]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kernel/hpet.c
Merge remote-tracking branch 'at91/at91-next'
[karo-tx-linux.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/irqdomain.h>
16 #include <asm/fixmap.h>
17 #include <asm/hpet.h>
18 #include <asm/time.h>
19
20 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
21
22 /* FSEC = 10^-15
23    NSEC = 10^-9 */
24 #define FSEC_PER_NSEC                   1000000L
25
26 #define HPET_DEV_USED_BIT               2
27 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
28 #define HPET_DEV_VALID                  0x8
29 #define HPET_DEV_FSB_CAP                0x1000
30 #define HPET_DEV_PERI_CAP               0x2000
31
32 #define HPET_MIN_CYCLES                 128
33 #define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
34
35 /*
36  * HPET address is set in acpi/boot.c, when an ACPI entry exists
37  */
38 unsigned long                           hpet_address;
39 u8                                      hpet_blockid; /* OS timer block num */
40 bool                                    hpet_msi_disable;
41
42 #ifdef CONFIG_PCI_MSI
43 static unsigned int                     hpet_num_timers;
44 #endif
45 static void __iomem                     *hpet_virt_address;
46
47 struct hpet_dev {
48         struct clock_event_device       evt;
49         unsigned int                    num;
50         int                             cpu;
51         unsigned int                    irq;
52         unsigned int                    flags;
53         char                            name[10];
54 };
55
56 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
57 {
58         return container_of(evtdev, struct hpet_dev, evt);
59 }
60
61 inline unsigned int hpet_readl(unsigned int a)
62 {
63         return readl(hpet_virt_address + a);
64 }
65
66 static inline void hpet_writel(unsigned int d, unsigned int a)
67 {
68         writel(d, hpet_virt_address + a);
69 }
70
71 #ifdef CONFIG_X86_64
72 #include <asm/pgtable.h>
73 #endif
74
75 static inline void hpet_set_mapping(void)
76 {
77         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
78 }
79
80 static inline void hpet_clear_mapping(void)
81 {
82         iounmap(hpet_virt_address);
83         hpet_virt_address = NULL;
84 }
85
86 /*
87  * HPET command line enable / disable
88  */
89 bool boot_hpet_disable;
90 bool hpet_force_user;
91 static bool hpet_verbose;
92
93 static int __init hpet_setup(char *str)
94 {
95         while (str) {
96                 char *next = strchr(str, ',');
97
98                 if (next)
99                         *next++ = 0;
100                 if (!strncmp("disable", str, 7))
101                         boot_hpet_disable = true;
102                 if (!strncmp("force", str, 5))
103                         hpet_force_user = true;
104                 if (!strncmp("verbose", str, 7))
105                         hpet_verbose = true;
106                 str = next;
107         }
108         return 1;
109 }
110 __setup("hpet=", hpet_setup);
111
112 static int __init disable_hpet(char *str)
113 {
114         boot_hpet_disable = true;
115         return 1;
116 }
117 __setup("nohpet", disable_hpet);
118
119 static inline int is_hpet_capable(void)
120 {
121         return !boot_hpet_disable && hpet_address;
122 }
123
124 /*
125  * HPET timer interrupt enable / disable
126  */
127 static bool hpet_legacy_int_enabled;
128
129 /**
130  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
131  */
132 int is_hpet_enabled(void)
133 {
134         return is_hpet_capable() && hpet_legacy_int_enabled;
135 }
136 EXPORT_SYMBOL_GPL(is_hpet_enabled);
137
138 static void _hpet_print_config(const char *function, int line)
139 {
140         u32 i, timers, l, h;
141         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
142         l = hpet_readl(HPET_ID);
143         h = hpet_readl(HPET_PERIOD);
144         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
145         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
146         l = hpet_readl(HPET_CFG);
147         h = hpet_readl(HPET_STATUS);
148         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
149         l = hpet_readl(HPET_COUNTER);
150         h = hpet_readl(HPET_COUNTER+4);
151         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
152
153         for (i = 0; i < timers; i++) {
154                 l = hpet_readl(HPET_Tn_CFG(i));
155                 h = hpet_readl(HPET_Tn_CFG(i)+4);
156                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
157                        i, l, h);
158                 l = hpet_readl(HPET_Tn_CMP(i));
159                 h = hpet_readl(HPET_Tn_CMP(i)+4);
160                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
161                        i, l, h);
162                 l = hpet_readl(HPET_Tn_ROUTE(i));
163                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
164                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
165                        i, l, h);
166         }
167 }
168
169 #define hpet_print_config()                                     \
170 do {                                                            \
171         if (hpet_verbose)                                       \
172                 _hpet_print_config(__func__, __LINE__); \
173 } while (0)
174
175 /*
176  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
177  * timer 0 and timer 1 in case of RTC emulation.
