]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/vmx.c
Merge remote-tracking branch 'at91/at91-next'
[karo-tx-linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/trace_events.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/fpu/internal.h>
44 #include <asm/perf_event.h>
45 #include <asm/debugreg.h>
46 #include <asm/kexec.h>
47 #include <asm/apic.h>
48
49 #include "trace.h"
50 #include "pmu.h"
51
52 #define __ex(x) __kvm_handle_fault_on_reboot(x)
53 #define __ex_clear(x, reg) \
54         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
55
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58
59 static const struct x86_cpu_id vmx_cpu_id[] = {
60         X86_FEATURE_MATCH(X86_FEATURE_VMX),
61         {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
64
65 static bool __read_mostly enable_vpid = 1;
66 module_param_named(vpid, enable_vpid, bool, 0444);
67
68 static bool __read_mostly flexpriority_enabled = 1;
69 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
70
71 static bool __read_mostly enable_ept = 1;
72 module_param_named(ept, enable_ept, bool, S_IRUGO);
73
74 static bool __read_mostly enable_unrestricted_guest = 1;
75 module_param_named(unrestricted_guest,
76                         enable_unrestricted_guest, bool, S_IRUGO);
77
78 static bool __read_mostly enable_ept_ad_bits = 1;
79 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
80
81 static bool __read_mostly emulate_invalid_guest_state = true;
82 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
83
84 static bool __read_mostly vmm_exclusive = 1;
85 module_param(vmm_exclusive, bool, S_IRUGO);
86
87 static bool __read_mostly fasteoi = 1;
88 module_param(fasteoi, bool, S_IRUGO);
89
90 static bool __read_mostly enable_apicv = 1;
91 module_param(enable_apicv, bool, S_IRUGO);
92
93 static bool __read_mostly enable_shadow_vmcs = 1;
94 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
95 /*
96  * If nested=1, nested virtualization is supported, i.e., guests may use
97  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
98  * use VMX instructions.
99  */
100 static bool __read_mostly nested = 0;
101 module_param(nested, bool, S_IRUGO);
102
103 static u64 __read_mostly host_xss;
104
105 static bool __read_mostly enable_pml = 1;
106 module_param_named(pml, enable_pml, bool, S_IRUGO);
107
108 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
109 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
110 #define KVM_VM_CR0_ALWAYS_ON                                            \
111         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
112 #define KVM_CR4_GUEST_OWNED_BITS                                      \
113         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
114          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
115
116 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
117 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
118
119 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
120
121 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
122
123 /*
124  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
125  * ple_gap:    upper bound on the amount of time between two successive
126  *             executions of PAUSE in a loop. Also indicate if ple enabled.
127  *             According to test, this time is usually smaller than 128 cycles.
128  * ple_window: upper bound on the amount of time a guest is allowed to execute
129  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
130  *             less than 2^12 cycles
131  * Time is measured based on a counter that runs at the same rate as the TSC,
132  * refer SDM volume 3b section 21.6.13 & 22.1.3.
133  */
134 #define KVM_VMX_DEFAULT_PLE_GAP           128
135 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
136 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
137 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
138 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
139                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
140
141 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
142 module_param(ple_gap, int, S_IRUGO);
143
144 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
145 module_param(ple_window, int, S_IRUGO);
146
147 /* Default doubles per-vcpu window every exit. */
148 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
149 module_param(ple_window_grow, int, S_IRUGO);
150
151 /* Default resets per-vcpu window every exit to ple_window. */
152 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
153 module_param(ple_window_shrink, int, S_IRUGO);
154
155 /* Default is to compute the maximum so we can never overflow. */
156 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
157 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
158 module_param(ple_window_max, int, S_IRUGO);
159
160 extern const ulong vmx_return;
161
162 #define NR_AUTOLOAD_MSRS 8
163 #define VMCS02_POOL_SIZE 1
164
165 struct vmcs {
166         u32 revision_id;
167         u32 abort;
168         char data[0];
169 };
170
171 /*
172  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
173  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
174  * loaded on this CPU (so we can clear them if the CPU goes down).
175  */
176 struct loaded_vmcs {
177         struct vmcs *vmcs;
178         int cpu;
179         int launched;
180         struct list_head loaded_vmcss_on_cpu_link;
181 };
182
183 struct shared_msr_entry {
184         unsigned index;
185         u64 data;
186         u64 mask;
187 };
188
189 /*
190  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
191  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
192  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
193  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
194  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
195  * More than one of these structures may exist, if L1 runs multiple L2 guests.
196  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
197  * underlying hardware which will be used to run L2.
198  * This structure is packed to ensure that its layout is identical across
199  * machines (necessary for live migration).
200  * If there are changes in this struct, VMCS12_REVISION must be changed.
201  */
202 typedef u64 natural_width;
203 struct __packed vmcs12 {
204         /* According to the Intel spec, a VMCS region must start with the
205          * following two fields. Then follow implementation-specific data.
206          */
207         u32 revision_id;
208         u32 abort;
209
210         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
211         u32 padding[7]; /* room for future expansion */
212
213         u64 io_bitmap_a;
214         u64 io_bitmap_b;
215         u64 msr_bitmap;
216         u64 vm_exit_msr_store_addr;
217         u64 vm_exit_msr_load_addr;
218         u64 vm_entry_msr_load_addr;
219         u64 tsc_offset;
220         u64 virtual_apic_page_addr;
221         u64 apic_access_addr;
222         u64 posted_intr_desc_addr;
223         u64 ept_pointer;
224         u64 eoi_exit_bitmap0;
225         u64 eoi_exit_bitmap1;
226         u64 eoi_exit_bitmap2;
227         u64 eoi_exit_bitmap3;
228         u64 xss_exit_bitmap;
229         u64 guest_physical_address;
230         u64 vmcs_link_pointer;
231         u64 guest_ia32_debugctl;
232         u64 guest_ia32_pat;
233         u64 guest_ia32_efer;
234         u64 guest_ia32_perf_global_ctrl;
235         u64 guest_pdptr0;
236         u64 guest_pdptr1;
237         u64 guest_pdptr2;
238         u64 guest_pdptr3;
239         u64 guest_bndcfgs;
240         u64 host_ia32_pat;
241         u64 host_ia32_efer;
242         u64 host_ia32_perf_global_ctrl;
243         u64 padding64[8]; /* room for future expansion */
244         /*
245          * To allow migration of L1 (complete with its L2 guests) between
246          * machines of different natural widths (32 or 64 bit), we cannot have
247          * unsigned long fields with no explict size. We use u64 (aliased
248          * natural_width) instead. Luckily, x86 is little-endian.
249          */
250         natural_width cr0_guest_host_mask;
251         natural_width cr4_guest_host_mask;
252         natural_width cr0_read_shadow;
253         natural_width cr4_read_shadow;
254         natural_width cr3_target_value0;
255         natural_width cr3_target_value1;
256         natural_width cr3_target_value2;
257         natural_width cr3_target_value3;
258         natural_width exit_qualification;
259         natural_width guest_linear_address;
260         natural_width guest_cr0;
261         natural_width guest_cr3;
262         natural_width guest_cr4;
263         natural_width guest_es_base;
264         natural_width guest_cs_base;
265         natural_width guest_ss_base;
266         natural_width guest_ds_base;
267         natural_width guest_fs_base;
268         natural_width guest_gs_base;
269         natural_width guest_ldtr_base;
270         natural_width guest_tr_base;
271         natural_width guest_gdtr_base;
272         natural_width guest_idtr_base;
273         natural_width guest_dr7;
274         natural_width guest_rsp;
275         natural_width guest_rip;
276         natural_width guest_rflags;
277         natural_width guest_pending_dbg_exceptions;
278         natural_width guest_sysenter_esp;
279         natural_width guest_sysenter_eip;
280         natural_width host_cr0;
281         natural_width host_cr3;
282         natural_width host_cr4;
283         natural_width host_fs_base;
284         natural_width host_gs_base;
285         natural_width host_tr_base;
286         natural_width host_gdtr_base;
287         natural_width host_idtr_base;
288         natural_width host_ia32_sysenter_esp;
289         natural_width host_ia32_sysenter_eip;
290         natural_width host_rsp;
291         natural_width host_rip;
292         natural_width paddingl[8]; /* room for future expansion */
293         u32 pin_based_vm_exec_control;
294         u32 cpu_based_vm_exec_control;
295         u32 exception_bitmap;
296         u32 page_fault_error_code_mask;
297         u32 page_fault_error_code_match;
298         u32 cr3_target_count;
299         u32 vm_exit_controls;
300         u32 vm_exit_msr_store_count;
301         u32 vm_exit_msr_load_count;
302         u32 vm_entry_controls;
303         u32 vm_entry_msr_load_count;
304         u32 vm_entry_intr_info_field;
305         u32 vm_entry_exception_error_code;
306         u32 vm_entry_instruction_len;
307         u32 tpr_threshold;
308         u32 secondary_vm_exec_control;
309         u32 vm_instruction_error;
310         u32 vm_exit_reason;
311         u32 vm_exit_intr_info;
312         u32 vm_exit_intr_error_code;
313         u32 idt_vectoring_info_field;
314         u32 idt_vectoring_error_code;
315         u32 vm_exit_instruction_len;
316         u32 vmx_instruction_info;
317         u32 guest_es_limit;
318         u32 guest_cs_limit;
319         u32 guest_ss_limit;
320         u32 guest_ds_limit;
321         u32 guest_fs_limit;
322         u32 guest_gs_limit;
323         u32 guest_ldtr_limit;
324         u32 guest_tr_limit;
325         u32 guest_gdtr_limit;
326         u32 guest_idtr_limit;
327         u32 guest_es_ar_bytes;
328         u32 guest_cs_ar_bytes;
329         u32 guest_ss_ar_bytes;
330         u32 guest_ds_ar_bytes;
331         u32 guest_fs_ar_bytes;
332         u32 guest_gs_ar_bytes;
333         u32 guest_ldtr_ar_bytes;
334         u32 guest_tr_ar_bytes;
335         u32 guest_interruptibility_info;
336         u32 guest_activity_state;
337         u32 guest_sysenter_cs;
338         u32 host_ia32_sysenter_cs;
339         u32 vmx_preemption_timer_value;
340         u32 padding32[7]; /* room for future expansion */
341         u16 virtual_processor_id;
342         u16 posted_intr_nv;
343         u16 guest_es_selector;
344         u16 guest_cs_selector;
345         u16 guest_ss_selector;
346         u16 guest_ds_selector;
347         u16 guest_fs_selector;
348         u16 guest_gs_selector;
349         u16 guest_ldtr_selector;
350         u16 guest_tr_selector;
351         u16 guest_intr_status;
352         u16 host_es_selector;
353         u16 host_cs_selector;
354         u16 host_ss_selector;
355         u16 host_ds_selector;
356         u16 host_fs_selector;
357         u16 host_gs_selector;
358         u16 host_tr_selector;
359 };
360
361 /*
362  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
363  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
364  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
365  */
366 #define VMCS12_REVISION 0x11e57ed0
367
368 /*
369  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
370  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
371  * current implementation, 4K are reserved to avoid future complications.
372  */
373 #define VMCS12_SIZE 0x1000
374
375 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
376 struct vmcs02_list {
377         struct list_head list;
378         gpa_t vmptr;
379         struct loaded_vmcs vmcs02;
380 };
381
382 /*
383  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
384  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
385  */
386 struct nested_vmx {
387         /* Has the level1 guest done vmxon? */
388         bool vmxon;
389         gpa_t vmxon_ptr;
390
391         /* The guest-physical address of the current VMCS L1 keeps for L2 */
392         gpa_t current_vmptr;
393         /* The host-usable pointer to the above */
394         struct page *current_vmcs12_page;
395         struct vmcs12 *current_vmcs12;
396         struct vmcs *current_shadow_vmcs;
397         /*
398          * Indicates if the shadow vmcs must be updated with the
399          * data hold by vmcs12
400          */
401         bool sync_shadow_vmcs;
402
403         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
404         struct list_head vmcs02_pool;
405         int vmcs02_num;
406         u64 vmcs01_tsc_offset;
407         /* L2 must run next, and mustn't decide to exit to L1. */
408         bool nested_run_pending;
409         /*
410          * Guest pages referred to in vmcs02 with host-physical pointers, so
411          * we must keep them pinned while L2 runs.
412          */
413         struct page *apic_access_page;
414         struct page *virtual_apic_page;
415         struct page *pi_desc_page;
416         struct pi_desc *pi_desc;
417         bool pi_pending;
418         u16 posted_intr_nv;
419         u64 msr_ia32_feature_control;
420
421         struct hrtimer preemption_timer;
422         bool preemption_timer_expired;
423
424         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
425         u64 vmcs01_debugctl;
426
427         u32 nested_vmx_procbased_ctls_low;
428         u32 nested_vmx_procbased_ctls_high;
429         u32 nested_vmx_true_procbased_ctls_low;
430         u32 nested_vmx_secondary_ctls_low;
431         u32 nested_vmx_secondary_ctls_high;
432         u32 nested_vmx_pinbased_ctls_low;
433         u32 nested_vmx_pinbased_ctls_high;
434         u32 nested_vmx_exit_ctls_low;
435         u32 nested_vmx_exit_ctls_high;
436         u32 nested_vmx_true_exit_ctls_low;
437         u32 nested_vmx_entry_ctls_low;
438         u32 nested_vmx_entry_ctls_high;
439         u32 nested_vmx_true_entry_ctls_low;
440         u32 nested_vmx_misc_low;
441         u32 nested_vmx_misc_high;
442         u32 nested_vmx_ept_caps;
443 };
444
445 #define POSTED_INTR_ON  0
446 /* Posted-Interrupt Descriptor */
447 struct pi_desc {
448         u32 pir[8];     /* Posted interrupt requested */
449         u32 control;    /* bit 0 of control is outstanding notification bit */
450         u32 rsvd[7];
451 } __aligned(64);
452
453 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
454 {
455         return test_and_set_bit(POSTED_INTR_ON,
456                         (unsigned long *)&pi_desc->control);
457 }
458
459 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
460 {
461         return test_and_clear_bit(POSTED_INTR_ON,
462                         (unsigned long *)&pi_desc->control);
463 }
464
465 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
466 {
467         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
468 }
469
470 struct vcpu_vmx {
471         struct kvm_vcpu       vcpu;
472         unsigned long         host_rsp;
473         u8                    fail;
474         bool                  nmi_known_unmasked;
475         u32                   exit_intr_info;
476         u32                   idt_vectoring_info;
477         ulong                 rflags;
478         struct shared_msr_entry *guest_msrs;
479         int                   nmsrs;
480         int                   save_nmsrs;
481         unsigned long         host_idt_base;
482 #ifdef CONFIG_X86_64
483         u64                   msr_host_kernel_gs_base;
484         u64                   msr_guest_kernel_gs_base;
485 #endif
486         u32 vm_entry_controls_shadow;
487         u32 vm_exit_controls_shadow;
488         /*
489          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
490          * non-nested (L1) guest, it always points to vmcs01. For a nested
491          * guest (L2), it points to a different VMCS.
492          */
493         struct loaded_vmcs    vmcs01;
494         struct loaded_vmcs   *loaded_vmcs;
495         bool                  __launched; /* temporary, used in vmx_vcpu_run */
496         struct msr_autoload {
497                 unsigned nr;
498                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
499                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
500         } msr_autoload;
501         struct {
502                 int           loaded;
503                 u16           fs_sel, gs_sel, ldt_sel;
504 #ifdef CONFIG_X86_64
505                 u16           ds_sel, es_sel;
506 #endif
507                 int           gs_ldt_reload_needed;
508                 int           fs_reload_needed;
509                 u64           msr_host_bndcfgs;
510                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
511         } host_state;
512         struct {
513                 int vm86_active;
514                 ulong save_rflags;
515                 struct kvm_segment segs[8];
516         } rmode;
517         struct {
518                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
519                 struct kvm_save_segment {
520                         u16 selector;
521                         unsigned long base;
522                         u32 limit;
523                         u32 ar;
524                 } seg[8];
525         } segment_cache;
526         int vpid;
527         bool emulation_required;
528
529         /* Support for vnmi-less CPUs */
530         int soft_vnmi_blocked;
531         ktime_t entry_time;
532         s64 vnmi_blocked_time;
533         u32 exit_reason;
534
535         bool rdtscp_enabled;
536
537         /* Posted interrupt descriptor */
538         struct pi_desc pi_desc;
539
540         /* Support for a guest hypervisor (nested VMX) */
541         struct nested_vmx nested;
542
543         /* Dynamic PLE window. */
544         int ple_window;
545         bool ple_window_dirty;
546
547         /* Support for PML */
548 #define PML_ENTITY_NUM          512
549         struct page *pml_pg;
550 };
551
552 enum segment_cache_field {
553         SEG_FIELD_SEL = 0,
554         SEG_FIELD_BASE = 1,
555         SEG_FIELD_LIMIT = 2,
556         SEG_FIELD_AR = 3,
557
558         SEG_FIELD_NR = 4
559 };
560
561 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
562 {
563         return container_of(vcpu, struct vcpu_vmx, vcpu);
564 }
565
566 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
567 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
568 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
569                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
570
571
572 static unsigned long shadow_read_only_fields[] = {
573         /*
574          * We do NOT shadow fields that are modified when L0
575          * traps and emulates any vmx instruction (e.g. VMPTRLD,
576          * VMXON...) executed by L1.
577          * For example, VM_INSTRUCTION_ERROR is read
578          * by L1 if a vmx instruction fails (part of the error path).
579          * Note the code assumes this logic. If for some reason
580          * we start shadowing these fields then we need to
581          * force a shadow sync when L0 emulates vmx instructions
582          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
583          * by nested_vmx_failValid)
584          */
585         VM_EXIT_REASON,
586         VM_EXIT_INTR_INFO,
587         VM_EXIT_INSTRUCTION_LEN,
588         IDT_VECTORING_INFO_FIELD,
589         IDT_VECTORING_ERROR_CODE,
590         VM_EXIT_INTR_ERROR_CODE,
591         EXIT_QUALIFICATION,
592         GUEST_LINEAR_ADDRESS,
593         GUEST_PHYSICAL_ADDRESS
594 };
595 static int max_shadow_read_only_fields =
596         ARRAY_SIZE(shadow_read_only_fields);
597
598 static unsigned long shadow_read_write_fields[] = {
599         TPR_THRESHOLD,
600         GUEST_RIP,
601         GUEST_RSP,
602         GUEST_CR0,
603         GUEST_CR3,
604         GUEST_CR4,
605         GUEST_INTERRUPTIBILITY_INFO,
606         GUEST_RFLAGS,
607         GUEST_CS_SELECTOR,
608         GUEST_CS_AR_BYTES,
609         GUEST_CS_LIMIT,
610         GUEST_CS_BASE,
611         GUEST_ES_BASE,
612         GUEST_BNDCFGS,
613         CR0_GUEST_HOST_MASK,
614         CR0_READ_SHADOW,
615         CR4_READ_SHADOW,
616         TSC_OFFSET,
617         EXCEPTION_BITMAP,
618         CPU_BASED_VM_EXEC_CONTROL,
619         VM_ENTRY_EXCEPTION_ERROR_CODE,
620         VM_ENTRY_INTR_INFO_FIELD,
621         VM_ENTRY_INSTRUCTION_LEN,
622         VM_ENTRY_EXCEPTION_ERROR_CODE,
623         HOST_FS_BASE,
624         HOST_GS_BASE,
625         HOST_FS_SELECTOR,
626         HOST_GS_SELECTOR
627 };
628 static int max_shadow_read_write_fields =
629         ARRAY_SIZE(shadow_read_write_fields);
630
631 static const unsigned short vmcs_field_to_offset_table[] = {
632         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
633         FIELD(POSTED_INTR_NV, posted_intr_nv),
634         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
635         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
636         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
637         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
638         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
639         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
640         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
641         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
642         FIELD(GUEST_INTR_STATUS, guest_intr_status),
643         FIELD(HOST_ES_SELECTOR, host_es_selector),
644         FIELD(HOST_CS_SELECTOR, host_cs_selector),
645         FIELD(HOST_SS_SELECTOR, host_ss_selector),
646         FIELD(HOST_DS_SELECTOR, host_ds_selector),
647         FIELD(HOST_FS_SELECTOR, host_fs_selector),
648         FIELD(HOST_GS_SELECTOR, host_gs_selector),
649         FIELD(HOST_TR_SELECTOR, host_tr_selector),
650         FIELD64(IO_BITMAP_A, io_bitmap_a),
651         FIELD64(IO_BITMAP_B, io_bitmap_b),
652         FIELD64(MSR_BITMAP, msr_bitmap),
653         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
654         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
655         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
656         FIELD64(TSC_OFFSET, tsc_offset),
657         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
658         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
659         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
660         FIELD64(EPT_POINTER, ept_pointer),
661         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
662         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
663         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
664         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
665         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
666         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
667         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
668         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
669         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
670         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
671         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
672         FIELD64(GUEST_PDPTR0, guest_pdptr0),
673         FIELD64(GUEST_PDPTR1, guest_pdptr1),
674         FIELD64(GUEST_PDPTR2, guest_pdptr2),
675         FIELD64(GUEST_PDPTR3, guest_pdptr3),
676         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
677         FIELD64(HOST_IA32_PAT, host_ia32_pat),
678         FIELD64(HOST_IA32_EFER, host_ia32_efer),
679         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
680         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
681         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
682         FIELD(EXCEPTION_BITMAP, exception_bitmap),
683         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
684         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
685         FIELD(CR3_TARGET_COUNT, cr3_target_count),
686         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
687         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
688         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
689         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
690         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
691         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
692         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
693         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
694         FIELD(TPR_THRESHOLD, tpr_threshold),
695         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
696         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
697         FIELD(VM_EXIT_REASON, vm_exit_reason),
698         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
699         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
700         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
701         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
702         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
703         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
704         FIELD(GUEST_ES_LIMIT, guest_es_limit),
705         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
706         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
707         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
708         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
709         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
710         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
711         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
712         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
713         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
714         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
715         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
716         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
717         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
718         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
719         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
720         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
721         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
722         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
723         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
724         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
725         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
726         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
727         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
728         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
729         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
730         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
731         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
732         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
733         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
734         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
735         FIELD(EXIT_QUALIFICATION, exit_qualification),
736         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
737         FIELD(GUEST_CR0, guest_cr0),
738         FIELD(GUEST_CR3, guest_cr3),
739         FIELD(GUEST_CR4, guest_cr4),
740         FIELD(GUEST_ES_BASE, guest_es_base),
741         FIELD(GUEST_CS_BASE, guest_cs_base),
742         FIELD(GUEST_SS_BASE, guest_ss_base),
743         FIELD(GUEST_DS_BASE, guest_ds_base),
744         FIELD(GUEST_FS_BASE, guest_fs_base),
745         FIELD(GUEST_GS_BASE, guest_gs_base),
746         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
747         FIELD(GUEST_TR_BASE, guest_tr_base),
748         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
749         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
750         FIELD(GUEST_DR7, guest_dr7),
751         FIELD(GUEST_RSP, guest_rsp),
752         FIELD(GUEST_RIP, guest_rip),
753         FIELD(GUEST_RFLAGS, guest_rflags),
754         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
755         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
756         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
757         FIELD(HOST_CR0, host_cr0),
758         FIELD(HOST_CR3, host_cr3),
759         FIELD(HOST_CR4, host_cr4),
760         FIELD(HOST_FS_BASE, host_fs_base),
761         FIELD(HOST_GS_BASE, host_gs_base),
762         FIELD(HOST_TR_BASE, host_tr_base),
763         FIELD(HOST_GDTR_BASE, host_gdtr_base),
764         FIELD(HOST_IDTR_BASE, host_idtr_base),
765         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
766         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
767         FIELD(HOST_RSP, host_rsp),
768         FIELD(HOST_RIP, host_rip),
769 };
770
771 static inline short vmcs_field_to_offset(unsigned long field)
772 {
773         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
774
775         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
776             vmcs_field_to_offset_table[field] == 0)
777                 return -ENOENT;
778
779         return vmcs_field_to_offset_table[field];
780 }
781
782 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
783 {
784         return to_vmx(vcpu)->nested.current_vmcs12;
785 }
786
787 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
788 {
789         struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
790         if (is_error_page(page))
791                 return NULL;
792
793         return page;
794 }
795
796 static void nested_release_page(struct page *page)
797 {
798         kvm_release_page_dirty(page);
799 }
800
801 static void nested_release_page_clean(struct page *page)
802 {
803         kvm_release_page_clean(page);
804 }
805
806 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
807 static u64 construct_eptp(unsigned long root_hpa);
808 static void kvm_cpu_vmxon(u64 addr);
809 static void kvm_cpu_vmxoff(void);
810 static bool vmx_mpx_supported(void);
811 static bool vmx_xsaves_supported(void);
812 static int vmx_vm_has_apicv(struct kvm *kvm);
813 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
814 static void vmx_set_segment(struct kvm_vcpu *vcpu,
815                             struct kvm_segment *var, int seg);
816 static void vmx_get_segment(struct kvm_vcpu *vcpu,
817                             struct kvm_segment *var, int seg);
818 static bool guest_state_valid(struct kvm_vcpu *vcpu);
819 static u32 vmx_segment_access_rights(struct kvm_segment *var);
820 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
821 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
822 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
823 static int alloc_identity_pagetable(struct kvm *kvm);
824
825 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
826 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
827 /*
828  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
829  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
830  */
831 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
832 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
833
834 static unsigned long *vmx_io_bitmap_a;
835 static unsigned long *vmx_io_bitmap_b;
836 static unsigned long *vmx_msr_bitmap_legacy;
837 static unsigned long *vmx_msr_bitmap_longmode;
838 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
839 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
840 static unsigned long *vmx_msr_bitmap_nested;
841 static unsigned long *vmx_vmread_bitmap;
842 static unsigned long *vmx_vmwrite_bitmap;
843
844 static bool cpu_has_load_ia32_efer;
845 static bool cpu_has_load_perf_global_ctrl;
846
847 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
848 static DEFINE_SPINLOCK(vmx_vpid_lock);
849
850 static struct vmcs_config {
851         int size;
852         int order;
853         u32 revision_id;
854         u32 pin_based_exec_ctrl;
855         u32 cpu_based_exec_ctrl;
856         u32 cpu_based_2nd_exec_ctrl;
857         u32 vmexit_ctrl;
858         u32 vmentry_ctrl;
859 } vmcs_config;
860
861 static struct vmx_capability {
862         u32 ept;
863         u32 vpid;
864 } vmx_capability;
865
866 #define VMX_SEGMENT_FIELD(seg)                                  \
867         [VCPU_SREG_##seg] = {                                   \
868                 .selector = GUEST_##seg##_SELECTOR,             \
869                 .base = GUEST_##seg##_BASE,                     \
870                 .limit = GUEST_##seg##_LIMIT,                   \
871                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
872         }
873
874 static const struct kvm_vmx_segment_field {
875         unsigned selector;
876         unsigned base;
877         unsigned limit;
878         unsigned ar_bytes;
879 } kvm_vmx_segment_fields[] = {
880         VMX_SEGMENT_FIELD(CS),
881         VMX_SEGMENT_FIELD(DS),
882         VMX_SEGMENT_FIELD(ES),
883         VMX_SEGMENT_FIELD(FS),
884         VMX_SEGMENT_FIELD(GS),
885         VMX_SEGMENT_FIELD(SS),
886         VMX_SEGMENT_FIELD(TR),
887         VMX_SEGMENT_FIELD(LDTR),
888 };
889
890 static u64 host_efer;
891
892 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
893
894 /*
895  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
896  * away by decrementing the array size.
