]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kernel/process.c
Merge remote-tracking branch 'mvebu/for-next'
[karo-tx-linux.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mce.h>
33 #include <asm/vm86.h>
34
35 /*
36  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
37  * no more per-task TSS's. The TSS size is kept cacheline-aligned
38  * so they are allowed to end up in the .data..cacheline_aligned
39  * section. Since TSS's are completely CPU-local, we want them
40  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
41  */
42 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
43         .x86_tss = {
44                 .sp0 = TOP_OF_INIT_STACK,
45 #ifdef CONFIG_X86_32
46                 .ss0 = __KERNEL_DS,
47                 .ss1 = __KERNEL_CS,
48                 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
49 #endif
50          },
51 #ifdef CONFIG_X86_32
52          /*
53           * Note that the .io_bitmap member must be extra-big. This is because
54           * the CPU will access an additional byte beyond the end of the IO
55           * permission bitmap. The extra byte must be all 1 bits, and must
56           * be within the limit.
57           */
58         .io_bitmap              = { [0 ... IO_BITMAP_LONGS] = ~0 },
59 #endif
60 };
61 EXPORT_PER_CPU_SYMBOL(cpu_tss);
62
63 #ifdef CONFIG_X86_64
64 static DEFINE_PER_CPU(unsigned char, is_idle);
65 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
66
67 void idle_notifier_register(struct notifier_block *n)
68 {
69         atomic_notifier_chain_register(&idle_notifier, n);
70 }
71 EXPORT_SYMBOL_GPL(idle_notifier_register);
72
73 void idle_notifier_unregister(struct notifier_block *n)
74 {
75         atomic_notifier_chain_unregister(&idle_notifier, n);
76 }
77 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
78 #endif
79
80 /*
81  * this gets called so that we can store lazy state into memory and copy the
82  * current task into the new thread.
83  */
84 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
85 {
86         memcpy(dst, src, arch_task_struct_size);
87 #ifdef CONFIG_VM86
88         dst->thread.vm86 = NULL;
89 #endif
90
91         return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
92 }
93
94 /*
95  * Free current thread data structures etc..
96  */
97 void exit_thread(void)
98 {
99         struct task_struct *me = current;
100         struct thread_struct *t = &me->thread;
101         unsigned long *bp = t->io_bitmap_ptr;
102         struct fpu *fpu = &t->fpu;
103
104         if (bp) {
105                 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
106
107                 t->io_bitmap_ptr = NULL;
108                 clear_thread_flag(TIF_IO_BITMAP);
109                 /*
110                  * Careful, clear this in the TSS too:
111                  */
112                 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
113                 t->io_bitmap_max = 0;
114                 put_cpu();
115                 kfree(bp);
116         }
117
118         free_vm86(t);
119
120         fpu__drop(fpu);
121 }
122
123 void flush_thread(void)
124 {
125         struct task_struct *tsk = current;
126
127         flush_ptrace_hw_breakpoint(tsk);
128         memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
129
130         fpu__clear(&tsk->thread.fpu);
131 }
132
133 static void hard_disable_TSC(void)
134 {
135         cr4_set_bits(X86_CR4_TSD);
136 }
137
138 void disable_TSC(void)
139 {
140         preempt_disable();
141         if (!test_and_set_thread_flag(TIF_NOTSC))
142                 /*
143                  * Must flip the CPU state synchronously with
144                  * TIF_NOTSC in the current running context.
145                  */
146                 hard_disable_TSC();
147         preempt_enable();
148 }
149
150 static void hard_enable_TSC(void)
151 {
152         cr4_clear_bits(X86_CR4_TSD);
153 }
154
155 static void enable_TSC(void)
156 {
157         preempt_disable();
158         if (test_and_clear_thread_flag(TIF_NOTSC))
159                 /*
160                  * Must flip the CPU state synchronously with
161                  * TIF_NOTSC in the current running context.
162                  */
163                 hard_enable_TSC();
164         preempt_enable();
165 }
166
167 int get_tsc_mode(unsigned long adr)
168 {
169         unsigned int val;
170
171         if (test_thread_flag(TIF_NOTSC))
172                 val = PR_TSC_SIGSEGV;
173         else
174                 val = PR_TSC_ENABLE;
175
176         return put_user(val, (unsigned int __user *)adr);
177 }
178
179 int set_tsc_mode(unsigned int val)
180 {
181         if (val == PR_TSC_SIGSEGV)
182                 disable_TSC();
183         else if (val == PR_TSC_ENABLE)
184                 enable_TSC();
185         else
186                 return -EINVAL;
187
188         return 0;
189 }
190
191 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
192                       struct tss_struct *tss)
193 {
194         struct thread_struct *prev, *next;
195
196         prev = &prev_p->thread;
197         next = &next_p->thread;
198
199         if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
200             test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
201                 unsigned long debugctl = get_debugctlmsr();
202
203                 debugctl &= ~DEBUGCTLMSR_BTF;
204                 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
205                         debugctl |= DEBUGCTLMSR_BTF;
206
207                 update_debugctlmsr(debugctl);
208         }
209
210         if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
211             test_tsk_thread_flag(next_p, TIF_NOTSC)) {
212                 /* prev and next are different */
213                 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
214                         hard_disable_TSC();
215                 else
216                         hard_enable_TSC();
217         }
218
219         if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
220                 /*
221                  * Copy the relevant range of the IO bitmap.