178  */
179 #ifdef CONFIG_HPET
180
181 static void hpet_reserve_msi_timers(struct hpet_data *hd);
182
183 static void hpet_reserve_platform_timers(unsigned int id)
184 {
185         struct hpet __iomem *hpet = hpet_virt_address;
186         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
187         unsigned int nrtimers, i;
188         struct hpet_data hd;
189
190         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
191
192         memset(&hd, 0, sizeof(hd));
193         hd.hd_phys_address      = hpet_address;
194         hd.hd_address           = hpet;
195         hd.hd_nirqs             = nrtimers;
196         hpet_reserve_timer(&hd, 0);
197
198 #ifdef CONFIG_HPET_EMULATE_RTC
199         hpet_reserve_timer(&hd, 1);
200 #endif
201
202         /*
203          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
204          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
205          * don't bother configuring *any* comparator interrupts.
206          */
207         hd.hd_irq[0] = HPET_LEGACY_8254;
208         hd.hd_irq[1] = HPET_LEGACY_RTC;
209
210         for (i = 2; i < nrtimers; timer++, i++) {
211                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
212                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
213         }
214
215         hpet_reserve_msi_timers(&hd);
216
217         hpet_alloc(&hd);
218
219 }
220 #else
221 static void hpet_reserve_platform_timers(unsigned int id) { }
222 #endif
223
224 /*
225  * Common hpet info
226  */
227 static unsigned long hpet_freq;
228
229 static struct clock_event_device hpet_clockevent;
230
231 static void hpet_stop_counter(void)
232 {
233         u32 cfg = hpet_readl(HPET_CFG);
234         cfg &= ~HPET_CFG_ENABLE;
235         hpet_writel(cfg, HPET_CFG);
236 }
237
238 static void hpet_reset_counter(void)
239 {
240         hpet_writel(0, HPET_COUNTER);
241         hpet_writel(0, HPET_COUNTER + 4);
242 }
243
244 static void hpet_start_counter(void)
245 {
246         unsigned int cfg = hpet_readl(HPET_CFG);
247         cfg |= HPET_CFG_ENABLE;
248         hpet_writel(cfg, HPET_CFG);
249 }
250
251 static void hpet_restart_counter(void)
252 {
253         hpet_stop_counter();
254         hpet_reset_counter();
255         hpet_start_counter();
256 }
257
258 static void hpet_resume_device(void)
259 {
260         force_hpet_resume();
261 }
262
263 static void hpet_resume_counter(struct clocksource *cs)
264 {
265         hpet_resume_device();
266         hpet_restart_counter();
267 }
268
269 static void hpet_enable_legacy_int(void)
270 {
271         unsigned int cfg = hpet_readl(HPET_CFG);
272
273         cfg |= HPET_CFG_LEGACY;
274         hpet_writel(cfg, HPET_CFG);
275         hpet_legacy_int_enabled = true;
276 }
277
278 static void hpet_legacy_clockevent_register(void)
279 {
280         /* Start HPET legacy interrupts */
281         hpet_enable_legacy_int();
282
283         /*
284          * Start hpet with the boot cpu mask and make it
285          * global after the IO_APIC has been initialized.
286          */
287         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
288         clockevents_config_and_register(&hpet_clockevent, hpet_freq,
289                                         HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
290         global_clock_event = &hpet_clockevent;
291         printk(KERN_DEBUG "hpet clockevent registered\n");
292 }
293
294 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
295 {
296         unsigned int cfg, cmp, now;
297         uint64_t delta;
298
299         hpet_stop_counter();
300         delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
301         delta >>= evt->shift;
302         now = hpet_readl(HPET_COUNTER);
303         cmp = now + (unsigned int)delta;
304         cfg = hpet_readl(HPET_Tn_CFG(timer));
305         cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
306                HPET_TN_32BIT;
307         hpet_writel(cfg, HPET_Tn_CFG(timer));
308         hpet_writel(cmp, HPET_Tn_CMP(timer));
309         udelay(1);
310         /*
311          * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
312          * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
313          * bit is automatically cleared after the first write.