897  */
898 static const u32 vmx_msr_index[] = {
899 #ifdef CONFIG_X86_64
900         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
901 #endif
902         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
903 };
904
905 static inline bool is_page_fault(u32 intr_info)
906 {
907         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
908                              INTR_INFO_VALID_MASK)) ==
909                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
910 }
911
912 static inline bool is_no_device(u32 intr_info)
913 {
914         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
915                              INTR_INFO_VALID_MASK)) ==
916                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
917 }
918
919 static inline bool is_invalid_opcode(u32 intr_info)
920 {
921         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
922                              INTR_INFO_VALID_MASK)) ==
923                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
924 }
925
926 static inline bool is_external_interrupt(u32 intr_info)
927 {
928         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
929                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
930 }
931
932 static inline bool is_machine_check(u32 intr_info)
933 {
934         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
935                              INTR_INFO_VALID_MASK)) ==
936                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
937 }
938
939 static inline bool cpu_has_vmx_msr_bitmap(void)
940 {
941         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
942 }
943
944 static inline bool cpu_has_vmx_tpr_shadow(void)
945 {
946         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
947 }
948
949 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
950 {
951         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
952 }
953
954 static inline bool cpu_has_secondary_exec_ctrls(void)
955 {
956         return vmcs_config.cpu_based_exec_ctrl &
957                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
958 }
959
960 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
961 {
962         return vmcs_config.cpu_based_2nd_exec_ctrl &
963                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
964 }
965
966 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
967 {
968         return vmcs_config.cpu_based_2nd_exec_ctrl &
969                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
970 }
971
972 static inline bool cpu_has_vmx_apic_register_virt(void)
973 {
974         return vmcs_config.cpu_based_2nd_exec_ctrl &
975                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
976 }
977
978 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
979 {
980         return vmcs_config.cpu_based_2nd_exec_ctrl &
981                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
982 }
983
984 static inline bool cpu_has_vmx_posted_intr(void)
985 {
986         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
987 }
988
989 static inline bool cpu_has_vmx_apicv(void)
990 {
991         return cpu_has_vmx_apic_register_virt() &&
992                 cpu_has_vmx_virtual_intr_delivery() &&
993                 cpu_has_vmx_posted_intr();
994 }
995
996 static inline bool cpu_has_vmx_flexpriority(void)
997 {
998         return cpu_has_vmx_tpr_shadow() &&
999                 cpu_has_vmx_virtualize_apic_accesses();
1000 }
1001
1002 static inline bool cpu_has_vmx_ept_execute_only(void)
1003 {
1004         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1005 }
1006
1007 static inline bool cpu_has_vmx_ept_2m_page(void)
1008 {
1009         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1010 }
1011
1012 static inline bool cpu_has_vmx_ept_1g_page(void)
1013 {
1014         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1015 }
1016
1017 static inline bool cpu_has_vmx_ept_4levels(void)
1018 {
1019         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1020 }
1021
1022 static inline bool cpu_has_vmx_ept_ad_bits(void)
1023 {
1024         return vmx_capability.ept & VMX_EPT_AD_BIT;
1025 }
1026
1027 static inline bool cpu_has_vmx_invept_context(void)
1028 {
1029         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1030 }
1031
1032 static inline bool cpu_has_vmx_invept_global(void)
1033 {
1034         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1035 }
1036
1037 static inline bool cpu_has_vmx_invvpid_single(void)
1038 {
1039         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1040 }
1041
1042 static inline bool cpu_has_vmx_invvpid_global(void)
1043 {
1044         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1045 }
1046
1047 static inline bool cpu_has_vmx_ept(void)
1048 {
1049         return vmcs_config.cpu_based_2nd_exec_ctrl &
1050                 SECONDARY_EXEC_ENABLE_EPT;
1051 }
1052
1053 static inline bool cpu_has_vmx_unrestricted_guest(void)
1054 {
1055         return vmcs_config.cpu_based_2nd_exec_ctrl &
1056                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1057 }
1058
1059 static inline bool cpu_has_vmx_ple(void)
1060 {
1061         return vmcs_config.cpu_based_2nd_exec_ctrl &
1062                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1063 }
1064
1065 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1066 {
1067         return flexpriority_enabled && irqchip_in_kernel(kvm);
1068 }
1069
1070 static inline bool cpu_has_vmx_vpid(void)
1071 {
1072         return vmcs_config.cpu_based_2nd_exec_ctrl &
1073                 SECONDARY_EXEC_ENABLE_VPID;
1074 }
1075
1076 static inline bool cpu_has_vmx_rdtscp(void)
1077 {
1078         return vmcs_config.cpu_based_2nd_exec_ctrl &
1079                 SECONDARY_EXEC_RDTSCP;
1080 }
1081
1082 static inline bool cpu_has_vmx_invpcid(void)
1083 {
1084         return vmcs_config.cpu_based_2nd_exec_ctrl &
1085                 SECONDARY_EXEC_ENABLE_INVPCID;
1086 }
1087
1088 static inline bool cpu_has_virtual_nmis(void)
1089 {
1090         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1091 }
1092
1093 static inline bool cpu_has_vmx_wbinvd_exit(void)
1094 {
1095         return vmcs_config.cpu_based_2nd_exec_ctrl &
1096                 SECONDARY_EXEC_WBINVD_EXITING;
1097 }
1098
1099 static inline bool cpu_has_vmx_shadow_vmcs(void)
1100 {
1101         u64 vmx_msr;
1102         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1103         /* check if the cpu supports writing r/o exit information fields */
1104         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1105                 return false;
1106
1107         return vmcs_config.cpu_based_2nd_exec_ctrl &
1108                 SECONDARY_EXEC_SHADOW_VMCS;
1109 }
1110
1111 static inline bool cpu_has_vmx_pml(void)
1112 {
1113         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1114 }
1115
1116 static inline bool report_flexpriority(void)
1117 {
1118         return flexpriority_enabled;
1119 }
1120
1121 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1122 {
1123         return vmcs12->cpu_based_vm_exec_control & bit;
1124 }
1125
1126 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1127 {
1128         return (vmcs12->cpu_based_vm_exec_control &
1129                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1130                 (vmcs12->secondary_vm_exec_control & bit);
1131 }
1132
1133 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1134 {
1135         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1136 }
1137
1138 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1139 {
1140         return vmcs12->pin_based_vm_exec_control &
1141                 PIN_BASED_VMX_PREEMPTION_TIMER;
1142 }
1143
1144 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1145 {
1146         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1147 }
1148
1149 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1150 {
1151         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1152                 vmx_xsaves_supported();
1153 }
1154
1155 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1156 {
1157         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1158 }
1159
1160 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1161 {
1162         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1163 }
1164
1165 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1166 {
1167         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1168 }
1169
1170 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1171 {
1172         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1173 }
1174
1175 static inline bool is_exception(u32 intr_info)
1176 {
1177         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1178                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1179 }
1180
1181 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1182                               u32 exit_intr_info,
1183                               unsigned long exit_qualification);
1184 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1185                         struct vmcs12 *vmcs12,
1186                         u32 reason, unsigned long qualification);
1187
1188 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1189 {
1190         int i;
1191
1192         for (i = 0; i < vmx->nmsrs; ++i)
1193                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1194                         return i;
1195         return -1;
1196 }
1197
1198 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1199 {
1200     struct {
1201         u64 vpid : 16;
1202         u64 rsvd : 48;
1203         u64 gva;
1204     } operand = { vpid, 0, gva };
1205
1206     asm volatile (__ex(ASM_VMX_INVVPID)
1207                   /* CF==1 or ZF==1 --> rc = -1 */
1208                   "; ja 1f ; ud2 ; 1:"
1209                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1210 }
1211
1212 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1213 {
1214         struct {
1215                 u64 eptp, gpa;
1216         } operand = {eptp, gpa};
1217
1218         asm volatile (__ex(ASM_VMX_INVEPT)
1219                         /* CF==1 or ZF==1 --> rc = -1 */
1220                         "; ja 1f ; ud2 ; 1:\n"
1221                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1222 }
1223
1224 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1225 {
1226         int i;
1227
1228         i = __find_msr_index(vmx, msr);
1229         if (i >= 0)
1230                 return &vmx->guest_msrs[i];
1231         return NULL;
1232 }
1233
1234 static void vmcs_clear(struct vmcs *vmcs)
1235 {
1236         u64 phys_addr = __pa(vmcs);
1237         u8 error;
1238
1239         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1240                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1241                       : "cc", "memory");
1242         if (error)
1243                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1244                        vmcs, phys_addr);
1245 }
1246
1247 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1248 {
1249         vmcs_clear(loaded_vmcs->vmcs);
1250         loaded_vmcs->cpu = -1;
1251         loaded_vmcs->launched = 0;
1252 }
1253
1254 static void vmcs_load(struct vmcs *vmcs)
1255 {
1256         u64 phys_addr = __pa(vmcs);
1257         u8 error;
1258
1259         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1260                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1261                         : "cc", "memory");
1262         if (error)
1263                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1264                        vmcs, phys_addr);
1265 }
1266
1267 #ifdef CONFIG_KEXEC_CORE
1268 /*
1269  * This bitmap is used to indicate whether the vmclear
1270  * operation is enabled on all cpus. All disabled by
1271  * default.
1272  */
1273 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1274
1275 static inline void crash_enable_local_vmclear(int cpu)
1276 {
1277         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1278 }
1279
1280 static inline void crash_disable_local_vmclear(int cpu)
1281 {
1282         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1283 }
1284
1285 static inline int crash_local_vmclear_enabled(int cpu)
1286 {
1287         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1288 }
1289
1290 static void crash_vmclear_local_loaded_vmcss(void)
1291 {
1292         int cpu = raw_smp_processor_id();
1293         struct loaded_vmcs *v;
1294
1295         if (!crash_local_vmclear_enabled(cpu))
1296                 return;
1297
1298         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1299                             loaded_vmcss_on_cpu_link)
1300                 vmcs_clear(v->vmcs);
1301 }
1302 #else
1303 static inline void crash_enable_local_vmclear(int cpu) { }
1304 static inline void crash_disable_local_vmclear(int cpu) { }
1305 #endif /* CONFIG_KEXEC_CORE */
1306
1307 static void __loaded_vmcs_clear(void *arg)
1308 {
1309         struct loaded_vmcs *loaded_vmcs = arg;
1310         int cpu = raw_smp_processor_id();
1311
1312         if (loaded_vmcs->cpu != cpu)
1313                 return; /* vcpu migration can race with cpu offline */
1314         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1315                 per_cpu(current_vmcs, cpu) = NULL;
1316         crash_disable_local_vmclear(cpu);
1317         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1318
1319         /*
1320          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1321          * is before setting loaded_vmcs->vcpu to -1 which is done in
1322          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1323          * then adds the vmcs into percpu list before it is deleted.
1324          */
1325         smp_wmb();
1326
1327         loaded_vmcs_init(loaded_vmcs);
1328         crash_enable_local_vmclear(cpu);
1329 }
1330
1331 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1332 {
1333         int cpu = loaded_vmcs->cpu;
1334
1335         if (cpu != -1)
1336                 smp_call_function_single(cpu,
1337                          __loaded_vmcs_clear, loaded_vmcs, 1);
1338 }
1339
1340 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1341 {
1342         if (vmx->vpid == 0)
1343                 return;
1344
1345         if (cpu_has_vmx_invvpid_single())
1346                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1347 }
1348
1349 static inline void vpid_sync_vcpu_global(void)
1350 {
1351         if (cpu_has_vmx_invvpid_global())
1352                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1353 }
1354
1355 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1356 {
1357         if (cpu_has_vmx_invvpid_single())
1358                 vpid_sync_vcpu_single(vmx);
1359         else
1360                 vpid_sync_vcpu_global();
1361 }
1362
1363 static inline void ept_sync_global(void)
1364 {
1365         if (cpu_has_vmx_invept_global())
1366                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1367 }
1368
1369 static inline void ept_sync_context(u64 eptp)
1370 {
1371         if (enable_ept) {
1372                 if (cpu_has_vmx_invept_context())
1373                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1374                 else
1375                         ept_sync_global();
1376         }
1377 }
1378
1379 static __always_inline unsigned long vmcs_readl(unsigned long field)
1380 {
1381         unsigned long value;
1382
1383         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1384                       : "=a"(value) : "d"(field) : "cc");
1385         return value;
1386 }
1387
1388 static __always_inline u16 vmcs_read16(unsigned long field)
1389 {
1390         return vmcs_readl(field);
1391 }
1392
1393 static __always_inline u32 vmcs_read32(unsigned long field)
1394 {
1395         return vmcs_readl(field);
1396 }
1397
1398 static __always_inline u64 vmcs_read64(unsigned long field)
1399 {
1400 #ifdef CONFIG_X86_64
1401         return vmcs_readl(field);
1402 #else
1403         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1404 #endif
1405 }
1406
1407 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1408 {
1409         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1410                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1411         dump_stack();
1412 }
1413
1414 static void vmcs_writel(unsigned long field, unsigned long value)
1415 {
1416         u8 error;
1417
1418         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1419                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1420         if (unlikely(error))
1421                 vmwrite_error(field, value);
1422 }
1423
1424 static void vmcs_write16(unsigned long field, u16 value)
1425 {
1426         vmcs_writel(field, value);
1427 }
1428
1429 static void vmcs_write32(unsigned long field, u32 value)
1430 {
1431         vmcs_writel(field, value);
1432 }
1433
1434 static void vmcs_write64(unsigned long field, u64 value)
1435 {
1436         vmcs_writel(field, value);
1437 #ifndef CONFIG_X86_64
1438         asm volatile ("");
1439         vmcs_writel(field+1, value >> 32);
1440 #endif
1441 }
1442
1443 static void vmcs_clear_bits(unsigned long field, u32 mask)
1444 {
1445         vmcs_writel(field, vmcs_readl(field) & ~mask);
1446 }
1447
1448 static void vmcs_set_bits(unsigned long field, u32 mask)
1449 {
1450         vmcs_writel(field, vmcs_readl(field) | mask);
1451 }
1452
1453 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1454 {
1455         vmcs_write32(VM_ENTRY_CONTROLS, val);
1456         vmx->vm_entry_controls_shadow = val;
1457 }
1458
1459 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1460 {
1461         if (vmx->vm_entry_controls_shadow != val)
1462                 vm_entry_controls_init(vmx, val);
1463 }
1464
1465 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1466 {
1467         return vmx->vm_entry_controls_shadow;
1468 }
1469
1470
1471 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1472 {
1473         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1474 }
1475
1476 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1477 {
1478         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1479 }
1480
1481 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1482 {
1483         vmcs_write32(VM_EXIT_CONTROLS, val);
1484         vmx->vm_exit_controls_shadow = val;
1485 }
1486
1487 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1488 {
1489         if (vmx->vm_exit_controls_shadow != val)
1490                 vm_exit_controls_init(vmx, val);
1491 }
1492
1493 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1494 {
1495         return vmx->vm_exit_controls_shadow;
1496 }
1497
1498
1499 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1500 {
1501         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1502 }
1503
1504 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1505 {
1506         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1507 }
1508
1509 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1510 {
1511         vmx->segment_cache.bitmask = 0;
1512 }
1513
1514 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1515                                        unsigned field)
1516 {
1517         bool ret;
1518         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1519
1520         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1521                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1522                 vmx->segment_cache.bitmask = 0;
1523         }
1524         ret = vmx->segment_cache.bitmask & mask;
1525         vmx->segment_cache.bitmask |= mask;
1526         return ret;
1527 }
1528
1529 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1530 {
1531         u16 *p = &vmx->segment_cache.seg[seg].selector;
1532
1533         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1534                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1535         return *p;
1536 }
1537
1538 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1539 {
1540         ulong *p = &vmx->segment_cache.seg[seg].base;
1541
1542         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1543                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1544         return *p;
1545 }
1546
1547 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1548 {
1549         u32 *p = &vmx->segment_cache.seg[seg].limit;
1550
1551         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1552                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1553         return *p;
1554 }
1555
1556 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1557 {
1558         u32 *p = &vmx->segment_cache.seg[seg].ar;
1559
1560         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1561                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1562         return *p;
1563 }
1564
1565 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1566 {
1567         u32 eb;
1568
1569         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1570              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1571         if ((vcpu->guest_debug &
1572              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1573             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1574                 eb |= 1u << BP_VECTOR;
1575         if (to_vmx(vcpu)->rmode.vm86_active)
1576                 eb = ~0;
1577         if (enable_ept)
1578                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1579         if (vcpu->fpu_active)
1580                 eb &= ~(1u << NM_VECTOR);
1581
1582         /* When we are running a nested L2 guest and L1 specified for it a
1583          * certain exception bitmap, we must trap the same exceptions and pass
1584          * them to L1. When running L2, we will only handle the exceptions
1585          * specified above if L1 did not want them.
1586          */
1587         if (is_guest_mode(vcpu))
1588                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1589
1590         vmcs_write32(EXCEPTION_BITMAP, eb);
1591 }
1592
1593 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1594                 unsigned long entry, unsigned long exit)
1595 {
1596         vm_entry_controls_clearbit(vmx, entry);
1597         vm_exit_controls_clearbit(vmx, exit);
1598 }
1599
1600 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1601 {
1602         unsigned i;
1603         struct msr_autoload *m = &vmx->msr_autoload;
1604
1605         switch (msr) {
1606         case MSR_EFER:
1607                 if (cpu_has_load_ia32_efer) {
1608                         clear_atomic_switch_msr_special(vmx,
1609                                         VM_ENTRY_LOAD_IA32_EFER,
1610                                         VM_EXIT_LOAD_IA32_EFER);
1611                         return;
1612                 }
1613                 break;
1614         case MSR_CORE_PERF_GLOBAL_CTRL:
1615                 if (cpu_has_load_perf_global_ctrl) {
1616                         clear_atomic_switch_msr_special(vmx,
1617                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1618                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1619                         return;
1620                 }
1621                 break;
1622         }
1623
1624         for (i = 0; i < m->nr; ++i)
1625                 if (m->guest[i].index == msr)
1626                         break;
1627
1628         if (i == m->nr)
1629                 return;
1630         --m->nr;
1631         m->guest[i] = m->guest[m->nr];
1632         m->host[i] = m->host[m->nr];
1633         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1634         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1635 }
1636
1637 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1638                 unsigned long entry, unsigned long exit,
1639                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1640                 u64 guest_val, u64 host_val)
1641 {
1642         vmcs_write64(guest_val_vmcs, guest_val);
1643         vmcs_write64(host_val_vmcs, host_val);
1644         vm_entry_controls_setbit(vmx, entry);
1645         vm_exit_controls_setbit(vmx, exit);
1646 }
1647
1648 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1649                                   u64 guest_val, u64 host_val)
1650 {
1651         unsigned i;
1652         struct msr_autoload *m = &vmx->msr_autoload;
1653
1654         switch (msr) {
1655         case MSR_EFER:
1656                 if (cpu_has_load_ia32_efer) {
1657                         add_atomic_switch_msr_special(vmx,
1658                                         VM_ENTRY_LOAD_IA32_EFER,
1659                                         VM_EXIT_LOAD_IA32_EFER,
1660                                         GUEST_IA32_EFER,
1661                                         HOST_IA32_EFER,
1662                                         guest_val, host_val);
1663                         return;
1664                 }
1665                 break;
1666         case MSR_CORE_PERF_GLOBAL_CTRL:
1667                 if (cpu_has_load_perf_global_ctrl) {
1668                         add_atomic_switch_msr_special(vmx,
1669                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1670                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1671                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1672                                         HOST_IA32_PERF_GLOBAL_CTRL,
1673                                         guest_val, host_val);
1674                         return;
1675                 }
1676                 break;
1677         }
1678
1679         for (i = 0; i < m->nr; ++i)
1680                 if (m->guest[i].index == msr)
1681                         break;
1682
1683         if (i == NR_AUTOLOAD_MSRS) {
1684                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1685                                 "Can't add msr %x\n", msr);
1686                 return;
1687         } else if (i == m->nr) {
1688                 ++m->nr;
1689                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1690                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1691         }
1692
1693         m->guest[i].index = msr;
1694         m->guest[i].value = guest_val;
1695         m->host[i].index = msr;
1696         m->host[i].value = host_val;
1697 }
1698
1699 static void reload_tss(void)
1700 {
1701         /*
1702          * VT restores TR but not its size.  Useless.
1703          */
1704         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1705         struct desc_struct *descs;
1706
1707         descs = (void *)gdt->address;
1708         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1709         load_TR_desc();
1710 }
1711
1712 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1713 {
1714         u64 guest_efer;
1715         u64 ignore_bits;
1716
1717         guest_efer = vmx->vcpu.arch.efer;
1718
1719         /*
1720          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1721          * outside long mode
1722          */
1723         ignore_bits = EFER_NX | EFER_SCE;
1724 #ifdef CONFIG_X86_64
1725         ignore_bits |= EFER_LMA | EFER_LME;
1726         /* SCE is meaningful only in long mode on Intel */
1727         if (guest_efer & EFER_LMA)
1728                 ignore_bits &= ~(u64)EFER_SCE;
1729 #endif
1730         guest_efer &= ~ignore_bits;
1731         guest_efer |= host_efer & ignore_bits;
1732         vmx->guest_msrs[efer_offset].data = guest_efer;
1733         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1734
1735         clear_atomic_switch_msr(vmx, MSR_EFER);
1736
1737         /*
1738          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1739          * On CPUs that support "load IA32_EFER", always switch EFER
1740          * atomically, since it's faster than switching it manually.
1741          */
1742         if (cpu_has_load_ia32_efer ||
1743             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1744                 guest_efer = vmx->vcpu.arch.efer;
1745                 if (!(guest_efer & EFER_LMA))
1746                         guest_efer &= ~EFER_LME;
1747                 if (guest_efer != host_efer)
1748                         add_atomic_switch_msr(vmx, MSR_EFER,
1749                                               guest_efer, host_efer);
1750                 return false;
1751         }
1752
1753         return true;
1754 }
1755
1756 static unsigned long segment_base(u16 selector)
1757 {
1758         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1759         struct desc_struct *d;
1760         unsigned long table_base;
1761         unsigned long v;
1762
1763         if (!(selector & ~3))
1764                 return 0;
1765
1766         table_base = gdt->address;
1767
1768         if (selector & 4) {           /* from ldt */
1769                 u16 ldt_selector = kvm_read_ldt();
1770
1771                 if (!(ldt_selector & ~3))
1772                         return 0;
1773
1774                 table_base = segment_base(ldt_selector);
1775         }
1776         d = (struct desc_struct *)(table_base + (selector & ~7));
1777         v = get_desc_base(d);
1778 #ifdef CONFIG_X86_64
1779        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1780                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1781 #endif
1782         return v;
1783 }
1784
1785 static inline unsigned long kvm_read_tr_base(void)
1786 {
1787         u16 tr;
1788         asm("str %0" : "=g"(tr));
1789         return segment_base(tr);
1790 }
1791
1792 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1793 {
1794         struct vcpu_vmx *vmx = to_vmx(vcpu);
1795         int i;
1796
1797         if (vmx->host_state.loaded)
1798                 return;
1799
1800         vmx->host_state.loaded = 1;
1801         /*
1802          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1803          * allow segment selectors with cpl > 0 or ti == 1.
1804          */
1805         vmx->host_state.ldt_sel = kvm_read_ldt();
1806         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1807         savesegment(fs, vmx->host_state.fs_sel);
1808         if (!(vmx->host_state.fs_sel & 7)) {
1809                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1810                 vmx->host_state.fs_reload_needed = 0;
1811         } else {
1812                 vmcs_write16(HOST_FS_SELECTOR, 0);
1813                 vmx->host_state.fs_reload_needed = 1;
1814         }
1815         savesegment(gs, vmx->host_state.gs_sel);
1816         if (!(vmx->host_state.gs_sel & 7))
1817                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1818         else {
1819                 vmcs_write16(HOST_GS_SELECTOR, 0);
1820                 vmx->host_state.gs_ldt_reload_needed = 1;
1821         }
1822
1823 #ifdef CONFIG_X86_64
1824         savesegment(ds, vmx->host_state.ds_sel);
1825         savesegment(es, vmx->host_state.es_sel);
1826 #endif
1827
1828 #ifdef CONFIG_X86_64
1829         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1830         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1831 #else
1832         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1833         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1834 #endif
1835
1836 #ifdef CONFIG_X86_64
1837         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1838         if (is_long_mode(&vmx->vcpu))
1839                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1840 #endif
1841         if (boot_cpu_has(X86_FEATURE_MPX))
1842                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1843         for (i = 0; i < vmx->save_nmsrs; ++i)
1844                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1845                                    vmx->guest_msrs[i].data,
1846                                    vmx->guest_msrs[i].mask);
1847 }
1848
1849 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1850 {
1851         if (!vmx->host_state.loaded)
1852                 return;
1853
1854         ++vmx->vcpu.stat.host_state_reload;
1855         vmx->host_state.loaded = 0;
1856 #ifdef CONFIG_X86_64
1857         if (is_long_mode(&vmx->vcpu))
1858                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1859 #endif
1860         if (vmx->host_state.gs_ldt_reload_needed) {
1861                 kvm_load_ldt(vmx->host_state.ldt_sel);
1862 #ifdef CONFIG_X86_64
1863                 load_gs_index(vmx->host_state.gs_sel);
1864 #else
1865                 loadsegment(gs, vmx->host_state.gs_sel);
1866 #endif
1867         }
1868         if (vmx->host_state.fs_reload_needed)
1869                 loadsegment(fs, vmx->host_state.fs_sel);
1870 #ifdef CONFIG_X86_64
1871         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1872                 loadsegment(ds, vmx->host_state.ds_sel);
1873                 loadsegment(es, vmx->host_state.es_sel);
1874         }
1875 #endif
1876         reload_tss();
1877 #ifdef CONFIG_X86_64
1878         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1879 #endif
1880         if (vmx->host_state.msr_host_bndcfgs)
1881                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1882         /*
1883          * If the FPU is not active (through the host task or
1884          * the guest vcpu), then restore the cr0.TS bit.
