]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/svm.c
Merge remote-tracking branch 'sunxi/sunxi/for-next'
[karo-tx-linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50         X86_FEATURE_MATCH(X86_FEATURE_SVM),
51         {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT            (1 <<  0)
62 #define SVM_FEATURE_LBRV           (1 <<  1)
63 #define SVM_FEATURE_SVML           (1 <<  2)
64 #define SVM_FEATURE_NRIP           (1 <<  3)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70
71 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
72 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
73 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
78 #define TSC_RATIO_MIN           0x0000000000000001ULL
79 #define TSC_RATIO_MAX           0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86         MSR_FS_BASE,
87 #endif
88         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 };
90
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92
93 struct kvm_vcpu;
94
95 struct nested_state {
96         struct vmcb *hsave;
97         u64 hsave_msr;
98         u64 vm_cr_msr;
99         u64 vmcb;
100
101         /* These are the merged vectors */
102         u32 *msrpm;
103
104         /* gpa pointers to the real vectors */
105         u64 vmcb_msrpm;
106         u64 vmcb_iopm;
107
108         /* A VMEXIT is required but not yet emulated */
109         bool exit_required;
110
111         /* cache for intercepts of the guest */
112         u32 intercept_cr;
113         u32 intercept_dr;
114         u32 intercept_exceptions;
115         u64 intercept;
116
117         /* Nested Paging related state */
118         u64 nested_cr3;
119 };
120
121 #define MSRPM_OFFSETS   16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123
124 /*
125  * Set osvw_len to higher value when updated Revision Guides
126  * are published and we know what the new status bits are
127  */
128 static uint64_t osvw_len = 4, osvw_status;
129
130 struct vcpu_svm {
131         struct kvm_vcpu vcpu;
132         struct vmcb *vmcb;
133         unsigned long vmcb_pa;
134         struct svm_cpu_data *svm_data;
135         uint64_t asid_generation;
136         uint64_t sysenter_esp;
137         uint64_t sysenter_eip;
138
139         u64 next_rip;
140
141         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142         struct {
143                 u16 fs;
144                 u16 gs;
145                 u16 ldt;
146                 u64 gs_base;
147         } host;
148
149         u32 *msrpm;
150
151         ulong nmi_iret_rip;
152
153         struct nested_state nested;
154
155         bool nmi_singlestep;
156
157         unsigned int3_injected;
158         unsigned long int3_rip;
159         u32 apf_reason;
160
161         u64  tsc_ratio;
162 };
163
164 static DEFINE_PER_CPU(u64, current_tsc_ratio);
165 #define TSC_RATIO_DEFAULT       0x0100000000ULL
166
167 #define MSR_INVALID                     0xffffffffU
168
169 static const struct svm_direct_access_msrs {
170         u32 index;   /* Index of the MSR */
171         bool always; /* True if intercept is always on */
172 } direct_access_msrs[] = {
173         { .index = MSR_STAR,                            .always = true  },
174         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
175 #ifdef CONFIG_X86_64
176         { .index = MSR_GS_BASE,                         .always = true  },
177         { .index = MSR_FS_BASE,                         .always = true  },
178         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
179         { .index = MSR_LSTAR,                           .always = true  },
180         { .index = MSR_CSTAR,                           .always = true  },
181         { .index = MSR_SYSCALL_MASK,                    .always = true  },
182 #endif
183         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
184         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
185         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
186         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
187         { .index = MSR_INVALID,                         .always = false },
188 };
189
190 /* enable NPT for AMD64 and X86 with PAE */
191 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
192 static bool npt_enabled = true;
193 #else
194 static bool npt_enabled;
195 #endif
196
197 /* allow nested paging (virtualized MMU) for all guests */
198 static int npt = true;
199 module_param(npt, int, S_IRUGO);
200
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, S_IRUGO);
204
205 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
206 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
207 static void svm_complete_interrupts(struct vcpu_svm *svm);
208
209 static int nested_svm_exit_handled(struct vcpu_svm *svm);
210 static int nested_svm_intercept(struct vcpu_svm *svm);
211 static int nested_svm_vmexit(struct vcpu_svm *svm);
212 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
213                                       bool has_error_code, u32 error_code);
214 static u64 __scale_tsc(u64 ratio, u64 tsc);
215
216 enum {
217         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
218                             pause filter count */
219         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
220         VMCB_ASID,       /* ASID */
221         VMCB_INTR,       /* int_ctl, int_vector */
222         VMCB_NPT,        /* npt_en, nCR3, gPAT */
223         VMCB_CR,         /* CR0, CR3, CR4, EFER */
224         VMCB_DR,         /* DR6, DR7 */
225         VMCB_DT,         /* GDT, IDT */
226         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
227         VMCB_CR2,        /* CR2 only */
228         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
229         VMCB_DIRTY_MAX,
230 };
231
232 /* TPR and CR2 are always written before VMRUN */
233 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
234
235 static inline void mark_all_dirty(struct vmcb *vmcb)
236 {
237         vmcb->control.clean = 0;
238 }
239
240 static inline void mark_all_clean(struct vmcb *vmcb)
241 {
242         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
243                                & ~VMCB_ALWAYS_DIRTY_MASK;
244 }
245
246 static inline void mark_dirty(struct vmcb *vmcb, int bit)
247 {
248         vmcb->control.clean &= ~(1 << bit);
249 }
250
251 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
252 {
253         return container_of(vcpu, struct vcpu_svm, vcpu);
254 }
255
256 static void recalc_intercepts(struct vcpu_svm *svm)
257 {
258         struct vmcb_control_area *c, *h;
259         struct nested_state *g;
260
261         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
262
263         if (!is_guest_mode(&svm->vcpu))
264                 return;
265
266         c = &svm->vmcb->control;
267         h = &svm->nested.hsave->control;
268         g = &svm->nested;
269
270         c->intercept_cr = h->intercept_cr | g->intercept_cr;
271         c->intercept_dr = h->intercept_dr | g->intercept_dr;
272         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
273         c->intercept = h->intercept | g->intercept;
274 }
275
276 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
277 {
278         if (is_guest_mode(&svm->vcpu))
279                 return svm->nested.hsave;
280         else
281                 return svm->vmcb;
282 }
283
284 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
285 {
286         struct vmcb *vmcb = get_host_vmcb(svm);
287
288         vmcb->control.intercept_cr |= (1U << bit);
289
290         recalc_intercepts(svm);
291 }
292
293 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
294 {
295         struct vmcb *vmcb = get_host_vmcb(svm);
296
297         vmcb->control.intercept_cr &= ~(1U << bit);
298
299         recalc_intercepts(svm);
300 }
301
302 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
303 {
304         struct vmcb *vmcb = get_host_vmcb(svm);
305
306         return vmcb->control.intercept_cr & (1U << bit);
307 }
308
309 static inline void set_dr_intercepts(struct vcpu_svm *svm)
310 {
311         struct vmcb *vmcb = get_host_vmcb(svm);
312
313         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
314                 | (1 << INTERCEPT_DR1_READ)
315                 | (1 << INTERCEPT_DR2_READ)
316                 | (1 << INTERCEPT_DR3_READ)
317                 | (1 << INTERCEPT_DR4_READ)
318                 | (1 << INTERCEPT_DR5_READ)
319                 | (1 << INTERCEPT_DR6_READ)
320                 | (1 << INTERCEPT_DR7_READ)
321                 | (1 << INTERCEPT_DR0_WRITE)
322                 | (1 << INTERCEPT_DR1_WRITE)
323                 | (1 << INTERCEPT_DR2_WRITE)
324                 | (1 << INTERCEPT_DR3_WRITE)
325                 | (1 << INTERCEPT_DR4_WRITE)
326                 | (1 << INTERCEPT_DR5_WRITE)
327                 | (1 << INTERCEPT_DR6_WRITE)
328                 | (1 << INTERCEPT_DR7_WRITE);
329
330         recalc_intercepts(svm);
331 }
332
333 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
334 {
335         struct vmcb *vmcb = get_host_vmcb(svm);
336
337         vmcb->control.intercept_dr = 0;
338
339         recalc_intercepts(svm);
340 }
341
342 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
343 {
344         struct vmcb *vmcb = get_host_vmcb(svm);
345
346         vmcb->control.intercept_exceptions |= (1U << bit);
347
348         recalc_intercepts(svm);
349 }
350
351 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
352 {
353         struct vmcb *vmcb = get_host_vmcb(svm);
354
355         vmcb->control.intercept_exceptions &= ~(1U << bit);
356
357         recalc_intercepts(svm);
358 }
359
360 static inline void set_intercept(struct vcpu_svm *svm, int bit)
361 {
362         struct vmcb *vmcb = get_host_vmcb(svm);
363
364         vmcb->control.intercept |= (1ULL << bit);
365
366         recalc_intercepts(svm);
367 }
368
369 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
370 {
371         struct vmcb *vmcb = get_host_vmcb(svm);
372
373         vmcb->control.intercept &= ~(1ULL << bit);
374
375         recalc_intercepts(svm);
376 }
377
378 static inline void enable_gif(struct vcpu_svm *svm)
379 {
380         svm->vcpu.arch.hflags |= HF_GIF_MASK;
381 }
382
383 static inline void disable_gif(struct vcpu_svm *svm)
384 {
385         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
386 }
387
388 static inline bool gif_set(struct vcpu_svm *svm)
389 {
390         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
391 }
392
393 static unsigned long iopm_base;
394
395 struct kvm_ldttss_desc {
396         u16 limit0;
397         u16 base0;
398         unsigned base1:8, type:5, dpl:2, p:1;
399         unsigned limit1:4, zero0:3, g:1, base2:8;
400         u32 base3;
401         u32 zero1;
402 } __attribute__((packed));
403
404 struct svm_cpu_data {
405         int cpu;
406
407         u64 asid_generation;
408         u32 max_asid;
409         u32 next_asid;
410         struct kvm_ldttss_desc *tss_desc;
411
412         struct page *save_area;
413 };
414
415 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
416
417 struct svm_init_data {
418         int cpu;
419         int r;
420 };
421
422 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
423
424 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
425 #define MSRS_RANGE_SIZE 2048
426 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
427
428 static u32 svm_msrpm_offset(u32 msr)
429 {
430         u32 offset;
431         int i;
432
433         for (i = 0; i < NUM_MSR_MAPS; i++) {
434                 if (msr < msrpm_ranges[i] ||
435                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
436                         continue;
437
438                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
439                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
440
441                 /* Now we have the u8 offset - but need the u32 offset */
442                 return offset / 4;
443         }
444
445         /* MSR not in any range */
446         return MSR_INVALID;
447 }
448
449 #define MAX_INST_SIZE 15
450
451 static inline void clgi(void)
452 {
453         asm volatile (__ex(SVM_CLGI));
454 }
455
456 static inline void stgi(void)
457 {
458         asm volatile (__ex(SVM_STGI));
459 }
460
461 static inline void invlpga(unsigned long addr, u32 asid)
462 {
463         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
464 }
465
466 static int get_npt_level(void)
467 {
468 #ifdef CONFIG_X86_64
469         return PT64_ROOT_LEVEL;
470 #else
471         return PT32E_ROOT_LEVEL;
472 #endif
473 }
474
475 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
476 {
477         vcpu->arch.efer = efer;
478         if (!npt_enabled && !(efer & EFER_LMA))
479                 efer &= ~EFER_LME;
480
481         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
482         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
483 }
484
485 static int is_external_interrupt(u32 info)
486 {
487         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
488         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
489 }
490
491 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
492 {
493         struct vcpu_svm *svm = to_svm(vcpu);
494         u32 ret = 0;
495
496         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
497                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
498         return ret;
499 }
500
501 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
502 {
503         struct vcpu_svm *svm = to_svm(vcpu);
504
505         if (mask == 0)
506                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
507         else
508                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
509
510 }
511
512 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
513 {
514         struct vcpu_svm *svm = to_svm(vcpu);
515
516         if (svm->vmcb->control.next_rip != 0) {
517                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
518                 svm->next_rip = svm->vmcb->control.next_rip;
519         }
520
521         if (!svm->next_rip) {
522                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
523                                 EMULATE_DONE)
524                         printk(KERN_DEBUG "%s: NOP\n", __func__);
525                 return;
526         }
527         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
528                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
529                        __func__, kvm_rip_read(vcpu), svm->next_rip);
530
531         kvm_rip_write(vcpu, svm->next_rip);
532         svm_set_interrupt_shadow(vcpu, 0);
533 }
534
535 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
536                                 bool has_error_code, u32 error_code,
537                                 bool reinject)
538 {
539         struct vcpu_svm *svm = to_svm(vcpu);
540
541         /*
542          * If we are within a nested VM we'd better #VMEXIT and let the guest
543          * handle the exception
544          */
545         if (!reinject &&
546             nested_svm_check_exception(svm, nr, has_error_code, error_code))
547                 return;
548
549         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
550                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
551
552                 /*
553                  * For guest debugging where we have to reinject #BP if some
554                  * INT3 is guest-owned:
555                  * Emulate nRIP by moving RIP forward. Will fail if injection
556                  * raises a fault that is not intercepted. Still better than
557                  * failing in all cases.
558                  */
559                 skip_emulated_instruction(&svm->vcpu);
560                 rip = kvm_rip_read(&svm->vcpu);
561                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
562                 svm->int3_injected = rip - old_rip;
563         }
564
565         svm->vmcb->control.event_inj = nr
566                 | SVM_EVTINJ_VALID
567                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
568                 | SVM_EVTINJ_TYPE_EXEPT;
569         svm->vmcb->control.event_inj_err = error_code;
570 }
571
572 static void svm_init_erratum_383(void)
573 {
574         u32 low, high;
575         int err;
576         u64 val;
577
578         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
579                 return;
580
581         /* Use _safe variants to not break nested virtualization */
582         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
583         if (err)
584                 return;
585
586         val |= (1ULL << 47);
587
588         low  = lower_32_bits(val);
589         high = upper_32_bits(val);
590
591         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
592
593         erratum_383_found = true;
594 }
595
596 static void svm_init_osvw(struct kvm_vcpu *vcpu)
597 {
598         /*
599          * Guests should see errata 400 and 415 as fixed (assuming that
600          * HLT and IO instructions are intercepted).
601          */
602         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
603         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
604
605         /*
606          * By increasing VCPU's osvw.length to 3 we are telling the guest that
607          * all osvw.status bits inside that length, including bit 0 (which is
608          * reserved for erratum 298), are valid. However, if host processor's
609          * osvw_len is 0 then osvw_status[0] carries no information. We need to
610          * be conservative here and therefore we tell the guest that erratum 298
611          * is present (because we really don't know).
612          */
613         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
614                 vcpu->arch.osvw.status |= 1;
615 }
616
617 static int has_svm(void)
618 {
619         const char *msg;
620
621         if (!cpu_has_svm(&msg)) {
622                 printk(KERN_INFO "has_svm: %s\n", msg);
623                 return 0;
624         }
625
626         return 1;
627 }
628
629 static void svm_hardware_disable(void)
630 {
631         /* Make sure we clean up behind us */
632         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
633                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
634
635         cpu_svm_disable();
636
637         amd_pmu_disable_virt();
638 }
639
640 static int svm_hardware_enable(void)
641 {
642
643         struct svm_cpu_data *sd;
644         uint64_t efer;
645         struct desc_ptr gdt_descr;
646         struct desc_struct *gdt;
647         int me = raw_smp_processor_id();
648
649         rdmsrl(MSR_EFER, efer);
650         if (efer & EFER_SVME)
651                 return -EBUSY;
652
653         if (!has_svm()) {
654                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
655                 return -EINVAL;
656         }
657         sd = per_cpu(svm_data, me);
658         if (!sd) {
659                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
660                 return -EINVAL;
661         }
662
663         sd->asid_generation = 1;
664         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
665         sd->next_asid = sd->max_asid + 1;
666
667         native_store_gdt(&gdt_descr);
668         gdt = (struct desc_struct *)gdt_descr.address;
669         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
670
671         wrmsrl(MSR_EFER, efer | EFER_SVME);
672
673         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
674
675         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
676                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
677                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
678         }
679
680
681         /*
682          * Get OSVW bits.