314          * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
315          * Publication # 24674)
316          */
317         hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
318         hpet_start_counter();
319         hpet_print_config();
320
321         return 0;
322 }
323
324 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
325 {
326         unsigned int cfg;
327
328         cfg = hpet_readl(HPET_Tn_CFG(timer));
329         cfg &= ~HPET_TN_PERIODIC;
330         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
331         hpet_writel(cfg, HPET_Tn_CFG(timer));
332
333         return 0;
334 }
335
336 static int hpet_shutdown(struct clock_event_device *evt, int timer)
337 {
338         unsigned int cfg;
339
340         cfg = hpet_readl(HPET_Tn_CFG(timer));
341         cfg &= ~HPET_TN_ENABLE;
342         hpet_writel(cfg, HPET_Tn_CFG(timer));
343
344         return 0;
345 }
346
347 static int hpet_resume(struct clock_event_device *evt, int timer)
348 {
349         if (!timer) {
350                 hpet_enable_legacy_int();
351         } else {
352                 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
353
354                 irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
355                 disable_irq(hdev->irq);
356                 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
357                 enable_irq(hdev->irq);
358         }
359         hpet_print_config();
360
361         return 0;
362 }
363
364 static int hpet_next_event(unsigned long delta,
365                            struct clock_event_device *evt, int timer)
366 {
367         u32 cnt;
368         s32 res;
369
370         cnt = hpet_readl(HPET_COUNTER);
371         cnt += (u32) delta;
372         hpet_writel(cnt, HPET_Tn_CMP(timer));
373
374         /*
375          * HPETs are a complete disaster. The compare register is
376          * based on a equal comparison and neither provides a less
377          * than or equal functionality (which would require to take
378          * the wraparound into account) nor a simple count down event
379          * mode. Further the write to the comparator register is
380          * delayed internally up to two HPET clock cycles in certain
381          * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
382          * longer delays. We worked around that by reading back the
383          * compare register, but that required another workaround for
384          * ICH9,10 chips where the first readout after write can
385          * return the old stale value. We already had a minimum
386          * programming delta of 5us enforced, but a NMI or SMI hitting
387          * between the counter readout and the comparator write can
388          * move us behind that point easily. Now instead of reading
389          * the compare register back several times, we make the ETIME
390          * decision based on the following: Return ETIME if the
391          * counter value after the write is less than HPET_MIN_CYCLES
392          * away from the event or if the counter is already ahead of
393          * the event. The minimum programming delta for the generic
394          * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
395          */
396         res = (s32)(cnt - hpet_readl(HPET_COUNTER));
397
398         return res < HPET_MIN_CYCLES ? -ETIME : 0;
399 }
400
401 static int hpet_legacy_shutdown(struct clock_event_device *evt)
402 {
403         return hpet_shutdown(evt, 0);
404 }
405
406 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
407 {
408         return hpet_set_oneshot(evt, 0);
409 }
410
411 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
412 {
413         return hpet_set_periodic(evt, 0);
414 }
415
416 static int hpet_legacy_resume(struct clock_event_device *evt)
417 {
418         return hpet_resume(evt, 0);
419 }
420
421 static int hpet_legacy_next_event(unsigned long delta,
422                         struct clock_event_device *evt)
423 {
424         return hpet_next_event(delta, evt, 0);
425 }
426
427 /*
428  * The hpet clock event device
429  */
430 static struct clock_event_device hpet_clockevent = {
431         .name                   = "hpet",
432         .features               = CLOCK_EVT_FEAT_PERIODIC |
433                                   CLOCK_EVT_FEAT_ONESHOT,
434         .set_state_periodic     = hpet_legacy_set_periodic,
435         .set_state_oneshot      = hpet_legacy_set_oneshot,
436         .set_state_shutdown     = hpet_legacy_shutdown,
437         .tick_resume            = hpet_legacy_resume,
438         .set_next_event         = hpet_legacy_next_event,
439         .irq                    = 0,
440         .rating                 = 50,
441 };
442
443 /*
444  * HPET MSI Support
445  */
446 #ifdef CONFIG_PCI_MSI
447
448 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
449 static struct hpet_dev  *hpet_devs;
450 static struct irq_domain *hpet_domain;
451
452 void hpet_msi_unmask(struct irq_data *data)
453 {
454         struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
455         unsigned int cfg;
456
457         /* unmask it */
458         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
459         cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
460         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
461 }
462
463 void hpet_msi_mask(struct irq_data *data)
464 {
465         struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
466         unsigned int cfg;
467
468         /* mask it */
469         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
470         cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
471         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
472 }
473
474 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
475 {
476         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
477         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