1885          */
1886         if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
1887                 stts();
1888         load_gdt(this_cpu_ptr(&host_gdt));
1889 }
1890
1891 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1892 {
1893         preempt_disable();
1894         __vmx_load_host_state(vmx);
1895         preempt_enable();
1896 }
1897
1898 /*
1899  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1900  * vcpu mutex is already taken.
1901  */
1902 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1903 {
1904         struct vcpu_vmx *vmx = to_vmx(vcpu);
1905         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1906
1907         if (!vmm_exclusive)
1908                 kvm_cpu_vmxon(phys_addr);
1909         else if (vmx->loaded_vmcs->cpu != cpu)
1910                 loaded_vmcs_clear(vmx->loaded_vmcs);
1911
1912         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1913                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1914                 vmcs_load(vmx->loaded_vmcs->vmcs);
1915         }
1916
1917         if (vmx->loaded_vmcs->cpu != cpu) {
1918                 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1919                 unsigned long sysenter_esp;
1920
1921                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1922                 local_irq_disable();
1923                 crash_disable_local_vmclear(cpu);
1924
1925                 /*
1926                  * Read loaded_vmcs->cpu should be before fetching
1927                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1928                  * See the comments in __loaded_vmcs_clear().
1929                  */
1930                 smp_rmb();
1931
1932                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1933                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1934                 crash_enable_local_vmclear(cpu);
1935                 local_irq_enable();
1936
1937                 /*
1938                  * Linux uses per-cpu TSS and GDT, so set these when switching
1939                  * processors.
1940                  */
1941                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1942                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1943
1944                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1945                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1946                 vmx->loaded_vmcs->cpu = cpu;
1947         }
1948 }
1949
1950 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1951 {
1952         __vmx_load_host_state(to_vmx(vcpu));
1953         if (!vmm_exclusive) {
1954                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1955                 vcpu->cpu = -1;
1956                 kvm_cpu_vmxoff();
1957         }
1958 }
1959
1960 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1961 {
1962         ulong cr0;
1963
1964         if (vcpu->fpu_active)
1965                 return;
1966         vcpu->fpu_active = 1;
1967         cr0 = vmcs_readl(GUEST_CR0);
1968         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1969         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1970         vmcs_writel(GUEST_CR0, cr0);
1971         update_exception_bitmap(vcpu);
1972         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1973         if (is_guest_mode(vcpu))
1974                 vcpu->arch.cr0_guest_owned_bits &=
1975                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1976         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1977 }
1978
1979 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1980
1981 /*
1982  * Return the cr0 value that a nested guest would read. This is a combination
1983  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1984  * its hypervisor (cr0_read_shadow).
1985  */
1986 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1987 {
1988         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1989                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1990 }
1991 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1992 {
1993         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1994                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1995 }
1996
1997 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1998 {
1999         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2000          * set this *before* calling this function.
2001          */
2002         vmx_decache_cr0_guest_bits(vcpu);
2003         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2004         update_exception_bitmap(vcpu);
2005         vcpu->arch.cr0_guest_owned_bits = 0;
2006         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2007         if (is_guest_mode(vcpu)) {
2008                 /*
2009                  * L1's specified read shadow might not contain the TS bit,
2010                  * so now that we turned on shadowing of this bit, we need to
2011                  * set this bit of the shadow. Like in nested_vmx_run we need
2012                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2013                  * up-to-date here because we just decached cr0.TS (and we'll
2014                  * only update vmcs12->guest_cr0 on nested exit).
2015                  */
2016                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2017                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2018                         (vcpu->arch.cr0 & X86_CR0_TS);
2019                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2020         } else
2021                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2022 }
2023
2024 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2025 {
2026         unsigned long rflags, save_rflags;
2027
2028         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2029                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2030                 rflags = vmcs_readl(GUEST_RFLAGS);
2031                 if (to_vmx(vcpu)->rmode.vm86_active) {
2032                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2033                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2034                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2035                 }
2036                 to_vmx(vcpu)->rflags = rflags;
2037         }
2038         return to_vmx(vcpu)->rflags;
2039 }
2040
2041 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2042 {
2043         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2044         to_vmx(vcpu)->rflags = rflags;
2045         if (to_vmx(vcpu)->rmode.vm86_active) {
2046                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2047                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2048         }
2049         vmcs_writel(GUEST_RFLAGS, rflags);
2050 }
2051
2052 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2053 {
2054         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2055         int ret = 0;
2056
2057         if (interruptibility & GUEST_INTR_STATE_STI)
2058                 ret |= KVM_X86_SHADOW_INT_STI;
2059         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2060                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2061
2062         return ret;
2063 }
2064
2065 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2066 {
2067         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2068         u32 interruptibility = interruptibility_old;
2069
2070         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2071
2072         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2073                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2074         else if (mask & KVM_X86_SHADOW_INT_STI)
2075                 interruptibility |= GUEST_INTR_STATE_STI;
2076
2077         if ((interruptibility != interruptibility_old))
2078                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2079 }
2080
2081 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2082 {
2083         unsigned long rip;
2084
2085         rip = kvm_rip_read(vcpu);
2086         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2087         kvm_rip_write(vcpu, rip);
2088
2089         /* skipping an emulated instruction also counts */
2090         vmx_set_interrupt_shadow(vcpu, 0);
2091 }
2092
2093 /*
2094  * KVM wants to inject page-faults which it got to the guest. This function
2095  * checks whether in a nested guest, we need to inject them to L1 or L2.
2096  */
2097 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2098 {
2099         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2100
2101         if (!(vmcs12->exception_bitmap & (1u << nr)))
2102                 return 0;
2103
2104         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2105                           vmcs_read32(VM_EXIT_INTR_INFO),
2106                           vmcs_readl(EXIT_QUALIFICATION));
2107         return 1;
2108 }
2109
2110 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2111                                 bool has_error_code, u32 error_code,
2112                                 bool reinject)
2113 {
2114         struct vcpu_vmx *vmx = to_vmx(vcpu);
2115         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2116
2117         if (!reinject && is_guest_mode(vcpu) &&
2118             nested_vmx_check_exception(vcpu, nr))
2119                 return;
2120
2121         if (has_error_code) {
2122                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2123                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2124         }
2125
2126         if (vmx->rmode.vm86_active) {
2127                 int inc_eip = 0;
2128                 if (kvm_exception_is_soft(nr))
2129                         inc_eip = vcpu->arch.event_exit_inst_len;
2130                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2131                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2132                 return;
2133         }
2134
2135         if (kvm_exception_is_soft(nr)) {
2136                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2137                              vmx->vcpu.arch.event_exit_inst_len);
2138                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2139         } else
2140                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2141
2142         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2143 }
2144
2145 static bool vmx_rdtscp_supported(void)
2146 {
2147         return cpu_has_vmx_rdtscp();
2148 }
2149
2150 static bool vmx_invpcid_supported(void)
2151 {
2152         return cpu_has_vmx_invpcid() && enable_ept;
2153 }
2154
2155 /*
2156  * Swap MSR entry in host/guest MSR entry array.
2157  */
2158 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2159 {
2160         struct shared_msr_entry tmp;
2161
2162         tmp = vmx->guest_msrs[to];
2163         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2164         vmx->guest_msrs[from] = tmp;
2165 }
2166
2167 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2168 {
2169         unsigned long *msr_bitmap;
2170
2171         if (is_guest_mode(vcpu))
2172                 msr_bitmap = vmx_msr_bitmap_nested;
2173         else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
2174                 if (is_long_mode(vcpu))
2175                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2176                 else
2177                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2178         } else {
2179                 if (is_long_mode(vcpu))
2180                         msr_bitmap = vmx_msr_bitmap_longmode;
2181                 else
2182                         msr_bitmap = vmx_msr_bitmap_legacy;
2183         }
2184
2185         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2186 }
2187
2188 /*
2189  * Set up the vmcs to automatically save and restore system
2190  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2191  * mode, as fiddling with msrs is very expensive.
2192  */
2193 static void setup_msrs(struct vcpu_vmx *vmx)
2194 {
2195         int save_nmsrs, index;
2196
2197         save_nmsrs = 0;
2198 #ifdef CONFIG_X86_64
2199         if (is_long_mode(&vmx->vcpu)) {
2200                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2201                 if (index >= 0)
2202                         move_msr_up(vmx, index, save_nmsrs++);
2203                 index = __find_msr_index(vmx, MSR_LSTAR);
2204                 if (index >= 0)
2205                         move_msr_up(vmx, index, save_nmsrs++);
2206                 index = __find_msr_index(vmx, MSR_CSTAR);
2207                 if (index >= 0)
2208                         move_msr_up(vmx, index, save_nmsrs++);
2209                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2210                 if (index >= 0 && vmx->rdtscp_enabled)
2211                         move_msr_up(vmx, index, save_nmsrs++);
2212                 /*
2213                  * MSR_STAR is only needed on long mode guests, and only
2214                  * if efer.sce is enabled.
2215                  */
2216                 index = __find_msr_index(vmx, MSR_STAR);
2217                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2218                         move_msr_up(vmx, index, save_nmsrs++);
2219         }
2220 #endif
2221         index = __find_msr_index(vmx, MSR_EFER);
2222         if (index >= 0 && update_transition_efer(vmx, index))
2223                 move_msr_up(vmx, index, save_nmsrs++);
2224
2225         vmx->save_nmsrs = save_nmsrs;
2226
2227         if (cpu_has_vmx_msr_bitmap())
2228                 vmx_set_msr_bitmap(&vmx->vcpu);
2229 }
2230
2231 /*
2232  * reads and returns guest's timestamp counter "register"
2233  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2234  */
2235 static u64 guest_read_tsc(void)
2236 {
2237         u64 host_tsc, tsc_offset;
2238
2239         host_tsc = rdtsc();
2240         tsc_offset = vmcs_read64(TSC_OFFSET);
2241         return host_tsc + tsc_offset;
2242 }
2243
2244 /*
2245  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2246  * counter, even if a nested guest (L2) is currently running.
2247  */
2248 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2249 {
2250         u64 tsc_offset;
2251
2252         tsc_offset = is_guest_mode(vcpu) ?
2253                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2254                 vmcs_read64(TSC_OFFSET);
2255         return host_tsc + tsc_offset;
2256 }
2257
2258 /*
2259  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2260  * software catchup for faster rates on slower CPUs.
2261  */
2262 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2263 {
2264         if (!scale)
2265                 return;
2266
2267         if (user_tsc_khz > tsc_khz) {
2268                 vcpu->arch.tsc_catchup = 1;
2269                 vcpu->arch.tsc_always_catchup = 1;
2270         } else
2271                 WARN(1, "user requested TSC rate below hardware speed\n");
2272 }
2273
2274 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2275 {
2276         return vmcs_read64(TSC_OFFSET);
2277 }
2278
2279 /*
2280  * writes 'offset' into guest's timestamp counter offset register
2281  */
2282 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2283 {
2284         if (is_guest_mode(vcpu)) {
2285                 /*
2286                  * We're here if L1 chose not to trap WRMSR to TSC. According
2287                  * to the spec, this should set L1's TSC; The offset that L1
2288                  * set for L2 remains unchanged, and still needs to be added
2289                  * to the newly set TSC to get L2's TSC.
2290                  */
2291                 struct vmcs12 *vmcs12;
2292                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2293                 /* recalculate vmcs02.TSC_OFFSET: */
2294                 vmcs12 = get_vmcs12(vcpu);
2295                 vmcs_write64(TSC_OFFSET, offset +
2296                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2297                          vmcs12->tsc_offset : 0));
2298         } else {
2299                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2300                                            vmcs_read64(TSC_OFFSET), offset);
2301                 vmcs_write64(TSC_OFFSET, offset);
2302         }
2303 }
2304
2305 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2306 {
2307         u64 offset = vmcs_read64(TSC_OFFSET);
2308
2309         vmcs_write64(TSC_OFFSET, offset + adjustment);
2310         if (is_guest_mode(vcpu)) {
2311                 /* Even when running L2, the adjustment needs to apply to L1 */
2312                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2313         } else
2314                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2315                                            offset + adjustment);
2316 }
2317
2318 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2319 {
2320         return target_tsc - rdtsc();
2321 }
2322
2323 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2324 {
2325         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2326         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2327 }
2328
2329 /*
2330  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2331  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2332  * all guests if the "nested" module option is off, and can also be disabled
2333  * for a single guest by disabling its VMX cpuid bit.
2334  */
2335 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2336 {
2337         return nested && guest_cpuid_has_vmx(vcpu);
2338 }
2339
2340 /*
2341  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2342  * returned for the various VMX controls MSRs when nested VMX is enabled.
2343  * The same values should also be used to verify that vmcs12 control fields are
2344  * valid during nested entry from L1 to L2.
2345  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2346  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2347  * bit in the high half is on if the corresponding bit in the control field
2348  * may be on. See also vmx_control_verify().
2349  */
2350 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2351 {
2352         /*
2353          * Note that as a general rule, the high half of the MSRs (bits in
2354          * the control fields which may be 1) should be initialized by the
2355          * intersection of the underlying hardware's MSR (i.e., features which
2356          * can be supported) and the list of features we want to expose -
2357          * because they are known to be properly supported in our code.
2358          * Also, usually, the low half of the MSRs (bits which must be 1) can
2359          * be set to 0, meaning that L1 may turn off any of these bits. The
2360          * reason is that if one of these bits is necessary, it will appear
2361          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2362          * fields of vmcs01 and vmcs02, will turn these bits off - and
2363          * nested_vmx_exit_handled() will not pass related exits to L1.
2364          * These rules have exceptions below.
2365          */
2366
2367         /* pin-based controls */
2368         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2369                 vmx->nested.nested_vmx_pinbased_ctls_low,
2370                 vmx->nested.nested_vmx_pinbased_ctls_high);
2371         vmx->nested.nested_vmx_pinbased_ctls_low |=
2372                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2373         vmx->nested.nested_vmx_pinbased_ctls_high &=
2374                 PIN_BASED_EXT_INTR_MASK |
2375                 PIN_BASED_NMI_EXITING |
2376                 PIN_BASED_VIRTUAL_NMIS;
2377         vmx->nested.nested_vmx_pinbased_ctls_high |=
2378                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2379                 PIN_BASED_VMX_PREEMPTION_TIMER;
2380         if (vmx_vm_has_apicv(vmx->vcpu.kvm))
2381                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2382                         PIN_BASED_POSTED_INTR;
2383
2384         /* exit controls */
2385         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2386                 vmx->nested.nested_vmx_exit_ctls_low,
2387                 vmx->nested.nested_vmx_exit_ctls_high);
2388         vmx->nested.nested_vmx_exit_ctls_low =
2389                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2390
2391         vmx->nested.nested_vmx_exit_ctls_high &=
2392 #ifdef CONFIG_X86_64
2393                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2394 #endif
2395                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2396         vmx->nested.nested_vmx_exit_ctls_high |=
2397                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2398                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2399                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2400
2401         if (vmx_mpx_supported())
2402                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2403
2404         /* We support free control of debug control saving. */
2405         vmx->nested.nested_vmx_true_exit_ctls_low =
2406                 vmx->nested.nested_vmx_exit_ctls_low &
2407                 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2408
2409         /* entry controls */
2410         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2411                 vmx->nested.nested_vmx_entry_ctls_low,
2412                 vmx->nested.nested_vmx_entry_ctls_high);
2413         vmx->nested.nested_vmx_entry_ctls_low =
2414                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2415         vmx->nested.nested_vmx_entry_ctls_high &=
2416 #ifdef CONFIG_X86_64
2417                 VM_ENTRY_IA32E_MODE |
2418 #endif
2419                 VM_ENTRY_LOAD_IA32_PAT;
2420         vmx->nested.nested_vmx_entry_ctls_high |=
2421                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2422         if (vmx_mpx_supported())
2423                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2424
2425         /* We support free control of debug control loading. */
2426         vmx->nested.nested_vmx_true_entry_ctls_low =
2427                 vmx->nested.nested_vmx_entry_ctls_low &
2428                 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2429
2430         /* cpu-based controls */
2431         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2432                 vmx->nested.nested_vmx_procbased_ctls_low,
2433                 vmx->nested.nested_vmx_procbased_ctls_high);
2434         vmx->nested.nested_vmx_procbased_ctls_low =
2435                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2436         vmx->nested.nested_vmx_procbased_ctls_high &=
2437                 CPU_BASED_VIRTUAL_INTR_PENDING |
2438                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2439                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2440                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2441                 CPU_BASED_CR3_STORE_EXITING |
2442 #ifdef CONFIG_X86_64
2443                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2444 #endif
2445                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2446                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2447                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2448                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2449                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2450         /*
2451          * We can allow some features even when not supported by the
2452          * hardware. For example, L1 can specify an MSR bitmap - and we
2453          * can use it to avoid exits to L1 - even when L0 runs L2
2454          * without MSR bitmaps.
2455          */
2456         vmx->nested.nested_vmx_procbased_ctls_high |=
2457                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2458                 CPU_BASED_USE_MSR_BITMAPS;
2459
2460         /* We support free control of CR3 access interception. */
2461         vmx->nested.nested_vmx_true_procbased_ctls_low =
2462                 vmx->nested.nested_vmx_procbased_ctls_low &
2463                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2464
2465         /* secondary cpu-based controls */
2466         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2467                 vmx->nested.nested_vmx_secondary_ctls_low,
2468                 vmx->nested.nested_vmx_secondary_ctls_high);
2469         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2470         vmx->nested.nested_vmx_secondary_ctls_high &=
2471                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2472                 SECONDARY_EXEC_RDTSCP |
2473                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2474                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2475                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2476                 SECONDARY_EXEC_WBINVD_EXITING |
2477                 SECONDARY_EXEC_XSAVES;
2478
2479         if (enable_ept) {
2480                 /* nested EPT: emulate EPT also to L1 */
2481                 vmx->nested.nested_vmx_secondary_ctls_high |=
2482                         SECONDARY_EXEC_ENABLE_EPT;
2483                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2484                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2485                          VMX_EPT_INVEPT_BIT;
2486                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2487                 /*
2488                  * For nested guests, we don't do anything specific
2489                  * for single context invalidation. Hence, only advertise
2490                  * support for global context invalidation.
2491                  */
2492                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2493         } else
2494                 vmx->nested.nested_vmx_ept_caps = 0;
2495
2496         if (enable_unrestricted_guest)
2497                 vmx->nested.nested_vmx_secondary_ctls_high |=
2498                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2499
2500         /* miscellaneous data */
2501         rdmsr(MSR_IA32_VMX_MISC,
2502                 vmx->nested.nested_vmx_misc_low,
2503                 vmx->nested.nested_vmx_misc_high);
2504         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2505         vmx->nested.nested_vmx_misc_low |=
2506                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2507                 VMX_MISC_ACTIVITY_HLT;
2508         vmx->nested.nested_vmx_misc_high = 0;
2509 }
2510
2511 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2512 {
2513         /*
2514          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2515          */
2516         return ((control & high) | low) == control;
2517 }
2518
2519 static inline u64 vmx_control_msr(u32 low, u32 high)
2520 {
2521         return low | ((u64)high << 32);
2522 }
2523
2524 /* Returns 0 on success, non-0 otherwise. */
2525 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2526 {
2527         struct vcpu_vmx *vmx = to_vmx(vcpu);
2528
2529         switch (msr_index) {
2530         case MSR_IA32_VMX_BASIC:
2531                 /*
2532                  * This MSR reports some information about VMX support. We
2533                  * should return information about the VMX we emulate for the
2534                  * guest, and the VMCS structure we give it - not about the
2535                  * VMX support of the underlying hardware.
2536                  */
2537                 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2538                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2539                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2540                 break;
2541         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2542         case MSR_IA32_VMX_PINBASED_CTLS:
2543                 *pdata = vmx_control_msr(
2544                         vmx->nested.nested_vmx_pinbased_ctls_low,
2545                         vmx->nested.nested_vmx_pinbased_ctls_high);
2546                 break;
2547         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2548                 *pdata = vmx_control_msr(
2549                         vmx->nested.nested_vmx_true_procbased_ctls_low,
2550                         vmx->nested.nested_vmx_procbased_ctls_high);
2551                 break;
2552         case MSR_IA32_VMX_PROCBASED_CTLS:
2553                 *pdata = vmx_control_msr(
2554                         vmx->nested.nested_vmx_procbased_ctls_low,
2555                         vmx->nested.nested_vmx_procbased_ctls_high);
2556                 break;
2557         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2558                 *pdata = vmx_control_msr(
2559                         vmx->nested.nested_vmx_true_exit_ctls_low,
2560                         vmx->nested.nested_vmx_exit_ctls_high);
2561                 break;
2562         case MSR_IA32_VMX_EXIT_CTLS:
2563                 *pdata = vmx_control_msr(
2564                         vmx->nested.nested_vmx_exit_ctls_low,
2565                         vmx->nested.nested_vmx_exit_ctls_high);
2566                 break;
2567         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2568                 *pdata = vmx_control_msr(
2569                         vmx->nested.nested_vmx_true_entry_ctls_low,
2570                         vmx->nested.nested_vmx_entry_ctls_high);
2571                 break;
2572         case MSR_IA32_VMX_ENTRY_CTLS:
2573                 *pdata = vmx_control_msr(
2574                         vmx->nested.nested_vmx_entry_ctls_low,
2575                         vmx->nested.nested_vmx_entry_ctls_high);
2576                 break;
2577         case MSR_IA32_VMX_MISC:
2578                 *pdata = vmx_control_msr(
2579                         vmx->nested.nested_vmx_misc_low,
2580                         vmx->nested.nested_vmx_misc_high);
2581                 break;
2582         /*
2583          * These MSRs specify bits which the guest must keep fixed (on or off)
2584          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2585          * We picked the standard core2 setting.
2586          */
2587 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2588 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2589         case MSR_IA32_VMX_CR0_FIXED0:
2590                 *pdata = VMXON_CR0_ALWAYSON;
2591                 break;
2592         case MSR_IA32_VMX_CR0_FIXED1:
2593                 *pdata = -1ULL;
2594                 break;
2595         case MSR_IA32_VMX_CR4_FIXED0:
2596                 *pdata = VMXON_CR4_ALWAYSON;
2597                 break;
2598         case MSR_IA32_VMX_CR4_FIXED1:
2599                 *pdata = -1ULL;
2600                 break;
2601         case MSR_IA32_VMX_VMCS_ENUM:
2602                 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2603                 break;
2604         case MSR_IA32_VMX_PROCBASED_CTLS2:
2605                 *pdata = vmx_control_msr(
2606                         vmx->nested.nested_vmx_secondary_ctls_low,
2607                         vmx->nested.nested_vmx_secondary_ctls_high);
2608                 break;
2609         case MSR_IA32_VMX_EPT_VPID_CAP:
2610                 /* Currently, no nested vpid support */
2611                 *pdata = vmx->nested.nested_vmx_ept_caps;
2612                 break;
2613         default:
2614                 return 1;
2615         }
2616
2617         return 0;
2618 }
2619
2620 /*
2621  * Reads an msr value (of 'msr_index') into 'pdata'.
2622  * Returns 0 on success, non-0 otherwise.
2623  * Assumes vcpu_load() was already called.
2624  */
2625 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2626 {
2627         struct shared_msr_entry *msr;
2628
2629         switch (msr_info->index) {
2630 #ifdef CONFIG_X86_64
2631         case MSR_FS_BASE:
2632                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2633                 break;
2634         case MSR_GS_BASE:
2635                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2636                 break;
2637         case MSR_KERNEL_GS_BASE:
2638                 vmx_load_host_state(to_vmx(vcpu));
2639                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2640                 break;
2641 #endif
2642         case MSR_EFER:
2643                 return kvm_get_msr_common(vcpu, msr_info);
2644         case MSR_IA32_TSC:
2645                 msr_info->data = guest_read_tsc();
2646                 break;
2647         case MSR_IA32_SYSENTER_CS:
2648                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2649                 break;
2650         case MSR_IA32_SYSENTER_EIP:
2651                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2652                 break;
2653         case MSR_IA32_SYSENTER_ESP:
2654                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2655                 break;
2656         case MSR_IA32_BNDCFGS:
2657                 if (!vmx_mpx_supported())
2658                         return 1;
2659                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2660                 break;
2661         case MSR_IA32_FEATURE_CONTROL:
2662                 if (!nested_vmx_allowed(vcpu))
2663                         return 1;
2664                 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2665                 break;
2666         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2667                 if (!nested_vmx_allowed(vcpu))
2668                         return 1;
2669                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2670         case MSR_IA32_XSS:
2671                 if (!vmx_xsaves_supported())
2672                         return 1;
2673                 msr_info->data = vcpu->arch.ia32_xss;
2674                 break;
2675         case MSR_TSC_AUX:
2676                 if (!to_vmx(vcpu)->rdtscp_enabled)
2677                         return 1;
2678                 /* Otherwise falls through */
2679         default:
2680                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2681                 if (msr) {
2682                         msr_info->data = msr->data;
2683                         break;
2684                 }
2685                 return kvm_get_msr_common(vcpu, msr_info);
2686         }
2687
2688         return 0;
2689 }
2690
2691 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2692
2693 /*
2694  * Writes msr value into into the appropriate "register".
2695  * Returns 0 on success, non-0 otherwise.
2696  * Assumes vcpu_load() was already called.