683          *
684          * Note that it is possible to have a system with mixed processor
685          * revisions and therefore different OSVW bits. If bits are not the same
686          * on different processors then choose the worst case (i.e. if erratum
687          * is present on one processor and not on another then assume that the
688          * erratum is present everywhere).
689          */
690         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
691                 uint64_t len, status = 0;
692                 int err;
693
694                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
695                 if (!err)
696                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
697                                                       &err);
698
699                 if (err)
700                         osvw_status = osvw_len = 0;
701                 else {
702                         if (len < osvw_len)
703                                 osvw_len = len;
704                         osvw_status |= status;
705                         osvw_status &= (1ULL << osvw_len) - 1;
706                 }
707         } else
708                 osvw_status = osvw_len = 0;
709
710         svm_init_erratum_383();
711
712         amd_pmu_enable_virt();
713
714         return 0;
715 }
716
717 static void svm_cpu_uninit(int cpu)
718 {
719         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
720
721         if (!sd)
722                 return;
723
724         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
725         __free_page(sd->save_area);
726         kfree(sd);
727 }
728
729 static int svm_cpu_init(int cpu)
730 {
731         struct svm_cpu_data *sd;
732         int r;
733
734         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
735         if (!sd)
736                 return -ENOMEM;
737         sd->cpu = cpu;
738         sd->save_area = alloc_page(GFP_KERNEL);
739         r = -ENOMEM;
740         if (!sd->save_area)
741                 goto err_1;
742
743         per_cpu(svm_data, cpu) = sd;
744
745         return 0;
746
747 err_1:
748         kfree(sd);
749         return r;
750
751 }
752
753 static bool valid_msr_intercept(u32 index)
754 {
755         int i;
756
757         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
758                 if (direct_access_msrs[i].index == index)
759                         return true;
760
761         return false;
762 }
763
764 static void set_msr_interception(u32 *msrpm, unsigned msr,
765                                  int read, int write)
766 {
767         u8 bit_read, bit_write;
768         unsigned long tmp;
769         u32 offset;
770
771         /*
772          * If this warning triggers extend the direct_access_msrs list at the
773          * beginning of the file
774          */
775         WARN_ON(!valid_msr_intercept(msr));
776
777         offset    = svm_msrpm_offset(msr);
778         bit_read  = 2 * (msr & 0x0f);
779         bit_write = 2 * (msr & 0x0f) + 1;
780         tmp       = msrpm[offset];
781
782         BUG_ON(offset == MSR_INVALID);
783
784         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
785         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
786
787         msrpm[offset] = tmp;
788 }
789
790 static void svm_vcpu_init_msrpm(u32 *msrpm)
791 {
792         int i;
793
794         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
795
796         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
797                 if (!direct_access_msrs[i].always)
798                         continue;
799
800                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
801         }
802 }
803
804 static void add_msr_offset(u32 offset)
805 {
806         int i;
807
808         for (i = 0; i < MSRPM_OFFSETS; ++i) {
809
810                 /* Offset already in list? */
811                 if (msrpm_offsets[i] == offset)
812                         return;
813
814                 /* Slot used by another offset? */
815                 if (msrpm_offsets[i] != MSR_INVALID)
816                         continue;
817
818                 /* Add offset to list */
819                 msrpm_offsets[i] = offset;
820
821                 return;
822         }
823
824         /*
825          * If this BUG triggers the msrpm_offsets table has an overflow. Just
826          * increase MSRPM_OFFSETS in this case.
827          */
828         BUG();
829 }
830
831 static void init_msrpm_offsets(void)
832 {
833         int i;
834
835         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
836
837         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
838                 u32 offset;
839
840                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
841                 BUG_ON(offset == MSR_INVALID);
842
843                 add_msr_offset(offset);
844         }
845 }
846
847 static void svm_enable_lbrv(struct vcpu_svm *svm)
848 {
849         u32 *msrpm = svm->msrpm;
850
851         svm->vmcb->control.lbr_ctl = 1;
852         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
853         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
854         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
855         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
856 }
857
858 static void svm_disable_lbrv(struct vcpu_svm *svm)
859 {
860         u32 *msrpm = svm->msrpm;
861
862         svm->vmcb->control.lbr_ctl = 0;
863         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
864         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
865         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
866         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
867 }
868
869 static __init int svm_hardware_setup(void)
870 {
871         int cpu;
872         struct page *iopm_pages;
873         void *iopm_va;
874         int r;
875
876         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
877
878         if (!iopm_pages)
879                 return -ENOMEM;
880
881         iopm_va = page_address(iopm_pages);
882         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
883         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
884
885         init_msrpm_offsets();
886
887         if (boot_cpu_has(X86_FEATURE_NX))
888                 kvm_enable_efer_bits(EFER_NX);
889
890         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
891                 kvm_enable_efer_bits(EFER_FFXSR);
892
893         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
894                 u64 max;
895
896                 kvm_has_tsc_control = true;
897
898                 /*
899                  * Make sure the user can only configure tsc_khz values that
900                  * fit into a signed integer.
901                  * A min value is not calculated needed because it will always
902                  * be 1 on all machines and a value of 0 is used to disable
903                  * tsc-scaling for the vcpu.
904                  */
905                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
906
907                 kvm_max_guest_tsc_khz = max;
908         }
909
910         if (nested) {
911                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
912                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
913         }
914
915         for_each_possible_cpu(cpu) {
916                 r = svm_cpu_init(cpu);
917                 if (r)
918                         goto err;
919         }
920
921         if (!boot_cpu_has(X86_FEATURE_NPT))
922                 npt_enabled = false;
923
924         if (npt_enabled && !npt) {
925                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
926                 npt_enabled = false;
927         }
928
929         if (npt_enabled) {
930                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
931                 kvm_enable_tdp();
932         } else
933                 kvm_disable_tdp();
934
935         return 0;
936
937 err:
938         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
939         iopm_base = 0;
940         return r;
941 }
942
943 static __exit void svm_hardware_unsetup(void)
944 {
945         int cpu;
946
947         for_each_possible_cpu(cpu)
948                 svm_cpu_uninit(cpu);
949
950         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
951         iopm_base = 0;
952 }
953
954 static void init_seg(struct vmcb_seg *seg)
955 {
956         seg->selector = 0;
957         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
958                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
959         seg->limit = 0xffff;
960         seg->base = 0;
961 }
962
963 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
964 {
965         seg->selector = 0;
966         seg->attrib = SVM_SELECTOR_P_MASK | type;
967         seg->limit = 0xffff;
968         seg->base = 0;
969 }
970
971 static u64 __scale_tsc(u64 ratio, u64 tsc)
972 {
973         u64 mult, frac, _tsc;
974
975         mult  = ratio >> 32;
976         frac  = ratio & ((1ULL << 32) - 1);
977
978         _tsc  = tsc;
979         _tsc *= mult;
980         _tsc += (tsc >> 32) * frac;
981         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
982
983         return _tsc;
984 }
985
986 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
987 {
988         struct vcpu_svm *svm = to_svm(vcpu);
989         u64 _tsc = tsc;
990
991         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
992                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
993
994         return _tsc;
995 }
996
997 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
998 {
999         struct vcpu_svm *svm = to_svm(vcpu);
1000         u64 ratio;
1001         u64 khz;
1002
1003         /* Guest TSC same frequency as host TSC? */
1004         if (!scale) {
1005                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1006                 return;
1007         }
1008
1009         /* TSC scaling supported? */
1010         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1011                 if (user_tsc_khz > tsc_khz) {
1012                         vcpu->arch.tsc_catchup = 1;
1013                         vcpu->arch.tsc_always_catchup = 1;
1014                 } else
1015                         WARN(1, "user requested TSC rate below hardware speed\n");
1016                 return;
1017         }
1018
1019         khz = user_tsc_khz;
1020
1021         /* TSC scaling required  - calculate ratio */
1022         ratio = khz << 32;
1023         do_div(ratio, tsc_khz);
1024
1025         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1026                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1027                                 user_tsc_khz);
1028                 return;
1029         }
1030         svm->tsc_ratio             = ratio;
1031 }
1032
1033 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1034 {
1035         struct vcpu_svm *svm = to_svm(vcpu);
1036
1037         return svm->vmcb->control.tsc_offset;
1038 }
1039
1040 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1041 {
1042         struct vcpu_svm *svm = to_svm(vcpu);
1043         u64 g_tsc_offset = 0;
1044
1045         if (is_guest_mode(vcpu)) {
1046                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1047                                svm->nested.hsave->control.tsc_offset;
1048                 svm->nested.hsave->control.tsc_offset = offset;
1049         } else
1050                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1051                                            svm->vmcb->control.tsc_offset,
1052                                            offset);
1053
1054         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1055
1056         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1057 }
1058
1059 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1060 {
1061         struct vcpu_svm *svm = to_svm(vcpu);
1062
1063         if (host) {
1064                 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1065                         WARN_ON(adjustment < 0);
1066                 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1067         }
1068
1069         svm->vmcb->control.tsc_offset += adjustment;
1070         if (is_guest_mode(vcpu))
1071                 svm->nested.hsave->control.tsc_offset += adjustment;
1072         else
1073                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1074                                      svm->vmcb->control.tsc_offset - adjustment,
1075                                      svm->vmcb->control.tsc_offset);
1076
1077         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1078 }
1079
1080 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1081 {
1082         u64 tsc;
1083
1084         tsc = svm_scale_tsc(vcpu, rdtsc());
1085
1086         return target_tsc - tsc;
1087 }
1088
1089 static void init_vmcb(struct vcpu_svm *svm, bool init_event)
1090 {
1091         struct vmcb_control_area *control = &svm->vmcb->control;
1092         struct vmcb_save_area *save = &svm->vmcb->save;
1093
1094         svm->vcpu.fpu_active = 1;
1095         svm->vcpu.arch.hflags = 0;
1096
1097         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1098         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1099         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1100         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1101         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1102         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1103         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1104
1105         set_dr_intercepts(svm);
1106
1107         set_exception_intercept(svm, PF_VECTOR);
1108         set_exception_intercept(svm, UD_VECTOR);
1109         set_exception_intercept(svm, MC_VECTOR);
1110
1111         set_intercept(svm, INTERCEPT_INTR);
1112         set_intercept(svm, INTERCEPT_NMI);
1113         set_intercept(svm, INTERCEPT_SMI);
1114         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1115         set_intercept(svm, INTERCEPT_RDPMC);
1116         set_intercept(svm, INTERCEPT_CPUID);
1117         set_intercept(svm, INTERCEPT_INVD);
1118         set_intercept(svm, INTERCEPT_HLT);
1119         set_intercept(svm, INTERCEPT_INVLPG);
1120         set_intercept(svm, INTERCEPT_INVLPGA);
1121         set_intercept(svm, INTERCEPT_IOIO_PROT);
1122         set_intercept(svm, INTERCEPT_MSR_PROT);
1123         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1124         set_intercept(svm, INTERCEPT_SHUTDOWN);
1125         set_intercept(svm, INTERCEPT_VMRUN);
1126         set_intercept(svm, INTERCEPT_VMMCALL);
1127         set_intercept(svm, INTERCEPT_VMLOAD);
1128         set_intercept(svm, INTERCEPT_VMSAVE);
1129         set_intercept(svm, INTERCEPT_STGI);
1130         set_intercept(svm, INTERCEPT_CLGI);
1131         set_intercept(svm, INTERCEPT_SKINIT);
1132         set_intercept(svm, INTERCEPT_WBINVD);
1133         set_intercept(svm, INTERCEPT_MONITOR);
1134         set_intercept(svm, INTERCEPT_MWAIT);
1135         set_intercept(svm, INTERCEPT_XSETBV);
1136
1137         control->iopm_base_pa = iopm_base;
1138         control->msrpm_base_pa = __pa(svm->msrpm);
1139         control->int_ctl = V_INTR_MASKING_MASK;
1140
1141         init_seg(&save->es);
1142         init_seg(&save->ss);
1143         init_seg(&save->ds);
1144         init_seg(&save->fs);
1145         init_seg(&save->gs);
1146
1147         save->cs.selector = 0xf000;
1148         save->cs.base = 0xffff0000;
1149         /* Executable/Readable Code Segment */
1150         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1151                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1152         save->cs.limit = 0xffff;
1153
1154         save->gdtr.limit = 0xffff;
1155         save->idtr.limit = 0xffff;
1156
1157         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1158         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1159
1160         if (!init_event)
1161                 svm_set_efer(&svm->vcpu, 0);
1162         save->dr6 = 0xffff0ff0;
1163         kvm_set_rflags(&svm->vcpu, 2);
1164         save->rip = 0x0000fff0;
1165         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1166
1167         /*
1168          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1169          * It also updates the guest-visible cr0 value.
