmp(dp->name, "clock-board")) {
1104                 res = &central_op->resource[3];
1105         } else {
1106                 return ino;
1107         }
1108
1109         imap = res->start + 0x00UL;
1110         iclr = res->start + 0x10UL;
1111
1112         /* Set the INO state to idle, and disable.  */
1113         upa_writel(0, iclr);
1114         upa_readl(iclr);
1115
1116         tmp = upa_readl(imap);
1117         tmp &= ~0x80000000;
1118         upa_writel(tmp, imap);
1119
1120         return build_irq(0, iclr, imap);
1121 }
1122
1123 static void __init central_irq_trans_init(struct device_node *dp)
1124 {
1125         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
1126         dp->irq_trans->irq_build = central_build_irq;
1127
1128         dp->irq_trans->data = dp;
1129 }
1130
1131 struct irq_trans {
1132         const char *name;
1133         void (*init)(struct device_node *);
1134 };
1135
1136 #ifdef CONFIG_PCI
1137 static struct irq_trans __initdata pci_irq_trans_table[] = {
1138         { "SUNW,sabre", sabre_irq_trans_init },
1139         { "pci108e,a000", sabre_irq_trans_init },
1140         { "pci108e,a001", sabre_irq_trans_init },
1141         { "SUNW,psycho", psycho_irq_trans_init },
1142         { "pci108e,8000", psycho_irq_trans_init },
1143         { "SUNW,schizo", schizo_irq_trans_init },
1144         { "pci108e,8001", schizo_irq_trans_init },
1145         { "SUNW,schizo+", schizo_irq_trans_init },
1146         { "pci108e,8002", schizo_irq_trans_init },
1147         { "SUNW,tomatillo", tomatillo_irq_trans_init },
1148         { "pci108e,a801", tomatillo_irq_trans_init },
1149         { "SUNW,sun4v-pci", pci_sun4v_irq_trans_init },
1150         { "pciex108e,80f0", fire_irq_trans_init },
1151 };
1152 #endif
1153
1154 static unsigned int sun4v_vdev_irq_build(struct device_node *dp,
1155                                          unsigned int devino,
1156                                          void *_data)
1157 {
1158         u32 devhandle = (u32) (unsigned long) _data;
1159
1160         return sun4v_build_irq(devhandle, devino);
1161 }
1162
1163 static void __init sun4v_vdev_irq_trans_init(struct device_node *dp)
1164 {
1165         const struct linux_prom64_registers *regs;
1166
1167         dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
1168         dp->irq_trans->irq_build = sun4v_vdev_irq_build;
1169
1170         regs = of_get_property(dp, "reg", NULL);
1171         dp->irq_trans->data = (void *) (unsigned long)
1172                 ((regs->phys_addr >> 32UL) & 0x0fffffff);
1173 }
1174
1175 static void __init irq_trans_init(struct device_node *dp)
1176 {
1177 #ifdef CONFIG_PCI
1178         const char *model;
1179         int i;
1180 #endif
1181
1182 #ifdef CONFIG_PCI
1183         model = of_get_property(dp, "model", NULL);
1184         if (!model)
1185                 model = of_get_property(dp, "compatible", NULL);
1186         if (model) {
1187                 for (i = 0; i < ARRAY_SIZE(pci_irq_trans_table); i++) {
1188                         struct irq_trans *t = &pci_irq_trans_table[i];
1189
1190                         if (!strcmp(model, t->name))
1191                                 return t->init(dp);
1192                 }
1193         }
1194 #endif
1195 #ifdef CONFIG_SBUS
1196         if (!strcmp(dp->name, "sbus") ||
1197             !strcmp(dp->name, "sbi"))
1198                 return sbus_irq_trans_init(dp);
1199 #endif
1200         if (!strcmp(dp->name, "fhc") &&
1201             !strcmp(dp->parent->name, "central"))
1202                 return central_irq_trans_init(dp);
1203         if (!strcmp(dp->name, "virtual-devices"))
1204                 return sun4v_vdev_irq_trans_init(dp);
1205 }
1206
1207 static int is_root_node(const struct device_node *dp)
1208 {
1209         if (!dp)
1210                 return 0;
1211
1212         return (dp->parent == NULL);
1213 }
1214
1215 /* The following routines deal with the black magic of fully naming a
1216  * node.
1217  *
1218  * Certain well known named nodes are just the simple name string.