478 }
479
480 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
481 {
482         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
483         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
484         msg->address_hi = 0;
485 }
486
487 static int hpet_msi_shutdown(struct clock_event_device *evt)
488 {
489         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
490
491         return hpet_shutdown(evt, hdev->num);
492 }
493
494 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
495 {
496         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
497
498         return hpet_set_oneshot(evt, hdev->num);
499 }
500
501 static int hpet_msi_set_periodic(struct clock_event_device *evt)
502 {
503         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
504
505         return hpet_set_periodic(evt, hdev->num);
506 }
507
508 static int hpet_msi_resume(struct clock_event_device *evt)
509 {
510         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
511
512         return hpet_resume(evt, hdev->num);
513 }
514
515 static int hpet_msi_next_event(unsigned long delta,
516                                 struct clock_event_device *evt)
517 {
518         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
519         return hpet_next_event(delta, evt, hdev->num);
520 }
521
522 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
523 {
524         struct hpet_dev *dev = (struct hpet_dev *)data;
525         struct clock_event_device *hevt = &dev->evt;
526
527         if (!hevt->event_handler) {
528                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
529                                 dev->num);
530                 return IRQ_HANDLED;
531         }
532
533         hevt->event_handler(hevt);
534         return IRQ_HANDLED;
535 }
536
537 static int hpet_setup_irq(struct hpet_dev *dev)
538 {
539
540         if (request_irq(dev->irq, hpet_interrupt_handler,
541                         IRQF_TIMER | IRQF_NOBALANCING,
542                         dev->name, dev))
543                 return -1;
544
545         disable_irq(dev->irq);
546         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
547         enable_irq(dev->irq);
548
549         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
550                          dev->name, dev->irq);
551
552         return 0;
553 }
554
555 /* This should be called in specific @cpu */
556 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
557 {
558         struct clock_event_device *evt = &hdev->evt;
559
560         WARN_ON(cpu != smp_processor_id());
561         if (!(hdev->flags & HPET_DEV_VALID))
562                 return;
563
564         hdev->cpu = cpu;
565         per_cpu(cpu_hpet_dev, cpu) = hdev;
566         evt->name = hdev->name;
567         hpet_setup_irq(hdev);
568         evt->irq = hdev->irq;
569
570         evt->rating = 110;
571         evt->features = CLOCK_EVT_FEAT_ONESHOT;
572         if (hdev->flags & HPET_DEV_PERI_CAP) {
573                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
574                 evt->set_state_periodic = hpet_msi_set_periodic;
575         }
576
577         evt->set_state_shutdown = hpet_msi_shutdown;
578         evt->set_state_oneshot = hpet_msi_set_oneshot;
579         evt->tick_resume = hpet_msi_resume;
580         evt->set_next_event = hpet_msi_next_event;
581         evt->cpumask = cpumask_of(hdev->cpu);
582
583         clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
584                                         0x7FFFFFFF);
585 }
586
587 #ifdef CONFIG_HPET
588 /* Reserve at least one timer for userspace (/dev/hpet) */
589 #define RESERVE_TIMERS 1
590 #else
591 #define RESERVE_TIMERS 0
592 #endif
593
594 static void hpet_msi_capability_lookup(unsigned int start_timer)
595 {
596         unsigned int id;
597         unsigned int num_timers;
598         unsigned int num_timers_used = 0;
599         int i, irq;
600
601         if (hpet_msi_disable)
602                 return;
603
604         if (boot_cpu_has(X86_FEATURE_ARAT))
605                 return;
606         id = hpet_readl(HPET_ID);
607
608         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
609         num_timers++; /* Value read out starts from 0 */
610         hpet_print_config();
611
612         hpet_domain = hpet_create_irq_domain(hpet_blockid);
613         if (!hpet_domain)
614                 return;
615
616         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
617         if (!hpet_devs)
618                 return;
619
620         hpet_num_timers = num_timers;
621
622         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
623                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
624                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
625
626                 /* Only consider HPET timer with MSI support */
627                 if (!(cfg & HPET_TN_FSB_CAP))
628                         continue;
629
630                 hdev->flags = 0;
631                 if (cfg & HPET_TN_PERIODIC_CAP)
632                         hdev->flags |= HPET_DEV_PERI_CAP;
633                 sprintf(hdev->name, "hpet%d", i);
634                 hdev->num = i;
635
636                 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
637                 if (irq <= 0)
638                         continue;
639
640                 hdev->irq = irq;
641                 hdev->flags |= HPET_DEV_FSB_CAP;
642                 hdev->flags |= HPET_DEV_VALID;
643                 num_timers_used++;
644                 if (num_timers_used == num_possible_cpus())
645                         break;
646         }
647
648         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
649                 num_timers, num_timers_used);
650 }
651
652 #ifdef CONFIG_HPET
653 static void hpet_reserve_msi_timers(struct hpet_data *hd)
654 {