2697  */
2698 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2699 {
2700         struct vcpu_vmx *vmx = to_vmx(vcpu);
2701         struct shared_msr_entry *msr;
2702         int ret = 0;
2703         u32 msr_index = msr_info->index;
2704         u64 data = msr_info->data;
2705
2706         switch (msr_index) {
2707         case MSR_EFER:
2708                 ret = kvm_set_msr_common(vcpu, msr_info);
2709                 break;
2710 #ifdef CONFIG_X86_64
2711         case MSR_FS_BASE:
2712                 vmx_segment_cache_clear(vmx);
2713                 vmcs_writel(GUEST_FS_BASE, data);
2714                 break;
2715         case MSR_GS_BASE:
2716                 vmx_segment_cache_clear(vmx);
2717                 vmcs_writel(GUEST_GS_BASE, data);
2718                 break;
2719         case MSR_KERNEL_GS_BASE:
2720                 vmx_load_host_state(vmx);
2721                 vmx->msr_guest_kernel_gs_base = data;
2722                 break;
2723 #endif
2724         case MSR_IA32_SYSENTER_CS:
2725                 vmcs_write32(GUEST_SYSENTER_CS, data);
2726                 break;
2727         case MSR_IA32_SYSENTER_EIP:
2728                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2729                 break;
2730         case MSR_IA32_SYSENTER_ESP:
2731                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2732                 break;
2733         case MSR_IA32_BNDCFGS:
2734                 if (!vmx_mpx_supported())
2735                         return 1;
2736                 vmcs_write64(GUEST_BNDCFGS, data);
2737                 break;
2738         case MSR_IA32_TSC:
2739                 kvm_write_tsc(vcpu, msr_info);
2740                 break;
2741         case MSR_IA32_CR_PAT:
2742                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2743                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2744                                 return 1;
2745                         vmcs_write64(GUEST_IA32_PAT, data);
2746                         vcpu->arch.pat = data;
2747                         break;
2748                 }
2749                 ret = kvm_set_msr_common(vcpu, msr_info);
2750                 break;
2751         case MSR_IA32_TSC_ADJUST:
2752                 ret = kvm_set_msr_common(vcpu, msr_info);
2753                 break;
2754         case MSR_IA32_FEATURE_CONTROL:
2755                 if (!nested_vmx_allowed(vcpu) ||
2756                     (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2757                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2758                         return 1;
2759                 vmx->nested.msr_ia32_feature_control = data;
2760                 if (msr_info->host_initiated && data == 0)
2761                         vmx_leave_nested(vcpu);
2762                 break;
2763         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2764                 return 1; /* they are read-only */
2765         case MSR_IA32_XSS:
2766                 if (!vmx_xsaves_supported())
2767                         return 1;
2768                 /*
2769                  * The only supported bit as of Skylake is bit 8, but
2770                  * it is not supported on KVM.
2771                  */
2772                 if (data != 0)
2773                         return 1;
2774                 vcpu->arch.ia32_xss = data;
2775                 if (vcpu->arch.ia32_xss != host_xss)
2776                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2777                                 vcpu->arch.ia32_xss, host_xss);
2778                 else
2779                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2780                 break;
2781         case MSR_TSC_AUX:
2782                 if (!vmx->rdtscp_enabled)
2783                         return 1;
2784                 /* Check reserved bit, higher 32 bits should be zero */
2785                 if ((data >> 32) != 0)
2786                         return 1;
2787                 /* Otherwise falls through */
2788         default:
2789                 msr = find_msr_entry(vmx, msr_index);
2790                 if (msr) {
2791                         u64 old_msr_data = msr->data;
2792                         msr->data = data;
2793                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2794                                 preempt_disable();
2795                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2796                                                          msr->mask);
2797                                 preempt_enable();
2798                                 if (ret)
2799                                         msr->data = old_msr_data;
2800                         }
2801                         break;
2802                 }
2803                 ret = kvm_set_msr_common(vcpu, msr_info);
2804         }
2805
2806         return ret;
2807 }
2808
2809 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2810 {
2811         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2812         switch (reg) {
2813         case VCPU_REGS_RSP:
2814                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2815                 break;
2816         case VCPU_REGS_RIP:
2817                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2818                 break;
2819         case VCPU_EXREG_PDPTR:
2820                 if (enable_ept)
2821                         ept_save_pdptrs(vcpu);
2822                 break;
2823         default:
2824                 break;
2825         }
2826 }
2827
2828 static __init int cpu_has_kvm_support(void)
2829 {
2830         return cpu_has_vmx();
2831 }
2832
2833 static __init int vmx_disabled_by_bios(void)
2834 {
2835         u64 msr;
2836
2837         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2838         if (msr & FEATURE_CONTROL_LOCKED) {
2839                 /* launched w/ TXT and VMX disabled */
2840                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2841                         && tboot_enabled())
2842                         return 1;
2843                 /* launched w/o TXT and VMX only enabled w/ TXT */
2844                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2845                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2846                         && !tboot_enabled()) {
2847                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2848                                 "activate TXT before enabling KVM\n");
2849                         return 1;
2850                 }
2851                 /* launched w/o TXT and VMX disabled */
2852                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2853                         && !tboot_enabled())
2854                         return 1;
2855         }
2856
2857         return 0;
2858 }
2859
2860 static void kvm_cpu_vmxon(u64 addr)
2861 {
2862         asm volatile (ASM_VMX_VMXON_RAX
2863                         : : "a"(&addr), "m"(addr)
2864                         : "memory", "cc");
2865 }
2866
2867 static int hardware_enable(void)
2868 {
2869         int cpu = raw_smp_processor_id();
2870         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2871         u64 old, test_bits;
2872
2873         if (cr4_read_shadow() & X86_CR4_VMXE)
2874                 return -EBUSY;
2875
2876         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2877
2878         /*
2879          * Now we can enable the vmclear operation in kdump
2880          * since the loaded_vmcss_on_cpu list on this cpu
2881          * has been initialized.
2882          *
2883          * Though the cpu is not in VMX operation now, there
2884          * is no problem to enable the vmclear operation
2885          * for the loaded_vmcss_on_cpu list is empty!
2886          */
2887         crash_enable_local_vmclear(cpu);
2888
2889         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2890
2891         test_bits = FEATURE_CONTROL_LOCKED;
2892         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2893         if (tboot_enabled())
2894                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2895
2896         if ((old & test_bits) != test_bits) {
2897                 /* enable and lock */
2898                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2899         }
2900         cr4_set_bits(X86_CR4_VMXE);
2901
2902         if (vmm_exclusive) {
2903                 kvm_cpu_vmxon(phys_addr);
2904                 ept_sync_global();
2905         }
2906
2907         native_store_gdt(this_cpu_ptr(&host_gdt));
2908
2909         return 0;
2910 }
2911
2912 static void vmclear_local_loaded_vmcss(void)
2913 {
2914         int cpu = raw_smp_processor_id();
2915         struct loaded_vmcs *v, *n;
2916
2917         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2918                                  loaded_vmcss_on_cpu_link)
2919                 __loaded_vmcs_clear(v);
2920 }
2921
2922
2923 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2924  * tricks.
2925  */
2926 static void kvm_cpu_vmxoff(void)
2927 {
2928         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2929 }
2930
2931 static void hardware_disable(void)
2932 {
2933         if (vmm_exclusive) {
2934                 vmclear_local_loaded_vmcss();
2935                 kvm_cpu_vmxoff();
2936         }
2937         cr4_clear_bits(X86_CR4_VMXE);
2938 }
2939
2940 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2941                                       u32 msr, u32 *result)
2942 {
2943         u32 vmx_msr_low, vmx_msr_high;
2944         u32 ctl = ctl_min | ctl_opt;
2945
2946         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2947
2948         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2949         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2950
2951         /* Ensure minimum (required) set of control bits are supported. */
2952         if (ctl_min & ~ctl)
2953                 return -EIO;
2954
2955         *result = ctl;
2956         return 0;
2957 }
2958
2959 static __init bool allow_1_setting(u32 msr, u32 ctl)
2960 {
2961         u32 vmx_msr_low, vmx_msr_high;
2962
2963         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2964         return vmx_msr_high & ctl;
2965 }
2966
2967 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2968 {
2969         u32 vmx_msr_low, vmx_msr_high;
2970         u32 min, opt, min2, opt2;
2971         u32 _pin_based_exec_control = 0;
2972         u32 _cpu_based_exec_control = 0;
2973         u32 _cpu_based_2nd_exec_control = 0;
2974         u32 _vmexit_control = 0;
2975         u32 _vmentry_control = 0;
2976
2977         min = CPU_BASED_HLT_EXITING |
2978 #ifdef CONFIG_X86_64
2979               CPU_BASED_CR8_LOAD_EXITING |
2980               CPU_BASED_CR8_STORE_EXITING |
2981 #endif
2982               CPU_BASED_CR3_LOAD_EXITING |
2983               CPU_BASED_CR3_STORE_EXITING |
2984               CPU_BASED_USE_IO_BITMAPS |
2985               CPU_BASED_MOV_DR_EXITING |
2986               CPU_BASED_USE_TSC_OFFSETING |
2987               CPU_BASED_MWAIT_EXITING |
2988               CPU_BASED_MONITOR_EXITING |
2989               CPU_BASED_INVLPG_EXITING |
2990               CPU_BASED_RDPMC_EXITING;
2991
2992         opt = CPU_BASED_TPR_SHADOW |
2993               CPU_BASED_USE_MSR_BITMAPS |
2994               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2995         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2996                                 &_cpu_based_exec_control) < 0)
2997                 return -EIO;
2998 #ifdef CONFIG_X86_64
2999         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3000                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3001                                            ~CPU_BASED_CR8_STORE_EXITING;
3002 #endif
3003         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3004                 min2 = 0;
3005                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3006                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3007                         SECONDARY_EXEC_WBINVD_EXITING |
3008                         SECONDARY_EXEC_ENABLE_VPID |
3009                         SECONDARY_EXEC_ENABLE_EPT |
3010                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3011                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3012                         SECONDARY_EXEC_RDTSCP |
3013                         SECONDARY_EXEC_ENABLE_INVPCID |
3014                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3015                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3016                         SECONDARY_EXEC_SHADOW_VMCS |
3017                         SECONDARY_EXEC_XSAVES |
3018                         SECONDARY_EXEC_ENABLE_PML;
3019                 if (adjust_vmx_controls(min2, opt2,
3020                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3021                                         &_cpu_based_2nd_exec_control) < 0)
3022                         return -EIO;
3023         }
3024 #ifndef CONFIG_X86_64
3025         if (!(_cpu_based_2nd_exec_control &
3026                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3027                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3028 #endif
3029
3030         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3031                 _cpu_based_2nd_exec_control &= ~(
3032                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3033                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3034                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3035
3036         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3037                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3038                    enabled */
3039                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3040                                              CPU_BASED_CR3_STORE_EXITING |
3041                                              CPU_BASED_INVLPG_EXITING);
3042                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3043                       vmx_capability.ept, vmx_capability.vpid);
3044         }
3045
3046         min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3047 #ifdef CONFIG_X86_64
3048         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3049 #endif
3050         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3051                 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3052         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3053                                 &_vmexit_control) < 0)
3054                 return -EIO;
3055
3056         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3057         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3058         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3059                                 &_pin_based_exec_control) < 0)
3060                 return -EIO;
3061
3062         if (!(_cpu_based_2nd_exec_control &
3063                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3064                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3065                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3066
3067         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3068         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3069         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3070                                 &_vmentry_control) < 0)
3071                 return -EIO;
3072
3073         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3074
3075         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3076         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3077                 return -EIO;
3078
3079 #ifdef CONFIG_X86_64
3080         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3081         if (vmx_msr_high & (1u<<16))
3082                 return -EIO;
3083 #endif
3084
3085         /* Require Write-Back (WB) memory type for VMCS accesses. */
3086         if (((vmx_msr_high >> 18) & 15) != 6)
3087                 return -EIO;
3088
3089         vmcs_conf->size = vmx_msr_high & 0x1fff;
3090         vmcs_conf->order = get_order(vmcs_config.size);
3091         vmcs_conf->revision_id = vmx_msr_low;
3092
3093         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3094         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3095         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3096         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3097         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3098
3099         cpu_has_load_ia32_efer =
3100                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3101                                 VM_ENTRY_LOAD_IA32_EFER)
3102                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3103                                    VM_EXIT_LOAD_IA32_EFER);
3104
3105         cpu_has_load_perf_global_ctrl =
3106                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3107                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3108                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3109                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3110
3111         /*
3112          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3113          * but due to arrata below it can't be used. Workaround is to use
3114          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3115          *
3116          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3117          *
3118          * AAK155             (model 26)
3119          * AAP115             (model 30)
3120          * AAT100             (model 37)
3121          * BC86,AAY89,BD102   (model 44)
3122          * BA97               (model 46)
3123          *
3124          */
3125         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3126                 switch (boot_cpu_data.x86_model) {
3127                 case 26:
3128                 case 30:
3129                 case 37:
3130                 case 44:
3131                 case 46:
3132                         cpu_has_load_perf_global_ctrl = false;
3133                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3134                                         "does not work properly. Using workaround\n");
3135                         break;
3136                 default:
3137                         break;
3138                 }
3139         }
3140
3141         if (cpu_has_xsaves)
3142                 rdmsrl(MSR_IA32_XSS, host_xss);
3143
3144         return 0;
3145 }
3146
3147 static struct vmcs *alloc_vmcs_cpu(int cpu)
3148 {
3149         int node = cpu_to_node(cpu);
3150         struct page *pages;
3151         struct vmcs *vmcs;
3152
3153         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3154         if (!pages)
3155                 return NULL;
3156         vmcs = page_address(pages);
3157         memset(vmcs, 0, vmcs_config.size);
3158         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3159         return vmcs;
3160 }
3161
3162 static struct vmcs *alloc_vmcs(void)
3163 {
3164         return alloc_vmcs_cpu(raw_smp_processor_id());
3165 }
3166
3167 static void free_vmcs(struct vmcs *vmcs)
3168 {
3169         free_pages((unsigned long)vmcs, vmcs_config.order);
3170 }
3171
3172 /*
3173  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3174  */
3175 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3176 {
3177         if (!loaded_vmcs->vmcs)
3178                 return;
3179         loaded_vmcs_clear(loaded_vmcs);
3180         free_vmcs(loaded_vmcs->vmcs);
3181         loaded_vmcs->vmcs = NULL;
3182 }
3183
3184 static void free_kvm_area(void)
3185 {
3186         int cpu;
3187
3188         for_each_possible_cpu(cpu) {
3189                 free_vmcs(per_cpu(vmxarea, cpu));
3190                 per_cpu(vmxarea, cpu) = NULL;
3191         }
3192 }
3193
3194 static void init_vmcs_shadow_fields(void)
3195 {
3196         int i, j;
3197
3198         /* No checks for read only fields yet */
3199
3200         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3201                 switch (shadow_read_write_fields[i]) {
3202                 case GUEST_BNDCFGS:
3203                         if (!vmx_mpx_supported())
3204                                 continue;
3205                         break;
3206                 default:
3207                         break;
3208                 }
3209
3210                 if (j < i)
3211                         shadow_read_write_fields[j] =
3212                                 shadow_read_write_fields[i];
3213                 j++;
3214         }
3215         max_shadow_read_write_fields = j;
3216
3217         /* shadowed fields guest access without vmexit */
3218         for (i = 0; i < max_shadow_read_write_fields; i++) {
3219                 clear_bit(shadow_read_write_fields[i],
3220                           vmx_vmwrite_bitmap);
3221                 clear_bit(shadow_read_write_fields[i],
3222                           vmx_vmread_bitmap);
3223         }
3224         for (i = 0; i < max_shadow_read_only_fields; i++)
3225                 clear_bit(shadow_read_only_fields[i],
3226                           vmx_vmread_bitmap);
3227 }
3228
3229 static __init int alloc_kvm_area(void)
3230 {
3231         int cpu;
3232
3233         for_each_possible_cpu(cpu) {
3234                 struct vmcs *vmcs;
3235
3236                 vmcs = alloc_vmcs_cpu(cpu);
3237                 if (!vmcs) {
3238                         free_kvm_area();
3239                         return -ENOMEM;
3240                 }
3241
3242                 per_cpu(vmxarea, cpu) = vmcs;
3243         }
3244         return 0;
3245 }
3246
3247 static bool emulation_required(struct kvm_vcpu *vcpu)
3248 {
3249         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3250 }
3251
3252 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3253                 struct kvm_segment *save)
3254 {
3255         if (!emulate_invalid_guest_state) {
3256                 /*
3257                  * CS and SS RPL should be equal during guest entry according
3258                  * to VMX spec, but in reality it is not always so. Since vcpu
3259                  * is in the middle of the transition from real mode to
3260                  * protected mode it is safe to assume that RPL 0 is a good
3261                  * default value.
3262                  */
3263                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3264                         save->selector &= ~SEGMENT_RPL_MASK;
3265                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3266                 save->s = 1;
3267         }
3268         vmx_set_segment(vcpu, save, seg);
3269 }
3270
3271 static void enter_pmode(struct kvm_vcpu *vcpu)
3272 {
3273         unsigned long flags;
3274         struct vcpu_vmx *vmx = to_vmx(vcpu);
3275
3276         /*
3277          * Update real mode segment cache. It may be not up-to-date if sement
3278          * register was written while vcpu was in a guest mode.
3279          */
3280         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3281         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3282         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3283         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3284         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3285         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3286
3287         vmx->rmode.vm86_active = 0;
3288
3289         vmx_segment_cache_clear(vmx);
3290
3291         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3292
3293         flags = vmcs_readl(GUEST_RFLAGS);
3294         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3295         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3296         vmcs_writel(GUEST_RFLAGS, flags);
3297
3298         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3299                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3300
3301         update_exception_bitmap(vcpu);
3302
3303         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3304         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3305         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3306         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3307         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3308         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3309 }
3310
3311 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3312 {
3313         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3314         struct kvm_segment var = *save;
3315
3316         var.dpl = 0x3;
3317         if (seg == VCPU_SREG_CS)
3318                 var.type = 0x3;
3319
3320         if (!emulate_invalid_guest_state) {
3321                 var.selector = var.base >> 4;
3322                 var.base = var.base & 0xffff0;
3323                 var.limit = 0xffff;
3324                 var.g = 0;
3325                 var.db = 0;
3326                 var.present = 1;
3327                 var.s = 1;
3328                 var.l = 0;
3329                 var.unusable = 0;
3330                 var.type = 0x3;
3331                 var.avl = 0;
3332                 if (save->base & 0xf)
3333                         printk_once(KERN_WARNING "kvm: segment base is not "
3334                                         "paragraph aligned when entering "
3335                                         "protected mode (seg=%d)", seg);
3336         }
3337
3338         vmcs_write16(sf->selector, var.selector);
3339         vmcs_write32(sf->base, var.base);
3340         vmcs_write32(sf->limit, var.limit);
3341         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3342 }
3343
3344 static void enter_rmode(struct kvm_vcpu *vcpu)
3345 {
3346         unsigned long flags;
3347         struct vcpu_vmx *vmx = to_vmx(vcpu);
3348
3349         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3350         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3351         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3352         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3353         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3354         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3355         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3356
3357         vmx->rmode.vm86_active = 1;
3358
3359         /*
3360          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3361          * vcpu. Warn the user that an update is overdue.
3362          */
3363         if (!vcpu->kvm->arch.tss_addr)
3364                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3365                              "called before entering vcpu\n");
3366
3367         vmx_segment_cache_clear(vmx);
3368
3369         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3370         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3371         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3372
3373         flags = vmcs_readl(GUEST_RFLAGS);
3374         vmx->rmode.save_rflags = flags;
3375
3376         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3377
3378         vmcs_writel(GUEST_RFLAGS, flags);
3379         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3380         update_exception_bitmap(vcpu);
3381
3382         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3383         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3384         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3385         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3386         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3387         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3388
3389         kvm_mmu_reset_context(vcpu);
3390 }
3391
3392 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3393 {
3394         struct vcpu_vmx *vmx = to_vmx(vcpu);
3395         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3396
3397         if (!msr)
3398                 return;
3399
3400         /*
3401          * Force kernel_gs_base reloading before EFER changes, as control
3402          * of this msr depends on is_long_mode().
3403          */
3404         vmx_load_host_state(to_vmx(vcpu));
3405         vcpu->arch.efer = efer;
3406         if (efer & EFER_LMA) {
3407                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3408                 msr->data = efer;
3409         } else {
3410                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3411
3412                 msr->data = efer & ~EFER_LME;
3413         }
3414         setup_msrs(vmx);
3415 }
3416
3417 #ifdef CONFIG_X86_64
3418
3419 static void enter_lmode(struct kvm_vcpu *vcpu)
3420 {
3421         u32 guest_tr_ar;
3422
3423         vmx_segment_cache_clear(to_vmx(vcpu));
3424
3425         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3426         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3427                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3428                                      __func__);
3429                 vmcs_write32(GUEST_TR_AR_BYTES,
3430                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3431                              | VMX_AR_TYPE_BUSY_64_TSS);
3432         }
3433         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3434 }
3435
3436 static void exit_lmode(struct kvm_vcpu *vcpu)
3437 {
3438         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3439         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3440 }
3441
3442 #endif
3443
3444 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3445 {
3446         vpid_sync_context(to_vmx(vcpu));
3447         if (enable_ept) {
3448                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3449                         return;
3450                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3451         }
3452 }
3453
3454 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3455 {
3456         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3457
3458         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3459         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3460 }
3461
3462 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3463 {
3464         if (enable_ept && is_paging(vcpu))
3465                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3466         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3467 }
3468
3469 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3470 {
3471         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3472
3473         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3474         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3475 }
3476
3477 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3478 {
3479         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3480
3481         if (!test_bit(VCPU_EXREG_PDPTR,
3482                       (unsigned long *)&vcpu->arch.regs_dirty))
3483                 return;
3484
3485         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3486                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3487                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3488                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3489                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3490         }
3491 }
3492
3493 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3494 {
3495         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3496
3497         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3498                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3499                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3500                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3501                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3502         }
3503
3504         __set_bit(VCPU_EXREG_PDPTR,
3505                   (unsigned long *)&vcpu->arch.regs_avail);
3506         __set_bit(VCPU_EXREG_PDPTR,
3507                   (unsigned long *)&vcpu->arch.regs_dirty);
3508 }
3509
3510 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3511
3512 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3513                                         unsigned long cr0,
3514                                         struct kvm_vcpu *vcpu)
3515 {
3516         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3517                 vmx_decache_cr3(vcpu);
3518         if (!(cr0 & X86_CR0_PG)) {
3519                 /* From paging/starting to nonpaging */
3520                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3521                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3522                              (CPU_BASED_CR3_LOAD_EXITING |
3523                               CPU_BASED_CR3_STORE_EXITING));
3524                 vcpu->arch.cr0 = cr0;
3525                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3526         } else if (!is_paging(vcpu)) {
3527                 /* From nonpaging to paging */
3528                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3529                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3530                              ~(CPU_BASED_CR3_LOAD_EXITING |
3531                                CPU_BASED_CR3_STORE_EXITING));
3532                 vcpu->arch.cr0 = cr0;
3533                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3534         }
3535
3536         if (!(cr0 & X86_CR0_WP))
3537                 *hw_cr0 &= ~X86_CR0_WP;
3538 }
3539
3540 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3541 {
3542         struct vcpu_vmx *vmx = to_vmx(vcpu);
3543         unsigned long hw_cr0;
3544
3545         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3546         if (enable_unrestricted_guest)
3547                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3548         else {
3549                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3550
3551                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3552                         enter_pmode(vcpu);
3553
3554                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3555                         enter_rmode(vcpu);
3556         }
3557
3558 #ifdef CONFIG_X86_64
3559         if (vcpu->arch.efer & EFER_LME) {
3560                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3561                         enter_lmode(vcpu);
3562                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3563                         exit_lmode(vcpu);
3564         }
3565 #endif
3566
3567         if (enable_ept)
3568                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3569
3570         if (!vcpu->fpu_active)
3571                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3572
3573         vmcs_writel(CR0_READ_SHADOW, cr0);
3574         vmcs_writel(GUEST_CR0, hw_cr0);
3575         vcpu->arch.cr0 = cr0;
3576
3577         /* depends on vcpu->arch.cr0 to be set to a new value */
3578         vmx->emulation_required = emulation_required(vcpu);
3579 }
3580
3581 static u64 construct_eptp(unsigned long root_hpa)
3582 {
3583         u64 eptp;
3584
3585         /* TODO write the value reading from MSR */
3586         eptp = VMX_EPT_DEFAULT_MT |
3587                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3588         if (enable_ept_ad_bits)
3589                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3590         eptp |= (root_hpa & PAGE_MASK);
3591
3592         return eptp;
3593 }
3594
3595 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3596 {
3597         unsigned long guest_cr3;
3598         u64 eptp;
3599
3600         guest_cr3 = cr3;
3601         if (enable_ept) {
3602                 eptp = construct_eptp(cr3);
3603                 vmcs_write64(EPT_POINTER, eptp);
3604                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3605                         guest_cr3 = kvm_read_cr3(vcpu);
3606                 else
3607                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3608                 ept_load_pdptrs(vcpu);
3609         }
3610
3611         vmx_flush_tlb(vcpu);
3612         vmcs_writel(GUEST_CR3, guest_cr3);
3613 }
3614
3615 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3616 {
3617         /*
3618          * Pass through host's Machine Check Enable value to hw_cr4, which
3619          * is in force while we are in guest mode.  Do not let guests control
3620          * this bit, even if host CR4.MCE == 0.
3621          */
3622         unsigned long hw_cr4 =
3623                 (cr4_read_shadow() & X86_CR4_MCE) |
3624                 (cr4 & ~X86_CR4_MCE) |
3625                 (to_vmx(vcpu)->rmode.vm86_active ?
3626                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3627
3628         if (cr4 & X86_CR4_VMXE) {
3629                 /*
3630                  * To use VMXON (and later other VMX instructions), a guest
3631                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3632                  * So basically the check on whether to allow nested VMX
3633                  * is here.
3634                  */
3635                 if (!nested_vmx_allowed(vcpu))
3636                         return 1;
3637         }
3638         if (to_vmx(vcpu)->nested.vmxon &&
3639             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3640                 return 1;
3641
3642         vcpu->arch.cr4 = cr4;
3643         if (enable_ept) {
3644                 if (!is_paging(vcpu)) {
3645                         hw_cr4 &= ~X86_CR4_PAE;
3646                         hw_cr4 |= X86_CR4_PSE;
3647                         /*
3648                          * SMEP/SMAP is disabled if CPU is in non-paging mode
3649                          * in hardware. However KVM always uses paging mode to
3650                          * emulate guest non-paging mode with TDP.
3651                          * To emulate this behavior, SMEP/SMAP needs to be
3652                          * manually disabled when guest switches to non-paging
3653                          * mode.
3654                          */
3655                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3656                 } else if (!(cr4 & X86_CR4_PAE)) {
3657                         hw_cr4 &= ~X86_CR4_PAE;
3658                 }
3659         }
3660
3661         vmcs_writel(CR4_READ_SHADOW, cr4);
3662         vmcs_writel(GUEST_CR4, hw_cr4);
3663         return 0;
3664 }
3665
3666 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3667                             struct kvm_segment *var, int seg)
3668 {
3669         struct vcpu_vmx *vmx = to_vmx(vcpu);
3670         u32 ar;
3671
3672         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3673                 *var = vmx->rmode.segs[seg];
3674                 if (seg == VCPU_SREG_TR
3675                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3676                         return;
3677                 var->base = vmx_read_guest_seg_base(vmx, seg);
3678                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3679                 return;
3680         }
3681         var->base = vmx_read_guest_seg_base(vmx, seg);
3682         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3683         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3684         ar = vmx_read_guest_seg_ar(vmx, seg);
3685         var->unusable = (ar >> 16) & 1;
3686         var->type = ar & 15;
3687         var->s = (ar >> 4) & 1;
3688         var->dpl = (ar >> 5) & 3;
3689         /*
3690          * Some userspaces do not preserve unusable property. Since usable
3691          * segment has to be present according to VMX spec we can use present
3692          * property to amend userspace bug by making unusable segment always
3693          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3694          * segment as unusable.