1219  *
1220  * Actual devices have an address specifier appended to the base name
1221  * string, like this "foo@addr".  The "addr" can be in any number of
1222  * formats, and the platform plus the type of the node determine the
1223  * format and how it is constructed.
1224  *
1225  * For children of the ROOT node, the naming convention is fixed and
1226  * determined by whether this is a sun4u or sun4v system.
1227  *
1228  * For children of other nodes, it is bus type specific.  So
1229  * we walk up the tree until we discover a "device_type" property
1230  * we recognize and we go from there.
1231  *
1232  * As an example, the boot device on my workstation has a full path:
1233  *
1234  *      /pci@1e,600000/ide@d/disk@0,0:c
1235  */
1236 static void __init sun4v_path_component(struct device_node *dp, char *tmp_buf)
1237 {
1238         struct linux_prom64_registers *regs;
1239         struct property *rprop;
1240         u32 high_bits, low_bits, type;
1241
1242         rprop = of_find_property(dp, "reg", NULL);
1243         if (!rprop)
1244                 return;
1245
1246         regs = rprop->value;
1247         if (!is_root_node(dp->parent)) {
1248                 sprintf(tmp_buf, "%s@%x,%x",
1249                         dp->name,
1250                         (unsigned int) (regs->phys_addr >> 32UL),
1251                         (unsigned int) (regs->phys_addr & 0xffffffffUL));
1252                 return;
1253         }
1254
1255         type = regs->phys_addr >> 60UL;
1256         high_bits = (regs->phys_addr >> 32UL) & 0x0fffffffUL;
1257         low_bits = (regs->phys_addr & 0xffffffffUL);
1258
1259         if (type == 0 || type == 8) {
1260                 const char *prefix = (type == 0) ? "m" : "i";
1261
1262                 if (low_bits)
1263                         sprintf(tmp_buf, "%s@%s%x,%x",
1264                                 dp->name, prefix,
1265                                 high_bits, low_bits);
1266                 else
1267                         sprintf(tmp_buf, "%s@%s%x",
1268                                 dp->name,
1269                                 prefix,
1270                                 high_bits);
1271         } else if (type == 12) {
1272                 sprintf(tmp_buf, "%s@%x",
1273                         dp->name, high_bits);
1274         }
1275 }
1276
1277 static void __init sun4u_path_component(struct device_node *dp, char *tmp_buf)
1278 {
1279         struct linux_prom64_registers *regs;
1280         struct property *prop;
1281
1282         prop = of_find_property(dp, "reg", NULL);
1283         if (!prop)
1284                 return;
1285
1286         regs = prop->value;
1287         if (!is_root_node(dp->parent)) {
1288                 sprintf(tmp_buf, "%s@%x,%x",
1289                         dp->name,
1290                         (unsigned int) (regs->phys_addr >> 32UL),
1291                         (unsigned int) (regs->phys_addr & 0xffffffffUL));
1292                 return;
1293         }
1294
1295         prop = of_find_property(dp, "upa-portid", NULL);
1296         if (!prop)
1297                 prop = of_find_property(dp, "portid", NULL);
1298         if (prop) {
1299                 unsigned long mask = 0xffffffffUL;
1300
1301                 if (tlb_type >= cheetah)
1302                         mask = 0x7fffff;
1303
1304                 sprintf(tmp_buf, "%s@%x,%x",
1305                         dp->name,
1306                         *(u32 *)prop->value,
1307                         (unsigned int) (regs->phys_addr & mask));
1308         }
1309 }
1310
1311 /* "name@slot,offset"  */
1312 static void __init sbus_path_component(struct device_node *dp, char *tmp_buf)
1313 {
1314         struct linux_prom_registers *regs;
1315         struct property *prop;
1316
1317         prop = of_find_property(dp, "reg", NULL);
1318         if (!prop)
1319                 return;
1320
1321         regs = prop->value;
1322         sprintf(tmp_buf, "%s@%x,%x",
1323                 dp->name,
1324                 regs->which_io,
1325                 regs->phys_addr);
1326 }
1327
1328 /* "name@devnum[,func]" */
1329 static void __init pci_path_component(struct device_node *dp, char *tmp_buf)
1330 {
1331         struct linux_prom_pci_registers *regs;
1332         struct property *prop;
1333         unsigned int devfn;
1334
1335         prop = of_find_property(dp, "reg", NULL);
1336         if (!prop)
1337                 return;
1338
1339         regs = prop->value;
1340         devfn = (regs->phys_hi >> 8) & 0xff;
1341         if (devfn & 0x07) {
1342                 sprintf(tmp_buf, "%s@%x,%x",
1343                         dp->name,
1344                         devfn >> 3,