1170          */
1171         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1172         kvm_mmu_reset_context(&svm->vcpu);
1173
1174         save->cr4 = X86_CR4_PAE;
1175         /* rdx = ?? */
1176
1177         if (npt_enabled) {
1178                 /* Setup VMCB for Nested Paging */
1179                 control->nested_ctl = 1;
1180                 clr_intercept(svm, INTERCEPT_INVLPG);
1181                 clr_exception_intercept(svm, PF_VECTOR);
1182                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1183                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1184                 save->g_pat = svm->vcpu.arch.pat;
1185                 save->cr3 = 0;
1186                 save->cr4 = 0;
1187         }
1188         svm->asid_generation = 0;
1189
1190         svm->nested.vmcb = 0;
1191         svm->vcpu.arch.hflags = 0;
1192
1193         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1194                 control->pause_filter_count = 3000;
1195                 set_intercept(svm, INTERCEPT_PAUSE);
1196         }
1197
1198         mark_all_dirty(svm->vmcb);
1199
1200         enable_gif(svm);
1201 }
1202
1203 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1204 {
1205         struct vcpu_svm *svm = to_svm(vcpu);
1206         u32 dummy;
1207         u32 eax = 1;
1208
1209         if (!init_event) {
1210                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1211                                            MSR_IA32_APICBASE_ENABLE;
1212                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1213                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1214         }
1215         init_vmcb(svm, init_event);
1216
1217         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1218         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1219 }
1220
1221 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1222 {
1223         struct vcpu_svm *svm;
1224         struct page *page;
1225         struct page *msrpm_pages;
1226         struct page *hsave_page;
1227         struct page *nested_msrpm_pages;
1228         int err;
1229
1230         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1231         if (!svm) {
1232                 err = -ENOMEM;
1233                 goto out;
1234         }
1235
1236         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1237
1238         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1239         if (err)
1240                 goto free_svm;
1241
1242         err = -ENOMEM;
1243         page = alloc_page(GFP_KERNEL);
1244         if (!page)
1245                 goto uninit;
1246
1247         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1248         if (!msrpm_pages)
1249                 goto free_page1;
1250
1251         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1252         if (!nested_msrpm_pages)
1253                 goto free_page2;
1254
1255         hsave_page = alloc_page(GFP_KERNEL);
1256         if (!hsave_page)
1257                 goto free_page3;
1258
1259         svm->nested.hsave = page_address(hsave_page);
1260
1261         svm->msrpm = page_address(msrpm_pages);
1262         svm_vcpu_init_msrpm(svm->msrpm);
1263
1264         svm->nested.msrpm = page_address(nested_msrpm_pages);
1265         svm_vcpu_init_msrpm(svm->nested.msrpm);
1266
1267         svm->vmcb = page_address(page);
1268         clear_page(svm->vmcb);
1269         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1270         svm->asid_generation = 0;
1271         init_vmcb(svm, false);
1272
1273         svm_init_osvw(&svm->vcpu);
1274
1275         return &svm->vcpu;
1276
1277 free_page3:
1278         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1279 free_page2:
1280         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1281 free_page1:
1282         __free_page(page);
1283 uninit:
1284         kvm_vcpu_uninit(&svm->vcpu);
1285 free_svm:
1286         kmem_cache_free(kvm_vcpu_cache, svm);
1287 out:
1288         return ERR_PTR(err);
1289 }
1290
1291 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1292 {
1293         struct vcpu_svm *svm = to_svm(vcpu);
1294
1295         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1296         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1297         __free_page(virt_to_page(svm->nested.hsave));
1298         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1299         kvm_vcpu_uninit(vcpu);
1300         kmem_cache_free(kvm_vcpu_cache, svm);
1301 }
1302
1303 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1304 {
1305         struct vcpu_svm *svm = to_svm(vcpu);
1306         int i;
1307
1308         if (unlikely(cpu != vcpu->cpu)) {
1309                 svm->asid_generation = 0;
1310                 mark_all_dirty(svm->vmcb);
1311         }
1312
1313 #ifdef CONFIG_X86_64
1314         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1315 #endif
1316         savesegment(fs, svm->host.fs);
1317         savesegment(gs, svm->host.gs);
1318         svm->host.ldt = kvm_read_ldt();
1319
1320         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1321                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1322
1323         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1324             svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1325                 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1326                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1327         }
1328 }
1329
1330 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1331 {
1332         struct vcpu_svm *svm = to_svm(vcpu);
1333         int i;
1334
1335         ++vcpu->stat.host_state_reload;
1336         kvm_load_ldt(svm->host.ldt);
1337 #ifdef CONFIG_X86_64
1338         loadsegment(fs, svm->host.fs);
1339         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1340         load_gs_index(svm->host.gs);
1341 #else
1342 #ifdef CONFIG_X86_32_LAZY_GS
1343         loadsegment(gs, svm->host.gs);
1344 #endif
1345 #endif
1346         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1347                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1348 }
1349
1350 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1351 {
1352         return to_svm(vcpu)->vmcb->save.rflags;
1353 }
1354
1355 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1356 {
1357        /*
1358         * Any change of EFLAGS.VM is accompained by a reload of SS
1359         * (caused by either a task switch or an inter-privilege IRET),
1360         * so we do not need to update the CPL here.
1361         */
1362         to_svm(vcpu)->vmcb->save.rflags = rflags;
1363 }
1364
1365 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1366 {
1367         switch (reg) {
1368         case VCPU_EXREG_PDPTR:
1369                 BUG_ON(!npt_enabled);
1370                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1371                 break;
1372         default:
1373                 BUG();
1374         }
1375 }
1376
1377 static void svm_set_vintr(struct vcpu_svm *svm)
1378 {
1379         set_intercept(svm, INTERCEPT_VINTR);
1380 }
1381
1382 static void svm_clear_vintr(struct vcpu_svm *svm)
1383 {
1384         clr_intercept(svm, INTERCEPT_VINTR);
1385 }
1386
1387 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1388 {
1389         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1390
1391         switch (seg) {
1392         case VCPU_SREG_CS: return &save->cs;
1393         case VCPU_SREG_DS: return &save->ds;
1394         case VCPU_SREG_ES: return &save->es;
1395         case VCPU_SREG_FS: return &save->fs;
1396         case VCPU_SREG_GS: return &save->gs;
1397         case VCPU_SREG_SS: return &save->ss;
1398         case VCPU_SREG_TR: return &save->tr;
1399         case VCPU_SREG_LDTR: return &save->ldtr;
1400         }
1401         BUG();
1402         return NULL;
1403 }
1404
1405 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1406 {
1407         struct vmcb_seg *s = svm_seg(vcpu, seg);
1408
1409         return s->base;
1410 }
1411
1412 static void svm_get_segment(struct kvm_vcpu *vcpu,
1413                             struct kvm_segment *var, int seg)
1414 {
1415         struct vmcb_seg *s = svm_seg(vcpu, seg);
1416
1417         var->base = s->base;
1418         var->limit = s->limit;
1419         var->selector = s->selector;
1420         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1421         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1422         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1423         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1424         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1425         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1426         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1427
1428         /*
1429          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1430          * However, the SVM spec states that the G bit is not observed by the
1431          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1432          * So let's synthesize a legal G bit for all segments, this helps
1433          * running KVM nested. It also helps cross-vendor migration, because
1434          * Intel's vmentry has a check on the 'G' bit.
1435          */
1436         var->g = s->limit > 0xfffff;
1437
1438         /*
1439          * AMD's VMCB does not have an explicit unusable field, so emulate it
1440          * for cross vendor migration purposes by "not present"
1441          */
1442         var->unusable = !var->present || (var->type == 0);
1443
1444         switch (seg) {
1445         case VCPU_SREG_TR:
1446                 /*
1447                  * Work around a bug where the busy flag in the tr selector
1448                  * isn't exposed
1449                  */
1450                 var->type |= 0x2;
1451                 break;
1452         case VCPU_SREG_DS:
1453         case VCPU_SREG_ES:
1454         case VCPU_SREG_FS:
1455         case VCPU_SREG_GS:
1456                 /*
1457                  * The accessed bit must always be set in the segment
1458                  * descriptor cache, although it can be cleared in the
1459                  * descriptor, the cached bit always remains at 1. Since
1460                  * Intel has a check on this, set it here to support
1461                  * cross-vendor migration.
1462                  */
1463                 if (!var->unusable)
1464                         var->type |= 0x1;
1465                 break;
1466         case VCPU_SREG_SS:
1467                 /*
1468                  * On AMD CPUs sometimes the DB bit in the segment
1469                  * descriptor is left as 1, although the whole segment has
1470                  * been made unusable. Clear it here to pass an Intel VMX
1471                  * entry check when cross vendor migrating.
1472                  */
1473                 if (var->unusable)
1474                         var->db = 0;
1475                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1476                 break;
1477         }
1478 }
1479
1480 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1481 {
1482         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1483
1484         return save->cpl;
1485 }
1486
1487 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1488 {
1489         struct vcpu_svm *svm = to_svm(vcpu);
1490
1491         dt->size = svm->vmcb->save.idtr.limit;
1492         dt->address = svm->vmcb->save.idtr.base;
1493 }
1494
1495 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1496 {
1497         struct vcpu_svm *svm = to_svm(vcpu);
1498
1499         svm->vmcb->save.idtr.limit = dt->size;
1500         svm->vmcb->save.idtr.base = dt->address ;
1501         mark_dirty(svm->vmcb, VMCB_DT);
1502 }
1503
1504 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1505 {
1506         struct vcpu_svm *svm = to_svm(vcpu);
1507
1508         dt->size = svm->vmcb->save.gdtr.limit;
1509         dt->address = svm->vmcb->save.gdtr.base;
1510 }
1511
1512 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1513 {
1514         struct vcpu_svm *svm = to_svm(vcpu);
1515
1516         svm->vmcb->save.gdtr.limit = dt->size;
1517         svm->vmcb->save.gdtr.base = dt->address ;
1518         mark_dirty(svm->vmcb, VMCB_DT);
1519 }
1520
1521 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1522 {
1523 }
1524
1525 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1526 {
1527 }
1528
1529 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1530 {
1531 }
1532
1533 static void update_cr0_intercept(struct vcpu_svm *svm)
1534 {
1535         ulong gcr0 = svm->vcpu.arch.cr0;
1536         u64 *hcr0 = &svm->vmcb->save.cr0;
1537
1538         if (!svm->vcpu.fpu_active)
1539                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1540         else
1541                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1542                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1543
1544         mark_dirty(svm->vmcb, VMCB_CR);
1545
1546         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1547                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1548                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1549         } else {
1550                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1551                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1552         }
1553 }
1554
1555 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1556 {
1557         struct vcpu_svm *svm = to_svm(vcpu);
1558
1559 #ifdef CONFIG_X86_64
1560         if (vcpu->arch.efer & EFER_LME) {
1561                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1562                         vcpu->arch.efer |= EFER_LMA;
1563                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1564                 }
1565
1566                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1567                         vcpu->arch.efer &= ~EFER_LMA;
1568                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1569                 }
1570         }
1571 #endif
1572         vcpu->arch.cr0 = cr0;
1573
1574         if (!npt_enabled)
1575                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1576
1577         if (!vcpu->fpu_active)
1578                 cr0 |= X86_CR0_TS;
1579         /*
1580          * re-enable caching here because the QEMU bios
1581          * does not do it - this results in some delay at
1582          * reboot
1583          */
1584         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1585                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1586         svm->vmcb->save.cr0 = cr0;
1587         mark_dirty(svm->vmcb, VMCB_CR);
1588         update_cr0_intercept(svm);
1589 }
1590
1591 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1592 {
1593         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1594         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1595
1596         if (cr4 & X86_CR4_VMXE)
1597                 return 1;
1598
1599         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1600                 svm_flush_tlb(vcpu);
1601
1602         vcpu->arch.cr4 = cr4;
1603         if (!npt_enabled)
1604                 cr4 |= X86_CR4_PAE;
1605         cr4 |= host_cr4_mce;
1606         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1607         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1608         return 0;
1609 }
1610
1611 static void svm_set_segment(struct kvm_vcpu *vcpu,
1612                             struct kvm_segment *var, int seg)
1613 {
1614         struct vcpu_svm *svm = to_svm(vcpu);
1615         struct vmcb_seg *s = svm_seg(vcpu, seg);
1616
1617         s->base = var->base;
1618         s->limit = var->limit;
1619         s->selector = var->selector;
1620         if (var->unusable)
1621                 s->attrib = 0;
1622         else {
1623                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1624                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1625                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1626                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1627                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1628                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1629                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1630                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1631         }
1632
1633         /*
1634          * This is always accurate, except if SYSRET returned to a segment
1635          * with SS.DPL != 3.  Intel does not have this quirk, and always
1636          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1637          * would entail passing the CPL to userspace and back.
1638          */
1639         if (seg == VCPU_SREG_SS)
1640                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1641
1642         mark_dirty(svm->vmcb, VMCB_SEG);
1643 }
1644
1645 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1646 {
1647         struct vcpu_svm *svm = to_svm(vcpu);
1648
1649         clr_exception_intercept(svm, DB_VECTOR);
1650         clr_exception_intercept(svm, BP_VECTOR);
1651
1652         if (svm->nmi_singlestep)
1653                 set_exception_intercept(svm, DB_VECTOR);
1654
1655         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1656                 if (vcpu->guest_debug &
1657                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1658                         set_exception_intercept(svm, DB_VECTOR);
1659                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1660                         set_exception_intercept(svm, BP_VECTOR);
1661         } else
1662                 vcpu->guest_debug = 0;
1663 }
1664
1665 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1666 {
1667         if (sd->next_asid > sd->max_asid) {
1668                 ++sd->asid_generation;
1669                 sd->next_asid = 1;
1670                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1671         }
1672
1673         svm->asid_generation = sd->asid_generation;
1674         svm->vmcb->control.asid = sd->next_asid++;
1675
1676         mark_dirty(svm->vmcb, VMCB_ASID);
1677 }
1678
1679 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1680 {
1681         return to_svm(vcpu)->vmcb->save.dr6;
1682 }
1683
1684 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1685 {
1686         struct vcpu_svm *svm = to_svm(vcpu);
1687
1688         svm->vmcb->save.dr6 = value;
1689         mark_dirty(svm->vmcb, VMCB_DR);
1690 }
1691
1692 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1693 {
1694         struct vcpu_svm *svm = to_svm(vcpu);
1695
1696         get_debugreg(vcpu->arch.db[0], 0);
1697         get_debugreg(vcpu->arch.db[1], 1);
1698         get_debugreg(vcpu->arch.db[2], 2);
1699         get_debugreg(vcpu->arch.db[3], 3);
1700         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1701         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1702
1703         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1704         set_dr_intercepts(svm);
1705 }
1706
1707 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1708 {
1709         struct vcpu_svm *svm = to_svm(vcpu);
1710
1711         svm->vmcb->save.dr7 = value;
1712         mark_dirty(svm->vmcb, VMCB_DR);
1713 }
1714
1715 static int pf_interception(struct vcpu_svm *svm)
1716 {
1717         u64 fault_address = svm->vmcb->control.exit_info_2;
1718         u32 error_code;
1719         int r = 1;
1720
1721         switch (svm->apf_reason) {
1722         default:
1723                 error_code = svm->vmcb->control.exit_info_1;
1724
1725                 trace_kvm_page_fault(fault_address, error_code);
1726                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1727                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1728                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1729                         svm->vmcb->control.insn_bytes,
1730                         svm->vmcb->control.insn_len);
1731                 break;
1732         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1733                 svm->apf_reason = 0;
1734                 local_irq_disable();
1735                 kvm_async_pf_task_wait(fault_address);
1736                 local_irq_enable();
1737                 break;
1738         case KVM_PV_REASON_PAGE_READY:
1739                 svm->apf_reason = 0;
1740                 local_irq_disable();
1741                 kvm_async_pf_task_wake(fault_address);
1742                 local_irq_enable();
1743                 break;
1744         }
1745         return r;
1746 }
1747
1748 static int db_interception(struct vcpu_svm *svm)
1749 {
1750         struct kvm_run *kvm_run = svm->vcpu.run;
1751
1752         if (!(svm->vcpu.guest_debug &
1753               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1754                 !svm->nmi_singlestep) {
1755                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1756                 return 1;
1757         }
1758
1759         if (svm->nmi_singlestep) {
1760                 svm->nmi_singlestep = false;
1761                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1762                         svm->vmcb->save.rflags &=
1763                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1764                 update_db_bp_intercept(&svm->vcpu);
1765         }
1766
1767         if (svm->vcpu.guest_debug &
1768             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1769                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1770                 kvm_run->debug.arch.pc =
1771                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1772                 kvm_run->debug.arch.exception = DB_VECTOR;
1773                 return 0;
1774         }
1775
1776         return 1;
1777 }
1778
1779 static int bp_interception(struct vcpu_svm *svm)
1780 {
1781         struct kvm_run *kvm_run = svm->vcpu.run;
1782
1783         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1784         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1785         kvm_run->debug.arch.exception = BP_VECTOR;
1786         return 0;
1787 }
1788
1789 static int ud_interception(struct vcpu_svm *svm)
1790 {
1791         int er;
1792
1793         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1794         if (er != EMULATE_DONE)
1795                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1796         return 1;
1797 }
1798
1799 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1800 {
1801         struct vcpu_svm *svm = to_svm(vcpu);
1802
1803         clr_exception_intercept(svm, NM_VECTOR);
1804
1805         svm->vcpu.fpu_active = 1;
1806         update_cr0_intercept(svm);
1807 }
1808
1809 static int nm_interception(struct vcpu_svm *svm)
1810 {
1811         svm_fpu_activate(&svm->vcpu);
1812         return 1;
1813 }
1814
1815 static bool is_erratum_383(void)
1816 {
1817         int err, i;
1818         u64 value;
1819
1820         if (!erratum_383_found)
1821                 return false;
1822
1823         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1824         if (err)
1825                 return false;
1826
1827         /* Bit 62 may or may not be set for this mce */
1828         value &= ~(1ULL << 62);
1829
1830         if (value != 0xb600000000010015ULL)
1831                 return false;
1832
1833         /* Clear MCi_STATUS registers */
1834         for (i = 0; i < 6; ++i)
1835                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1836
1837         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1838         if (!err) {
1839                 u32 low, high;
1840
1841                 value &= ~(1ULL << 2);
1842                 low    = lower_32_bits(value);
1843                 high   = upper_32_bits(value);
1844
1845                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1846         }
1847
1848         /* Flush tlb to evict multi-match entries */
1849         __flush_tlb_all();
1850
1851         return true;
1852 }
1853
1854 static void svm_handle_mce(struct vcpu_svm *svm)
1855 {
1856         if (is_erratum_383()) {
1857                 /*
1858                  * Erratum 383 triggered. Guest state is corrupt so kill the
1859                  * guest.