3695          */
3696         var->present = !var->unusable;
3697         var->avl = (ar >> 12) & 1;
3698         var->l = (ar >> 13) & 1;
3699         var->db = (ar >> 14) & 1;
3700         var->g = (ar >> 15) & 1;
3701 }
3702
3703 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3704 {
3705         struct kvm_segment s;
3706
3707         if (to_vmx(vcpu)->rmode.vm86_active) {
3708                 vmx_get_segment(vcpu, &s, seg);
3709                 return s.base;
3710         }
3711         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3712 }
3713
3714 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3715 {
3716         struct vcpu_vmx *vmx = to_vmx(vcpu);
3717
3718         if (unlikely(vmx->rmode.vm86_active))
3719                 return 0;
3720         else {
3721                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3722                 return VMX_AR_DPL(ar);
3723         }
3724 }
3725
3726 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3727 {
3728         u32 ar;
3729
3730         if (var->unusable || !var->present)
3731                 ar = 1 << 16;
3732         else {
3733                 ar = var->type & 15;
3734                 ar |= (var->s & 1) << 4;
3735                 ar |= (var->dpl & 3) << 5;
3736                 ar |= (var->present & 1) << 7;
3737                 ar |= (var->avl & 1) << 12;
3738                 ar |= (var->l & 1) << 13;
3739                 ar |= (var->db & 1) << 14;
3740                 ar |= (var->g & 1) << 15;
3741         }
3742
3743         return ar;
3744 }
3745
3746 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3747                             struct kvm_segment *var, int seg)
3748 {
3749         struct vcpu_vmx *vmx = to_vmx(vcpu);
3750         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3751
3752         vmx_segment_cache_clear(vmx);
3753
3754         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3755                 vmx->rmode.segs[seg] = *var;
3756                 if (seg == VCPU_SREG_TR)
3757                         vmcs_write16(sf->selector, var->selector);
3758                 else if (var->s)
3759                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3760                 goto out;
3761         }
3762
3763         vmcs_writel(sf->base, var->base);
3764         vmcs_write32(sf->limit, var->limit);
3765         vmcs_write16(sf->selector, var->selector);
3766
3767         /*
3768          *   Fix the "Accessed" bit in AR field of segment registers for older
3769          * qemu binaries.
3770          *   IA32 arch specifies that at the time of processor reset the
3771          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3772          * is setting it to 0 in the userland code. This causes invalid guest
3773          * state vmexit when "unrestricted guest" mode is turned on.
3774          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3775          * tree. Newer qemu binaries with that qemu fix would not need this
3776          * kvm hack.
3777          */
3778         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3779                 var->type |= 0x1; /* Accessed */
3780
3781         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3782
3783 out:
3784         vmx->emulation_required = emulation_required(vcpu);
3785 }
3786
3787 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3788 {
3789         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3790
3791         *db = (ar >> 14) & 1;
3792         *l = (ar >> 13) & 1;
3793 }
3794
3795 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3796 {
3797         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3798         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3799 }
3800
3801 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3802 {
3803         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3804         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3805 }
3806
3807 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3808 {
3809         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3810         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3811 }
3812
3813 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3814 {
3815         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3816         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3817 }
3818
3819 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3820 {
3821         struct kvm_segment var;
3822         u32 ar;
3823
3824         vmx_get_segment(vcpu, &var, seg);
3825         var.dpl = 0x3;
3826         if (seg == VCPU_SREG_CS)
3827                 var.type = 0x3;
3828         ar = vmx_segment_access_rights(&var);
3829
3830         if (var.base != (var.selector << 4))
3831                 return false;
3832         if (var.limit != 0xffff)
3833                 return false;
3834         if (ar != 0xf3)
3835                 return false;
3836
3837         return true;
3838 }
3839
3840 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3841 {
3842         struct kvm_segment cs;
3843         unsigned int cs_rpl;
3844
3845         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3846         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3847
3848         if (cs.unusable)
3849                 return false;
3850         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3851                 return false;
3852         if (!cs.s)
3853                 return false;
3854         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3855                 if (cs.dpl > cs_rpl)
3856                         return false;
3857         } else {
3858                 if (cs.dpl != cs_rpl)
3859                         return false;
3860         }
3861         if (!cs.present)
3862                 return false;
3863
3864         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3865         return true;
3866 }
3867
3868 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3869 {
3870         struct kvm_segment ss;
3871         unsigned int ss_rpl;
3872
3873         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3874         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3875
3876         if (ss.unusable)
3877                 return true;
3878         if (ss.type != 3 && ss.type != 7)
3879                 return false;
3880         if (!ss.s)
3881                 return false;
3882         if (ss.dpl != ss_rpl) /* DPL != RPL */
3883                 return false;
3884         if (!ss.present)
3885                 return false;
3886
3887         return true;
3888 }
3889
3890 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3891 {
3892         struct kvm_segment var;
3893         unsigned int rpl;
3894
3895         vmx_get_segment(vcpu, &var, seg);
3896         rpl = var.selector & SEGMENT_RPL_MASK;
3897
3898         if (var.unusable)
3899                 return true;
3900         if (!var.s)
3901                 return false;
3902         if (!var.present)
3903                 return false;
3904         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3905                 if (var.dpl < rpl) /* DPL < RPL */
3906                         return false;
3907         }
3908
3909         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3910          * rights flags
3911          */
3912         return true;
3913 }
3914
3915 static bool tr_valid(struct kvm_vcpu *vcpu)
3916 {
3917         struct kvm_segment tr;
3918
3919         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3920
3921         if (tr.unusable)
3922                 return false;
3923         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3924                 return false;
3925         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3926                 return false;
3927         if (!tr.present)
3928                 return false;
3929
3930         return true;
3931 }
3932
3933 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3934 {
3935         struct kvm_segment ldtr;
3936
3937         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3938
3939         if (ldtr.unusable)
3940                 return true;
3941         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3942                 return false;
3943         if (ldtr.type != 2)
3944                 return false;
3945         if (!ldtr.present)
3946                 return false;
3947
3948         return true;
3949 }
3950
3951 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3952 {
3953         struct kvm_segment cs, ss;
3954
3955         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3956         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3957
3958         return ((cs.selector & SEGMENT_RPL_MASK) ==
3959                  (ss.selector & SEGMENT_RPL_MASK));
3960 }
3961
3962 /*
3963  * Check if guest state is valid. Returns true if valid, false if
3964  * not.
3965  * We assume that registers are always usable
3966  */
3967 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3968 {
3969         if (enable_unrestricted_guest)
3970                 return true;
3971
3972         /* real mode guest state checks */
3973         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3974                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3975                         return false;
3976                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3977                         return false;
3978                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3979                         return false;
3980                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3981                         return false;
3982                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3983                         return false;
3984                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3985                         return false;
3986         } else {
3987         /* protected mode guest state checks */
3988                 if (!cs_ss_rpl_check(vcpu))
3989                         return false;
3990                 if (!code_segment_valid(vcpu))
3991                         return false;
3992                 if (!stack_segment_valid(vcpu))
3993                         return false;
3994                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3995                         return false;
3996                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3997                         return false;
3998                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3999                         return false;
4000                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4001                         return false;
4002                 if (!tr_valid(vcpu))
4003                         return false;
4004                 if (!ldtr_valid(vcpu))
4005                         return false;
4006         }
4007         /* TODO:
4008          * - Add checks on RIP
4009          * - Add checks on RFLAGS
4010          */
4011
4012         return true;
4013 }
4014
4015 static int init_rmode_tss(struct kvm *kvm)
4016 {
4017         gfn_t fn;
4018         u16 data = 0;
4019         int idx, r;
4020
4021         idx = srcu_read_lock(&kvm->srcu);
4022         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4023         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4024         if (r < 0)
4025                 goto out;
4026         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4027         r = kvm_write_guest_page(kvm, fn++, &data,
4028                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4029         if (r < 0)
4030                 goto out;
4031         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4032         if (r < 0)
4033                 goto out;
4034         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4035         if (r < 0)
4036                 goto out;
4037         data = ~0;
4038         r = kvm_write_guest_page(kvm, fn, &data,
4039                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4040                                  sizeof(u8));
4041 out:
4042         srcu_read_unlock(&kvm->srcu, idx);
4043         return r;
4044 }
4045
4046 static int init_rmode_identity_map(struct kvm *kvm)
4047 {
4048         int i, idx, r = 0;
4049         pfn_t identity_map_pfn;
4050         u32 tmp;
4051
4052         if (!enable_ept)
4053                 return 0;
4054
4055         /* Protect kvm->arch.ept_identity_pagetable_done. */
4056         mutex_lock(&kvm->slots_lock);
4057
4058         if (likely(kvm->arch.ept_identity_pagetable_done))
4059                 goto out2;
4060
4061         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4062
4063         r = alloc_identity_pagetable(kvm);
4064         if (r < 0)
4065                 goto out2;
4066
4067         idx = srcu_read_lock(&kvm->srcu);
4068         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4069         if (r < 0)
4070                 goto out;
4071         /* Set up identity-mapping pagetable for EPT in real mode */
4072         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4073                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4074                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4075                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4076                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4077                 if (r < 0)
4078                         goto out;
4079         }
4080         kvm->arch.ept_identity_pagetable_done = true;
4081
4082 out:
4083         srcu_read_unlock(&kvm->srcu, idx);
4084
4085 out2:
4086         mutex_unlock(&kvm->slots_lock);
4087         return r;
4088 }
4089
4090 static void seg_setup(int seg)
4091 {
4092         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4093         unsigned int ar;
4094
4095         vmcs_write16(sf->selector, 0);
4096         vmcs_writel(sf->base, 0);
4097         vmcs_write32(sf->limit, 0xffff);
4098         ar = 0x93;
4099         if (seg == VCPU_SREG_CS)
4100                 ar |= 0x08; /* code segment */
4101
4102         vmcs_write32(sf->ar_bytes, ar);
4103 }
4104
4105 static int alloc_apic_access_page(struct kvm *kvm)
4106 {
4107         struct page *page;
4108         int r = 0;
4109
4110         mutex_lock(&kvm->slots_lock);
4111         if (kvm->arch.apic_access_page_done)
4112                 goto out;
4113         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4114                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4115         if (r)
4116                 goto out;
4117
4118         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4119         if (is_error_page(page)) {
4120                 r = -EFAULT;
4121                 goto out;
4122         }
4123
4124         /*
4125          * Do not pin the page in memory, so that memory hot-unplug
4126          * is able to migrate it.
4127          */
4128         put_page(page);
4129         kvm->arch.apic_access_page_done = true;
4130 out:
4131         mutex_unlock(&kvm->slots_lock);
4132         return r;
4133 }
4134
4135 static int alloc_identity_pagetable(struct kvm *kvm)
4136 {
4137         /* Called with kvm->slots_lock held. */
4138
4139         int r = 0;
4140
4141         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4142
4143         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4144                                     kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4145
4146         return r;
4147 }
4148
4149 static void allocate_vpid(struct vcpu_vmx *vmx)
4150 {
4151         int vpid;
4152
4153         vmx->vpid = 0;
4154         if (!enable_vpid)
4155                 return;
4156         spin_lock(&vmx_vpid_lock);
4157         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4158         if (vpid < VMX_NR_VPIDS) {
4159                 vmx->vpid = vpid;
4160                 __set_bit(vpid, vmx_vpid_bitmap);
4161         }
4162         spin_unlock(&vmx_vpid_lock);
4163 }
4164
4165 static void free_vpid(struct vcpu_vmx *vmx)
4166 {
4167         if (!enable_vpid)
4168                 return;
4169         spin_lock(&vmx_vpid_lock);
4170         if (vmx->vpid != 0)
4171                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4172         spin_unlock(&vmx_vpid_lock);
4173 }
4174
4175 #define MSR_TYPE_R      1
4176 #define MSR_TYPE_W      2
4177 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4178                                                 u32 msr, int type)
4179 {
4180         int f = sizeof(unsigned long);
4181
4182         if (!cpu_has_vmx_msr_bitmap())
4183                 return;
4184
4185         /*
4186          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4187          * have the write-low and read-high bitmap offsets the wrong way round.
4188          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4189          */
4190         if (msr <= 0x1fff) {
4191                 if (type & MSR_TYPE_R)
4192                         /* read-low */
4193                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4194
4195                 if (type & MSR_TYPE_W)
4196                         /* write-low */
4197                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4198
4199         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4200                 msr &= 0x1fff;
4201                 if (type & MSR_TYPE_R)
4202                         /* read-high */
4203                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4204
4205                 if (type & MSR_TYPE_W)
4206                         /* write-high */
4207                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4208
4209         }
4210 }
4211
4212 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4213                                                 u32 msr, int type)
4214 {
4215         int f = sizeof(unsigned long);
4216
4217         if (!cpu_has_vmx_msr_bitmap())
4218                 return;
4219
4220         /*
4221          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4222          * have the write-low and read-high bitmap offsets the wrong way round.
4223          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4224          */
4225         if (msr <= 0x1fff) {
4226                 if (type & MSR_TYPE_R)
4227                         /* read-low */
4228                         __set_bit(msr, msr_bitmap + 0x000 / f);
4229
4230                 if (type & MSR_TYPE_W)
4231                         /* write-low */
4232                         __set_bit(msr, msr_bitmap + 0x800 / f);
4233
4234         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4235                 msr &= 0x1fff;
4236                 if (type & MSR_TYPE_R)
4237                         /* read-high */
4238                         __set_bit(msr, msr_bitmap + 0x400 / f);
4239
4240                 if (type & MSR_TYPE_W)
4241                         /* write-high */
4242                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4243
4244         }
4245 }
4246
4247 /*
4248  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4249  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4250  */
4251 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4252                                                unsigned long *msr_bitmap_nested,
4253                                                u32 msr, int type)
4254 {
4255         int f = sizeof(unsigned long);
4256
4257         if (!cpu_has_vmx_msr_bitmap()) {
4258                 WARN_ON(1);
4259                 return;
4260         }
4261
4262         /*
4263          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4264          * have the write-low and read-high bitmap offsets the wrong way round.
4265          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4266          */
4267         if (msr <= 0x1fff) {
4268                 if (type & MSR_TYPE_R &&
4269                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4270                         /* read-low */
4271                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4272
4273                 if (type & MSR_TYPE_W &&
4274                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4275                         /* write-low */
4276                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4277
4278         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4279                 msr &= 0x1fff;
4280                 if (type & MSR_TYPE_R &&
4281                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4282                         /* read-high */
4283                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4284
4285                 if (type & MSR_TYPE_W &&
4286                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4287                         /* write-high */
4288                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4289
4290         }
4291 }
4292
4293 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4294 {
4295         if (!longmode_only)
4296                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4297                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4298         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4299                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4300 }
4301
4302 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4303 {
4304         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4305                         msr, MSR_TYPE_R);
4306         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4307                         msr, MSR_TYPE_R);
4308 }
4309
4310 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4311 {
4312         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4313                         msr, MSR_TYPE_R);
4314         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4315                         msr, MSR_TYPE_R);
4316 }
4317
4318 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4319 {
4320         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4321                         msr, MSR_TYPE_W);
4322         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4323                         msr, MSR_TYPE_W);
4324 }
4325
4326 static int vmx_vm_has_apicv(struct kvm *kvm)
4327 {
4328         return enable_apicv && irqchip_in_kernel(kvm);
4329 }
4330
4331 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4332 {
4333         struct vcpu_vmx *vmx = to_vmx(vcpu);
4334         int max_irr;
4335         void *vapic_page;
4336         u16 status;
4337
4338         if (vmx->nested.pi_desc &&
4339             vmx->nested.pi_pending) {
4340                 vmx->nested.pi_pending = false;
4341                 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4342                         return 0;
4343
4344                 max_irr = find_last_bit(
4345                         (unsigned long *)vmx->nested.pi_desc->pir, 256);
4346
4347                 if (max_irr == 256)
4348                         return 0;
4349
4350                 vapic_page = kmap(vmx->nested.virtual_apic_page);
4351                 if (!vapic_page) {
4352                         WARN_ON(1);
4353                         return -ENOMEM;
4354                 }
4355                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4356                 kunmap(vmx->nested.virtual_apic_page);
4357
4358                 status = vmcs_read16(GUEST_INTR_STATUS);
4359                 if ((u8)max_irr > ((u8)status & 0xff)) {
4360                         status &= ~0xff;
4361                         status |= (u8)max_irr;
4362                         vmcs_write16(GUEST_INTR_STATUS, status);
4363                 }
4364         }
4365         return 0;
4366 }
4367
4368 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4369 {
4370 #ifdef CONFIG_SMP
4371         if (vcpu->mode == IN_GUEST_MODE) {
4372                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4373                                 POSTED_INTR_VECTOR);
4374                 return true;
4375         }
4376 #endif
4377         return false;
4378 }
4379
4380 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4381                                                 int vector)
4382 {
4383         struct vcpu_vmx *vmx = to_vmx(vcpu);
4384
4385         if (is_guest_mode(vcpu) &&
4386             vector == vmx->nested.posted_intr_nv) {
4387                 /* the PIR and ON have been set by L1. */
4388                 kvm_vcpu_trigger_posted_interrupt(vcpu);
4389                 /*
4390                  * If a posted intr is not recognized by hardware,
4391                  * we will accomplish it in the next vmentry.
4392                  */
4393                 vmx->nested.pi_pending = true;
4394                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4395                 return 0;
4396         }
4397         return -1;
4398 }
4399 /*
4400  * Send interrupt to vcpu via posted interrupt way.
4401  * 1. If target vcpu is running(non-root mode), send posted interrupt
4402  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4403  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4404  * interrupt from PIR in next vmentry.
4405  */
4406 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4407 {
4408         struct vcpu_vmx *vmx = to_vmx(vcpu);
4409         int r;
4410
4411         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4412         if (!r)
4413                 return;
4414
4415         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4416                 return;
4417
4418         r = pi_test_and_set_on(&vmx->pi_desc);
4419         kvm_make_request(KVM_REQ_EVENT, vcpu);
4420         if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4421                 kvm_vcpu_kick(vcpu);
4422 }
4423
4424 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4425 {
4426         struct vcpu_vmx *vmx = to_vmx(vcpu);
4427
4428         if (!pi_test_and_clear_on(&vmx->pi_desc))
4429                 return;
4430
4431         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4432 }
4433
4434 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4435 {
4436         return;
4437 }
4438
4439 /*
4440  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4441  * will not change in the lifetime of the guest.
4442  * Note that host-state that does change is set elsewhere. E.g., host-state
4443  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4444  */
4445 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4446 {
4447         u32 low32, high32;
4448         unsigned long tmpl;
4449         struct desc_ptr dt;
4450         unsigned long cr4;
4451
4452         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4453         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4454
4455         /* Save the most likely value for this task's CR4 in the VMCS. */
4456         cr4 = cr4_read_shadow();
4457         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4458         vmx->host_state.vmcs_host_cr4 = cr4;
4459
4460         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4461 #ifdef CONFIG_X86_64
4462         /*
4463          * Load null selectors, so we can avoid reloading them in
4464          * __vmx_load_host_state(), in case userspace uses the null selectors
4465          * too (the expected case).
4466          */
4467         vmcs_write16(HOST_DS_SELECTOR, 0);
4468         vmcs_write16(HOST_ES_SELECTOR, 0);
4469 #else
4470         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4471         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4472 #endif
4473         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4474         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4475
4476         native_store_idt(&dt);
4477         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4478         vmx->host_idt_base = dt.address;
4479
4480         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4481
4482         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4483         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4484         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4485         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4486
4487         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4488                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4489                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4490         }
4491 }
4492
4493 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4494 {
4495         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4496         if (enable_ept)
4497                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4498         if (is_guest_mode(&vmx->vcpu))
4499                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4500                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4501         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4502 }
4503
4504 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4505 {
4506         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4507
4508         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4509                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4510         return pin_based_exec_ctrl;
4511 }
4512
4513 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4514 {
4515         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4516
4517         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4518                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4519
4520         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4521                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4522 #ifdef CONFIG_X86_64
4523                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4524                                 CPU_BASED_CR8_LOAD_EXITING;
4525 #endif
4526         }
4527         if (!enable_ept)
4528                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4529                                 CPU_BASED_CR3_LOAD_EXITING  |
4530                                 CPU_BASED_INVLPG_EXITING;
4531         return exec_control;
4532 }
4533
4534 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4535 {
4536         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4537         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4538                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4539         if (vmx->vpid == 0)
4540                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4541         if (!enable_ept) {
4542                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4543                 enable_unrestricted_guest = 0;
4544                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4545                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4546         }
4547         if (!enable_unrestricted_guest)
4548                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4549         if (!ple_gap)
4550                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4551         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4552                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4553                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4554         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4555         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4556            (handle_vmptrld).
4557            We can NOT enable shadow_vmcs here because we don't have yet
4558            a current VMCS12
4559         */
4560         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4561         /* PML is enabled/disabled in creating/destorying vcpu */
4562         exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4563
4564         return exec_control;
4565 }
4566
4567 static void ept_set_mmio_spte_mask(void)
4568 {
4569         /*
4570          * EPT Misconfigurations can be generated if the value of bits 2:0
4571          * of an EPT paging-structure entry is 110b (write/execute).
4572          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4573          * spte.
4574          */
4575         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4576 }
4577
4578 #define VMX_XSS_EXIT_BITMAP 0
4579 /*
4580  * Sets up the vmcs for emulated real mode.
4581  */
4582 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4583 {
4584 #ifdef CONFIG_X86_64
4585         unsigned long a;
4586 #endif
4587         int i;
4588
4589         /* I/O */
4590         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4591         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4592
4593         if (enable_shadow_vmcs) {
4594                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4595                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4596         }
4597         if (cpu_has_vmx_msr_bitmap())
4598                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4599
4600         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4601
4602         /* Control */
4603         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4604
4605         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4606
4607         if (cpu_has_secondary_exec_ctrls()) {
4608                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4609                                 vmx_secondary_exec_control(vmx));
4610         }
4611
4612         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4613                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4614                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4615                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4616                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4617
4618                 vmcs_write16(GUEST_INTR_STATUS, 0);
4619
4620                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4621                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4622         }
4623
4624         if (ple_gap) {
4625                 vmcs_write32(PLE_GAP, ple_gap);
4626                 vmx->ple_window = ple_window;
4627                 vmx->ple_window_dirty = true;
4628         }
4629
4630         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4631         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4632         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4633
4634         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4635         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4636         vmx_set_constant_host_state(vmx);
4637 #ifdef CONFIG_X86_64
4638         rdmsrl(MSR_FS_BASE, a);
4639         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4640         rdmsrl(MSR_GS_BASE, a);
4641         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4642 #else
4643         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4644         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4645 #endif
4646
4647         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4648         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4649         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4650         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4651         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4652
4653         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4654                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4655
4656         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4657                 u32 index = vmx_msr_index[i];
4658                 u32 data_low, data_high;
4659                 int j = vmx->nmsrs;
4660
4661                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4662                         continue;
4663                 if (wrmsr_safe(index, data_low, data_high) < 0)
4664                         continue;
4665                 vmx->guest_msrs[j].index = i;
4666                 vmx->guest_msrs[j].data = 0;
4667                 vmx->guest_msrs[j].mask = -1ull;
4668                 ++vmx->nmsrs;
4669         }
4670
4671
4672         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4673
4674         /* 22.2.1, 20.8.1 */
4675         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4676
4677         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4678         set_cr4_guest_host_mask(vmx);
4679
4680         if (vmx_xsaves_supported())
4681                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4682
4683         return 0;
4684 }
4685
4686 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4687 {
4688         struct vcpu_vmx *vmx = to_vmx(vcpu);
4689         struct msr_data apic_base_msr;
4690         u64 cr0;
4691
4692         vmx->rmode.vm86_active = 0;
4693
4694         vmx->soft_vnmi_blocked = 0;
4695
4696         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4697         kvm_set_cr8(vcpu, 0);
4698
4699         if (!init_event) {
4700                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4701                                      MSR_IA32_APICBASE_ENABLE;
4702                 if (kvm_vcpu_is_reset_bsp(vcpu))
4703                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4704                 apic_base_msr.host_initiated = true;
4705                 kvm_set_apic_base(vcpu, &apic_base_msr);
4706         }
4707
4708         vmx_segment_cache_clear(vmx);
4709
4710         seg_setup(VCPU_SREG_CS);
4711         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4712         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4713
4714         seg_setup(VCPU_SREG_DS);
4715         seg_setup(VCPU_SREG_ES);
4716         seg_setup(VCPU_SREG_FS);
4717         seg_setup(VCPU_SREG_GS);
4718         seg_setup(VCPU_SREG_SS);
4719
4720         vmcs_write16(GUEST_TR_SELECTOR, 0);
4721         vmcs_writel(GUEST_TR_BASE, 0);
4722         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4723         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4724
4725         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4726         vmcs_writel(GUEST_LDTR_BASE, 0);
4727         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4728         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4729
4730         if (!init_event) {
4731                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4732                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4733                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4734                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4735         }
4736
4737         vmcs_writel(GUEST_RFLAGS, 0x02);
4738         kvm_rip_write(vcpu, 0xfff0);
4739
4740         vmcs_writel(GUEST_GDTR_BASE, 0);
4741         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4742
4743         vmcs_writel(GUEST_IDTR_BASE, 0);
4744         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4745
4746         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4747         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4748         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4749
4750         setup_msrs(vmx);
4751
4752         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4753
4754         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4755                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4756                 if (vm_need_tpr_shadow(vcpu->kvm))
4757                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4758                                      __pa(vcpu->arch.apic->regs));
4759                 vmcs_write32(TPR_THRESHOLD, 0);
4760         }
4761
4762         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4763
4764         if (vmx_vm_has_apicv(vcpu->kvm))
4765                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4766
4767         if (vmx->vpid != 0)
4768                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4769
4770         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4771         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4772         vmx->vcpu.arch.cr0 = cr0;
4773         vmx_set_cr4(vcpu, 0);
4774         if (!init_event)
4775                 vmx_set_efer(vcpu, 0);
4776         vmx_fpu_activate(vcpu);
4777         update_exception_bitmap(vcpu);
4778
4779         vpid_sync_context(vmx);
4780 }
4781
4782 /*
4783  * In nested virtualization, check if L1 asked to exit on external interrupts.