655         int i;
656
657         if (!hpet_devs)
658                 return;
659
660         for (i = 0; i < hpet_num_timers; i++) {
661                 struct hpet_dev *hdev = &hpet_devs[i];
662
663                 if (!(hdev->flags & HPET_DEV_VALID))
664                         continue;
665
666                 hd->hd_irq[hdev->num] = hdev->irq;
667                 hpet_reserve_timer(hd, hdev->num);
668         }
669 }
670 #endif
671
672 static struct hpet_dev *hpet_get_unused_timer(void)
673 {
674         int i;
675
676         if (!hpet_devs)
677                 return NULL;
678
679         for (i = 0; i < hpet_num_timers; i++) {
680                 struct hpet_dev *hdev = &hpet_devs[i];
681
682                 if (!(hdev->flags & HPET_DEV_VALID))
683                         continue;
684                 if (test_and_set_bit(HPET_DEV_USED_BIT,
685                         (unsigned long *)&hdev->flags))
686                         continue;
687                 return hdev;
688         }
689         return NULL;
690 }
691
692 struct hpet_work_struct {
693         struct delayed_work work;
694         struct completion complete;
695 };
696
697 static void hpet_work(struct work_struct *w)
698 {
699         struct hpet_dev *hdev;
700         int cpu = smp_processor_id();
701         struct hpet_work_struct *hpet_work;
702
703         hpet_work = container_of(w, struct hpet_work_struct, work.work);
704
705         hdev = hpet_get_unused_timer();
706         if (hdev)
707                 init_one_hpet_msi_clockevent(hdev, cpu);
708
709         complete(&hpet_work->complete);
710 }
711
712 static int hpet_cpuhp_notify(struct notifier_block *n,
713                 unsigned long action, void *hcpu)
714 {
715         unsigned long cpu = (unsigned long)hcpu;
716         struct hpet_work_struct work;
717         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
718
719         switch (action & 0xf) {
720         case CPU_ONLINE:
721                 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
722                 init_completion(&work.complete);
723                 /* FIXME: add schedule_work_on() */
724                 schedule_delayed_work_on(cpu, &work.work, 0);
725                 wait_for_completion(&work.complete);
726                 destroy_delayed_work_on_stack(&work.work);
727                 break;
728         case CPU_DEAD:
729                 if (hdev) {
730                         free_irq(hdev->irq, hdev);
731                         hdev->flags &= ~HPET_DEV_USED;
732                         per_cpu(cpu_hpet_dev, cpu) = NULL;
733                 }
734                 break;
735         }
736         return NOTIFY_OK;
737 }
738 #else
739
740 static void hpet_msi_capability_lookup(unsigned int start_timer)
741 {
742         return;
743 }
744
745 #ifdef CONFIG_HPET
746 static void hpet_reserve_msi_timers(struct hpet_data *hd)
747 {
748         return;
749 }
750 #endif
751
752 static int hpet_cpuhp_notify(struct notifier_block *n,
753                 unsigned long action, void *hcpu)
754 {
755         return NOTIFY_OK;
756 }
757
758 #endif
759
760 /*
761  * Clock source related code
762  */
763 static cycle_t read_hpet(struct clocksource *cs)
764 {
765         return (cycle_t)hpet_readl(HPET_COUNTER);
766 }
767
768 static struct clocksource clocksource_hpet = {
769         .name           = "hpet",
770         .rating         = 250,
771         .read           = read_hpet,
772         .mask           = HPET_MASK,
773         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
774         .resume         = hpet_resume_counter,
775         .archdata       = { .vclock_mode = VCLOCK_HPET },
776 };
777
778 static int hpet_clocksource_register(void)
779 {
780         u64 start, now;
781         cycle_t t1;
782
783         /* Start the counter */
784         hpet_restart_counter();
785
786         /* Verify whether hpet counter works */
787         t1 = hpet_readl(HPET_COUNTER);
788         start = rdtsc();
789
790         /*
791          * We don't know the TSC frequency yet, but waiting for
792          * 200000 TSC cycles is safe:
793          * 4 GHz == 50us
794          * 1 GHz == 200us
795          */
796         do {
797                 rep_nop();
798                 now = rdtsc();
799         } while ((now - start) < 200000UL);
800
801         if (t1 == hpet_readl(HPET_COUNTER)) {
802                 printk(KERN_WARNING
803                        "HPET counter not counting. HPET disabled\n");
804                 return -ENODEV;
805         }
806
807         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
808         return 0;
809 }
810
811 static u32 *hpet_boot_cfg;
812
813 /**
814  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
815  */
816 int __init hpet_enable(void)
817 {
818         u32 hpet_period, cfg, id;
819         u64 freq;
820         unsigned int i, last;
821
822         if (!is_hpet_capable())
823                 return 0;
824
825         hpet_set_mapping();
826
827         /*
828          * Read the period and check for a sane value:
829          */
830         hpet_period = hpet_readl(HPET_PERIOD);
831
832         /*
833          * AMD SB700 based systems with spread spectrum enabled use a
834          * SMM based HPET emulation to provide proper frequency
835          * setting. The SMM code is initialized with the first HPET
836          * register access and takes some time to complete. During
837          * this time the config register reads 0xffffffff. We check
838          * for max. 1000 loops whether the config register reads a non
839          * 0xffffffff value to make sure that HPET is up and running
840          * before we go further. A counting loop is safe, as the HPET
841          * access takes thousands of CPU cycles. On non SB700 based
842          * machines this check is only done once and has no side
843          * effects.