1860                  */
1861                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1862
1863                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1864
1865                 return;
1866         }
1867
1868         /*
1869          * On an #MC intercept the MCE handler is not called automatically in
1870          * the host. So do it by hand here.
1871          */
1872         asm volatile (
1873                 "int $0x12\n");
1874         /* not sure if we ever come back to this point */
1875
1876         return;
1877 }
1878
1879 static int mc_interception(struct vcpu_svm *svm)
1880 {
1881         return 1;
1882 }
1883
1884 static int shutdown_interception(struct vcpu_svm *svm)
1885 {
1886         struct kvm_run *kvm_run = svm->vcpu.run;
1887
1888         /*
1889          * VMCB is undefined after a SHUTDOWN intercept
1890          * so reinitialize it.
1891          */
1892         clear_page(svm->vmcb);
1893         init_vmcb(svm, false);
1894
1895         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1896         return 0;
1897 }
1898
1899 static int io_interception(struct vcpu_svm *svm)
1900 {
1901         struct kvm_vcpu *vcpu = &svm->vcpu;
1902         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1903         int size, in, string;
1904         unsigned port;
1905
1906         ++svm->vcpu.stat.io_exits;
1907         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1908         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1909         if (string || in)
1910                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1911
1912         port = io_info >> 16;
1913         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1914         svm->next_rip = svm->vmcb->control.exit_info_2;
1915         skip_emulated_instruction(&svm->vcpu);
1916
1917         return kvm_fast_pio_out(vcpu, size, port);
1918 }
1919
1920 static int nmi_interception(struct vcpu_svm *svm)
1921 {
1922         return 1;
1923 }
1924
1925 static int intr_interception(struct vcpu_svm *svm)
1926 {
1927         ++svm->vcpu.stat.irq_exits;
1928         return 1;
1929 }
1930
1931 static int nop_on_interception(struct vcpu_svm *svm)
1932 {
1933         return 1;
1934 }
1935
1936 static int halt_interception(struct vcpu_svm *svm)
1937 {
1938         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1939         return kvm_emulate_halt(&svm->vcpu);
1940 }
1941
1942 static int vmmcall_interception(struct vcpu_svm *svm)
1943 {
1944         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1945         kvm_emulate_hypercall(&svm->vcpu);
1946         return 1;
1947 }
1948
1949 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1950 {
1951         struct vcpu_svm *svm = to_svm(vcpu);
1952
1953         return svm->nested.nested_cr3;
1954 }
1955
1956 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1957 {
1958         struct vcpu_svm *svm = to_svm(vcpu);
1959         u64 cr3 = svm->nested.nested_cr3;
1960         u64 pdpte;
1961         int ret;
1962
1963         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
1964                                        offset_in_page(cr3) + index * 8, 8);
1965         if (ret)
1966                 return 0;
1967         return pdpte;
1968 }
1969
1970 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1971                                    unsigned long root)
1972 {
1973         struct vcpu_svm *svm = to_svm(vcpu);
1974
1975         svm->vmcb->control.nested_cr3 = root;
1976         mark_dirty(svm->vmcb, VMCB_NPT);
1977         svm_flush_tlb(vcpu);
1978 }
1979
1980 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1981                                        struct x86_exception *fault)
1982 {
1983         struct vcpu_svm *svm = to_svm(vcpu);
1984
1985         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1986                 /*
1987                  * TODO: track the cause of the nested page fault, and
1988                  * correctly fill in the high bits of exit_info_1.
1989                  */
1990                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1991                 svm->vmcb->control.exit_code_hi = 0;
1992                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1993                 svm->vmcb->control.exit_info_2 = fault->address;
1994         }
1995
1996         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1997         svm->vmcb->control.exit_info_1 |= fault->error_code;
1998
1999         /*
2000          * The present bit is always zero for page structure faults on real
2001          * hardware.
2002          */
2003         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2004                 svm->vmcb->control.exit_info_1 &= ~1;
2005
2006         nested_svm_vmexit(svm);
2007 }
2008
2009 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2010 {
2011         WARN_ON(mmu_is_nested(vcpu));
2012         kvm_init_shadow_mmu(vcpu);
2013         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2014         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2015         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2016         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2017         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2018         reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2019         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2020 }
2021
2022 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2023 {
2024         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2025 }
2026
2027 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2028 {
2029         if (!(svm->vcpu.arch.efer & EFER_SVME)
2030             || !is_paging(&svm->vcpu)) {
2031                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2032                 return 1;
2033         }
2034
2035         if (svm->vmcb->save.cpl) {
2036                 kvm_inject_gp(&svm->vcpu, 0);
2037                 return 1;
2038         }
2039
2040        return 0;
2041 }
2042
2043 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2044                                       bool has_error_code, u32 error_code)
2045 {
2046         int vmexit;
2047
2048         if (!is_guest_mode(&svm->vcpu))
2049                 return 0;
2050
2051         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2052         svm->vmcb->control.exit_code_hi = 0;
2053         svm->vmcb->control.exit_info_1 = error_code;
2054         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2055
2056         vmexit = nested_svm_intercept(svm);
2057         if (vmexit == NESTED_EXIT_DONE)
2058                 svm->nested.exit_required = true;
2059
2060         return vmexit;
2061 }
2062
2063 /* This function returns true if it is save to enable the irq window */
2064 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2065 {
2066         if (!is_guest_mode(&svm->vcpu))
2067                 return true;
2068
2069         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2070                 return true;
2071
2072         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2073                 return false;
2074
2075         /*
2076          * if vmexit was already requested (by intercepted exception
2077          * for instance) do not overwrite it with "external interrupt"
2078          * vmexit.
2079          */
2080         if (svm->nested.exit_required)
2081                 return false;
2082
2083         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2084         svm->vmcb->control.exit_info_1 = 0;
2085         svm->vmcb->control.exit_info_2 = 0;
2086
2087         if (svm->nested.intercept & 1ULL) {
2088                 /*
2089                  * The #vmexit can't be emulated here directly because this
2090                  * code path runs with irqs and preemption disabled. A
2091                  * #vmexit emulation might sleep. Only signal request for
2092                  * the #vmexit here.
2093                  */
2094                 svm->nested.exit_required = true;
2095                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2096                 return false;
2097         }
2098
2099         return true;
2100 }
2101
2102 /* This function returns true if it is save to enable the nmi window */
2103 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2104 {
2105         if (!is_guest_mode(&svm->vcpu))
2106                 return true;
2107
2108         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2109                 return true;
2110
2111         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2112         svm->nested.exit_required = true;
2113
2114         return false;
2115 }
2116
2117 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2118 {
2119         struct page *page;
2120
2121         might_sleep();
2122
2123         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2124         if (is_error_page(page))
2125                 goto error;
2126
2127         *_page = page;
2128
2129         return kmap(page);
2130
2131 error:
2132         kvm_inject_gp(&svm->vcpu, 0);
2133
2134         return NULL;
2135 }
2136
2137 static void nested_svm_unmap(struct page *page)
2138 {
2139         kunmap(page);
2140         kvm_release_page_dirty(page);
2141 }
2142
2143 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2144 {
2145         unsigned port, size, iopm_len;
2146         u16 val, mask;
2147         u8 start_bit;
2148         u64 gpa;
2149
2150         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2151                 return NESTED_EXIT_HOST;
2152
2153         port = svm->vmcb->control.exit_info_1 >> 16;
2154         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2155                 SVM_IOIO_SIZE_SHIFT;
2156         gpa  = svm->nested.vmcb_iopm + (port / 8);
2157         start_bit = port % 8;
2158         iopm_len = (start_bit + size > 8) ? 2 : 1;
2159         mask = (0xf >> (4 - size)) << start_bit;
2160         val = 0;
2161
2162         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2163                 return NESTED_EXIT_DONE;
2164
2165         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2166 }
2167
2168 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2169 {
2170         u32 offset, msr, value;
2171         int write, mask;
2172
2173         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2174                 return NESTED_EXIT_HOST;
2175
2176         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2177         offset = svm_msrpm_offset(msr);
2178         write  = svm->vmcb->control.exit_info_1 & 1;
2179         mask   = 1 << ((2 * (msr & 0xf)) + write);
2180
2181         if (offset == MSR_INVALID)
2182                 return NESTED_EXIT_DONE;
2183
2184         /* Offset is in 32 bit units but need in 8 bit units */
2185         offset *= 4;
2186
2187         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2188                 return NESTED_EXIT_DONE;
2189
2190         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2191 }
2192
2193 static int nested_svm_exit_special(struct vcpu_svm *svm)
2194 {
2195         u32 exit_code = svm->vmcb->control.exit_code;
2196
2197         switch (exit_code) {
2198         case SVM_EXIT_INTR:
2199         case SVM_EXIT_NMI:
2200         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2201                 return NESTED_EXIT_HOST;
2202         case SVM_EXIT_NPF:
2203                 /* For now we are always handling NPFs when using them */
2204                 if (npt_enabled)
2205                         return NESTED_EXIT_HOST;
2206                 break;
2207         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2208                 /* When we're shadowing, trap PFs, but not async PF */
2209                 if (!npt_enabled && svm->apf_reason == 0)
2210                         return NESTED_EXIT_HOST;
2211                 break;
2212         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2213                 nm_interception(svm);
2214                 break;
2215         default:
2216                 break;
2217         }
2218
2219         return NESTED_EXIT_CONTINUE;
2220 }
2221
2222 /*
2223  * If this function returns true, this #vmexit was already handled
2224  */
2225 static int nested_svm_intercept(struct vcpu_svm *svm)
2226 {
2227         u32 exit_code = svm->vmcb->control.exit_code;
2228         int vmexit = NESTED_EXIT_HOST;
2229
2230         switch (exit_code) {
2231         case SVM_EXIT_MSR:
2232                 vmexit = nested_svm_exit_handled_msr(svm);
2233                 break;
2234         case SVM_EXIT_IOIO:
2235                 vmexit = nested_svm_intercept_ioio(svm);
2236                 break;
2237         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2238                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2239                 if (svm->nested.intercept_cr & bit)
2240                         vmexit = NESTED_EXIT_DONE;
2241                 break;
2242         }
2243         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2244                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2245                 if (svm->nested.intercept_dr & bit)
2246                         vmexit = NESTED_EXIT_DONE;
2247                 break;
2248         }
2249         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2250                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2251                 if (svm->nested.intercept_exceptions & excp_bits)
2252                         vmexit = NESTED_EXIT_DONE;
2253                 /* async page fault always cause vmexit */
2254                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2255                          svm->apf_reason != 0)
2256                         vmexit = NESTED_EXIT_DONE;
2257                 break;
2258         }
2259         case SVM_EXIT_ERR: {
2260                 vmexit = NESTED_EXIT_DONE;
2261                 break;
2262         }
2263         default: {
2264                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2265                 if (svm->nested.intercept & exit_bits)
2266                         vmexit = NESTED_EXIT_DONE;
2267         }
2268         }
2269
2270         return vmexit;
2271 }
2272
2273 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2274 {
2275         int vmexit;
2276
2277         vmexit = nested_svm_intercept(svm);
2278
2279         if (vmexit == NESTED_EXIT_DONE)
2280                 nested_svm_vmexit(svm);
2281
2282         return vmexit;
2283 }
2284
2285 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2286 {
2287         struct vmcb_control_area *dst  = &dst_vmcb->control;
2288         struct vmcb_control_area *from = &from_vmcb->control;
2289
2290         dst->intercept_cr         = from->intercept_cr;
2291         dst->intercept_dr         = from->intercept_dr;
2292         dst->intercept_exceptions = from->intercept_exceptions;
2293         dst->intercept            = from->intercept;
2294         dst->iopm_base_pa         = from->iopm_base_pa;
2295         dst->msrpm_base_pa        = from->msrpm_base_pa;
2296         dst->tsc_offset           = from->tsc_offset;
2297         dst->asid                 = from->asid;
2298         dst->tlb_ctl              = from->tlb_ctl;
2299         dst->int_ctl              = from->int_ctl;
2300         dst->int_vector           = from->int_vector;
2301         dst->int_state            = from->int_state;
2302         dst->exit_code            = from->exit_code;
2303         dst->exit_code_hi         = from->exit_code_hi;
2304         dst->exit_info_1          = from->exit_info_1;
2305         dst->exit_info_2          = from->exit_info_2;
2306         dst->exit_int_info        = from->exit_int_info;
2307         dst->exit_int_info_err    = from->exit_int_info_err;
2308         dst->nested_ctl           = from->nested_ctl;
2309         dst->event_inj            = from->event_inj;
2310         dst->event_inj_err        = from->event_inj_err;
2311         dst->nested_cr3           = from->nested_cr3;
2312         dst->lbr_ctl              = from->lbr_ctl;
2313 }
2314
2315 static int nested_svm_vmexit(struct vcpu_svm *svm)
2316 {
2317         struct vmcb *nested_vmcb;
2318         struct vmcb *hsave = svm->nested.hsave;
2319         struct vmcb *vmcb = svm->vmcb;
2320         struct page *page;
2321
2322         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2323                                        vmcb->control.exit_info_1,
2324                                        vmcb->control.exit_info_2,
2325                                        vmcb->control.exit_int_info,
2326                                        vmcb->control.exit_int_info_err,
2327                                        KVM_ISA_SVM);
2328
2329         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2330         if (!nested_vmcb)
2331                 return 1;
2332
2333         /* Exit Guest-Mode */
2334         leave_guest_mode(&svm->vcpu);
2335         svm->nested.vmcb = 0;
2336
2337         /* Give the current vmcb to the guest */
2338         disable_gif(svm);
2339
2340         nested_vmcb->save.es     = vmcb->save.es;
2341         nested_vmcb->save.cs     = vmcb->save.cs;
2342         nested_vmcb->save.ss     = vmcb->save.ss;
2343         nested_vmcb->save.ds     = vmcb->save.ds;
2344         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2345         nested_vmcb->save.idtr   = vmcb->save.idtr;
2346         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2347         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2348         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2349         nested_vmcb->save.cr2    = vmcb->save.cr2;
2350         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2351         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2352         nested_vmcb->save.rip    = vmcb->save.rip;
2353         nested_vmcb->save.rsp    = vmcb->save.rsp;
2354         nested_vmcb->save.rax    = vmcb->save.rax;
2355         nested_vmcb->save.dr7    = vmcb->save.dr7;
2356         nested_vmcb->save.dr6    = vmcb->save.dr6;
2357         nested_vmcb->save.cpl    = vmcb->save.cpl;
2358
2359         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2360         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2361         nested_vmcb->control.int_state         = vmcb->control.int_state;
2362         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2363         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2364         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2365         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2366         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2367         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2368         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2369
2370         /*
2371          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2372          * to make sure that we do not lose injected events. So check event_inj
2373          * here and copy it to exit_int_info if it is valid.