4784  * For most existing hypervisors, this will always return true.
4785  */
4786 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4787 {
4788         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4789                 PIN_BASED_EXT_INTR_MASK;
4790 }
4791
4792 /*
4793  * In nested virtualization, check if L1 has set
4794  * VM_EXIT_ACK_INTR_ON_EXIT
4795  */
4796 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4797 {
4798         return get_vmcs12(vcpu)->vm_exit_controls &
4799                 VM_EXIT_ACK_INTR_ON_EXIT;
4800 }
4801
4802 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4803 {
4804         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4805                 PIN_BASED_NMI_EXITING;
4806 }
4807
4808 static void enable_irq_window(struct kvm_vcpu *vcpu)
4809 {
4810         u32 cpu_based_vm_exec_control;
4811
4812         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4813         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4814         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4815 }
4816
4817 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4818 {
4819         u32 cpu_based_vm_exec_control;
4820
4821         if (!cpu_has_virtual_nmis() ||
4822             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4823                 enable_irq_window(vcpu);
4824                 return;
4825         }
4826
4827         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4828         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4829         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4830 }
4831
4832 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4833 {
4834         struct vcpu_vmx *vmx = to_vmx(vcpu);
4835         uint32_t intr;
4836         int irq = vcpu->arch.interrupt.nr;
4837
4838         trace_kvm_inj_virq(irq);
4839
4840         ++vcpu->stat.irq_injections;
4841         if (vmx->rmode.vm86_active) {
4842                 int inc_eip = 0;
4843                 if (vcpu->arch.interrupt.soft)
4844                         inc_eip = vcpu->arch.event_exit_inst_len;
4845                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4846                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4847                 return;
4848         }
4849         intr = irq | INTR_INFO_VALID_MASK;
4850         if (vcpu->arch.interrupt.soft) {
4851                 intr |= INTR_TYPE_SOFT_INTR;
4852                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4853                              vmx->vcpu.arch.event_exit_inst_len);
4854         } else
4855                 intr |= INTR_TYPE_EXT_INTR;
4856         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4857 }
4858
4859 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4860 {
4861         struct vcpu_vmx *vmx = to_vmx(vcpu);
4862
4863         if (is_guest_mode(vcpu))
4864                 return;
4865
4866         if (!cpu_has_virtual_nmis()) {
4867                 /*
4868                  * Tracking the NMI-blocked state in software is built upon
4869                  * finding the next open IRQ window. This, in turn, depends on
4870                  * well-behaving guests: They have to keep IRQs disabled at
4871                  * least as long as the NMI handler runs. Otherwise we may
4872                  * cause NMI nesting, maybe breaking the guest. But as this is
4873                  * highly unlikely, we can live with the residual risk.
4874                  */
4875                 vmx->soft_vnmi_blocked = 1;
4876                 vmx->vnmi_blocked_time = 0;
4877         }
4878
4879         ++vcpu->stat.nmi_injections;
4880         vmx->nmi_known_unmasked = false;
4881         if (vmx->rmode.vm86_active) {
4882                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4883                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4884                 return;
4885         }
4886         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4887                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4888 }
4889
4890 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4891 {
4892         if (!cpu_has_virtual_nmis())
4893                 return to_vmx(vcpu)->soft_vnmi_blocked;
4894         if (to_vmx(vcpu)->nmi_known_unmasked)
4895                 return false;
4896         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4897 }
4898
4899 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4900 {
4901         struct vcpu_vmx *vmx = to_vmx(vcpu);
4902
4903         if (!cpu_has_virtual_nmis()) {
4904                 if (vmx->soft_vnmi_blocked != masked) {
4905                         vmx->soft_vnmi_blocked = masked;
4906                         vmx->vnmi_blocked_time = 0;
4907                 }
4908         } else {
4909                 vmx->nmi_known_unmasked = !masked;
4910                 if (masked)
4911                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4912                                       GUEST_INTR_STATE_NMI);
4913                 else
4914                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4915                                         GUEST_INTR_STATE_NMI);
4916         }
4917 }
4918
4919 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4920 {
4921         if (to_vmx(vcpu)->nested.nested_run_pending)
4922                 return 0;
4923
4924         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4925                 return 0;
4926
4927         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4928                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4929                    | GUEST_INTR_STATE_NMI));
4930 }
4931
4932 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4933 {
4934         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4935                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4936                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4937                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4938 }
4939
4940 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4941 {
4942         int ret;
4943
4944         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4945                                     PAGE_SIZE * 3);
4946         if (ret)
4947                 return ret;
4948         kvm->arch.tss_addr = addr;
4949         return init_rmode_tss(kvm);
4950 }
4951
4952 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4953 {
4954         switch (vec) {
4955         case BP_VECTOR:
4956                 /*
4957                  * Update instruction length as we may reinject the exception
4958                  * from user space while in guest debugging mode.
4959                  */
4960                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4961                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4962                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4963                         return false;
4964                 /* fall through */
4965         case DB_VECTOR:
4966                 if (vcpu->guest_debug &
4967                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4968                         return false;
4969                 /* fall through */
4970         case DE_VECTOR:
4971         case OF_VECTOR:
4972         case BR_VECTOR:
4973         case UD_VECTOR:
4974         case DF_VECTOR:
4975         case SS_VECTOR:
4976         case GP_VECTOR:
4977         case MF_VECTOR:
4978                 return true;
4979         break;
4980         }
4981         return false;
4982 }
4983
4984 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4985                                   int vec, u32 err_code)
4986 {
4987         /*
4988          * Instruction with address size override prefix opcode 0x67
4989          * Cause the #SS fault with 0 error code in VM86 mode.
4990          */
4991         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4992                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4993                         if (vcpu->arch.halt_request) {
4994                                 vcpu->arch.halt_request = 0;
4995                                 return kvm_vcpu_halt(vcpu);
4996                         }
4997                         return 1;
4998                 }
4999                 return 0;
5000         }
5001
5002         /*
5003          * Forward all other exceptions that are valid in real mode.
5004          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5005          *        the required debugging infrastructure rework.
5006          */
5007         kvm_queue_exception(vcpu, vec);
5008         return 1;
5009 }
5010
5011 /*
5012  * Trigger machine check on the host. We assume all the MSRs are already set up
5013  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5014  * We pass a fake environment to the machine check handler because we want
5015  * the guest to be always treated like user space, no matter what context
5016  * it used internally.
5017  */
5018 static void kvm_machine_check(void)
5019 {
5020 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5021         struct pt_regs regs = {
5022                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5023                 .flags = X86_EFLAGS_IF,
5024         };
5025
5026         do_machine_check(&regs, 0);
5027 #endif
5028 }
5029
5030 static int handle_machine_check(struct kvm_vcpu *vcpu)
5031 {
5032         /* already handled by vcpu_run */
5033         return 1;
5034 }
5035
5036 static int handle_exception(struct kvm_vcpu *vcpu)
5037 {
5038         struct vcpu_vmx *vmx = to_vmx(vcpu);
5039         struct kvm_run *kvm_run = vcpu->run;
5040         u32 intr_info, ex_no, error_code;
5041         unsigned long cr2, rip, dr6;
5042         u32 vect_info;
5043         enum emulation_result er;
5044
5045         vect_info = vmx->idt_vectoring_info;
5046         intr_info = vmx->exit_intr_info;
5047
5048         if (is_machine_check(intr_info))
5049                 return handle_machine_check(vcpu);
5050
5051         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5052                 return 1;  /* already handled by vmx_vcpu_run() */
5053
5054         if (is_no_device(intr_info)) {
5055                 vmx_fpu_activate(vcpu);
5056                 return 1;
5057         }
5058
5059         if (is_invalid_opcode(intr_info)) {
5060                 if (is_guest_mode(vcpu)) {
5061                         kvm_queue_exception(vcpu, UD_VECTOR);
5062                         return 1;
5063                 }
5064                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5065                 if (er != EMULATE_DONE)
5066                         kvm_queue_exception(vcpu, UD_VECTOR);
5067                 return 1;
5068         }
5069
5070         error_code = 0;
5071         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5072                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5073
5074         /*
5075          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5076          * MMIO, it is better to report an internal error.
5077          * See the comments in vmx_handle_exit.
5078          */
5079         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5080             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5081                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5082                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5083                 vcpu->run->internal.ndata = 3;
5084                 vcpu->run->internal.data[0] = vect_info;
5085                 vcpu->run->internal.data[1] = intr_info;
5086                 vcpu->run->internal.data[2] = error_code;
5087                 return 0;
5088         }
5089
5090         if (is_page_fault(intr_info)) {
5091                 /* EPT won't cause page fault directly */
5092                 BUG_ON(enable_ept);
5093                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5094                 trace_kvm_page_fault(cr2, error_code);
5095
5096                 if (kvm_event_needs_reinjection(vcpu))
5097                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
5098                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5099         }
5100
5101         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5102
5103         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5104                 return handle_rmode_exception(vcpu, ex_no, error_code);
5105
5106         switch (ex_no) {
5107         case DB_VECTOR:
5108                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5109                 if (!(vcpu->guest_debug &
5110                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5111                         vcpu->arch.dr6 &= ~15;
5112                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5113                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5114                                 skip_emulated_instruction(vcpu);
5115
5116                         kvm_queue_exception(vcpu, DB_VECTOR);
5117                         return 1;
5118                 }
5119                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5120                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5121                 /* fall through */
5122         case BP_VECTOR:
5123                 /*
5124                  * Update instruction length as we may reinject #BP from
5125                  * user space while in guest debugging mode. Reading it for
5126                  * #DB as well causes no harm, it is not used in that case.
5127                  */
5128                 vmx->vcpu.arch.event_exit_inst_len =
5129                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5130                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5131                 rip = kvm_rip_read(vcpu);
5132                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5133                 kvm_run->debug.arch.exception = ex_no;
5134                 break;
5135         default:
5136                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5137                 kvm_run->ex.exception = ex_no;
5138                 kvm_run->ex.error_code = error_code;
5139                 break;
5140         }
5141         return 0;
5142 }
5143
5144 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5145 {
5146         ++vcpu->stat.irq_exits;
5147         return 1;
5148 }
5149
5150 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5151 {
5152         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5153         return 0;
5154 }
5155
5156 static int handle_io(struct kvm_vcpu *vcpu)
5157 {
5158         unsigned long exit_qualification;
5159         int size, in, string;
5160         unsigned port;
5161
5162         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5163         string = (exit_qualification & 16) != 0;
5164         in = (exit_qualification & 8) != 0;
5165
5166         ++vcpu->stat.io_exits;
5167
5168         if (string || in)
5169                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5170
5171         port = exit_qualification >> 16;
5172         size = (exit_qualification & 7) + 1;
5173         skip_emulated_instruction(vcpu);
5174
5175         return kvm_fast_pio_out(vcpu, size, port);
5176 }
5177
5178 static void
5179 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5180 {
5181         /*
5182          * Patch in the VMCALL instruction:
5183          */
5184         hypercall[0] = 0x0f;
5185         hypercall[1] = 0x01;
5186         hypercall[2] = 0xc1;
5187 }
5188
5189 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5190 {
5191         unsigned long always_on = VMXON_CR0_ALWAYSON;
5192         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5193
5194         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5195                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5196             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5197                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5198         return (val & always_on) == always_on;
5199 }
5200
5201 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5202 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5203 {
5204         if (is_guest_mode(vcpu)) {
5205                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5206                 unsigned long orig_val = val;
5207
5208                 /*
5209                  * We get here when L2 changed cr0 in a way that did not change
5210                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5211                  * but did change L0 shadowed bits. So we first calculate the
5212                  * effective cr0 value that L1 would like to write into the
5213                  * hardware. It consists of the L2-owned bits from the new
5214                  * value combined with the L1-owned bits from L1's guest_cr0.
5215                  */
5216                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5217                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5218
5219                 if (!nested_cr0_valid(vcpu, val))
5220                         return 1;
5221
5222                 if (kvm_set_cr0(vcpu, val))
5223                         return 1;
5224                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5225                 return 0;
5226         } else {
5227                 if (to_vmx(vcpu)->nested.vmxon &&
5228                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5229                         return 1;
5230                 return kvm_set_cr0(vcpu, val);
5231         }
5232 }
5233
5234 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5235 {
5236         if (is_guest_mode(vcpu)) {
5237                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5238                 unsigned long orig_val = val;
5239
5240                 /* analogously to handle_set_cr0 */
5241                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5242                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5243                 if (kvm_set_cr4(vcpu, val))
5244                         return 1;
5245                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5246                 return 0;
5247         } else
5248                 return kvm_set_cr4(vcpu, val);
5249 }
5250
5251 /* called to set cr0 as approriate for clts instruction exit. */
5252 static void handle_clts(struct kvm_vcpu *vcpu)
5253 {
5254         if (is_guest_mode(vcpu)) {
5255                 /*
5256                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5257                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5258                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5259                  */
5260                 vmcs_writel(CR0_READ_SHADOW,
5261                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5262                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5263         } else
5264                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5265 }
5266
5267 static int handle_cr(struct kvm_vcpu *vcpu)
5268 {
5269         unsigned long exit_qualification, val;
5270         int cr;
5271         int reg;
5272         int err;
5273
5274         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5275         cr = exit_qualification & 15;
5276         reg = (exit_qualification >> 8) & 15;
5277         switch ((exit_qualification >> 4) & 3) {
5278         case 0: /* mov to cr */
5279                 val = kvm_register_readl(vcpu, reg);
5280                 trace_kvm_cr_write(cr, val);
5281                 switch (cr) {
5282                 case 0:
5283                         err = handle_set_cr0(vcpu, val);
5284                         kvm_complete_insn_gp(vcpu, err);
5285                         return 1;
5286                 case 3:
5287                         err = kvm_set_cr3(vcpu, val);
5288                         kvm_complete_insn_gp(vcpu, err);
5289                         return 1;
5290                 case 4:
5291                         err = handle_set_cr4(vcpu, val);
5292                         kvm_complete_insn_gp(vcpu, err);
5293                         return 1;
5294                 case 8: {
5295                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5296                                 u8 cr8 = (u8)val;
5297                                 err = kvm_set_cr8(vcpu, cr8);
5298                                 kvm_complete_insn_gp(vcpu, err);
5299                                 if (irqchip_in_kernel(vcpu->kvm))
5300                                         return 1;
5301                                 if (cr8_prev <= cr8)
5302                                         return 1;
5303                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5304                                 return 0;
5305                         }
5306                 }
5307                 break;
5308         case 2: /* clts */
5309                 handle_clts(vcpu);
5310                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5311                 skip_emulated_instruction(vcpu);
5312                 vmx_fpu_activate(vcpu);
5313                 return 1;
5314         case 1: /*mov from cr*/
5315                 switch (cr) {
5316                 case 3:
5317                         val = kvm_read_cr3(vcpu);
5318                         kvm_register_write(vcpu, reg, val);
5319                         trace_kvm_cr_read(cr, val);
5320                         skip_emulated_instruction(vcpu);
5321                         return 1;
5322                 case 8:
5323                         val = kvm_get_cr8(vcpu);
5324                         kvm_register_write(vcpu, reg, val);
5325                         trace_kvm_cr_read(cr, val);
5326                         skip_emulated_instruction(vcpu);
5327                         return 1;
5328                 }
5329                 break;
5330         case 3: /* lmsw */
5331                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5332                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5333                 kvm_lmsw(vcpu, val);
5334
5335                 skip_emulated_instruction(vcpu);
5336                 return 1;
5337         default:
5338                 break;
5339         }
5340         vcpu->run->exit_reason = 0;
5341         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5342                (int)(exit_qualification >> 4) & 3, cr);
5343         return 0;
5344 }
5345
5346 static int handle_dr(struct kvm_vcpu *vcpu)
5347 {
5348         unsigned long exit_qualification;
5349         int dr, dr7, reg;
5350
5351         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5352         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5353
5354         /* First, if DR does not exist, trigger UD */
5355         if (!kvm_require_dr(vcpu, dr))
5356                 return 1;
5357
5358         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5359         if (!kvm_require_cpl(vcpu, 0))
5360                 return 1;
5361         dr7 = vmcs_readl(GUEST_DR7);
5362         if (dr7 & DR7_GD) {
5363                 /*
5364                  * As the vm-exit takes precedence over the debug trap, we
5365                  * need to emulate the latter, either for the host or the
5366                  * guest debugging itself.
5367                  */
5368                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5369                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5370                         vcpu->run->debug.arch.dr7 = dr7;
5371                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5372                         vcpu->run->debug.arch.exception = DB_VECTOR;
5373                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5374                         return 0;
5375                 } else {
5376                         vcpu->arch.dr6 &= ~15;
5377                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5378                         kvm_queue_exception(vcpu, DB_VECTOR);
5379                         return 1;
5380                 }
5381         }
5382
5383         if (vcpu->guest_debug == 0) {
5384                 u32 cpu_based_vm_exec_control;
5385
5386                 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5387                 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5388                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5389
5390                 /*
5391                  * No more DR vmexits; force a reload of the debug registers
5392                  * and reenter on this instruction.  The next vmexit will
5393                  * retrieve the full state of the debug registers.
5394                  */
5395                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5396                 return 1;
5397         }
5398
5399         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5400         if (exit_qualification & TYPE_MOV_FROM_DR) {
5401                 unsigned long val;
5402
5403                 if (kvm_get_dr(vcpu, dr, &val))
5404                         return 1;
5405                 kvm_register_write(vcpu, reg, val);
5406         } else
5407                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5408                         return 1;
5409
5410         skip_emulated_instruction(vcpu);
5411         return 1;
5412 }
5413
5414 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5415 {
5416         return vcpu->arch.dr6;
5417 }
5418
5419 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5420 {
5421 }
5422
5423 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5424 {
5425         u32 cpu_based_vm_exec_control;
5426
5427         get_debugreg(vcpu->arch.db[0], 0);
5428         get_debugreg(vcpu->arch.db[1], 1);
5429         get_debugreg(vcpu->arch.db[2], 2);
5430         get_debugreg(vcpu->arch.db[3], 3);
5431         get_debugreg(vcpu->arch.dr6, 6);
5432         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5433
5434         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5435
5436         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5437         cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5438         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5439 }
5440
5441 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5442 {
5443         vmcs_writel(GUEST_DR7, val);
5444 }
5445
5446 static int handle_cpuid(struct kvm_vcpu *vcpu)
5447 {
5448         kvm_emulate_cpuid(vcpu);
5449         return 1;
5450 }
5451
5452 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5453 {
5454         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5455         struct msr_data msr_info;
5456
5457         msr_info.index = ecx;
5458         msr_info.host_initiated = false;
5459         if (vmx_get_msr(vcpu, &msr_info)) {
5460                 trace_kvm_msr_read_ex(ecx);
5461                 kvm_inject_gp(vcpu, 0);
5462                 return 1;
5463         }
5464
5465         trace_kvm_msr_read(ecx, msr_info.data);
5466
5467         /* FIXME: handling of bits 32:63 of rax, rdx */
5468         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5469         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5470         skip_emulated_instruction(vcpu);
5471         return 1;
5472 }
5473
5474 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5475 {
5476         struct msr_data msr;
5477         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5478         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5479                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5480
5481         msr.data = data;
5482         msr.index = ecx;
5483         msr.host_initiated = false;
5484         if (kvm_set_msr(vcpu, &msr) != 0) {
5485                 trace_kvm_msr_write_ex(ecx, data);
5486                 kvm_inject_gp(vcpu, 0);
5487                 return 1;
5488         }
5489
5490         trace_kvm_msr_write(ecx, data);
5491         skip_emulated_instruction(vcpu);
5492         return 1;
5493 }
5494
5495 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5496 {
5497         kvm_make_request(KVM_REQ_EVENT, vcpu);
5498         return 1;
5499 }
5500
5501 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5502 {
5503         u32 cpu_based_vm_exec_control;
5504
5505         /* clear pending irq */
5506         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5507         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5508         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5509
5510         kvm_make_request(KVM_REQ_EVENT, vcpu);
5511
5512         ++vcpu->stat.irq_window_exits;
5513
5514         /*
5515          * If the user space waits to inject interrupts, exit as soon as
5516          * possible
5517          */
5518         if (!irqchip_in_kernel(vcpu->kvm) &&
5519             vcpu->run->request_interrupt_window &&
5520             !kvm_cpu_has_interrupt(vcpu)) {
5521                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5522                 return 0;
5523         }
5524         return 1;
5525 }
5526
5527 static int handle_halt(struct kvm_vcpu *vcpu)
5528 {
5529         return kvm_emulate_halt(vcpu);
5530 }
5531
5532 static int handle_vmcall(struct kvm_vcpu *vcpu)
5533 {
5534         kvm_emulate_hypercall(vcpu);
5535         return 1;
5536 }
5537
5538 static int handle_invd(struct kvm_vcpu *vcpu)
5539 {
5540         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5541 }
5542
5543 static int handle_invlpg(struct kvm_vcpu *vcpu)
5544 {
5545         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5546
5547         kvm_mmu_invlpg(vcpu, exit_qualification);
5548         skip_emulated_instruction(vcpu);
5549         return 1;
5550 }
5551
5552 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5553 {
5554         int err;
5555
5556         err = kvm_rdpmc(vcpu);
5557         kvm_complete_insn_gp(vcpu, err);
5558
5559         return 1;
5560 }
5561
5562 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5563 {
5564         kvm_emulate_wbinvd(vcpu);
5565         return 1;
5566 }
5567
5568 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5569 {
5570         u64 new_bv = kvm_read_edx_eax(vcpu);
5571         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5572
5573         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5574                 skip_emulated_instruction(vcpu);
5575         return 1;
5576 }
5577
5578 static int handle_xsaves(struct kvm_vcpu *vcpu)
5579 {
5580         skip_emulated_instruction(vcpu);
5581         WARN(1, "this should never happen\n");
5582         return 1;
5583 }
5584
5585 static int handle_xrstors(struct kvm_vcpu *vcpu)
5586 {
5587         skip_emulated_instruction(vcpu);
5588         WARN(1, "this should never happen\n");
5589         return 1;
5590 }
5591
5592 static int handle_apic_access(struct kvm_vcpu *vcpu)
5593 {
5594         if (likely(fasteoi)) {
5595                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5596                 int access_type, offset;
5597
5598                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5599                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5600                 /*
5601                  * Sane guest uses MOV to write EOI, with written value
5602                  * not cared. So make a short-circuit here by avoiding
5603                  * heavy instruction emulation.
5604                  */
5605                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5606                     (offset == APIC_EOI)) {
5607                         kvm_lapic_set_eoi(vcpu);
5608                         skip_emulated_instruction(vcpu);
5609                         return 1;
5610                 }
5611         }
5612         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5613 }
5614
5615 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5616 {
5617         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5618         int vector = exit_qualification & 0xff;
5619
5620         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5621         kvm_apic_set_eoi_accelerated(vcpu, vector);
5622         return 1;
5623 }
5624
5625 static int handle_apic_write(struct kvm_vcpu *vcpu)
5626 {
5627         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5628         u32 offset = exit_qualification & 0xfff;
5629
5630         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5631         kvm_apic_write_nodecode(vcpu, offset);
5632         return 1;
5633 }
5634
5635 static int handle_task_switch(struct kvm_vcpu *vcpu)
5636 {
5637         struct vcpu_vmx *vmx = to_vmx(vcpu);
5638         unsigned long exit_qualification;
5639         bool has_error_code = false;
5640         u32 error_code = 0;
5641         u16 tss_selector;
5642         int reason, type, idt_v, idt_index;
5643
5644         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5645         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5646         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5647
5648         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5649
5650         reason = (u32)exit_qualification >> 30;
5651         if (reason == TASK_SWITCH_GATE && idt_v) {
5652                 switch (type) {
5653                 case INTR_TYPE_NMI_INTR:
5654                         vcpu->arch.nmi_injected = false;
5655                         vmx_set_nmi_mask(vcpu, true);
5656                         break;
5657                 case INTR_TYPE_EXT_INTR:
5658                 case INTR_TYPE_SOFT_INTR:
5659                         kvm_clear_interrupt_queue(vcpu);
5660                         break;
5661                 case INTR_TYPE_HARD_EXCEPTION:
5662                         if (vmx->idt_vectoring_info &
5663                             VECTORING_INFO_DELIVER_CODE_MASK) {
5664                                 has_error_code = true;
5665                                 error_code =
5666                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5667                         }
5668                         /* fall through */
5669                 case INTR_TYPE_SOFT_EXCEPTION:
5670                         kvm_clear_exception_queue(vcpu);
5671                         break;
5672                 default:
5673                         break;
5674                 }
5675         }
5676         tss_selector = exit_qualification;
5677
5678         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5679                        type != INTR_TYPE_EXT_INTR &&
5680                        type != INTR_TYPE_NMI_INTR))
5681                 skip_emulated_instruction(vcpu);
5682
5683         if (kvm_task_switch(vcpu, tss_selector,
5684                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5685                             has_error_code, error_code) == EMULATE_FAIL) {
5686                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5687                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5688                 vcpu->run->internal.ndata = 0;
5689                 return 0;
5690         }
5691
5692         /*
5693          * TODO: What about debug traps on tss switch?
5694          *       Are we supposed to inject them and update dr6?
5695          */
5696
5697         return 1;
5698 }
5699
5700 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5701 {
5702         unsigned long exit_qualification;
5703         gpa_t gpa;
5704         u32 error_code;
5705         int gla_validity;
5706
5707         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5708
5709         gla_validity = (exit_qualification >> 7) & 0x3;
5710         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5711                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5712                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5713                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5714                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5715                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5716                         (long unsigned int)exit_qualification);
5717                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5718                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5719                 return 0;
5720         }
5721
5722         /*
5723          * EPT violation happened while executing iret from NMI,
5724          * "blocked by NMI" bit has to be set before next VM entry.
5725          * There are errata that may cause this bit to not be set:
5726          * AAK134, BY25.