844          */
845         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
846                 if (i == 1000) {
847                         printk(KERN_WARNING
848                                "HPET config register value = 0xFFFFFFFF. "
849                                "Disabling HPET\n");
850                         goto out_nohpet;
851                 }
852         }
853
854         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
855                 goto out_nohpet;
856
857         /*
858          * The period is a femto seconds value. Convert it to a
859          * frequency.
860          */
861         freq = FSEC_PER_SEC;
862         do_div(freq, hpet_period);
863         hpet_freq = freq;
864
865         /*
866          * Read the HPET ID register to retrieve the IRQ routing
867          * information and the number of channels
868          */
869         id = hpet_readl(HPET_ID);
870         hpet_print_config();
871
872         last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
873
874 #ifdef CONFIG_HPET_EMULATE_RTC
875         /*
876          * The legacy routing mode needs at least two channels, tick timer
877          * and the rtc emulation channel.
878          */
879         if (!last)
880                 goto out_nohpet;
881 #endif
882
883         cfg = hpet_readl(HPET_CFG);
884         hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
885                                 GFP_KERNEL);
886         if (hpet_boot_cfg)
887                 *hpet_boot_cfg = cfg;
888         else
889                 pr_warn("HPET initial state will not be saved\n");
890         cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
891         hpet_writel(cfg, HPET_CFG);
892         if (cfg)
893                 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
894                         cfg);
895
896         for (i = 0; i <= last; ++i) {
897                 cfg = hpet_readl(HPET_Tn_CFG(i));
898                 if (hpet_boot_cfg)
899                         hpet_boot_cfg[i + 1] = cfg;
900                 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
901                 hpet_writel(cfg, HPET_Tn_CFG(i));
902                 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
903                          | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
904                          | HPET_TN_FSB | HPET_TN_FSB_CAP);
905                 if (cfg)
906                         pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
907                                 cfg, i);
908         }
909         hpet_print_config();
910
911         if (hpet_clocksource_register())
912                 goto out_nohpet;
913
914         if (id & HPET_ID_LEGSUP) {
915                 hpet_legacy_clockevent_register();
916                 return 1;
917         }
918         return 0;
919
920 out_nohpet:
921         hpet_clear_mapping();
922         hpet_address = 0;
923         return 0;
924 }
925
926 /*
927  * Needs to be late, as the reserve_timer code calls kalloc !
928  *
929  * Not a problem on i386 as hpet_enable is called from late_time_init,
930  * but on x86_64 it is necessary !