222                  * Normally this is 128 bytes or less:
223                  */
224                 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
225                        max(prev->io_bitmap_max, next->io_bitmap_max));
226         } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
227                 /*
228                  * Clear any possible leftover bits:
229                  */
230                 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
231         }
232         propagate_user_return_notify(prev_p, next_p);
233 }
234
235 /*
236  * Idle related variables and functions
237  */
238 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
239 EXPORT_SYMBOL(boot_option_idle_override);
240
241 static void (*x86_idle)(void);
242
243 #ifndef CONFIG_SMP
244 static inline void play_dead(void)
245 {
246         BUG();
247 }
248 #endif
249
250 #ifdef CONFIG_X86_64
251 void enter_idle(void)
252 {
253         this_cpu_write(is_idle, 1);
254         atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
255 }
256
257 static void __exit_idle(void)
258 {
259         if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
260                 return;
261         atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
262 }
263
264 /* Called from interrupts to signify idle end */
265 void exit_idle(void)
266 {
267         /* idle loop has pid 0 */
268         if (current->pid)
269                 return;
270         __exit_idle();
271 }
272 #endif
273
274 void arch_cpu_idle_enter(void)
275 {
276         local_touch_nmi();
277         enter_idle();
278 }
279
280 void arch_cpu_idle_exit(void)
281 {
282         __exit_idle();
283 }
284
285 void arch_cpu_idle_dead(void)
286 {
287         play_dead();
288 }
289
290 /*
291  * Called from the generic idle code.
292  */
293 void arch_cpu_idle(void)
294 {
295         x86_idle();
296 }
297
298 /*
299  * We use this if we don't have any better idle routine..
300  */
301 void default_idle(void)
302 {
303         trace_cpu_idle_rcuidle(1, smp_processor_id());
304         safe_halt();
305         trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
306 }
307 #ifdef CONFIG_APM_MODULE
308 EXPORT_SYMBOL(default_idle);
309 #endif
310
311 #ifdef CONFIG_XEN
312 bool xen_set_default_idle(void)
313 {
314         bool ret = !!x86_idle;
315
316         x86_idle = default_idle;
317
318         return ret;
319 }
320 #endif
321 void stop_this_cpu(void *dummy)
322 {
323         local_irq_disable();
324         /*
325          * Remove this CPU:
326          */
327         set_cpu_online(smp_processor_id(), false);
328         disable_local_APIC();
329         mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
330
331         for (;;)
332                 halt();
333 }
334
335 bool amd_e400_c1e_detected;
336 EXPORT_SYMBOL(amd_e400_c1e_detected);
337
338 static cpumask_var_t amd_e400_c1e_mask;
339
340 void amd_e400_remove_cpu(int cpu)
341 {
342         if (amd_e400_c1e_mask != NULL)
343                 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
344 }
345
346 /*
347  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
348  * pending message MSR. If we detect C1E, then we handle it the same
349  * way as C3 power states (local apic timer and TSC stop)
350  */
351 static void amd_e400_idle(void)
352 {
353         if (!amd_e400_c1e_detected) {
354                 u32 lo, hi;
355
356                 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
357
358                 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
359                         amd_e400_c1e_detected = true;
360                         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
361                                 mark_tsc_unstable("TSC halt in AMD C1E");
362                         pr_info("System has AMD C1E enabled\n");
363                 }
364         }
365
366         if (amd_e400_c1e_detected) {
367                 int cpu = smp_processor_id();
368
369                 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
370                         cpumask_set_cpu(cpu, amd_e400_c1e_mask);
371                         /* Force broadcast so ACPI can not interfere. */
372                         tick_broadcast_force();
373                         pr_info("Switch to broadcast mode on CPU%d\n", cpu);
374                 }
375                 tick_broadcast_enter();
376
377                 default_idle();
378
379                 /*
380                  * The switch back from broadcast mode needs to be
381                  * called with interrupts disabled.
382                  */
383                 local_irq_disable();
384                 tick_broadcast_exit();
385                 local_irq_enable();
386         } else
387                 default_idle();
388 }
389
390 /*
391  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
392  * We can't rely on cpuidle installing MWAIT, because it will not load
393  * on systems that support only C1 -- so the boot default must be MWAIT.
394  *
395  * Some AMD machines are the opposite, they depend on using HALT.
396  *
397  * So for default C1, which is used during boot until cpuidle loads,
398  * use MWAIT-C1 on Intel HW that has it, else use HALT.