1345                         devfn & 0x07);
1346         } else {
1347                 sprintf(tmp_buf, "%s@%x",
1348                         dp->name,
1349                         devfn >> 3);
1350         }
1351 }
1352
1353 /* "name@UPA_PORTID,offset" */
1354 static void __init upa_path_component(struct device_node *dp, char *tmp_buf)
1355 {
1356         struct linux_prom64_registers *regs;
1357         struct property *prop;
1358
1359         prop = of_find_property(dp, "reg", NULL);
1360         if (!prop)
1361                 return;
1362
1363         regs = prop->value;
1364
1365         prop = of_find_property(dp, "upa-portid", NULL);
1366         if (!prop)
1367                 return;
1368
1369         sprintf(tmp_buf, "%s@%x,%x",
1370                 dp->name,
1371                 *(u32 *) prop->value,
1372                 (unsigned int) (regs->phys_addr & 0xffffffffUL));
1373 }
1374
1375 /* "name@reg" */
1376 static void __init vdev_path_component(struct device_node *dp, char *tmp_buf)
1377 {
1378         struct property *prop;
1379         u32 *regs;
1380
1381         prop = of_find_property(dp, "reg", NULL);
1382         if (!prop)
1383                 return;
1384
1385         regs = prop->value;
1386
1387         sprintf(tmp_buf, "%s@%x", dp->name, *regs);
1388 }
1389
1390 /* "name@addrhi,addrlo" */
1391 static void __init ebus_path_component(struct device_node *dp, char *tmp_buf)
1392 {
1393         struct linux_prom64_registers *regs;
1394         struct property *prop;
1395
1396         prop = of_find_property(dp, "reg", NULL);
1397         if (!prop)
1398                 return;
1399
1400         regs = prop->value;
1401
1402         sprintf(tmp_buf, "%s@%x,%x",
1403                 dp->name,
1404                 (unsigned int) (regs->phys_addr >> 32UL),
1405                 (unsigned int) (regs->phys_addr & 0xffffffffUL));
1406 }
1407
1408 /* "name@bus,addr" */
1409 static void __init i2c_path_component(struct device_node *dp, char *tmp_buf)
1410 {
1411         struct property *prop;
1412         u32 *regs;
1413
1414         prop = of_find_property(dp, "reg", NULL);
1415         if (!prop)
1416                 return;
1417
1418         regs = prop->value;
1419
1420         /* This actually isn't right... should look at the #address-cells
1421          * property of the i2c bus node etc. etc.
1422          */
1423         sprintf(tmp_buf, "%s@%x,%x",
1424                 dp->name, regs[0], regs[1]);
1425 }
1426
1427 /* "name@reg0[,reg1]" */
1428 static void __init usb_path_component(struct device_node *dp, char *tmp_buf)
1429 {
1430         struct property *prop;
1431         u32 *regs;
1432
1433         prop = of_find_property(dp, "reg", NULL);
1434         if (!prop)
1435                 return;
1436
1437         regs = prop->value;
1438
1439         if (prop->length == sizeof(u32) || regs[1] == 1) {
1440                 sprintf(tmp_buf, "%s@%x",
1441                         dp->name, regs[0]);
1442         } else {
1443                 sprintf(tmp_buf, "%s@%x,%x",
1444                         dp->name, regs[0], regs[1]);
1445         }
1446 }
1447
1448 /* "name@reg0reg1[,reg2reg3]" */
1449 static void __init ieee1394_path_component(struct device_node *dp, char *tmp_buf)
1450 {
1451         struct property *prop;
1452         u32 *regs;
1453
1454         prop = of_find_property(dp, "reg", NULL);
1455         if (!prop)
1456                 return;
1457
1458         regs = prop->value;
1459
1460         if (regs[2] || regs[3]) {
1461                 sprintf(tmp_buf, "%s@%08x%08x,%04x%08x",
1462                         dp->name, regs[0], regs[1], regs[2], regs[3]);
1463         } else {
1464                 sprintf(tmp_buf, "%s@%08x%08x",
1465                         dp->name, regs[0], regs[1]);
1466         }
1467 }
1468
1469 static void __init __build_path_component(struct device_node *dp, char *tmp_buf)
1470 {
1471         struct device_node *parent = dp->parent;
1472
1473         if (parent != NULL) {
1474                 if (!strcmp(parent->type, "pci") ||
1475                     !strcmp(parent->type, "pciex"))
1476                         return pci_path_component(dp, tmp_buf);
1477                 if (!strcmp(parent->type, "sbus"))
1478                         return sbus_path_component(dp, tmp_buf);
1479                 if (!strcmp(parent->type, "upa"))
1480                         return upa_path_component(dp, tmp_buf);
1481                 if (!strcmp(parent->type, "ebus"))
1482                         return ebus_path_component(dp, tmp_buf);
1483                 if (!strcmp(parent->name, "usb") ||
1484                     !strcmp(parent->name, "hub"))