2374          * Exit_int_info and event_inj can't be both valid because the case
2375          * below only happens on a VMRUN instruction intercept which has
2376          * no valid exit_int_info set.
2377          */
2378         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2379                 struct vmcb_control_area *nc = &nested_vmcb->control;
2380
2381                 nc->exit_int_info     = vmcb->control.event_inj;
2382                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2383         }
2384
2385         nested_vmcb->control.tlb_ctl           = 0;
2386         nested_vmcb->control.event_inj         = 0;
2387         nested_vmcb->control.event_inj_err     = 0;
2388
2389         /* We always set V_INTR_MASKING and remember the old value in hflags */
2390         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2391                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2392
2393         /* Restore the original control entries */
2394         copy_vmcb_control_area(vmcb, hsave);
2395
2396         kvm_clear_exception_queue(&svm->vcpu);
2397         kvm_clear_interrupt_queue(&svm->vcpu);
2398
2399         svm->nested.nested_cr3 = 0;
2400
2401         /* Restore selected save entries */
2402         svm->vmcb->save.es = hsave->save.es;
2403         svm->vmcb->save.cs = hsave->save.cs;
2404         svm->vmcb->save.ss = hsave->save.ss;
2405         svm->vmcb->save.ds = hsave->save.ds;
2406         svm->vmcb->save.gdtr = hsave->save.gdtr;
2407         svm->vmcb->save.idtr = hsave->save.idtr;
2408         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2409         svm_set_efer(&svm->vcpu, hsave->save.efer);
2410         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2411         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2412         if (npt_enabled) {
2413                 svm->vmcb->save.cr3 = hsave->save.cr3;
2414                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2415         } else {
2416                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2417         }
2418         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2419         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2420         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2421         svm->vmcb->save.dr7 = 0;
2422         svm->vmcb->save.cpl = 0;
2423         svm->vmcb->control.exit_int_info = 0;
2424
2425         mark_all_dirty(svm->vmcb);
2426
2427         nested_svm_unmap(page);
2428
2429         nested_svm_uninit_mmu_context(&svm->vcpu);
2430         kvm_mmu_reset_context(&svm->vcpu);
2431         kvm_mmu_load(&svm->vcpu);
2432
2433         return 0;
2434 }
2435
2436 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2437 {
2438         /*
2439          * This function merges the msr permission bitmaps of kvm and the
2440          * nested vmcb. It is optimized in that it only merges the parts where
2441          * the kvm msr permission bitmap may contain zero bits
2442          */
2443         int i;
2444
2445         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2446                 return true;
2447
2448         for (i = 0; i < MSRPM_OFFSETS; i++) {
2449                 u32 value, p;
2450                 u64 offset;
2451
2452                 if (msrpm_offsets[i] == 0xffffffff)
2453                         break;
2454
2455                 p      = msrpm_offsets[i];
2456                 offset = svm->nested.vmcb_msrpm + (p * 4);
2457
2458                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2459                         return false;
2460
2461                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2462         }
2463
2464         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2465
2466         return true;
2467 }
2468
2469 static bool nested_vmcb_checks(struct vmcb *vmcb)
2470 {
2471         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2472                 return false;
2473
2474         if (vmcb->control.asid == 0)
2475                 return false;
2476
2477         if (vmcb->control.nested_ctl && !npt_enabled)
2478                 return false;
2479
2480         return true;
2481 }
2482
2483 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2484 {
2485         struct vmcb *nested_vmcb;
2486         struct vmcb *hsave = svm->nested.hsave;
2487         struct vmcb *vmcb = svm->vmcb;
2488         struct page *page;
2489         u64 vmcb_gpa;
2490
2491         vmcb_gpa = svm->vmcb->save.rax;
2492
2493         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2494         if (!nested_vmcb)
2495                 return false;
2496
2497         if (!nested_vmcb_checks(nested_vmcb)) {
2498                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2499                 nested_vmcb->control.exit_code_hi = 0;
2500                 nested_vmcb->control.exit_info_1  = 0;
2501                 nested_vmcb->control.exit_info_2  = 0;
2502
2503                 nested_svm_unmap(page);
2504
2505                 return false;
2506         }
2507
2508         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2509                                nested_vmcb->save.rip,
2510                                nested_vmcb->control.int_ctl,
2511                                nested_vmcb->control.event_inj,
2512                                nested_vmcb->control.nested_ctl);
2513
2514         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2515                                     nested_vmcb->control.intercept_cr >> 16,
2516                                     nested_vmcb->control.intercept_exceptions,
2517                                     nested_vmcb->control.intercept);
2518
2519         /* Clear internal status */
2520         kvm_clear_exception_queue(&svm->vcpu);
2521         kvm_clear_interrupt_queue(&svm->vcpu);
2522
2523         /*
2524          * Save the old vmcb, so we don't need to pick what we save, but can
2525          * restore everything when a VMEXIT occurs
2526          */
2527         hsave->save.es     = vmcb->save.es;
2528         hsave->save.cs     = vmcb->save.cs;
2529         hsave->save.ss     = vmcb->save.ss;
2530         hsave->save.ds     = vmcb->save.ds;
2531         hsave->save.gdtr   = vmcb->save.gdtr;
2532         hsave->save.idtr   = vmcb->save.idtr;
2533         hsave->save.efer   = svm->vcpu.arch.efer;
2534         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2535         hsave->save.cr4    = svm->vcpu.arch.cr4;
2536         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2537         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2538         hsave->save.rsp    = vmcb->save.rsp;
2539         hsave->save.rax    = vmcb->save.rax;
2540         if (npt_enabled)
2541                 hsave->save.cr3    = vmcb->save.cr3;
2542         else
2543                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2544
2545         copy_vmcb_control_area(hsave, vmcb);
2546
2547         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2548                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2549         else
2550                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2551
2552         if (nested_vmcb->control.nested_ctl) {
2553                 kvm_mmu_unload(&svm->vcpu);
2554                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2555                 nested_svm_init_mmu_context(&svm->vcpu);
2556         }
2557
2558         /* Load the nested guest state */
2559         svm->vmcb->save.es = nested_vmcb->save.es;
2560         svm->vmcb->save.cs = nested_vmcb->save.cs;
2561         svm->vmcb->save.ss = nested_vmcb->save.ss;
2562         svm->vmcb->save.ds = nested_vmcb->save.ds;
2563         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2564         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2565         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2566         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2567         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2568         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2569         if (npt_enabled) {
2570                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2571                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2572         } else
2573                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2574
2575         /* Guest paging mode is active - reset mmu */
2576         kvm_mmu_reset_context(&svm->vcpu);
2577
2578         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2579         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2580         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2581         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2582
2583         /* In case we don't even reach vcpu_run, the fields are not updated */
2584         svm->vmcb->save.rax = nested_vmcb->save.rax;
2585         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2586         svm->vmcb->save.rip = nested_vmcb->save.rip;
2587         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2588         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2589         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2590
2591         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2592         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2593
2594         /* cache intercepts */
2595         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2596         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2597         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2598         svm->nested.intercept            = nested_vmcb->control.intercept;
2599
2600         svm_flush_tlb(&svm->vcpu);
2601         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2602         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2603                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2604         else
2605                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2606
2607         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2608                 /* We only want the cr8 intercept bits of the guest */
2609                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2610                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2611         }
2612
2613         /* We don't want to see VMMCALLs from a nested guest */
2614         clr_intercept(svm, INTERCEPT_VMMCALL);
2615
2616         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2617         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2618         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2619         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2620         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2621         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2622
2623         nested_svm_unmap(page);
2624
2625         /* Enter Guest-Mode */
2626         enter_guest_mode(&svm->vcpu);
2627
2628         /*
2629          * Merge guest and host intercepts - must be called  with vcpu in
2630          * guest-mode to take affect here
2631          */
2632         recalc_intercepts(svm);
2633
2634         svm->nested.vmcb = vmcb_gpa;
2635
2636         enable_gif(svm);
2637
2638         mark_all_dirty(svm->vmcb);
2639
2640         return true;
2641 }
2642
2643 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2644 {
2645         to_vmcb->save.fs = from_vmcb->save.fs;
2646         to_vmcb->save.gs = from_vmcb->save.gs;
2647         to_vmcb->save.tr = from_vmcb->save.tr;
2648         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2649         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2650         to_vmcb->save.star = from_vmcb->save.star;
2651         to_vmcb->save.lstar = from_vmcb->save.lstar;
2652         to_vmcb->save.cstar = from_vmcb->save.cstar;
2653         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2654         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2655         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2656         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2657 }
2658
2659 static int vmload_interception(struct vcpu_svm *svm)
2660 {
2661         struct vmcb *nested_vmcb;
2662         struct page *page;
2663
2664         if (nested_svm_check_permissions(svm))
2665                 return 1;
2666
2667         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2668         if (!nested_vmcb)
2669                 return 1;
2670
2671         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2672         skip_emulated_instruction(&svm->vcpu);
2673
2674         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2675         nested_svm_unmap(page);
2676
2677         return 1;
2678 }
2679
2680 static int vmsave_interception(struct vcpu_svm *svm)
2681 {
2682         struct vmcb *nested_vmcb;
2683         struct page *page;
2684
2685         if (nested_svm_check_permissions(svm))
2686                 return 1;
2687
2688         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2689         if (!nested_vmcb)
2690                 return 1;
2691
2692         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2693         skip_emulated_instruction(&svm->vcpu);
2694
2695         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2696         nested_svm_unmap(page);
2697
2698         return 1;
2699 }
2700
2701 static int vmrun_interception(struct vcpu_svm *svm)
2702 {
2703         if (nested_svm_check_permissions(svm))
2704                 return 1;
2705
2706         /* Save rip after vmrun instruction */
2707         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2708
2709         if (!nested_svm_vmrun(svm))
2710                 return 1;
2711
2712         if (!nested_svm_vmrun_msrpm(svm))
2713                 goto failed;
2714
2715         return 1;
2716
2717 failed:
2718
2719         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2720         svm->vmcb->control.exit_code_hi = 0;
2721         svm->vmcb->control.exit_info_1  = 0;
2722         svm->vmcb->control.exit_info_2  = 0;
2723
2724         nested_svm_vmexit(svm);
2725
2726         return 1;
2727 }
2728
2729 static int stgi_interception(struct vcpu_svm *svm)
2730 {
2731         if (nested_svm_check_permissions(svm))
2732                 return 1;
2733
2734         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2735         skip_emulated_instruction(&svm->vcpu);
2736         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2737
2738         enable_gif(svm);
2739
2740         return 1;
2741 }
2742
2743 static int clgi_interception(struct vcpu_svm *svm)
2744 {
2745         if (nested_svm_check_permissions(svm))
2746                 return 1;
2747
2748         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2749         skip_emulated_instruction(&svm->vcpu);
2750
2751         disable_gif(svm);
2752
2753         /* After a CLGI no interrupts should come */
2754         svm_clear_vintr(svm);
2755         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2756
2757         mark_dirty(svm->vmcb, VMCB_INTR);
2758
2759         return 1;
2760 }
2761
2762 static int invlpga_interception(struct vcpu_svm *svm)
2763 {
2764         struct kvm_vcpu *vcpu = &svm->vcpu;
2765
2766         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2767                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2768
2769         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2770         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2771
2772         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2773         skip_emulated_instruction(&svm->vcpu);
2774         return 1;
2775 }
2776
2777 static int skinit_interception(struct vcpu_svm *svm)
2778 {
2779         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2780
2781         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2782         return 1;
2783 }
2784
2785 static int wbinvd_interception(struct vcpu_svm *svm)
2786 {
2787         kvm_emulate_wbinvd(&svm->vcpu);
2788         return 1;
2789 }
2790
2791 static int xsetbv_interception(struct vcpu_svm *svm)
2792 {
2793         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2794         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2795
2796         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2797                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2798                 skip_emulated_instruction(&svm->vcpu);
2799         }
2800
2801         return 1;
2802 }
2803
2804 static int task_switch_interception(struct vcpu_svm *svm)
2805 {
2806         u16 tss_selector;
2807         int reason;
2808         int int_type = svm->vmcb->control.exit_int_info &
2809                 SVM_EXITINTINFO_TYPE_MASK;
2810         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2811         uint32_t type =
2812                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2813         uint32_t idt_v =
2814                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2815         bool has_error_code = false;
2816         u32 error_code = 0;
2817
2818         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2819
2820         if (svm->vmcb->control.exit_info_2 &
2821             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2822                 reason = TASK_SWITCH_IRET;
2823         else if (svm->vmcb->control.exit_info_2 &
2824                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2825                 reason = TASK_SWITCH_JMP;
2826         else if (idt_v)
2827                 reason = TASK_SWITCH_GATE;
2828         else
2829                 reason = TASK_SWITCH_CALL;
2830
2831         if (reason == TASK_SWITCH_GATE) {
2832                 switch (type) {
2833                 case SVM_EXITINTINFO_TYPE_NMI:
2834                         svm->vcpu.arch.nmi_injected = false;
2835                         break;
2836                 case SVM_EXITINTINFO_TYPE_EXEPT:
2837                         if (svm->vmcb->control.exit_info_2 &
2838                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2839                                 has_error_code = true;
2840                                 error_code =
2841                                         (u32)svm->vmcb->control.exit_info_2;
2842                         }
2843                         kvm_clear_exception_queue(&svm->vcpu);
2844                         break;
2845                 case SVM_EXITINTINFO_TYPE_INTR:
2846                         kvm_clear_interrupt_queue(&svm->vcpu);
2847                         break;
2848                 default:
2849                         break;
2850                 }
2851         }
2852
2853         if (reason != TASK_SWITCH_GATE ||
2854             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2855             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2856              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2857                 skip_emulated_instruction(&svm->vcpu);
2858
2859         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2860                 int_vec = -1;
2861
2862         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2863                                 has_error_code, error_code) == EMULATE_FAIL) {
2864                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2865                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2866                 svm->vcpu.run->internal.ndata = 0;
2867                 return 0;
2868         }
2869         return 1;
2870 }
2871
2872 static int cpuid_interception(struct vcpu_svm *svm)
2873 {
2874         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2875         kvm_emulate_cpuid(&svm->vcpu);
2876         return 1;
2877 }
2878
2879 static int iret_interception(struct vcpu_svm *svm)
2880 {
2881         ++svm->vcpu.stat.nmi_window_exits;
2882         clr_intercept(svm, INTERCEPT_IRET);
2883         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2884         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2885         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2886         return 1;
2887 }
2888
2889 static int invlpg_interception(struct vcpu_svm *svm)
2890 {
2891         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2892                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2893
2894         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2895         skip_emulated_instruction(&svm->vcpu);
2896         return 1;
2897 }
2898
2899 static int emulate_on_interception(struct vcpu_svm *svm)
2900 {
2901         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2902 }
2903
2904 static int rdpmc_interception(struct vcpu_svm *svm)
2905 {
2906         int err;
2907
2908         if (!static_cpu_has(X86_FEATURE_NRIPS))
2909                 return emulate_on_interception(svm);
2910
2911         err = kvm_rdpmc(&svm->vcpu);
2912         kvm_complete_insn_gp(&svm->vcpu, err);
2913
2914         return 1;
2915 }
2916
2917 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2918                                             unsigned long val)
2919 {
2920         unsigned long cr0 = svm->vcpu.arch.cr0;
2921         bool ret = false;
2922         u64 intercept;
2923
2924         intercept = svm->nested.intercept;
2925
2926         if (!is_guest_mode(&svm->vcpu) ||
2927             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2928                 return false;
2929
2930         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2931         val &= ~SVM_CR0_SELECTIVE_MASK;
2932
2933         if (cr0 ^ val) {
2934                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2935                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2936         }
2937
2938         return ret;
2939 }
2940
2941 #define CR_VALID (1ULL << 63)
2942
2943 static int cr_interception(struct vcpu_svm *svm)
2944 {
2945         int reg, cr;
2946         unsigned long val;
2947         int err;
2948
2949         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2950                 return emulate_on_interception(svm);
2951
2952         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2953                 return emulate_on_interception(svm);
2954
2955         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2956         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2957                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2958         else
2959                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2960
2961         err = 0;
2962         if (cr >= 16) { /* mov to cr */
2963                 cr -= 16;
2964                 val = kvm_register_read(&svm->vcpu, reg);
2965                 switch (cr) {
2966                 case 0:
2967                         if (!check_selective_cr0_intercepted(svm, val))
2968                                 err = kvm_set_cr0(&svm->vcpu, val);
2969                         else
2970                                 return 1;
2971
2972                         break;
2973                 case 3:
2974                         err = kvm_set_cr3(&svm->vcpu, val);
2975                         break;
2976                 case 4:
2977                         err = kvm_set_cr4(&svm->vcpu, val);
2978                         break;
2979                 case 8:
2980                         err = kvm_set_cr8(&svm->vcpu, val);
2981                         break;
2982                 default:
2983                         WARN(1, "unhandled write to CR%d", cr);
2984                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2985                         return 1;
2986                 }
2987         } else { /* mov from cr */
2988                 switch (cr) {
2989                 case 0:
2990                         val = kvm_read_cr0(&svm->vcpu);
2991                         break;
2992                 case 2:
2993                         val = svm->vcpu.arch.cr2;
2994                         break;
2995                 case 3:
2996                         val = kvm_read_cr3(&svm->vcpu);
2997                         break;
2998                 case 4:
2999                         val = kvm_read_cr4(&svm->vcpu);
3000                         break;
3001                 case 8:
3002                         val = kvm_get_cr8(&svm->vcpu);
3003                         break;
3004                 default:
3005                         WARN(1, "unhandled read from CR%d", cr);
3006                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3007                         return 1;
3008                 }
3009                 kvm_register_write(&svm->vcpu, reg, val);
3010         }
3011         kvm_complete_insn_gp(&svm->vcpu, err);
3012
3013         return 1;
3014 }
3015
3016 static int dr_interception(struct vcpu_svm *svm)
3017 {
3018         int reg, dr;
3019         unsigned long val;
3020
3021         if (svm->vcpu.guest_debug == 0) {
3022                 /*
3023                  * No more DR vmexits; force a reload of the debug registers
3024                  * and reenter on this instruction.  The next vmexit will
3025                  * retrieve the full state of the debug registers.