399  */
400 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
401 {
402         if (c->x86_vendor != X86_VENDOR_INTEL)
403                 return 0;
404
405         if (!cpu_has(c, X86_FEATURE_MWAIT))
406                 return 0;
407
408         return 1;
409 }
410
411 /*
412  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
413  * with interrupts enabled and no flags, which is backwards compatible with the
414  * original MWAIT implementation.
415  */
416 static void mwait_idle(void)
417 {
418         if (!current_set_polling_and_test()) {
419                 trace_cpu_idle_rcuidle(1, smp_processor_id());
420                 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
421                         smp_mb(); /* quirk */
422                         clflush((void *)&current_thread_info()->flags);
423                         smp_mb(); /* quirk */
424                 }
425
426                 __monitor((void *)&current_thread_info()->flags, 0, 0);
427                 if (!need_resched())
428                         __sti_mwait(0, 0);
429                 else
430                         local_irq_enable();
431                 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
432         } else {
433                 local_irq_enable();
434         }
435         __current_clr_polling();
436 }
437
438 void select_idle_routine(const struct cpuinfo_x86 *c)
439 {
440 #ifdef CONFIG_SMP
441         if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
442                 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
443 #endif
444         if (x86_idle || boot_option_idle_override == IDLE_POLL)
445                 return;
446
447         if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
448                 /* E400: APIC timer interrupt does not wake up CPU from C1e */
449                 pr_info("using AMD E400 aware idle routine\n");
450                 x86_idle = amd_e400_idle;
451         } else if (prefer_mwait_c1_over_halt(c)) {
452                 pr_info("using mwait in idle threads\n");
453                 x86_idle = mwait_idle;
454         } else
455                 x86_idle = default_idle;
456 }
457
458 void __init init_amd_e400_c1e_mask(void)
459 {
460         /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
461         if (x86_idle == amd_e400_idle)
462                 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
463 }
464
465 static int __init idle_setup(char *str)
466 {
467         if (!str)
468                 return -EINVAL;
469
470         if (!strcmp(str, "poll")) {
471                 pr_info("using polling idle threads\n");
472                 boot_option_idle_override = IDLE_POLL;
473                 cpu_idle_poll_ctrl(true);
474         } else if (!strcmp(str, "halt")) {
475                 /*
476                  * When the boot option of idle=halt is added, halt is
477                  * forced to be used for CPU idle. In such case CPU C2/C3
478                  * won't be used again.
479                  * To continue to load the CPU idle driver, don't touch
480                  * the boot_option_idle_override.
481                  */
482                 x86_idle = default_idle;
483                 boot_option_idle_override = IDLE_HALT;
484         } else if (!strcmp(str, "nomwait")) {
485                 /*
486                  * If the boot option of "idle=nomwait" is added,
487                  * it means that mwait will be disabled for CPU C2/C3
488                  * states. In such case it won't touch the variable
489                  * of boot_option_idle_override.
490                  */
491                 boot_option_idle_override = IDLE_NOMWAIT;
492         } else
493                 return -1;
494
495         return 0;
496 }
497 early_param("idle", idle_setup);
498
499 unsigned long arch_align_stack(unsigned long sp)
500 {
501         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
502                 sp -= get_random_int() % 8192;
503         return sp & ~0xf;
504 }
505
506 unsigned long arch_randomize_brk(struct mm_struct *mm)
507 {
508         unsigned long range_end = mm->brk + 0x02000000;
509         return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
510 }
511
512 /*
513  * Called from fs/proc with a reference on @p to find the function
514  * which called into schedule(). This needs to be done carefully
515  * because the task might wake up and we might look at a stack
516  * changing under us.
517  */
518 unsigned long get_wchan(struct task_struct *p)
519 {
520         unsigned long start, bottom, top, sp, fp, ip;
521         int count = 0;
522
523         if (!p || p == current || p->state == TASK_RUNNING)
524                 return 0;
525
526         start = (unsigned long)task_stack_page(p);
527         if (!start)
528                 return 0;
529
530         /*
531          * Layout of the stack page:
532          *
533          * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
534          * PADDING
535          * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
536          * stack
537          * ----------- bottom = start + sizeof(thread_info)
538          * thread_info
539          * ----------- start
540          *
541          * The tasks stack pointer points at the location where the
542          * framepointer is stored. The data on the stack is:
543          * ... IP FP ... IP FP
544          *
545          * We need to read FP and IP, so we need to adjust the upper
546          * bound by another unsigned long.
547          */
548         top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
549         top -= 2 * sizeof(unsigned long);
550         bottom = start + sizeof(struct thread_info);
551
552         sp = READ_ONCE(p->thread.sp);
553         if (sp < bottom || sp > top)
554                 return 0;
555
556         fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
557         do {
558                 if (fp < bottom || fp > top)
559                         return 0;
560                 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
561                 if (!in_sched_functions(ip))
562                         return ip;
563                 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
564         } while (count++ < 16 && p->state != TASK_RUNNING);
565         return 0;
566 }