1485                         return usb_path_component(dp, tmp_buf);
1486                 if (!strcmp(parent->type, "i2c"))
1487                         return i2c_path_component(dp, tmp_buf);
1488                 if (!strcmp(parent->type, "firewire"))
1489                         return ieee1394_path_component(dp, tmp_buf);
1490                 if (!strcmp(parent->type, "virtual-devices"))
1491                         return vdev_path_component(dp, tmp_buf);
1492
1493                 /* "isa" is handled with platform naming */
1494         }
1495
1496         /* Use platform naming convention.  */
1497         if (tlb_type == hypervisor)
1498                 return sun4v_path_component(dp, tmp_buf);
1499         else
1500                 return sun4u_path_component(dp, tmp_buf);
1501 }
1502
1503 static char * __init build_path_component(struct device_node *dp)
1504 {
1505         char tmp_buf[64], *n;
1506
1507         tmp_buf[0] = '\0';
1508         __build_path_component(dp, tmp_buf);
1509         if (tmp_buf[0] == '\0')
1510                 strcpy(tmp_buf, dp->name);
1511
1512         n = prom_early_alloc(strlen(tmp_buf) + 1);
1513         strcpy(n, tmp_buf);
1514
1515         return n;
1516 }
1517
1518 static char * __init build_full_name(struct device_node *dp)
1519 {
1520         int len, ourlen, plen;
1521         char *n;
1522
1523         plen = strlen(dp->parent->full_name);
1524         ourlen = strlen(dp->path_component_name);
1525         len = ourlen + plen + 2;
1526
1527         n = prom_early_alloc(len);
1528         strcpy(n, dp->parent->full_name);
1529         if (!is_root_node(dp->parent)) {
1530                 strcpy(n + plen, "/");
1531                 plen++;
1532         }
1533         strcpy(n + plen, dp->path_component_name);
1534
1535         return n;
1536 }
1537
1538 static unsigned int unique_id;
1539
1540 static struct property * __init build_one_prop(phandle node, char *prev, char *special_name, void *special_val, int special_len)
1541 {
1542         static struct property *tmp = NULL;
1543         struct property *p;
1544
1545         if (tmp) {
1546                 p = tmp;
1547                 memset(p, 0, sizeof(*p) + 32);
1548                 tmp = NULL;
1549         } else {
1550                 p = prom_early_alloc(sizeof(struct property) + 32);
1551                 p->unique_id = unique_id++;
1552         }
1553
1554         p->name = (char *) (p + 1);
1555         if (special_name) {
1556                 strcpy(p->name, special_name);
1557                 p->length = special_len;
1558                 p->value = prom_early_alloc(special_len);
1559                 memcpy(p->value, special_val, special_len);
1560         } else {
1561                 if (prev == NULL) {
1562                         prom_firstprop(node, p->name);
1563                 } else {
1564                         prom_nextprop(node, prev, p->name);
1565                 }
1566                 if (strlen(p->name) == 0) {
1567                         tmp = p;
1568                         return NULL;
1569                 }
1570                 p->length = prom_getproplen(node, p->name);
1571                 if (p->length <= 0) {
1572                         p->length = 0;
1573                 } else {
1574                         p->value = prom_early_alloc(p->length + 1);
1575                         prom_getproperty(node, p->name, p->value, p->length);
1576                         ((unsigned char *)p->value)[p->length] = '\0';
1577                 }
1578         }
1579         return p;
1580 }
1581
1582 static struct property * __init build_prop_list(phandle node)
1583 {
1584         struct property *head, *tail;
1585
1586         head = tail = build_one_prop(node, NULL,
1587                                      ".node", &node, sizeof(node));
1588
1589         tail->next = build_one_prop(node, NULL, NULL, NULL, 0);
1590         tail = tail->next;
1591         while(tail) {
1592                 tail->next = build_one_prop(node, tail->name,
1593                                             NULL, NULL, 0);
1594                 tail = tail->next;
1595         }
1596
1597         return head;
1598 }
1599
1600 static char * __init get_one_property(phandle node, const char *name)
1601 {
1602         char *buf = "<NULL>";
1603         int len;
1604
1605         len = prom_getproplen(node, name);
1606         if (len > 0) {
1607                 buf = prom_early_alloc(len);
1608                 prom_getproperty(node, name, buf, len);
1609         }
1610
1611         return buf;
1612 }
1613
1614 static struct device_node * __init create_node(phandle node, struct device_node *parent)
1615 {
1616         struct device_node *dp;
1617
1618         if (!node)