3026                  */
3027                 clr_dr_intercepts(svm);
3028                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3029                 return 1;
3030         }
3031
3032         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3033                 return emulate_on_interception(svm);
3034
3035         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3036         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3037
3038         if (dr >= 16) { /* mov to DRn */
3039                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3040                         return 1;
3041                 val = kvm_register_read(&svm->vcpu, reg);
3042                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3043         } else {
3044                 if (!kvm_require_dr(&svm->vcpu, dr))
3045                         return 1;
3046                 kvm_get_dr(&svm->vcpu, dr, &val);
3047                 kvm_register_write(&svm->vcpu, reg, val);
3048         }
3049
3050         skip_emulated_instruction(&svm->vcpu);
3051
3052         return 1;
3053 }
3054
3055 static int cr8_write_interception(struct vcpu_svm *svm)
3056 {
3057         struct kvm_run *kvm_run = svm->vcpu.run;
3058         int r;
3059
3060         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3061         /* instruction emulation calls kvm_set_cr8() */
3062         r = cr_interception(svm);
3063         if (irqchip_in_kernel(svm->vcpu.kvm))
3064                 return r;
3065         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3066                 return r;
3067         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3068         return 0;
3069 }
3070
3071 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3072 {
3073         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3074         return vmcb->control.tsc_offset +
3075                 svm_scale_tsc(vcpu, host_tsc);
3076 }
3077
3078 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3079 {
3080         struct vcpu_svm *svm = to_svm(vcpu);
3081
3082         switch (msr_info->index) {
3083         case MSR_IA32_TSC: {
3084                 msr_info->data = svm->vmcb->control.tsc_offset +
3085                         svm_scale_tsc(vcpu, rdtsc());
3086
3087                 break;
3088         }
3089         case MSR_STAR:
3090                 msr_info->data = svm->vmcb->save.star;
3091                 break;
3092 #ifdef CONFIG_X86_64
3093         case MSR_LSTAR:
3094                 msr_info->data = svm->vmcb->save.lstar;
3095                 break;
3096         case MSR_CSTAR:
3097                 msr_info->data = svm->vmcb->save.cstar;
3098                 break;
3099         case MSR_KERNEL_GS_BASE:
3100                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3101                 break;
3102         case MSR_SYSCALL_MASK:
3103                 msr_info->data = svm->vmcb->save.sfmask;
3104                 break;
3105 #endif
3106         case MSR_IA32_SYSENTER_CS:
3107                 msr_info->data = svm->vmcb->save.sysenter_cs;
3108                 break;
3109         case MSR_IA32_SYSENTER_EIP:
3110                 msr_info->data = svm->sysenter_eip;
3111                 break;
3112         case MSR_IA32_SYSENTER_ESP:
3113                 msr_info->data = svm->sysenter_esp;
3114                 break;
3115         /*
3116          * Nobody will change the following 5 values in the VMCB so we can
3117          * safely return them on rdmsr. They will always be 0 until LBRV is
3118          * implemented.
3119          */
3120         case MSR_IA32_DEBUGCTLMSR:
3121                 msr_info->data = svm->vmcb->save.dbgctl;
3122                 break;
3123         case MSR_IA32_LASTBRANCHFROMIP:
3124                 msr_info->data = svm->vmcb->save.br_from;
3125                 break;
3126         case MSR_IA32_LASTBRANCHTOIP:
3127                 msr_info->data = svm->vmcb->save.br_to;
3128                 break;
3129         case MSR_IA32_LASTINTFROMIP:
3130                 msr_info->data = svm->vmcb->save.last_excp_from;
3131                 break;
3132         case MSR_IA32_LASTINTTOIP:
3133                 msr_info->data = svm->vmcb->save.last_excp_to;
3134                 break;
3135         case MSR_VM_HSAVE_PA:
3136                 msr_info->data = svm->nested.hsave_msr;
3137                 break;
3138         case MSR_VM_CR:
3139                 msr_info->data = svm->nested.vm_cr_msr;
3140                 break;
3141         case MSR_IA32_UCODE_REV:
3142                 msr_info->data = 0x01000065;
3143                 break;
3144         default:
3145                 return kvm_get_msr_common(vcpu, msr_info);
3146         }
3147         return 0;
3148 }
3149
3150 static int rdmsr_interception(struct vcpu_svm *svm)
3151 {
3152         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3153         struct msr_data msr_info;
3154
3155         msr_info.index = ecx;
3156         msr_info.host_initiated = false;
3157         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3158                 trace_kvm_msr_read_ex(ecx);
3159                 kvm_inject_gp(&svm->vcpu, 0);
3160         } else {
3161                 trace_kvm_msr_read(ecx, msr_info.data);
3162
3163                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3164                                    msr_info.data & 0xffffffff);
3165                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3166                                    msr_info.data >> 32);
3167                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3168                 skip_emulated_instruction(&svm->vcpu);
3169         }
3170         return 1;
3171 }
3172
3173 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3174 {
3175         struct vcpu_svm *svm = to_svm(vcpu);
3176         int svm_dis, chg_mask;
3177
3178         if (data & ~SVM_VM_CR_VALID_MASK)
3179                 return 1;
3180
3181         chg_mask = SVM_VM_CR_VALID_MASK;
3182
3183         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3184                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3185
3186         svm->nested.vm_cr_msr &= ~chg_mask;
3187         svm->nested.vm_cr_msr |= (data & chg_mask);
3188
3189         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3190
3191         /* check for svm_disable while efer.svme is set */
3192         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3193                 return 1;
3194
3195         return 0;
3196 }
3197
3198 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3199 {
3200         struct vcpu_svm *svm = to_svm(vcpu);
3201
3202         u32 ecx = msr->index;
3203         u64 data = msr->data;
3204         switch (ecx) {
3205         case MSR_IA32_TSC:
3206                 kvm_write_tsc(vcpu, msr);
3207                 break;
3208         case MSR_STAR:
3209                 svm->vmcb->save.star = data;
3210                 break;
3211 #ifdef CONFIG_X86_64
3212         case MSR_LSTAR:
3213                 svm->vmcb->save.lstar = data;
3214                 break;
3215         case MSR_CSTAR:
3216                 svm->vmcb->save.cstar = data;
3217                 break;
3218         case MSR_KERNEL_GS_BASE:
3219                 svm->vmcb->save.kernel_gs_base = data;
3220                 break;
3221         case MSR_SYSCALL_MASK:
3222                 svm->vmcb->save.sfmask = data;
3223                 break;
3224 #endif
3225         case MSR_IA32_SYSENTER_CS:
3226                 svm->vmcb->save.sysenter_cs = data;
3227                 break;
3228         case MSR_IA32_SYSENTER_EIP:
3229                 svm->sysenter_eip = data;
3230                 svm->vmcb->save.sysenter_eip = data;
3231                 break;
3232         case MSR_IA32_SYSENTER_ESP:
3233                 svm->sysenter_esp = data;
3234                 svm->vmcb->save.sysenter_esp = data;
3235                 break;
3236         case MSR_IA32_DEBUGCTLMSR:
3237                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3238                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3239                                     __func__, data);
3240                         break;
3241                 }
3242                 if (data & DEBUGCTL_RESERVED_BITS)
3243                         return 1;
3244
3245                 svm->vmcb->save.dbgctl = data;
3246                 mark_dirty(svm->vmcb, VMCB_LBR);
3247                 if (data & (1ULL<<0))
3248                         svm_enable_lbrv(svm);
3249                 else
3250                         svm_disable_lbrv(svm);
3251                 break;
3252         case MSR_VM_HSAVE_PA:
3253                 svm->nested.hsave_msr = data;
3254                 break;
3255         case MSR_VM_CR:
3256                 return svm_set_vm_cr(vcpu, data);
3257         case MSR_VM_IGNNE:
3258                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3259                 break;
3260         default:
3261                 return kvm_set_msr_common(vcpu, msr);
3262         }
3263         return 0;
3264 }
3265
3266 static int wrmsr_interception(struct vcpu_svm *svm)
3267 {
3268         struct msr_data msr;
3269         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3270         u64 data = kvm_read_edx_eax(&svm->vcpu);
3271
3272         msr.data = data;
3273         msr.index = ecx;
3274         msr.host_initiated = false;
3275
3276         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3277         if (kvm_set_msr(&svm->vcpu, &msr)) {
3278                 trace_kvm_msr_write_ex(ecx, data);
3279                 kvm_inject_gp(&svm->vcpu, 0);
3280         } else {
3281                 trace_kvm_msr_write(ecx, data);
3282                 skip_emulated_instruction(&svm->vcpu);
3283         }
3284         return 1;
3285 }
3286
3287 static int msr_interception(struct vcpu_svm *svm)
3288 {
3289         if (svm->vmcb->control.exit_info_1)
3290                 return wrmsr_interception(svm);
3291         else
3292                 return rdmsr_interception(svm);
3293 }
3294
3295 static int interrupt_window_interception(struct vcpu_svm *svm)
3296 {
3297         struct kvm_run *kvm_run = svm->vcpu.run;
3298
3299         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3300         svm_clear_vintr(svm);
3301         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3302         mark_dirty(svm->vmcb, VMCB_INTR);
3303         ++svm->vcpu.stat.irq_window_exits;
3304         /*
3305          * If the user space waits to inject interrupts, exit as soon as
3306          * possible
3307          */
3308         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3309             kvm_run->request_interrupt_window &&
3310             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3311                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3312                 return 0;
3313         }
3314
3315         return 1;
3316 }
3317
3318 static int pause_interception(struct vcpu_svm *svm)
3319 {
3320         kvm_vcpu_on_spin(&(svm->vcpu));
3321         return 1;
3322 }
3323
3324 static int nop_interception(struct vcpu_svm *svm)
3325 {
3326         skip_emulated_instruction(&(svm->vcpu));
3327         return 1;
3328 }
3329
3330 static int monitor_interception(struct vcpu_svm *svm)
3331 {
3332         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3333         return nop_interception(svm);
3334 }
3335
3336 static int mwait_interception(struct vcpu_svm *svm)
3337 {
3338         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3339         return nop_interception(svm);
3340 }
3341
3342 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3343         [SVM_EXIT_READ_CR0]                     = cr_interception,
3344         [SVM_EXIT_READ_CR3]                     = cr_interception,
3345         [SVM_EXIT_READ_CR4]                     = cr_interception,
3346         [SVM_EXIT_READ_CR8]                     = cr_interception,
3347         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3348         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3349         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3350         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3351         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3352         [SVM_EXIT_READ_DR0]                     = dr_interception,
3353         [SVM_EXIT_READ_DR1]                     = dr_interception,
3354         [SVM_EXIT_READ_DR2]                     = dr_interception,
3355         [SVM_EXIT_READ_DR3]                     = dr_interception,
3356         [SVM_EXIT_READ_DR4]                     = dr_interception,
3357         [SVM_EXIT_READ_DR5]                     = dr_interception,
3358         [SVM_EXIT_READ_DR6]                     = dr_interception,
3359         [SVM_EXIT_READ_DR7]                     = dr_interception,
3360         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3361         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3362         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3363         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3364         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3365         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3366         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3367         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3368         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3369         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3370         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3371         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3372         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3373         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3374         [SVM_EXIT_INTR]                         = intr_interception,
3375         [SVM_EXIT_NMI]                          = nmi_interception,
3376         [SVM_EXIT_SMI]                          = nop_on_interception,
3377         [SVM_EXIT_INIT]                         = nop_on_interception,
3378         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3379         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3380         [SVM_EXIT_CPUID]                        = cpuid_interception,
3381         [SVM_EXIT_IRET]                         = iret_interception,
3382         [SVM_EXIT_INVD]                         = emulate_on_interception,
3383         [SVM_EXIT_PAUSE]                        = pause_interception,
3384         [SVM_EXIT_HLT]                          = halt_interception,
3385         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3386         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3387         [SVM_EXIT_IOIO]                         = io_interception,
3388         [SVM_EXIT_MSR]                          = msr_interception,
3389         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3390         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3391         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3392         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3393         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3394         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3395         [SVM_EXIT_STGI]                         = stgi_interception,
3396         [SVM_EXIT_CLGI]                         = clgi_interception,
3397         [SVM_EXIT_SKINIT]                       = skinit_interception,
3398         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
3399         [SVM_EXIT_MONITOR]                      = monitor_interception,
3400         [SVM_EXIT_MWAIT]                        = mwait_interception,
3401         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3402         [SVM_EXIT_NPF]                          = pf_interception,
3403         [SVM_EXIT_RSM]                          = emulate_on_interception,
3404 };
3405
3406 static void dump_vmcb(struct kvm_vcpu *vcpu)
3407 {
3408         struct vcpu_svm *svm = to_svm(vcpu);
3409         struct vmcb_control_area *control = &svm->vmcb->control;
3410         struct vmcb_save_area *save = &svm->vmcb->save;
3411
3412         pr_err("VMCB Control Area:\n");
3413         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3414         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3415         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3416         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3417         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3418         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3419         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3420         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3421         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3422         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3423         pr_err("%-20s%d\n", "asid:", control->asid);
3424         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3425         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3426         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3427         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3428         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3429         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3430         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3431         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3432         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3433         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3434         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3435         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3436         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3437         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3438         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3439         pr_err("VMCB State Save Area:\n");