5727          */
5728         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5729                         cpu_has_virtual_nmis() &&
5730                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5731                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5732
5733         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5734         trace_kvm_page_fault(gpa, exit_qualification);
5735
5736         /* It is a write fault? */
5737         error_code = exit_qualification & PFERR_WRITE_MASK;
5738         /* It is a fetch fault? */
5739         error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5740         /* ept page table is present? */
5741         error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5742
5743         vcpu->arch.exit_qualification = exit_qualification;
5744
5745         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5746 }
5747
5748 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5749 {
5750         int ret;
5751         gpa_t gpa;
5752
5753         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5754         if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5755                 skip_emulated_instruction(vcpu);
5756                 return 1;
5757         }
5758
5759         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5760         if (likely(ret == RET_MMIO_PF_EMULATE))
5761                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5762                                               EMULATE_DONE;
5763
5764         if (unlikely(ret == RET_MMIO_PF_INVALID))
5765                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5766
5767         if (unlikely(ret == RET_MMIO_PF_RETRY))
5768                 return 1;
5769
5770         /* It is the real ept misconfig */
5771         WARN_ON(1);
5772
5773         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5774         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5775
5776         return 0;
5777 }
5778
5779 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5780 {
5781         u32 cpu_based_vm_exec_control;
5782
5783         /* clear pending NMI */
5784         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5785         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5786         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5787         ++vcpu->stat.nmi_window_exits;
5788         kvm_make_request(KVM_REQ_EVENT, vcpu);
5789
5790         return 1;
5791 }
5792
5793 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5794 {
5795         struct vcpu_vmx *vmx = to_vmx(vcpu);
5796         enum emulation_result err = EMULATE_DONE;
5797         int ret = 1;
5798         u32 cpu_exec_ctrl;
5799         bool intr_window_requested;
5800         unsigned count = 130;
5801
5802         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5803         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5804
5805         while (vmx->emulation_required && count-- != 0) {
5806                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5807                         return handle_interrupt_window(&vmx->vcpu);
5808
5809                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5810                         return 1;
5811
5812                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5813
5814                 if (err == EMULATE_USER_EXIT) {
5815                         ++vcpu->stat.mmio_exits;
5816                         ret = 0;
5817                         goto out;
5818                 }
5819
5820                 if (err != EMULATE_DONE) {
5821                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5822                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5823                         vcpu->run->internal.ndata = 0;
5824                         return 0;
5825                 }
5826
5827                 if (vcpu->arch.halt_request) {
5828                         vcpu->arch.halt_request = 0;
5829                         ret = kvm_vcpu_halt(vcpu);
5830                         goto out;
5831                 }
5832
5833                 if (signal_pending(current))
5834                         goto out;
5835                 if (need_resched())
5836                         schedule();
5837         }
5838
5839 out:
5840         return ret;
5841 }
5842
5843 static int __grow_ple_window(int val)
5844 {
5845         if (ple_window_grow < 1)
5846                 return ple_window;
5847
5848         val = min(val, ple_window_actual_max);
5849
5850         if (ple_window_grow < ple_window)
5851                 val *= ple_window_grow;
5852         else
5853                 val += ple_window_grow;
5854
5855         return val;
5856 }
5857
5858 static int __shrink_ple_window(int val, int modifier, int minimum)
5859 {
5860         if (modifier < 1)
5861                 return ple_window;
5862
5863         if (modifier < ple_window)
5864                 val /= modifier;
5865         else
5866                 val -= modifier;
5867
5868         return max(val, minimum);
5869 }
5870
5871 static void grow_ple_window(struct kvm_vcpu *vcpu)
5872 {
5873         struct vcpu_vmx *vmx = to_vmx(vcpu);
5874         int old = vmx->ple_window;
5875
5876         vmx->ple_window = __grow_ple_window(old);
5877
5878         if (vmx->ple_window != old)
5879                 vmx->ple_window_dirty = true;
5880
5881         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5882 }
5883
5884 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5885 {
5886         struct vcpu_vmx *vmx = to_vmx(vcpu);
5887         int old = vmx->ple_window;
5888
5889         vmx->ple_window = __shrink_ple_window(old,
5890                                               ple_window_shrink, ple_window);
5891
5892         if (vmx->ple_window != old)
5893                 vmx->ple_window_dirty = true;
5894
5895         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5896 }
5897
5898 /*
5899  * ple_window_actual_max is computed to be one grow_ple_window() below
5900  * ple_window_max. (See __grow_ple_window for the reason.)
5901  * This prevents overflows, because ple_window_max is int.
5902  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5903  * this process.
5904  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5905  */
5906 static void update_ple_window_actual_max(void)
5907 {
5908         ple_window_actual_max =
5909                         __shrink_ple_window(max(ple_window_max, ple_window),
5910                                             ple_window_grow, INT_MIN);
5911 }
5912
5913 static __init int hardware_setup(void)
5914 {
5915         int r = -ENOMEM, i, msr;
5916
5917         rdmsrl_safe(MSR_EFER, &host_efer);
5918
5919         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
5920                 kvm_define_shared_msr(i, vmx_msr_index[i]);
5921
5922         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5923         if (!vmx_io_bitmap_a)
5924                 return r;
5925
5926         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5927         if (!vmx_io_bitmap_b)
5928                 goto out;
5929
5930         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
5931         if (!vmx_msr_bitmap_legacy)
5932                 goto out1;
5933
5934         vmx_msr_bitmap_legacy_x2apic =
5935                                 (unsigned long *)__get_free_page(GFP_KERNEL);
5936         if (!vmx_msr_bitmap_legacy_x2apic)
5937                 goto out2;
5938
5939         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
5940         if (!vmx_msr_bitmap_longmode)
5941                 goto out3;
5942
5943         vmx_msr_bitmap_longmode_x2apic =
5944                                 (unsigned long *)__get_free_page(GFP_KERNEL);
5945         if (!vmx_msr_bitmap_longmode_x2apic)
5946                 goto out4;
5947
5948         if (nested) {
5949                 vmx_msr_bitmap_nested =
5950                         (unsigned long *)__get_free_page(GFP_KERNEL);
5951                 if (!vmx_msr_bitmap_nested)
5952                         goto out5;
5953         }
5954
5955         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5956         if (!vmx_vmread_bitmap)
5957                 goto out6;
5958
5959         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5960         if (!vmx_vmwrite_bitmap)
5961                 goto out7;
5962
5963         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
5964         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
5965
5966         /*
5967          * Allow direct access to the PC debug port (it is often used for I/O
5968          * delays, but the vmexits simply slow things down).
5969          */
5970         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
5971         clear_bit(0x80, vmx_io_bitmap_a);
5972
5973         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
5974
5975         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
5976         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
5977         if (nested)
5978                 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
5979
5980         if (setup_vmcs_config(&vmcs_config) < 0) {
5981                 r = -EIO;
5982                 goto out8;
5983         }
5984
5985         if (boot_cpu_has(X86_FEATURE_NX))
5986                 kvm_enable_efer_bits(EFER_NX);
5987
5988         if (!cpu_has_vmx_vpid())
5989                 enable_vpid = 0;
5990         if (!cpu_has_vmx_shadow_vmcs())
5991                 enable_shadow_vmcs = 0;
5992         if (enable_shadow_vmcs)
5993                 init_vmcs_shadow_fields();
5994
5995         if (!cpu_has_vmx_ept() ||
5996             !cpu_has_vmx_ept_4levels()) {
5997                 enable_ept = 0;
5998                 enable_unrestricted_guest = 0;
5999                 enable_ept_ad_bits = 0;
6000         }
6001
6002         if (!cpu_has_vmx_ept_ad_bits())
6003                 enable_ept_ad_bits = 0;
6004
6005         if (!cpu_has_vmx_unrestricted_guest())
6006                 enable_unrestricted_guest = 0;
6007
6008         if (!cpu_has_vmx_flexpriority())
6009                 flexpriority_enabled = 0;
6010
6011         /*
6012          * set_apic_access_page_addr() is used to reload apic access
6013          * page upon invalidation.  No need to do anything if not
6014          * using the APIC_ACCESS_ADDR VMCS field.
6015          */
6016         if (!flexpriority_enabled)
6017                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6018
6019         if (!cpu_has_vmx_tpr_shadow())
6020                 kvm_x86_ops->update_cr8_intercept = NULL;
6021
6022         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6023                 kvm_disable_largepages();
6024
6025         if (!cpu_has_vmx_ple())
6026                 ple_gap = 0;
6027
6028         if (!cpu_has_vmx_apicv())
6029                 enable_apicv = 0;
6030
6031         if (enable_apicv)
6032                 kvm_x86_ops->update_cr8_intercept = NULL;
6033         else {
6034                 kvm_x86_ops->hwapic_irr_update = NULL;
6035                 kvm_x86_ops->hwapic_isr_update = NULL;
6036                 kvm_x86_ops->deliver_posted_interrupt = NULL;
6037                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6038         }
6039
6040         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6041         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6042         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6043         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6044         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6045         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6046         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6047
6048         memcpy(vmx_msr_bitmap_legacy_x2apic,
6049                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6050         memcpy(vmx_msr_bitmap_longmode_x2apic,
6051                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6052
6053         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6054
6055         if (enable_apicv) {
6056                 for (msr = 0x800; msr <= 0x8ff; msr++)
6057                         vmx_disable_intercept_msr_read_x2apic(msr);
6058
6059                 /* According SDM, in x2apic mode, the whole id reg is used.
6060                  * But in KVM, it only use the highest eight bits. Need to
6061                  * intercept it */
6062                 vmx_enable_intercept_msr_read_x2apic(0x802);
6063                 /* TMCCT */
6064                 vmx_enable_intercept_msr_read_x2apic(0x839);
6065                 /* TPR */
6066                 vmx_disable_intercept_msr_write_x2apic(0x808);
6067                 /* EOI */
6068                 vmx_disable_intercept_msr_write_x2apic(0x80b);
6069                 /* SELF-IPI */
6070                 vmx_disable_intercept_msr_write_x2apic(0x83f);
6071         }
6072
6073         if (enable_ept) {
6074                 kvm_mmu_set_mask_ptes(0ull,
6075                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6076                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6077                         0ull, VMX_EPT_EXECUTABLE_MASK);
6078                 ept_set_mmio_spte_mask();
6079                 kvm_enable_tdp();
6080         } else
6081                 kvm_disable_tdp();
6082
6083         update_ple_window_actual_max();
6084
6085         /*
6086          * Only enable PML when hardware supports PML feature, and both EPT
6087          * and EPT A/D bit features are enabled -- PML depends on them to work.
6088          */
6089         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6090                 enable_pml = 0;
6091
6092         if (!enable_pml) {
6093                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6094                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6095                 kvm_x86_ops->flush_log_dirty = NULL;
6096                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6097         }
6098
6099         return alloc_kvm_area();
6100
6101 out8:
6102         free_page((unsigned long)vmx_vmwrite_bitmap);
6103 out7:
6104         free_page((unsigned long)vmx_vmread_bitmap);
6105 out6:
6106         if (nested)
6107                 free_page((unsigned long)vmx_msr_bitmap_nested);
6108 out5:
6109         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6110 out4:
6111         free_page((unsigned long)vmx_msr_bitmap_longmode);
6112 out3:
6113         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6114 out2:
6115         free_page((unsigned long)vmx_msr_bitmap_legacy);
6116 out1:
6117         free_page((unsigned long)vmx_io_bitmap_b);
6118 out:
6119         free_page((unsigned long)vmx_io_bitmap_a);
6120
6121     return r;
6122 }
6123
6124 static __exit void hardware_unsetup(void)
6125 {
6126         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6127         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6128         free_page((unsigned long)vmx_msr_bitmap_legacy);
6129         free_page((unsigned long)vmx_msr_bitmap_longmode);
6130         free_page((unsigned long)vmx_io_bitmap_b);
6131         free_page((unsigned long)vmx_io_bitmap_a);
6132         free_page((unsigned long)vmx_vmwrite_bitmap);
6133         free_page((unsigned long)vmx_vmread_bitmap);
6134         if (nested)
6135                 free_page((unsigned long)vmx_msr_bitmap_nested);
6136
6137         free_kvm_area();
6138 }
6139
6140 /*
6141  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6142  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6143  */
6144 static int handle_pause(struct kvm_vcpu *vcpu)
6145 {
6146         if (ple_gap)
6147                 grow_ple_window(vcpu);
6148
6149         skip_emulated_instruction(vcpu);
6150         kvm_vcpu_on_spin(vcpu);
6151
6152         return 1;
6153 }
6154
6155 static int handle_nop(struct kvm_vcpu *vcpu)
6156 {
6157         skip_emulated_instruction(vcpu);
6158         return 1;
6159 }
6160
6161 static int handle_mwait(struct kvm_vcpu *vcpu)
6162 {
6163         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6164         return handle_nop(vcpu);
6165 }
6166
6167 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6168 {
6169         return 1;
6170 }
6171
6172 static int handle_monitor(struct kvm_vcpu *vcpu)
6173 {
6174         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6175         return handle_nop(vcpu);
6176 }
6177
6178 /*
6179  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6180  * We could reuse a single VMCS for all the L2 guests, but we also want the
6181  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6182  * allows keeping them loaded on the processor, and in the future will allow
6183  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6184  * every entry if they never change.
6185  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6186  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6187  *
6188  * The following functions allocate and free a vmcs02 in this pool.
6189  */
6190
6191 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6192 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6193 {
6194         struct vmcs02_list *item;
6195         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6196                 if (item->vmptr == vmx->nested.current_vmptr) {
6197                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6198                         return &item->vmcs02;
6199                 }
6200
6201         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6202                 /* Recycle the least recently used VMCS. */
6203                 item = list_entry(vmx->nested.vmcs02_pool.prev,
6204                         struct vmcs02_list, list);
6205                 item->vmptr = vmx->nested.current_vmptr;
6206                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6207                 return &item->vmcs02;
6208         }
6209
6210         /* Create a new VMCS */
6211         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6212         if (!item)
6213                 return NULL;
6214         item->vmcs02.vmcs = alloc_vmcs();
6215         if (!item->vmcs02.vmcs) {
6216                 kfree(item);
6217                 return NULL;
6218         }
6219         loaded_vmcs_init(&item->vmcs02);
6220         item->vmptr = vmx->nested.current_vmptr;
6221         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6222         vmx->nested.vmcs02_num++;
6223         return &item->vmcs02;
6224 }
6225
6226 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6227 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6228 {
6229         struct vmcs02_list *item;
6230         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6231                 if (item->vmptr == vmptr) {
6232                         free_loaded_vmcs(&item->vmcs02);
6233                         list_del(&item->list);
6234                         kfree(item);
6235                         vmx->nested.vmcs02_num--;
6236                         return;
6237                 }
6238 }
6239
6240 /*
6241  * Free all VMCSs saved for this vcpu, except the one pointed by
6242  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6243  * must be &vmx->vmcs01.
6244  */
6245 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6246 {
6247         struct vmcs02_list *item, *n;
6248
6249         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6250         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6251                 /*
6252                  * Something will leak if the above WARN triggers.  Better than
6253                  * a use-after-free.
6254                  */
6255                 if (vmx->loaded_vmcs == &item->vmcs02)
6256                         continue;
6257
6258                 free_loaded_vmcs(&item->vmcs02);
6259                 list_del(&item->list);
6260                 kfree(item);
6261                 vmx->nested.vmcs02_num--;
6262         }
6263 }
6264
6265 /*
6266  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6267  * set the success or error code of an emulated VMX instruction, as specified
6268  * by Vol 2B, VMX Instruction Reference, "Conventions".
6269  */
6270 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6271 {
6272         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6273                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6274                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6275 }
6276
6277 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6278 {
6279         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6280                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6281                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6282                         | X86_EFLAGS_CF);
6283 }
6284
6285 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6286                                         u32 vm_instruction_error)
6287 {
6288         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6289                 /*
6290                  * failValid writes the error number to the current VMCS, which
6291                  * can't be done there isn't a current VMCS.
6292                  */
6293                 nested_vmx_failInvalid(vcpu);
6294                 return;
6295         }
6296         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6297                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6298                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6299                         | X86_EFLAGS_ZF);
6300         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6301         /*
6302          * We don't need to force a shadow sync because
6303          * VM_INSTRUCTION_ERROR is not shadowed
6304          */
6305 }
6306
6307 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6308 {
6309         /* TODO: not to reset guest simply here. */
6310         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6311         pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6312 }
6313
6314 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6315 {
6316         struct vcpu_vmx *vmx =
6317                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6318
6319         vmx->nested.preemption_timer_expired = true;
6320         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6321         kvm_vcpu_kick(&vmx->vcpu);
6322
6323         return HRTIMER_NORESTART;
6324 }
6325
6326 /*
6327  * Decode the memory-address operand of a vmx instruction, as recorded on an
6328  * exit caused by such an instruction (run by a guest hypervisor).
6329  * On success, returns 0. When the operand is invalid, returns 1 and throws
6330  * #UD or #GP.
6331  */
6332 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6333                                  unsigned long exit_qualification,
6334                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
6335 {
6336         gva_t off;
6337         bool exn;
6338         struct kvm_segment s;
6339
6340         /*
6341          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6342          * Execution", on an exit, vmx_instruction_info holds most of the
6343          * addressing components of the operand. Only the displacement part
6344          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6345          * For how an actual address is calculated from all these components,
6346          * refer to Vol. 1, "Operand Addressing".
6347          */
6348         int  scaling = vmx_instruction_info & 3;
6349         int  addr_size = (vmx_instruction_info >> 7) & 7;
6350         bool is_reg = vmx_instruction_info & (1u << 10);
6351         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6352         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6353         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6354         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6355         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6356
6357         if (is_reg) {
6358                 kvm_queue_exception(vcpu, UD_VECTOR);
6359                 return 1;
6360         }
6361
6362         /* Addr = segment_base + offset */
6363         /* offset = base + [index * scale] + displacement */
6364         off = exit_qualification; /* holds the displacement */
6365         if (base_is_valid)
6366                 off += kvm_register_read(vcpu, base_reg);
6367         if (index_is_valid)
6368                 off += kvm_register_read(vcpu, index_reg)<<scaling;
6369         vmx_get_segment(vcpu, &s, seg_reg);
6370         *ret = s.base + off;
6371
6372         if (addr_size == 1) /* 32 bit */
6373                 *ret &= 0xffffffff;
6374
6375         /* Checks for #GP/#SS exceptions. */
6376         exn = false;
6377         if (is_protmode(vcpu)) {
6378                 /* Protected mode: apply checks for segment validity in the
6379                  * following order:
6380                  * - segment type check (#GP(0) may be thrown)
6381                  * - usability check (#GP(0)/#SS(0))
6382                  * - limit check (#GP(0)/#SS(0))
6383                  */
6384                 if (wr)
6385                         /* #GP(0) if the destination operand is located in a
6386                          * read-only data segment or any code segment.
6387                          */
6388                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
6389                 else
6390                         /* #GP(0) if the source operand is located in an
6391                          * execute-only code segment
6392                          */
6393                         exn = ((s.type & 0xa) == 8);
6394         }
6395         if (exn) {
6396                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6397                 return 1;
6398         }
6399         if (is_long_mode(vcpu)) {
6400                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6401                  * non-canonical form. This is an only check for long mode.
6402                  */
6403                 exn = is_noncanonical_address(*ret);
6404         } else if (is_protmode(vcpu)) {
6405                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6406                  */
6407                 exn = (s.unusable != 0);
6408                 /* Protected mode: #GP(0)/#SS(0) if the memory
6409                  * operand is outside the segment limit.
6410                  */
6411                 exn = exn || (off + sizeof(u64) > s.limit);
6412         }
6413         if (exn) {
6414                 kvm_queue_exception_e(vcpu,
6415                                       seg_reg == VCPU_SREG_SS ?
6416                                                 SS_VECTOR : GP_VECTOR,
6417                                       0);
6418                 return 1;
6419         }
6420
6421         return 0;
6422 }
6423
6424 /*
6425  * This function performs the various checks including
6426  * - if it's 4KB aligned
6427  * - No bits beyond the physical address width are set
6428  * - Returns 0 on success or else 1
6429  * (Intel SDM Section 30.3)
6430  */
6431 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6432                                   gpa_t *vmpointer)
6433 {
6434         gva_t gva;
6435         gpa_t vmptr;
6436         struct x86_exception e;
6437         struct page *page;
6438         struct vcpu_vmx *vmx = to_vmx(vcpu);
6439         int maxphyaddr = cpuid_maxphyaddr(vcpu);
6440
6441         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6442                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6443                 return 1;
6444
6445         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6446                                 sizeof(vmptr), &e)) {
6447                 kvm_inject_page_fault(vcpu, &e);
6448                 return 1;
6449         }
6450
6451         switch (exit_reason) {
6452         case EXIT_REASON_VMON:
6453                 /*
6454                  * SDM 3: 24.11.5
6455                  * The first 4 bytes of VMXON region contain the supported
6456                  * VMCS revision identifier
6457                  *
6458                  * Note - IA32_VMX_BASIC[48] will never be 1
6459                  * for the nested case;
6460                  * which replaces physical address width with 32
6461                  *
6462                  */
6463                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6464                         nested_vmx_failInvalid(vcpu);
6465                         skip_emulated_instruction(vcpu);
6466                         return 1;
6467                 }
6468
6469                 page = nested_get_page(vcpu, vmptr);
6470                 if (page == NULL ||
6471                     *(u32 *)kmap(page) != VMCS12_REVISION) {
6472                         nested_vmx_failInvalid(vcpu);
6473                         kunmap(page);
6474                         skip_emulated_instruction(vcpu);
6475                         return 1;
6476                 }
6477                 kunmap(page);
6478                 vmx->nested.vmxon_ptr = vmptr;
6479                 break;
6480         case EXIT_REASON_VMCLEAR:
6481                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6482                         nested_vmx_failValid(vcpu,
6483                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
6484                         skip_emulated_instruction(vcpu);
6485                         return 1;
6486                 }
6487
6488                 if (vmptr == vmx->nested.vmxon_ptr) {
6489                         nested_vmx_failValid(vcpu,
6490                                              VMXERR_VMCLEAR_VMXON_POINTER);
6491                         skip_emulated_instruction(vcpu);
6492                         return 1;
6493                 }
6494                 break;
6495         case EXIT_REASON_VMPTRLD:
6496                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6497                         nested_vmx_failValid(vcpu,
6498                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
6499                         skip_emulated_instruction(vcpu);
6500                         return 1;
6501                 }
6502
6503                 if (vmptr == vmx->nested.vmxon_ptr) {
6504                         nested_vmx_failValid(vcpu,
6505                                              VMXERR_VMCLEAR_VMXON_POINTER);
6506                         skip_emulated_instruction(vcpu);
6507                         return 1;
6508                 }
6509                 break;
6510         default:
6511                 return 1; /* shouldn't happen */
6512         }
6513
6514         if (vmpointer)
6515                 *vmpointer = vmptr;
6516         return 0;
6517 }
6518
6519 /*
6520  * Emulate the VMXON instruction.
6521  * Currently, we just remember that VMX is active, and do not save or even
6522  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6523  * do not currently need to store anything in that guest-allocated memory
6524  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6525  * argument is different from the VMXON pointer (which the spec says they do).
6526  */
6527 static int handle_vmon(struct kvm_vcpu *vcpu)
6528 {
6529         struct kvm_segment cs;
6530         struct vcpu_vmx *vmx = to_vmx(vcpu);
6531         struct vmcs *shadow_vmcs;
6532         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6533                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6534
6535         /* The Intel VMX Instruction Reference lists a bunch of bits that
6536          * are prerequisite to running VMXON, most notably cr4.VMXE must be
6537          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6538          * Otherwise, we should fail with #UD. We test these now:
6539          */
6540         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6541             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6542             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6543                 kvm_queue_exception(vcpu, UD_VECTOR);
6544                 return 1;
6545         }
6546
6547         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6548         if (is_long_mode(vcpu) && !cs.l) {
6549                 kvm_queue_exception(vcpu, UD_VECTOR);
6550                 return 1;
6551         }
6552
6553         if (vmx_get_cpl(vcpu)) {
6554                 kvm_inject_gp(vcpu, 0);
6555                 return 1;
6556         }
6557
6558         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6559                 return 1;
6560
6561         if (vmx->nested.vmxon) {
6562                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6563                 skip_emulated_instruction(vcpu);
6564                 return 1;
6565         }
6566
6567         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6568                         != VMXON_NEEDED_FEATURES) {
6569                 kvm_inject_gp(vcpu, 0);
6570                 return 1;
6571         }
6572
6573         if (enable_shadow_vmcs) {
6574                 shadow_vmcs = alloc_vmcs();
6575                 if (!shadow_vmcs)
6576                         return -ENOMEM;
6577                 /* mark vmcs as shadow */
6578                 shadow_vmcs->revision_id |= (1u << 31);
6579                 /* init shadow vmcs */
6580                 vmcs_clear(shadow_vmcs);
6581                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6582         }
6583
6584         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6585         vmx->nested.vmcs02_num = 0;
6586
6587         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6588                      HRTIMER_MODE_REL);
6589         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6590
6591         vmx->nested.vmxon = true;
6592
6593         skip_emulated_instruction(vcpu);
6594         nested_vmx_succeed(vcpu);
6595         return 1;
6596 }
6597
6598 /*
6599  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6600  * for running VMX instructions (except VMXON, whose prerequisites are
6601  * slightly different). It also specifies what exception to inject otherwise.
6602  */
6603 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6604 {
6605         struct kvm_segment cs;
6606         struct vcpu_vmx *vmx = to_vmx(vcpu);
6607
6608         if (!vmx->nested.vmxon) {
6609                 kvm_queue_exception(vcpu, UD_VECTOR);
6610                 return 0;
6611         }
6612
6613         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6614         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6615             (is_long_mode(vcpu) && !cs.l)) {
6616                 kvm_queue_exception(vcpu, UD_VECTOR);
6617                 return 0;
6618         }
6619
6620         if (vmx_get_cpl(vcpu)) {
6621                 kvm_inject_gp(vcpu, 0);
6622                 return 0;
6623         }
6624
6625         return 1;
6626 }
6627
6628 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6629 {
6630         u32 exec_control;
6631         if (vmx->nested.current_vmptr == -1ull)
6632                 return;
6633
6634         /* current_vmptr and current_vmcs12 are always set/reset together */
6635         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6636                 return;
6637
6638         if (enable_shadow_vmcs) {
6639                 /* copy to memory all shadowed fields in case
6640                    they were modified */
6641                 copy_shadow_to_vmcs12(vmx);
6642                 vmx->nested.sync_shadow_vmcs = false;
6643                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6644                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6645                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6646                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6647         }
6648         vmx->nested.posted_intr_nv = -1;
6649         kunmap(vmx->nested.current_vmcs12_page);
6650         nested_release_page(vmx->nested.current_vmcs12_page);
6651         vmx->nested.current_vmptr = -1ull;
6652         vmx->nested.current_vmcs12 = NULL;
6653 }
6654
6655 /*
6656  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6657  * just stops using VMX.