1619                 return NULL;
1620
1621         dp = prom_early_alloc(sizeof(*dp));
1622         dp->unique_id = unique_id++;
1623         dp->parent = parent;
1624
1625         kref_init(&dp->kref);
1626
1627         dp->name = get_one_property(node, "name");
1628         dp->type = get_one_property(node, "device_type");
1629         dp->node = node;
1630
1631         dp->properties = build_prop_list(node);
1632
1633         irq_trans_init(dp);
1634
1635         return dp;
1636 }
1637
1638 static struct device_node * __init build_tree(struct device_node *parent, phandle node, struct device_node ***nextp)
1639 {
1640         struct device_node *ret = NULL, *prev_sibling = NULL;
1641         struct device_node *dp;
1642
1643         while (1) {
1644                 dp = create_node(node, parent);
1645                 if (!dp)
1646                         break;
1647
1648                 if (prev_sibling)
1649                         prev_sibling->sibling = dp;
1650
1651                 if (!ret)
1652                         ret = dp;
1653                 prev_sibling = dp;
1654
1655                 *(*nextp) = dp;
1656                 *nextp = &dp->allnext;
1657
1658                 dp->path_component_name = build_path_component(dp);
1659                 dp->full_name = build_full_name(dp);
1660
1661                 dp->child = build_tree(dp, prom_getchild(node), nextp);
1662
1663                 node = prom_getsibling(node);
1664         }
1665
1666         return ret;
1667 }
1668
1669 static const char *get_mid_prop(void)
1670 {
1671         return (tlb_type == spitfire ? "upa-portid" : "portid");
1672 }
1673
1674 struct device_node *of_find_node_by_cpuid(int cpuid)
1675 {
1676         struct device_node *dp;
1677         const char *mid_prop = get_mid_prop();
1678
1679         for_each_node_by_type(dp, "cpu") {
1680                 int id = of_getintprop_default(dp, mid_prop, -1);
1681                 const char *this_mid_prop = mid_prop;
1682
1683                 if (id < 0) {
1684                         this_mid_prop = "cpuid";
1685                         id = of_getintprop_default(dp, this_mid_prop, -1);
1686                 }
1687
1688                 if (id < 0) {
1689                         prom_printf("OF: Serious problem, cpu lacks "
1690                                     "%s property", this_mid_prop);
1691                         prom_halt();
1692                 }
1693                 if (cpuid == id)
1694                         return dp;
1695         }
1696         return NULL;
1697 }
1698
1699 static void __init of_fill_in_cpu_data(void)
1700 {
1701         struct device_node *dp;
1702         const char *mid_prop = get_mid_prop();
1703
1704         ncpus_probed = 0;
1705         for_each_node_by_type(dp, "cpu") {
1706                 int cpuid = of_getintprop_default(dp, mid_prop, -1);
1707                 const char *this_mid_prop = mid_prop;
1708                 struct device_node *portid_parent;
1709                 int portid = -1;
1710
1711                 portid_parent = NULL;
1712                 if (cpuid < 0) {
1713                         this_mid_prop = "cpuid";
1714                         cpuid = of_getintprop_default(dp, this_mid_prop, -1);
1715                         if (cpuid >= 0) {
1716                                 int limit = 2;
1717
1718                                 portid_parent = dp;
1719                                 while (limit--) {
1720                                         portid_parent = portid_parent->parent;
1721                                         if (!portid_parent)
1722                                                 break;
1723                                         portid = of_getintprop_default(portid_parent,
1724                                                                        "portid", -1);
1725                                         if (portid >= 0)
1726                                                 break;
1727                                 }
1728                         }
1729                 }
1730
1731                 if (cpuid < 0) {
1732                         prom_printf("OF: Serious problem, cpu lacks "
1733                                     "%s property", this_mid_prop);
1734                         prom_halt();
1735                 }
1736
1737                 ncpus_probed++;
1738
1739 #ifdef CONFIG_SMP
1740                 if (cpuid >= NR_CPUS)
1741                         continue;
1742 #else
1743                 /* On uniprocessor we only want the values for the
1744                  * real physical cpu the kernel booted onto, however
1745                  * cpu_data() only has one entry at index 0.