3440         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3441                "es:",
3442                save->es.selector, save->es.attrib,
3443                save->es.limit, save->es.base);
3444         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3445                "cs:",
3446                save->cs.selector, save->cs.attrib,
3447                save->cs.limit, save->cs.base);
3448         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3449                "ss:",
3450                save->ss.selector, save->ss.attrib,
3451                save->ss.limit, save->ss.base);
3452         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3453                "ds:",
3454                save->ds.selector, save->ds.attrib,
3455                save->ds.limit, save->ds.base);
3456         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3457                "fs:",
3458                save->fs.selector, save->fs.attrib,
3459                save->fs.limit, save->fs.base);
3460         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3461                "gs:",
3462                save->gs.selector, save->gs.attrib,
3463                save->gs.limit, save->gs.base);
3464         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3465                "gdtr:",
3466                save->gdtr.selector, save->gdtr.attrib,
3467                save->gdtr.limit, save->gdtr.base);
3468         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3469                "ldtr:",
3470                save->ldtr.selector, save->ldtr.attrib,
3471                save->ldtr.limit, save->ldtr.base);
3472         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3473                "idtr:",
3474                save->idtr.selector, save->idtr.attrib,
3475                save->idtr.limit, save->idtr.base);
3476         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3477                "tr:",
3478                save->tr.selector, save->tr.attrib,
3479                save->tr.limit, save->tr.base);
3480         pr_err("cpl:            %d                efer:         %016llx\n",
3481                 save->cpl, save->efer);
3482         pr_err("%-15s %016llx %-13s %016llx\n",
3483                "cr0:", save->cr0, "cr2:", save->cr2);
3484         pr_err("%-15s %016llx %-13s %016llx\n",
3485                "cr3:", save->cr3, "cr4:", save->cr4);
3486         pr_err("%-15s %016llx %-13s %016llx\n",
3487                "dr6:", save->dr6, "dr7:", save->dr7);
3488         pr_err("%-15s %016llx %-13s %016llx\n",
3489                "rip:", save->rip, "rflags:", save->rflags);
3490         pr_err("%-15s %016llx %-13s %016llx\n",
3491                "rsp:", save->rsp, "rax:", save->rax);
3492         pr_err("%-15s %016llx %-13s %016llx\n",
3493                "star:", save->star, "lstar:", save->lstar);
3494         pr_err("%-15s %016llx %-13s %016llx\n",
3495                "cstar:", save->cstar, "sfmask:", save->sfmask);
3496         pr_err("%-15s %016llx %-13s %016llx\n",
3497                "kernel_gs_base:", save->kernel_gs_base,
3498                "sysenter_cs:", save->sysenter_cs);
3499         pr_err("%-15s %016llx %-13s %016llx\n",
3500                "sysenter_esp:", save->sysenter_esp,
3501                "sysenter_eip:", save->sysenter_eip);
3502         pr_err("%-15s %016llx %-13s %016llx\n",
3503                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3504         pr_err("%-15s %016llx %-13s %016llx\n",
3505                "br_from:", save->br_from, "br_to:", save->br_to);
3506         pr_err("%-15s %016llx %-13s %016llx\n",
3507                "excp_from:", save->last_excp_from,
3508                "excp_to:", save->last_excp_to);
3509 }
3510
3511 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3512 {
3513         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3514
3515         *info1 = control->exit_info_1;
3516         *info2 = control->exit_info_2;
3517 }
3518
3519 static int handle_exit(struct kvm_vcpu *vcpu)
3520 {
3521         struct vcpu_svm *svm = to_svm(vcpu);
3522         struct kvm_run *kvm_run = vcpu->run;
3523         u32 exit_code = svm->vmcb->control.exit_code;
3524
3525         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3526                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3527         if (npt_enabled)
3528                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3529
3530         if (unlikely(svm->nested.exit_required)) {
3531                 nested_svm_vmexit(svm);
3532                 svm->nested.exit_required = false;
3533
3534                 return 1;
3535         }
3536
3537         if (is_guest_mode(vcpu)) {
3538                 int vmexit;
3539
3540                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3541                                         svm->vmcb->control.exit_info_1,
3542                                         svm->vmcb->control.exit_info_2,
3543                                         svm->vmcb->control.exit_int_info,
3544                                         svm->vmcb->control.exit_int_info_err,
3545                                         KVM_ISA_SVM);
3546
3547                 vmexit = nested_svm_exit_special(svm);
3548
3549                 if (vmexit == NESTED_EXIT_CONTINUE)
3550                         vmexit = nested_svm_exit_handled(svm);
3551
3552                 if (vmexit == NESTED_EXIT_DONE)
3553                         return 1;
3554         }
3555
3556         svm_complete_interrupts(svm);
3557
3558         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3559                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3560                 kvm_run->fail_entry.hardware_entry_failure_reason
3561                         = svm->vmcb->control.exit_code;
3562                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3563                 dump_vmcb(vcpu);
3564                 return 0;
3565         }
3566
3567         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3568             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3569             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3570             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3571                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3572                        "exit_code 0x%x\n",
3573                        __func__, svm->vmcb->control.exit_int_info,
3574                        exit_code);
3575
3576         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3577             || !svm_exit_handlers[exit_code]) {
3578                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3579                 kvm_queue_exception(vcpu, UD_VECTOR);
3580                 return 1;
3581         }
3582
3583         return svm_exit_handlers[exit_code](svm);
3584 }
3585
3586 static void reload_tss(struct kvm_vcpu *vcpu)
3587 {
3588         int cpu = raw_smp_processor_id();
3589
3590         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3591         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3592         load_TR_desc();
3593 }
3594
3595 static void pre_svm_run(struct vcpu_svm *svm)
3596 {
3597         int cpu = raw_smp_processor_id();
3598
3599         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3600
3601         /* FIXME: handle wraparound of asid_generation */
3602         if (svm->asid_generation != sd->asid_generation)
3603                 new_asid(svm, sd);
3604 }
3605
3606 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3607 {
3608         struct vcpu_svm *svm = to_svm(vcpu);
3609
3610         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3611         vcpu->arch.hflags |= HF_NMI_MASK;
3612         set_intercept(svm, INTERCEPT_IRET);
3613         ++vcpu->stat.nmi_injections;
3614 }
3615
3616 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3617 {
3618         struct vmcb_control_area *control;
3619
3620         control = &svm->vmcb->control;
3621         control->int_vector = irq;
3622         control->int_ctl &= ~V_INTR_PRIO_MASK;
3623         control->int_ctl |= V_IRQ_MASK |
3624                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3625         mark_dirty(svm->vmcb, VMCB_INTR);
3626 }
3627
3628 static void svm_set_irq(struct kvm_vcpu *vcpu)
3629 {
3630         struct vcpu_svm *svm = to_svm(vcpu);
3631
3632         BUG_ON(!(gif_set(svm)));
3633
3634         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3635         ++vcpu->stat.irq_injections;
3636
3637         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3638                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3639 }
3640
3641 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3642 {
3643         struct vcpu_svm *svm = to_svm(vcpu);
3644
3645         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3646                 return;
3647
3648         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3649
3650         if (irr == -1)
3651                 return;
3652
3653         if (tpr >= irr)
3654                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3655 }
3656
3657 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3658 {
3659         return;
3660 }
3661
3662 static int svm_vm_has_apicv(struct kvm *kvm)
3663 {
3664         return 0;
3665 }
3666
3667 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3668 {
3669         return;
3670 }
3671
3672 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3673 {
3674         return;
3675 }
3676
3677 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3678 {
3679         struct vcpu_svm *svm = to_svm(vcpu);
3680         struct vmcb *vmcb = svm->vmcb;
3681         int ret;
3682         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3683               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3684         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3685
3686         return ret;
3687 }
3688
3689 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3690 {
3691         struct vcpu_svm *svm = to_svm(vcpu);
3692
3693         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3694 }
3695
3696 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3697 {
3698         struct vcpu_svm *svm = to_svm(vcpu);
3699
3700         if (masked) {
3701                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3702                 set_intercept(svm, INTERCEPT_IRET);
3703         } else {
3704                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3705                 clr_intercept(svm, INTERCEPT_IRET);
3706         }
3707 }
3708
3709 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3710 {
3711         struct vcpu_svm *svm = to_svm(vcpu);
3712         struct vmcb *vmcb = svm->vmcb;
3713         int ret;
3714
3715         if (!gif_set(svm) ||
3716              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3717                 return 0;
3718
3719         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3720
3721         if (is_guest_mode(vcpu))
3722                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3723
3724         return ret;
3725 }
3726
3727 static void enable_irq_window(struct kvm_vcpu *vcpu)
3728 {
3729         struct vcpu_svm *svm = to_svm(vcpu);
3730
3731         /*
3732          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3733          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3734          * get that intercept, this function will be called again though and
3735          * we'll get the vintr intercept.
3736          */
3737         if (gif_set(svm) && nested_svm_intr(svm)) {
3738                 svm_set_vintr(svm);
3739                 svm_inject_irq(svm, 0x0);
3740         }
3741 }
3742
3743 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3744 {
3745         struct vcpu_svm *svm = to_svm(vcpu);
3746
3747         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3748             == HF_NMI_MASK)
3749                 return; /* IRET will cause a vm exit */
3750
3751         /*
3752          * Something prevents NMI from been injected. Single step over possible
3753          * problem (IRET or exception injection or interrupt shadow)
3754          */
3755         svm->nmi_singlestep = true;
3756         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3757         update_db_bp_intercept(vcpu);
3758 }
3759
3760 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3761 {
3762         return 0;
3763 }
3764
3765 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3766 {
3767         struct vcpu_svm *svm = to_svm(vcpu);
3768
3769         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3770                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3771         else
3772                 svm->asid_generation--;
3773 }
3774
3775 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3776 {
3777 }
3778
3779 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3780 {
3781         struct vcpu_svm *svm = to_svm(vcpu);
3782
3783         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3784                 return;
3785
3786         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3787                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3788                 kvm_set_cr8(vcpu, cr8);
3789         }
3790 }
3791
3792 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3793 {
3794         struct vcpu_svm *svm = to_svm(vcpu);
3795         u64 cr8;
3796
3797         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3798                 return;
3799
3800         cr8 = kvm_get_cr8(vcpu);
3801         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3802         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3803 }
3804
3805 static void svm_complete_interrupts(struct vcpu_svm *svm)
3806 {
3807         u8 vector;
3808         int type;
3809         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3810         unsigned int3_injected = svm->int3_injected;
3811
3812         svm->int3_injected = 0;
3813
3814         /*
3815          * If we've made progress since setting HF_IRET_MASK, we've
3816          * executed an IRET and can allow NMI injection.
3817          */
3818         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3819             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3820                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3821                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3822         }
3823
3824         svm->vcpu.arch.nmi_injected = false;
3825         kvm_clear_exception_queue(&svm->vcpu);
3826         kvm_clear_interrupt_queue(&svm->vcpu);
3827
3828         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3829                 return;
3830
3831         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3832
3833         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3834         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3835
3836         switch (type) {
3837         case SVM_EXITINTINFO_TYPE_NMI:
3838                 svm->vcpu.arch.nmi_injected = true;
3839                 break;
3840         case SVM_EXITINTINFO_TYPE_EXEPT:
3841                 /*
3842                  * In case of software exceptions, do not reinject the vector,
3843                  * but re-execute the instruction instead. Rewind RIP first
3844                  * if we emulated INT3 before.
3845                  */
3846                 if (kvm_exception_is_soft(vector)) {
3847                         if (vector == BP_VECTOR && int3_injected &&
3848                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3849                                 kvm_rip_write(&svm->vcpu,
3850                                               kvm_rip_read(&svm->vcpu) -
3851                                               int3_injected);
3852                         break;
3853                 }
3854                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3855                         u32 err = svm->vmcb->control.exit_int_info_err;
3856                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3857
3858                 } else
3859                         kvm_requeue_exception(&svm->vcpu, vector);
3860                 break;
3861         case SVM_EXITINTINFO_TYPE_INTR:
3862                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3863                 break;
3864         default:
3865                 break;
3866         }
3867 }
3868
3869 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3870 {
3871         struct vcpu_svm *svm = to_svm(vcpu);
3872         struct vmcb_control_area *control = &svm->vmcb->control;
3873
3874         control->exit_int_info = control->event_inj;
3875         control->exit_int_info_err = control->event_inj_err;
3876         control->event_inj = 0;
3877         svm_complete_interrupts(svm);
3878 }
3879
3880 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3881 {
3882         struct vcpu_svm *svm = to_svm(vcpu);
3883
3884         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3885         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3886         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3887
3888         /*
3889          * A vmexit emulation is required before the vcpu can be executed
3890          * again.