931  */
932 static __init int hpet_late_init(void)
933 {
934         int cpu;
935
936         if (boot_hpet_disable)
937                 return -ENODEV;
938
939         if (!hpet_address) {
940                 if (!force_hpet_address)
941                         return -ENODEV;
942
943                 hpet_address = force_hpet_address;
944                 hpet_enable();
945         }
946
947         if (!hpet_virt_address)
948                 return -ENODEV;
949
950         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
951                 hpet_msi_capability_lookup(2);
952         else
953                 hpet_msi_capability_lookup(0);
954
955         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
956         hpet_print_config();
957
958         if (hpet_msi_disable)
959                 return 0;
960
961         if (boot_cpu_has(X86_FEATURE_ARAT))
962                 return 0;
963
964         cpu_notifier_register_begin();
965         for_each_online_cpu(cpu) {
966                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
967         }
968
969         /* This notifier should be called after workqueue is ready */
970         __hotcpu_notifier(hpet_cpuhp_notify, -20);
971         cpu_notifier_register_done();
972
973         return 0;
974 }
975 fs_initcall(hpet_late_init);
976
977 void hpet_disable(void)
978 {
979         if (is_hpet_capable() && hpet_virt_address) {
980                 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
981
982                 if (hpet_boot_cfg)
983                         cfg = *hpet_boot_cfg;
984                 else if (hpet_legacy_int_enabled) {
985                         cfg &= ~HPET_CFG_LEGACY;
986                         hpet_legacy_int_enabled = false;
987                 }
988                 cfg &= ~HPET_CFG_ENABLE;
989                 hpet_writel(cfg, HPET_CFG);
990
991                 if (!hpet_boot_cfg)
992                         return;
993
994                 id = hpet_readl(HPET_ID);
995                 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
996
997                 for (id = 0; id <= last; ++id)
998                         hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
999
1000                 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1001                         hpet_writel(*hpet_boot_cfg, HPET_CFG);
1002         }
1003 }
1004
1005 #ifdef CONFIG_HPET_EMULATE_RTC
1006
1007 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1008  * is enabled, we support RTC interrupt functionality in software.
1009  * RTC has 3 kinds of interrupts:
1010  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1011  *    is updated
1012  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1013  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1014  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1015  * (1) and (2) above are implemented using polling at a frequency of
1016  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1017  * overhead. (DEFAULT_RTC_INT_FREQ)
1018  * For (3), we use interrupts at 64Hz or user specified periodic
1019  * frequency, whichever is higher.
1020  */
1021 #include <linux/mc146818rtc.h>
1022 #include <linux/rtc.h>
1023 #include <asm/rtc.h>
1024
1025 #define DEFAULT_RTC_INT_FREQ    64
1026 #define DEFAULT_RTC_SHIFT       6
1027 #define RTC_NUM_INTS            1
1028
1029 static unsigned long hpet_rtc_flags;
1030 static int hpet_prev_update_sec;
1031 static struct rtc_time hpet_alarm_time;
1032 static unsigned long hpet_pie_count;
1033 static u32 hpet_t1_cmp;
1034 static u32 hpet_default_delta;
1035 static u32 hpet_pie_delta;
1036 static unsigned long hpet_pie_limit;
1037
1038 static rtc_irq_handler irq_handler;
1039
1040 /*
1041  * Check that the hpet counter c1 is ahead of the c2
1042  */
1043 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1044 {
1045         return (s32)(c2 - c1) < 0;
1046 }
1047
1048 /*
1049  * Registers a IRQ handler.
1050  */
1051 int hpet_register_irq_handler(rtc_irq_handler handler)
1052 {
1053         if (!is_hpet_enabled())
1054                 return -ENODEV;
1055         if (irq_handler)
1056                 return -EBUSY;
1057
1058         irq_handler = handler;
1059
1060         return 0;
1061 }
1062 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1063
1064 /*
1065  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1066  * and does cleanup.
1067  */
1068 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1069 {
1070         if (!is_hpet_enabled())
1071                 return;
1072
1073         irq_handler = NULL;
1074         hpet_rtc_flags = 0;
1075 }
1076 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1077
1078 /*
1079  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1080  * is not supported by all HPET implementations for timer 1.
1081  *
1082  * hpet_rtc_timer_init() is called when the rtc is initialized.
1083  */
1084 int hpet_rtc_timer_init(void)
1085 {
1086         unsigned int cfg, cnt, delta;
1087         unsigned long flags;
1088
1089         if (!is_hpet_enabled())
1090                 return 0;
1091
1092         if (!hpet_default_delta) {
1093                 uint64_t clc;
1094
1095                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1096                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1097                 hpet_default_delta = clc;
1098         }
1099
1100         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1101                 delta = hpet_default_delta;
1102         else
1103                 delta = hpet_pie_delta;
1104
1105         local_irq_save(flags);
1106
1107         cnt = delta + hpet_readl(HPET_COUNTER);
1108         hpet_writel(cnt, HPET_T1_CMP);
1109         hpet_t1_cmp = cnt;
1110
1111         cfg = hpet_readl(HPET_T1_CFG);
1112         cfg &= ~HPET_TN_PERIODIC;
1113         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1114         hpet_writel(cfg, HPET_T1_CFG);
1115
1116         local_irq_restore(flags);
1117
1118         return 1;
1119 }
1120 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1121
1122 static void hpet_disable_rtc_channel(void)
1123 {
1124         u32 cfg = hpet_readl(HPET_T1_CFG);
1125         cfg &= ~HPET_TN_ENABLE;
1126         hpet_writel(cfg, HPET_T1_CFG);
1127 }
1128
1129 /*
1130  * The functions below are called from rtc driver.