1746                  */
1747                 if (cpuid != real_hard_smp_processor_id())
1748                         continue;
1749                 cpuid = 0;
1750 #endif
1751
1752                 cpu_data(cpuid).clock_tick =
1753                         of_getintprop_default(dp, "clock-frequency", 0);
1754
1755                 if (portid_parent) {
1756                         cpu_data(cpuid).dcache_size =
1757                                 of_getintprop_default(dp, "l1-dcache-size",
1758                                                       16 * 1024);
1759                         cpu_data(cpuid).dcache_line_size =
1760                                 of_getintprop_default(dp, "l1-dcache-line-size",
1761                                                       32);
1762                         cpu_data(cpuid).icache_size =
1763                                 of_getintprop_default(dp, "l1-icache-size",
1764                                                       8 * 1024);
1765                         cpu_data(cpuid).icache_line_size =
1766                                 of_getintprop_default(dp, "l1-icache-line-size",
1767                                                       32);
1768                         cpu_data(cpuid).ecache_size =
1769                                 of_getintprop_default(dp, "l2-cache-size", 0);
1770                         cpu_data(cpuid).ecache_line_size =
1771                                 of_getintprop_default(dp, "l2-cache-line-size", 0);
1772                         if (!cpu_data(cpuid).ecache_size ||
1773                             !cpu_data(cpuid).ecache_line_size) {
1774                                 cpu_data(cpuid).ecache_size =
1775                                         of_getintprop_default(portid_parent,
1776                                                               "l2-cache-size",
1777                                                               (4 * 1024 * 1024));
1778                                 cpu_data(cpuid).ecache_line_size =
1779                                         of_getintprop_default(portid_parent,
1780                                                               "l2-cache-line-size", 64);
1781                         }
1782
1783                         cpu_data(cpuid).core_id = portid + 1;
1784                 } else {
1785                         cpu_data(cpuid).dcache_size =
1786                                 of_getintprop_default(dp, "dcache-size", 16 * 1024);
1787                         cpu_data(cpuid).dcache_line_size =
1788                                 of_getintprop_default(dp, "dcache-line-size", 32);
1789
1790                         cpu_data(cpuid).icache_size =
1791                                 of_getintprop_default(dp, "icache-size", 16 * 1024);
1792                         cpu_data(cpuid).icache_line_size =
1793                                 of_getintprop_default(dp, "icache-line-size", 32);
1794
1795                         cpu_data(cpuid).ecache_size =
1796                                 of_getintprop_default(dp, "ecache-size",
1797                                                       (4 * 1024 * 1024));
1798                         cpu_data(cpuid).ecache_line_size =
1799                                 of_getintprop_default(dp, "ecache-line-size", 64);
1800
1801                         cpu_data(cpuid).core_id = 0;
1802                 }
1803
1804 #ifdef CONFIG_SMP
1805                 cpu_set(cpuid, cpu_present_map);
1806                 cpu_set(cpuid, phys_cpu_present_map);
1807 #endif
1808         }
1809
1810         smp_fill_in_sib_core_maps();
1811 }
1812
1813 void __init prom_build_devicetree(void)
1814 {
1815         struct device_node **nextp;
1816
1817         allnodes = create_node(prom_root_node, NULL);
1818         allnodes->path_component_name = "";
1819         allnodes->full_name = "/";
1820
1821         nextp = &allnodes->allnext;
1822         allnodes->child = build_tree(allnodes,
1823                                      prom_getchild(allnodes->node),
1824                                      &nextp);
1825         printk("PROM: Built device tree with %u bytes of memory.\n",
1826                prom_early_allocated);
1827
1828         if (tlb_type != hypervisor)
1829                 of_fill_in_cpu_data();
1830 }