3891          */
3892         if (unlikely(svm->nested.exit_required))
3893                 return;
3894
3895         pre_svm_run(svm);
3896
3897         sync_lapic_to_cr8(vcpu);
3898
3899         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3900
3901         clgi();
3902
3903         local_irq_enable();
3904
3905         asm volatile (
3906                 "push %%" _ASM_BP "; \n\t"
3907                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3908                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3909                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3910                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3911                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3912                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3913 #ifdef CONFIG_X86_64
3914                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3915                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3916                 "mov %c[r10](%[svm]), %%r10 \n\t"
3917                 "mov %c[r11](%[svm]), %%r11 \n\t"
3918                 "mov %c[r12](%[svm]), %%r12 \n\t"
3919                 "mov %c[r13](%[svm]), %%r13 \n\t"
3920                 "mov %c[r14](%[svm]), %%r14 \n\t"
3921                 "mov %c[r15](%[svm]), %%r15 \n\t"
3922 #endif
3923
3924                 /* Enter guest mode */
3925                 "push %%" _ASM_AX " \n\t"
3926                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3927                 __ex(SVM_VMLOAD) "\n\t"
3928                 __ex(SVM_VMRUN) "\n\t"
3929                 __ex(SVM_VMSAVE) "\n\t"
3930                 "pop %%" _ASM_AX " \n\t"
3931
3932                 /* Save guest registers, load host registers */
3933                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3934                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3935                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3936                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3937                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3938                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3939 #ifdef CONFIG_X86_64
3940                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3941                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3942                 "mov %%r10, %c[r10](%[svm]) \n\t"
3943                 "mov %%r11, %c[r11](%[svm]) \n\t"
3944                 "mov %%r12, %c[r12](%[svm]) \n\t"
3945                 "mov %%r13, %c[r13](%[svm]) \n\t"
3946                 "mov %%r14, %c[r14](%[svm]) \n\t"
3947                 "mov %%r15, %c[r15](%[svm]) \n\t"
3948 #endif
3949                 "pop %%" _ASM_BP
3950                 :
3951                 : [svm]"a"(svm),
3952                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3953                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3954                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3955                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3956                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3957                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3958                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3959 #ifdef CONFIG_X86_64
3960                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3961                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3962                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3963                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3964                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3965                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3966                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3967                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3968 #endif
3969                 : "cc", "memory"
3970 #ifdef CONFIG_X86_64
3971                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3972                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3973 #else
3974                 , "ebx", "ecx", "edx", "esi", "edi"
3975 #endif
3976                 );
3977
3978 #ifdef CONFIG_X86_64
3979         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3980 #else
3981         loadsegment(fs, svm->host.fs);
3982 #ifndef CONFIG_X86_32_LAZY_GS
3983         loadsegment(gs, svm->host.gs);
3984 #endif
3985 #endif
3986
3987         reload_tss(vcpu);
3988
3989         local_irq_disable();
3990
3991         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3992         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3993         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3994         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3995
3996         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3997
3998         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3999                 kvm_before_handle_nmi(&svm->vcpu);
4000
4001         stgi();
4002
4003         /* Any pending NMI will happen here */
4004
4005         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4006                 kvm_after_handle_nmi(&svm->vcpu);
4007
4008         sync_cr8_to_lapic(vcpu);
4009
4010         svm->next_rip = 0;
4011
4012         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4013
4014         /* if exit due to PF check for async PF */
4015         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4016                 svm->apf_reason = kvm_read_and_reset_pf_reason();
4017
4018         if (npt_enabled) {
4019                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4020                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4021         }
4022
4023         /*
4024          * We need to handle MC intercepts here before the vcpu has a chance to
4025          * change the physical cpu
4026          */
4027         if (unlikely(svm->vmcb->control.exit_code ==
4028                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4029                 svm_handle_mce(svm);
4030
4031         mark_all_clean(svm->vmcb);
4032 }
4033
4034 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4035 {
4036         struct vcpu_svm *svm = to_svm(vcpu);
4037
4038         svm->vmcb->save.cr3 = root;
4039         mark_dirty(svm->vmcb, VMCB_CR);
4040         svm_flush_tlb(vcpu);
4041 }
4042
4043 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4044 {
4045         struct vcpu_svm *svm = to_svm(vcpu);
4046
4047         svm->vmcb->control.nested_cr3 = root;
4048         mark_dirty(svm->vmcb, VMCB_NPT);
4049
4050         /* Also sync guest cr3 here in case we live migrate */
4051         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4052         mark_dirty(svm->vmcb, VMCB_CR);
4053
4054         svm_flush_tlb(vcpu);
4055 }
4056
4057 static int is_disabled(void)
4058 {
4059         u64 vm_cr;
4060
4061         rdmsrl(MSR_VM_CR, vm_cr);
4062         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4063                 return 1;
4064
4065         return 0;
4066 }
4067
4068 static void
4069 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4070 {
4071         /*
4072          * Patch in the VMMCALL instruction:
4073          */
4074         hypercall[0] = 0x0f;
4075         hypercall[1] = 0x01;
4076         hypercall[2] = 0xd9;
4077 }
4078
4079 static void svm_check_processor_compat(void *rtn)
4080 {
4081         *(int *)rtn = 0;
4082 }
4083
4084 static bool svm_cpu_has_accelerated_tpr(void)
4085 {
4086         return false;
4087 }
4088
4089 static bool svm_has_high_real_mode_segbase(void)
4090 {
4091         return true;
4092 }
4093
4094 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4095 {
4096         return 0;
4097 }
4098
4099 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4100 {
4101 }
4102
4103 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4104 {
4105         switch (func) {
4106         case 0x80000001:
4107                 if (nested)
4108                         entry->ecx |= (1 << 2); /* Set SVM bit */
4109                 break;
4110         case 0x8000000A:
4111                 entry->eax = 1; /* SVM revision 1 */
4112                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4113                                    ASID emulation to nested SVM */
4114                 entry->ecx = 0; /* Reserved */
4115                 entry->edx = 0; /* Per default do not support any
4116                                    additional features */
4117
4118                 /* Support next_rip if host supports it */
4119                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4120                         entry->edx |= SVM_FEATURE_NRIP;
4121
4122                 /* Support NPT for the guest if enabled */
4123                 if (npt_enabled)
4124                         entry->edx |= SVM_FEATURE_NPT;
4125
4126                 break;
4127         }
4128 }
4129
4130 static int svm_get_lpage_level(void)
4131 {
4132         return PT_PDPE_LEVEL;
4133 }
4134
4135 static bool svm_rdtscp_supported(void)
4136 {
4137         return false;
4138 }
4139
4140 static bool svm_invpcid_supported(void)
4141 {
4142         return false;
4143 }
4144
4145 static bool svm_mpx_supported(void)
4146 {
4147         return false;
4148 }
4149
4150 static bool svm_xsaves_supported(void)
4151 {
4152         return false;
4153 }
4154
4155 static bool svm_has_wbinvd_exit(void)
4156 {
4157         return true;
4158 }
4159
4160 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4161 {
4162         struct vcpu_svm *svm = to_svm(vcpu);
4163
4164         set_exception_intercept(svm, NM_VECTOR);
4165         update_cr0_intercept(svm);
4166 }
4167
4168 #define PRE_EX(exit)  { .exit_code = (exit), \
4169                         .stage = X86_ICPT_PRE_EXCEPT, }
4170 #define POST_EX(exit) { .exit_code = (exit), \
4171                         .stage = X86_ICPT_POST_EXCEPT, }
4172 #define POST_MEM(exit) { .exit_code = (exit), \
4173                         .stage = X86_ICPT_POST_MEMACCESS, }
4174
4175 static const struct __x86_intercept {
4176         u32 exit_code;
4177         enum x86_intercept_stage stage;
4178 } x86_intercept_map[] = {
4179         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4180         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4181         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4182         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4183         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4184         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4185         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4186         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4187         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4188         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4189         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4190         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4191         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4192         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4193         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4194         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4195         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4196         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4197         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4198         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4199         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4200         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4201         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4202         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4203         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4204         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4205         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4206         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4207         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4208         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4209         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4210         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4211         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4212         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4213         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4214         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4215         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4216         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4217         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4218         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4219         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4220         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4221         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4222         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4223         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4224         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4225 };
4226
4227 #undef PRE_EX
4228 #undef POST_EX
4229 #undef POST_MEM
4230
4231 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4232                                struct x86_instruction_info *info,
4233                                enum x86_intercept_stage stage)
4234 {
4235         struct vcpu_svm *svm = to_svm(vcpu);
4236         int vmexit, ret = X86EMUL_CONTINUE;
4237         struct __x86_intercept icpt_info;
4238         struct vmcb *vmcb = svm->vmcb;
4239
4240         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4241                 goto out;
4242
4243         icpt_info = x86_intercept_map[info->intercept];
4244
4245         if (stage != icpt_info.stage)
4246                 goto out;
4247
4248         switch (icpt_info.exit_code) {
4249         case SVM_EXIT_READ_CR0:
4250                 if (info->intercept == x86_intercept_cr_read)
4251                         icpt_info.exit_code += info->modrm_reg;
4252                 break;
4253         case SVM_EXIT_WRITE_CR0: {
4254                 unsigned long cr0, val;
4255                 u64 intercept;
4256
4257                 if (info->intercept == x86_intercept_cr_write)
4258                         icpt_info.exit_code += info->modrm_reg;
4259
4260                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4261                     info->intercept == x86_intercept_clts)
4262                         break;
4263
4264                 intercept = svm->nested.intercept;
4265
4266                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4267                         break;
4268
4269                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4270                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4271
4272                 if (info->intercept == x86_intercept_lmsw) {
4273                         cr0 &= 0xfUL;
4274                         val &= 0xfUL;
4275                         /* lmsw can't clear PE - catch this here */
4276                         if (cr0 & X86_CR0_PE)
4277                                 val |= X86_CR0_PE;
4278                 }
4279
4280                 if (cr0 ^ val)
4281                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4282
4283                 break;
4284         }
4285         case SVM_EXIT_READ_DR0:
4286         case SVM_EXIT_WRITE_DR0:
4287                 icpt_info.exit_code += info->modrm_reg;
4288                 break;
4289         case SVM_EXIT_MSR:
4290                 if (info->intercept == x86_intercept_wrmsr)
4291                         vmcb->control.exit_info_1 = 1;
4292                 else
4293                         vmcb->control.exit_info_1 = 0;
4294                 break;
4295         case SVM_EXIT_PAUSE:
4296                 /*
4297                  * We get this for NOP only, but pause
4298                  * is rep not, check this here
4299                  */
4300                 if (info->rep_prefix != REPE_PREFIX)
4301                         goto out;
4302         case SVM_EXIT_IOIO: {
4303                 u64 exit_info;
4304                 u32 bytes;
4305
4306                 if (info->intercept == x86_intercept_in ||
4307                     info->intercept == x86_intercept_ins) {
4308                         exit_info = ((info->src_val & 0xffff) << 16) |
4309                                 SVM_IOIO_TYPE_MASK;
4310                         bytes = info->dst_bytes;
4311                 } else {
4312                         exit_info = (info->dst_val & 0xffff) << 16;
4313                         bytes = info->src_bytes;
4314                 }
4315
4316                 if (info->intercept == x86_intercept_outs ||
4317                     info->intercept == x86_intercept_ins)
4318                         exit_info |= SVM_IOIO_STR_MASK;
4319
4320                 if (info->rep_prefix)
4321                         exit_info |= SVM_IOIO_REP_MASK;
4322
4323                 bytes = min(bytes, 4u);
4324
4325                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4326
4327                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4328
4329                 vmcb->control.exit_info_1 = exit_info;
4330                 vmcb->control.exit_info_2 = info->next_rip;
4331
4332                 break;
4333         }
4334         default:
4335                 break;
4336         }
4337
4338         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4339         if (static_cpu_has(X86_FEATURE_NRIPS))
4340                 vmcb->control.next_rip  = info->next_rip;
4341         vmcb->control.exit_code = icpt_info.exit_code;
4342         vmexit = nested_svm_exit_handled(svm);
4343
4344         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4345                                            : X86EMUL_CONTINUE;
4346
4347 out:
4348         return ret;
4349 }
4350
4351 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4352 {
4353         local_irq_enable();
4354 }
4355
4356 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4357 {
4358 }
4359
4360 static struct kvm_x86_ops svm_x86_ops = {
4361         .cpu_has_kvm_support = has_svm,
4362         .disabled_by_bios = is_disabled,
4363         .hardware_setup = svm_hardware_setup,
4364         .hardware_unsetup = svm_hardware_unsetup,
4365         .check_processor_compatibility = svm_check_processor_compat,
4366         .hardware_enable = svm_hardware_enable,
4367         .hardware_disable = svm_hardware_disable,
4368         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4369         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4370
4371         .vcpu_create = svm_create_vcpu,
4372         .vcpu_free = svm_free_vcpu,
4373         .vcpu_reset = svm_vcpu_reset,
4374
4375         .prepare_guest_switch = svm_prepare_guest_switch,
4376         .vcpu_load = svm_vcpu_load,
4377         .vcpu_put = svm_vcpu_put,
4378
4379         .update_db_bp_intercept = update_db_bp_intercept,
4380         .get_msr = svm_get_msr,
4381         .set_msr = svm_set_msr,
4382         .get_segment_base = svm_get_segment_base,
4383         .get_segment = svm_get_segment,
4384         .set_segment = svm_set_segment,
4385         .get_cpl = svm_get_cpl,
4386         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4387         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4388         .decache_cr3 = svm_decache_cr3,
4389         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4390         .set_cr0 = svm_set_cr0,
4391         .set_cr3 = svm_set_cr3,
4392         .set_cr4 = svm_set_cr4,
4393         .set_efer = svm_set_efer,
4394         .get_idt = svm_get_idt,
4395         .set_idt = svm_set_idt,
4396         .get_gdt = svm_get_gdt,
4397         .set_gdt = svm_set_gdt,
4398         .get_dr6 = svm_get_dr6,
4399         .set_dr6 = svm_set_dr6,
4400         .set_dr7 = svm_set_dr7,
4401         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4402         .cache_reg = svm_cache_reg,
4403         .get_rflags = svm_get_rflags,
4404         .set_rflags = svm_set_rflags,
4405         .fpu_activate = svm_fpu_activate,
4406         .fpu_deactivate = svm_fpu_deactivate,
4407
4408         .tlb_flush = svm_flush_tlb,
4409
4410         .run = svm_vcpu_run,
4411         .handle_exit = handle_exit,
4412         .skip_emulated_instruction = skip_emulated_instruction,
4413         .set_interrupt_shadow = svm_set_interrupt_shadow,
4414         .get_interrupt_shadow = svm_get_interrupt_shadow,
4415         .patch_hypercall = svm_patch_hypercall,
4416         .set_irq = svm_set_irq,
4417         .set_nmi = svm_inject_nmi,
4418         .queue_exception = svm_queue_exception,
4419         .cancel_injection = svm_cancel_injection,
4420         .interrupt_allowed = svm_interrupt_allowed,
4421         .nmi_allowed = svm_nmi_allowed,
4422         .get_nmi_mask = svm_get_nmi_mask,
4423         .set_nmi_mask = svm_set_nmi_mask,
4424         .enable_nmi_window = enable_nmi_window,
4425         .enable_irq_window = enable_irq_window,
4426         .update_cr8_intercept = update_cr8_intercept,
4427         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4428         .vm_has_apicv = svm_vm_has_apicv,
4429         .load_eoi_exitmap = svm_load_eoi_exitmap,
4430         .sync_pir_to_irr = svm_sync_pir_to_irr,
4431
4432         .set_tss_addr = svm_set_tss_addr,
4433         .get_tdp_level = get_npt_level,
4434         .get_mt_mask = svm_get_mt_mask,
4435
4436         .get_exit_info = svm_get_exit_info,
4437
4438         .get_lpage_level = svm_get_lpage_level,
4439
4440         .cpuid_update = svm_cpuid_update,
4441
4442         .rdtscp_supported = svm_rdtscp_supported,
4443         .invpcid_supported = svm_invpcid_supported,
4444         .mpx_supported = svm_mpx_supported,
4445         .xsaves_supported = svm_xsaves_supported,
4446
4447         .set_supported_cpuid = svm_set_supported_cpuid,
4448
4449         .has_wbinvd_exit = svm_has_wbinvd_exit,
4450
4451         .set_tsc_khz = svm_set_tsc_khz,
4452         .read_tsc_offset = svm_read_tsc_offset,
4453         .write_tsc_offset = svm_write_tsc_offset,
4454         .adjust_tsc_offset = svm_adjust_tsc_offset,
4455         .compute_tsc_offset = svm_compute_tsc_offset,
4456         .read_l1_tsc = svm_read_l1_tsc,
4457
4458         .set_tdp_cr3 = set_tdp_cr3,
4459
4460         .check_intercept = svm_check_intercept,
4461         .handle_external_intr = svm_handle_external_intr,
4462
4463         .sched_in = svm_sched_in,
4464
4465         .pmu_ops = &amd_pmu_ops,
4466 };
4467
4468 static int __init svm_init(void)
4469 {
4470         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4471                         __alignof__(struct vcpu_svm), THIS_MODULE);
4472 }
4473
4474 static void __exit svm_exit(void)
4475 {
4476         kvm_exit();
4477 }
4478
4479 module_init(svm_init)
4480 module_exit(svm_exit)