1131  * Return 0 if HPET is not being used.
1132  * Otherwise do the necessary changes and return 1.
1133  */
1134 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1135 {
1136         if (!is_hpet_enabled())
1137                 return 0;
1138
1139         hpet_rtc_flags &= ~bit_mask;
1140         if (unlikely(!hpet_rtc_flags))
1141                 hpet_disable_rtc_channel();
1142
1143         return 1;
1144 }
1145 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1146
1147 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1148 {
1149         unsigned long oldbits = hpet_rtc_flags;
1150
1151         if (!is_hpet_enabled())
1152                 return 0;
1153
1154         hpet_rtc_flags |= bit_mask;
1155
1156         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1157                 hpet_prev_update_sec = -1;
1158
1159         if (!oldbits)
1160                 hpet_rtc_timer_init();
1161
1162         return 1;
1163 }
1164 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1165
1166 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1167                         unsigned char sec)
1168 {
1169         if (!is_hpet_enabled())
1170                 return 0;
1171
1172         hpet_alarm_time.tm_hour = hrs;
1173         hpet_alarm_time.tm_min = min;
1174         hpet_alarm_time.tm_sec = sec;
1175
1176         return 1;
1177 }
1178 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1179
1180 int hpet_set_periodic_freq(unsigned long freq)
1181 {
1182         uint64_t clc;
1183
1184         if (!is_hpet_enabled())
1185                 return 0;
1186
1187         if (freq <= DEFAULT_RTC_INT_FREQ)
1188                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1189         else {
1190                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1191                 do_div(clc, freq);
1192                 clc >>= hpet_clockevent.shift;
1193                 hpet_pie_delta = clc;
1194                 hpet_pie_limit = 0;
1195         }
1196         return 1;
1197 }
1198 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1199
1200 int hpet_rtc_dropped_irq(void)
1201 {
1202         return is_hpet_enabled();
1203 }
1204 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1205
1206 static void hpet_rtc_timer_reinit(void)
1207 {
1208         unsigned int delta;
1209         int lost_ints = -1;
1210
1211         if (unlikely(!hpet_rtc_flags))
1212                 hpet_disable_rtc_channel();
1213
1214         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1215                 delta = hpet_default_delta;
1216         else
1217                 delta = hpet_pie_delta;
1218
1219         /*
1220          * Increment the comparator value until we are ahead of the
1221          * current count.
1222          */
1223         do {
1224                 hpet_t1_cmp += delta;
1225                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1226                 lost_ints++;
1227         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1228
1229         if (lost_ints) {
1230                 if (hpet_rtc_flags & RTC_PIE)
1231                         hpet_pie_count += lost_ints;
1232                 if (printk_ratelimit())
1233                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1234                                 lost_ints);
1235         }
1236 }
1237
1238 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1239 {
1240         struct rtc_time curr_time;
1241         unsigned long rtc_int_flag = 0;
1242
1243         hpet_rtc_timer_reinit();
1244         memset(&curr_time, 0, sizeof(struct rtc_time));
1245
1246         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1247                 get_rtc_time(&curr_time);
1248
1249         if (hpet_rtc_flags & RTC_UIE &&
1250             curr_time.tm_sec != hpet_prev_update_sec) {
1251                 if (hpet_prev_update_sec >= 0)
1252                         rtc_int_flag = RTC_UF;
1253                 hpet_prev_update_sec = curr_time.tm_sec;
1254         }
1255
1256         if (hpet_rtc_flags & RTC_PIE &&
1257             ++hpet_pie_count >= hpet_pie_limit) {
1258                 rtc_int_flag |= RTC_PF;
1259                 hpet_pie_count = 0;
1260         }
1261
1262         if (hpet_rtc_flags & RTC_AIE &&
1263             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1264             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1265             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1266                         rtc_int_flag |= RTC_AF;
1267
1268         if (rtc_int_flag) {
1269                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1270                 if (irq_handler)
1271                         irq_handler(rtc_int_flag, dev_id);
1272         }
1273         return IRQ_HANDLED;
1274 }
1275 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1276 #endif