6658  */
6659 static void free_nested(struct vcpu_vmx *vmx)
6660 {
6661         if (!vmx->nested.vmxon)
6662                 return;
6663
6664         vmx->nested.vmxon = false;
6665         nested_release_vmcs12(vmx);
6666         if (enable_shadow_vmcs)
6667                 free_vmcs(vmx->nested.current_shadow_vmcs);
6668         /* Unpin physical memory we referred to in current vmcs02 */
6669         if (vmx->nested.apic_access_page) {
6670                 nested_release_page(vmx->nested.apic_access_page);
6671                 vmx->nested.apic_access_page = NULL;
6672         }
6673         if (vmx->nested.virtual_apic_page) {
6674                 nested_release_page(vmx->nested.virtual_apic_page);
6675                 vmx->nested.virtual_apic_page = NULL;
6676         }
6677         if (vmx->nested.pi_desc_page) {
6678                 kunmap(vmx->nested.pi_desc_page);
6679                 nested_release_page(vmx->nested.pi_desc_page);
6680                 vmx->nested.pi_desc_page = NULL;
6681                 vmx->nested.pi_desc = NULL;
6682         }
6683
6684         nested_free_all_saved_vmcss(vmx);
6685 }
6686
6687 /* Emulate the VMXOFF instruction */
6688 static int handle_vmoff(struct kvm_vcpu *vcpu)
6689 {
6690         if (!nested_vmx_check_permission(vcpu))
6691                 return 1;
6692         free_nested(to_vmx(vcpu));
6693         skip_emulated_instruction(vcpu);
6694         nested_vmx_succeed(vcpu);
6695         return 1;
6696 }
6697
6698 /* Emulate the VMCLEAR instruction */
6699 static int handle_vmclear(struct kvm_vcpu *vcpu)
6700 {
6701         struct vcpu_vmx *vmx = to_vmx(vcpu);
6702         gpa_t vmptr;
6703         struct vmcs12 *vmcs12;
6704         struct page *page;
6705
6706         if (!nested_vmx_check_permission(vcpu))
6707                 return 1;
6708
6709         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6710                 return 1;
6711
6712         if (vmptr == vmx->nested.current_vmptr)
6713                 nested_release_vmcs12(vmx);
6714
6715         page = nested_get_page(vcpu, vmptr);
6716         if (page == NULL) {
6717                 /*
6718                  * For accurate processor emulation, VMCLEAR beyond available
6719                  * physical memory should do nothing at all. However, it is
6720                  * possible that a nested vmx bug, not a guest hypervisor bug,
6721                  * resulted in this case, so let's shut down before doing any
6722                  * more damage:
6723                  */
6724                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6725                 return 1;
6726         }
6727         vmcs12 = kmap(page);
6728         vmcs12->launch_state = 0;
6729         kunmap(page);
6730         nested_release_page(page);
6731
6732         nested_free_vmcs02(vmx, vmptr);
6733
6734         skip_emulated_instruction(vcpu);
6735         nested_vmx_succeed(vcpu);
6736         return 1;
6737 }
6738
6739 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6740
6741 /* Emulate the VMLAUNCH instruction */
6742 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6743 {
6744         return nested_vmx_run(vcpu, true);
6745 }
6746
6747 /* Emulate the VMRESUME instruction */
6748 static int handle_vmresume(struct kvm_vcpu *vcpu)
6749 {
6750
6751         return nested_vmx_run(vcpu, false);
6752 }
6753
6754 enum vmcs_field_type {
6755         VMCS_FIELD_TYPE_U16 = 0,
6756         VMCS_FIELD_TYPE_U64 = 1,
6757         VMCS_FIELD_TYPE_U32 = 2,
6758         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6759 };
6760
6761 static inline int vmcs_field_type(unsigned long field)
6762 {
6763         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6764                 return VMCS_FIELD_TYPE_U32;
6765         return (field >> 13) & 0x3 ;
6766 }
6767
6768 static inline int vmcs_field_readonly(unsigned long field)
6769 {
6770         return (((field >> 10) & 0x3) == 1);
6771 }
6772
6773 /*
6774  * Read a vmcs12 field. Since these can have varying lengths and we return
6775  * one type, we chose the biggest type (u64) and zero-extend the return value
6776  * to that size. Note that the caller, handle_vmread, might need to use only
6777  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6778  * 64-bit fields are to be returned).
6779  */
6780 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6781                                   unsigned long field, u64 *ret)
6782 {
6783         short offset = vmcs_field_to_offset(field);
6784         char *p;
6785
6786         if (offset < 0)
6787                 return offset;
6788
6789         p = ((char *)(get_vmcs12(vcpu))) + offset;
6790
6791         switch (vmcs_field_type(field)) {
6792         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6793                 *ret = *((natural_width *)p);
6794                 return 0;
6795         case VMCS_FIELD_TYPE_U16:
6796                 *ret = *((u16 *)p);
6797                 return 0;
6798         case VMCS_FIELD_TYPE_U32:
6799                 *ret = *((u32 *)p);
6800                 return 0;
6801         case VMCS_FIELD_TYPE_U64:
6802                 *ret = *((u64 *)p);
6803                 return 0;
6804         default:
6805                 WARN_ON(1);
6806                 return -ENOENT;
6807         }
6808 }
6809
6810
6811 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6812                                    unsigned long field, u64 field_value){
6813         short offset = vmcs_field_to_offset(field);
6814         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6815         if (offset < 0)
6816                 return offset;
6817
6818         switch (vmcs_field_type(field)) {
6819         case VMCS_FIELD_TYPE_U16:
6820                 *(u16 *)p = field_value;
6821                 return 0;
6822         case VMCS_FIELD_TYPE_U32:
6823                 *(u32 *)p = field_value;
6824                 return 0;
6825         case VMCS_FIELD_TYPE_U64:
6826                 *(u64 *)p = field_value;
6827                 return 0;
6828         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6829                 *(natural_width *)p = field_value;
6830                 return 0;
6831         default:
6832                 WARN_ON(1);
6833                 return -ENOENT;
6834         }
6835
6836 }
6837
6838 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6839 {
6840         int i;
6841         unsigned long field;
6842         u64 field_value;
6843         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6844         const unsigned long *fields = shadow_read_write_fields;
6845         const int num_fields = max_shadow_read_write_fields;
6846
6847         preempt_disable();
6848
6849         vmcs_load(shadow_vmcs);
6850
6851         for (i = 0; i < num_fields; i++) {
6852                 field = fields[i];
6853                 switch (vmcs_field_type(field)) {
6854                 case VMCS_FIELD_TYPE_U16:
6855                         field_value = vmcs_read16(field);
6856                         break;
6857                 case VMCS_FIELD_TYPE_U32:
6858                         field_value = vmcs_read32(field);
6859                         break;
6860                 case VMCS_FIELD_TYPE_U64:
6861                         field_value = vmcs_read64(field);
6862                         break;
6863                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6864                         field_value = vmcs_readl(field);
6865                         break;
6866                 default:
6867                         WARN_ON(1);
6868                         continue;
6869                 }
6870                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6871         }
6872
6873         vmcs_clear(shadow_vmcs);
6874         vmcs_load(vmx->loaded_vmcs->vmcs);
6875
6876         preempt_enable();
6877 }
6878
6879 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6880 {
6881         const unsigned long *fields[] = {
6882                 shadow_read_write_fields,
6883                 shadow_read_only_fields
6884         };
6885         const int max_fields[] = {
6886                 max_shadow_read_write_fields,
6887                 max_shadow_read_only_fields
6888         };
6889         int i, q;
6890         unsigned long field;
6891         u64 field_value = 0;
6892         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6893
6894         vmcs_load(shadow_vmcs);
6895
6896         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6897                 for (i = 0; i < max_fields[q]; i++) {
6898                         field = fields[q][i];
6899                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6900
6901                         switch (vmcs_field_type(field)) {
6902                         case VMCS_FIELD_TYPE_U16:
6903                                 vmcs_write16(field, (u16)field_value);
6904                                 break;
6905                         case VMCS_FIELD_TYPE_U32:
6906                                 vmcs_write32(field, (u32)field_value);
6907                                 break;
6908                         case VMCS_FIELD_TYPE_U64:
6909                                 vmcs_write64(field, (u64)field_value);
6910                                 break;
6911                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6912                                 vmcs_writel(field, (long)field_value);
6913                                 break;
6914                         default:
6915                                 WARN_ON(1);
6916                                 break;
6917                         }
6918                 }
6919         }
6920
6921         vmcs_clear(shadow_vmcs);
6922         vmcs_load(vmx->loaded_vmcs->vmcs);
6923 }
6924
6925 /*
6926  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6927  * used before) all generate the same failure when it is missing.
6928  */
6929 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6930 {
6931         struct vcpu_vmx *vmx = to_vmx(vcpu);
6932         if (vmx->nested.current_vmptr == -1ull) {
6933                 nested_vmx_failInvalid(vcpu);
6934                 skip_emulated_instruction(vcpu);
6935                 return 0;
6936         }
6937         return 1;
6938 }
6939
6940 static int handle_vmread(struct kvm_vcpu *vcpu)
6941 {
6942         unsigned long field;
6943         u64 field_value;
6944         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6945         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6946         gva_t gva = 0;
6947
6948         if (!nested_vmx_check_permission(vcpu) ||
6949             !nested_vmx_check_vmcs12(vcpu))
6950                 return 1;
6951
6952         /* Decode instruction info and find the field to read */
6953         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6954         /* Read the field, zero-extended to a u64 field_value */
6955         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
6956                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6957                 skip_emulated_instruction(vcpu);
6958                 return 1;
6959         }
6960         /*
6961          * Now copy part of this value to register or memory, as requested.
6962          * Note that the number of bits actually copied is 32 or 64 depending
6963          * on the guest's mode (32 or 64 bit), not on the given field's length.
6964          */
6965         if (vmx_instruction_info & (1u << 10)) {
6966                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6967                         field_value);
6968         } else {
6969                 if (get_vmx_mem_address(vcpu, exit_qualification,
6970                                 vmx_instruction_info, true, &gva))
6971                         return 1;
6972                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6973                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6974                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6975         }
6976
6977         nested_vmx_succeed(vcpu);
6978         skip_emulated_instruction(vcpu);
6979         return 1;
6980 }
6981
6982
6983 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6984 {
6985         unsigned long field;
6986         gva_t gva;
6987         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6988         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6989         /* The value to write might be 32 or 64 bits, depending on L1's long
6990          * mode, and eventually we need to write that into a field of several
6991          * possible lengths. The code below first zero-extends the value to 64
6992          * bit (field_value), and then copies only the approriate number of
6993          * bits into the vmcs12 field.
6994          */
6995         u64 field_value = 0;
6996         struct x86_exception e;
6997
6998         if (!nested_vmx_check_permission(vcpu) ||
6999             !nested_vmx_check_vmcs12(vcpu))
7000                 return 1;
7001
7002         if (vmx_instruction_info & (1u << 10))
7003                 field_value = kvm_register_readl(vcpu,
7004                         (((vmx_instruction_info) >> 3) & 0xf));
7005         else {
7006                 if (get_vmx_mem_address(vcpu, exit_qualification,
7007                                 vmx_instruction_info, false, &gva))
7008                         return 1;
7009                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7010                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7011                         kvm_inject_page_fault(vcpu, &e);
7012                         return 1;
7013                 }
7014         }
7015
7016
7017         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7018         if (vmcs_field_readonly(field)) {
7019                 nested_vmx_failValid(vcpu,
7020                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7021                 skip_emulated_instruction(vcpu);
7022                 return 1;
7023         }
7024
7025         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7026                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7027                 skip_emulated_instruction(vcpu);
7028                 return 1;
7029         }
7030
7031         nested_vmx_succeed(vcpu);
7032         skip_emulated_instruction(vcpu);
7033         return 1;
7034 }
7035
7036 /* Emulate the VMPTRLD instruction */
7037 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7038 {
7039         struct vcpu_vmx *vmx = to_vmx(vcpu);
7040         gpa_t vmptr;
7041         u32 exec_control;
7042
7043         if (!nested_vmx_check_permission(vcpu))
7044                 return 1;
7045
7046         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7047                 return 1;
7048
7049         if (vmx->nested.current_vmptr != vmptr) {
7050                 struct vmcs12 *new_vmcs12;
7051                 struct page *page;
7052                 page = nested_get_page(vcpu, vmptr);
7053                 if (page == NULL) {
7054                         nested_vmx_failInvalid(vcpu);
7055                         skip_emulated_instruction(vcpu);
7056                         return 1;
7057                 }
7058                 new_vmcs12 = kmap(page);
7059                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7060                         kunmap(page);
7061                         nested_release_page_clean(page);
7062                         nested_vmx_failValid(vcpu,
7063                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7064                         skip_emulated_instruction(vcpu);
7065                         return 1;
7066                 }
7067
7068                 nested_release_vmcs12(vmx);
7069                 vmx->nested.current_vmptr = vmptr;
7070                 vmx->nested.current_vmcs12 = new_vmcs12;
7071                 vmx->nested.current_vmcs12_page = page;
7072                 if (enable_shadow_vmcs) {
7073                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7074                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
7075                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7076                         vmcs_write64(VMCS_LINK_POINTER,
7077                                      __pa(vmx->nested.current_shadow_vmcs));
7078                         vmx->nested.sync_shadow_vmcs = true;
7079                 }
7080         }
7081
7082         nested_vmx_succeed(vcpu);
7083         skip_emulated_instruction(vcpu);
7084         return 1;
7085 }
7086
7087 /* Emulate the VMPTRST instruction */
7088 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7089 {
7090         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7091         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7092         gva_t vmcs_gva;
7093         struct x86_exception e;
7094
7095         if (!nested_vmx_check_permission(vcpu))
7096                 return 1;
7097
7098         if (get_vmx_mem_address(vcpu, exit_qualification,
7099                         vmx_instruction_info, true, &vmcs_gva))
7100                 return 1;
7101         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7102         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7103                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7104                                  sizeof(u64), &e)) {
7105                 kvm_inject_page_fault(vcpu, &e);
7106                 return 1;
7107         }
7108         nested_vmx_succeed(vcpu);
7109         skip_emulated_instruction(vcpu);
7110         return 1;
7111 }
7112
7113 /* Emulate the INVEPT instruction */
7114 static int handle_invept(struct kvm_vcpu *vcpu)
7115 {
7116         struct vcpu_vmx *vmx = to_vmx(vcpu);
7117         u32 vmx_instruction_info, types;
7118         unsigned long type;
7119         gva_t gva;
7120         struct x86_exception e;
7121         struct {
7122                 u64 eptp, gpa;
7123         } operand;
7124
7125         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7126               SECONDARY_EXEC_ENABLE_EPT) ||
7127             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7128                 kvm_queue_exception(vcpu, UD_VECTOR);
7129                 return 1;
7130         }
7131
7132         if (!nested_vmx_check_permission(vcpu))
7133                 return 1;
7134
7135         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7136                 kvm_queue_exception(vcpu, UD_VECTOR);
7137                 return 1;
7138         }
7139
7140         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7141         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7142
7143         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7144
7145         if (!(types & (1UL << type))) {
7146                 nested_vmx_failValid(vcpu,
7147                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7148                 return 1;
7149         }
7150
7151         /* According to the Intel VMX instruction reference, the memory
7152          * operand is read even if it isn't needed (e.g., for type==global)
7153          */
7154         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7155                         vmx_instruction_info, false, &gva))
7156                 return 1;
7157         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7158                                 sizeof(operand), &e)) {
7159                 kvm_inject_page_fault(vcpu, &e);
7160                 return 1;
7161         }
7162
7163         switch (type) {
7164         case VMX_EPT_EXTENT_GLOBAL:
7165                 kvm_mmu_sync_roots(vcpu);
7166                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7167                 nested_vmx_succeed(vcpu);
7168                 break;
7169         default:
7170                 /* Trap single context invalidation invept calls */
7171                 BUG_ON(1);
7172                 break;
7173         }
7174
7175         skip_emulated_instruction(vcpu);
7176         return 1;
7177 }
7178
7179 static int handle_invvpid(struct kvm_vcpu *vcpu)
7180 {
7181         kvm_queue_exception(vcpu, UD_VECTOR);
7182         return 1;
7183 }
7184
7185 static int handle_pml_full(struct kvm_vcpu *vcpu)
7186 {
7187         unsigned long exit_qualification;
7188
7189         trace_kvm_pml_full(vcpu->vcpu_id);
7190
7191         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7192
7193         /*
7194          * PML buffer FULL happened while executing iret from NMI,
7195          * "blocked by NMI" bit has to be set before next VM entry.
7196          */
7197         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7198                         cpu_has_virtual_nmis() &&
7199                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7200                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7201                                 GUEST_INTR_STATE_NMI);
7202
7203         /*
7204          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7205          * here.., and there's no userspace involvement needed for PML.
7206          */
7207         return 1;
7208 }
7209
7210 /*
7211  * The exit handlers return 1 if the exit was handled fully and guest execution
7212  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7213  * to be done to userspace and return 0.
7214  */
7215 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7216         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7217         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7218         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7219         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7220         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7221         [EXIT_REASON_CR_ACCESS]               = handle_cr,
7222         [EXIT_REASON_DR_ACCESS]               = handle_dr,
7223         [EXIT_REASON_CPUID]                   = handle_cpuid,
7224         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7225         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7226         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7227         [EXIT_REASON_HLT]                     = handle_halt,
7228         [EXIT_REASON_INVD]                    = handle_invd,
7229         [EXIT_REASON_INVLPG]                  = handle_invlpg,
7230         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7231         [EXIT_REASON_VMCALL]                  = handle_vmcall,
7232         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7233         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7234         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7235         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7236         [EXIT_REASON_VMREAD]                  = handle_vmread,
7237         [EXIT_REASON_VMRESUME]                = handle_vmresume,
7238         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7239         [EXIT_REASON_VMOFF]                   = handle_vmoff,
7240         [EXIT_REASON_VMON]                    = handle_vmon,
7241         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7242         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7243         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7244         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7245         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7246         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7247         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7248         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7249         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7250         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7251         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7252         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7253         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7254         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7255         [EXIT_REASON_INVEPT]                  = handle_invept,
7256         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7257         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7258         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7259         [EXIT_REASON_PML_FULL]                = handle_pml_full,
7260 };
7261
7262 static const int kvm_vmx_max_exit_handlers =
7263         ARRAY_SIZE(kvm_vmx_exit_handlers);
7264
7265 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7266                                        struct vmcs12 *vmcs12)
7267 {
7268         unsigned long exit_qualification;
7269         gpa_t bitmap, last_bitmap;
7270         unsigned int port;
7271         int size;
7272         u8 b;
7273
7274         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7275                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7276
7277         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7278
7279         port = exit_qualification >> 16;
7280         size = (exit_qualification & 7) + 1;
7281
7282         last_bitmap = (gpa_t)-1;
7283         b = -1;
7284
7285         while (size > 0) {
7286                 if (port < 0x8000)
7287                         bitmap = vmcs12->io_bitmap_a;
7288                 else if (port < 0x10000)
7289                         bitmap = vmcs12->io_bitmap_b;
7290                 else
7291                         return true;
7292                 bitmap += (port & 0x7fff) / 8;
7293
7294                 if (last_bitmap != bitmap)
7295                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7296                                 return true;
7297                 if (b & (1 << (port & 7)))
7298                         return true;
7299
7300                 port++;
7301                 size--;
7302                 last_bitmap = bitmap;
7303         }
7304
7305         return false;
7306 }
7307
7308 /*
7309  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7310  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7311  * disinterest in the current event (read or write a specific MSR) by using an
7312  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7313  */
7314 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7315         struct vmcs12 *vmcs12, u32 exit_reason)
7316 {
7317         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7318         gpa_t bitmap;
7319
7320         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7321                 return true;
7322
7323         /*
7324          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7325          * for the four combinations of read/write and low/high MSR numbers.
7326          * First we need to figure out which of the four to use:
7327          */
7328         bitmap = vmcs12->msr_bitmap;
7329         if (exit_reason == EXIT_REASON_MSR_WRITE)
7330                 bitmap += 2048;
7331         if (msr_index >= 0xc0000000) {
7332                 msr_index -= 0xc0000000;
7333                 bitmap += 1024;
7334         }
7335
7336         /* Then read the msr_index'th bit from this bitmap: */
7337         if (msr_index < 1024*8) {
7338                 unsigned char b;
7339                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7340                         return true;
7341                 return 1 & (b >> (msr_index & 7));
7342         } else
7343                 return true; /* let L1 handle the wrong parameter */
7344 }
7345
7346 /*
7347  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7348  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7349  * intercept (via guest_host_mask etc.) the current event.
7350  */
7351 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7352         struct vmcs12 *vmcs12)
7353 {
7354         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7355         int cr = exit_qualification & 15;
7356         int reg = (exit_qualification >> 8) & 15;
7357         unsigned long val = kvm_register_readl(vcpu, reg);
7358
7359         switch ((exit_qualification >> 4) & 3) {
7360         case 0: /* mov to cr */
7361                 switch (cr) {
7362                 case 0:
7363                         if (vmcs12->cr0_guest_host_mask &
7364                             (val ^ vmcs12->cr0_read_shadow))
7365                                 return true;
7366                         break;
7367                 case 3:
7368                         if ((vmcs12->cr3_target_count >= 1 &&
7369                                         vmcs12->cr3_target_value0 == val) ||
7370                                 (vmcs12->cr3_target_count >= 2 &&
7371                                         vmcs12->cr3_target_value1 == val) ||
7372                                 (vmcs12->cr3_target_count >= 3 &&
7373                                         vmcs12->cr3_target_value2 == val) ||
7374                                 (vmcs12->cr3_target_count >= 4 &&
7375                                         vmcs12->cr3_target_value3 == val))
7376                                 return false;
7377                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7378                                 return true;
7379                         break;
7380                 case 4:
7381                         if (vmcs12->cr4_guest_host_mask &
7382                             (vmcs12->cr4_read_shadow ^ val))
7383                                 return true;
7384                         break;
7385                 case 8:
7386                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7387                                 return true;
7388                         break;
7389                 }
7390                 break;
7391         case 2: /* clts */
7392                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7393                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
7394                         return true;
7395                 break;
7396         case 1: /* mov from cr */
7397                 switch (cr) {
7398                 case 3:
7399                         if (vmcs12->cpu_based_vm_exec_control &
7400                             CPU_BASED_CR3_STORE_EXITING)
7401                                 return true;
7402                         break;
7403                 case 8:
7404                         if (vmcs12->cpu_based_vm_exec_control &
7405                             CPU_BASED_CR8_STORE_EXITING)
7406                                 return true;
7407                         break;
7408                 }
7409                 break;
7410         case 3: /* lmsw */
7411                 /*
7412                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7413                  * cr0. Other attempted changes are ignored, with no exit.
7414                  */
7415                 if (vmcs12->cr0_guest_host_mask & 0xe &
7416                     (val ^ vmcs12->cr0_read_shadow))
7417                         return true;
7418                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7419                     !(vmcs12->cr0_read_shadow & 0x1) &&
7420                     (val & 0x1))
7421                         return true;
7422                 break;
7423         }
7424         return false;
7425 }
7426
7427 /*
7428  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7429  * should handle it ourselves in L0 (and then continue L2). Only call this
7430  * when in is_guest_mode (L2).
7431  */
7432 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7433 {
7434         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7435         struct vcpu_vmx *vmx = to_vmx(vcpu);
7436         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7437         u32 exit_reason = vmx->exit_reason;
7438
7439         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7440                                 vmcs_readl(EXIT_QUALIFICATION),
7441                                 vmx->idt_vectoring_info,
7442                                 intr_info,
7443                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7444                                 KVM_ISA_VMX);
7445
7446         if (vmx->nested.nested_run_pending)
7447                 return false;
7448
7449         if (unlikely(vmx->fail)) {
7450                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7451                                     vmcs_read32(VM_INSTRUCTION_ERROR));
7452                 return true;
7453         }
7454
7455         switch (exit_reason) {
7456         case EXIT_REASON_EXCEPTION_NMI:
7457                 if (!is_exception(intr_info))
7458                         return false;
7459                 else if (is_page_fault(intr_info))
7460                         return enable_ept;
7461                 else if (is_no_device(intr_info) &&
7462                          !(vmcs12->guest_cr0 & X86_CR0_TS))
7463                         return false;
7464                 return vmcs12->exception_bitmap &
7465                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7466         case EXIT_REASON_EXTERNAL_INTERRUPT:
7467                 return false;
7468         case EXIT_REASON_TRIPLE_FAULT:
7469                 return true;
7470         case EXIT_REASON_PENDING_INTERRUPT:
7471                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7472         case EXIT_REASON_NMI_WINDOW:
7473                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7474         case EXIT_REASON_TASK_SWITCH:
7475                 return true;
7476         case EXIT_REASON_CPUID:
7477                 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7478                         return false;
7479                 return true;
7480         case EXIT_REASON_HLT:
7481                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7482         case EXIT_REASON_INVD:
7483                 return true;
7484         case EXIT_REASON_INVLPG:
7485                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7486         case EXIT_REASON_RDPMC:
7487                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7488         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7489                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7490         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7491         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7492         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7493         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7494         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7495         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7496                 /*
7497                  * VMX instructions trap unconditionally. This allows L1 to
7498                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
7499                  */
7500                 return true;
7501         case EXIT_REASON_CR_ACCESS:
7502                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7503         case EXIT_REASON_DR_ACCESS:
7504                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7505         case EXIT_REASON_IO_INSTRUCTION:
7506                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7507         case EXIT_REASON_MSR_READ:
7508         case EXIT_REASON_MSR_WRITE:
7509                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7510         case EXIT_REASON_INVALID_STATE:
7511                 return true;
7512         case EXIT_REASON_MWAIT_INSTRUCTION:
7513                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7514         case EXIT_REASON_MONITOR_TRAP_FLAG:
7515                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7516         case EXIT_REASON_MONITOR_INSTRUCTION:
7517                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7518         case EXIT_REASON_PAUSE_INSTRUCTION:
7519                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7520                         nested_cpu_has2(vmcs12,
7521                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7522         case EXIT_REASON_MCE_DURING_VMENTRY:
7523                 return false;
7524         case EXIT_REASON_TPR_BELOW_THRESHOLD:
7525                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7526         case EXIT_REASON_APIC_ACCESS:
7527                 return nested_cpu_has2(vmcs12,
7528                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7529         case EXIT_REASON_APIC_WRITE:
7530         case EXIT_REASON_EOI_INDUCED:
7531                 /* apic_write and eoi_induced should exit unconditionally. */
7532                 return true;
7533         case EXIT_REASON_EPT_VIOLATION:
7534                 /*
7535                  * L0 always deals with the EPT violation. If nested EPT is
7536                  * used, and the nested mmu code discovers that the address is
7537                  * missing in the guest EPT table (EPT12), the EPT violation
7538                  * will be injected with nested_ept_inject_page_fault()
7539                  */
7540                 return false;
7541         case EXIT_REASON_EPT_MISCONFIG:
7542                 /*
7543                  * L2 never uses directly L1's EPT, but rather L0's own EPT
7544                  * table (shadow on EPT) or a merged EPT table that L0 built
7545                  * (EPT on EPT). So any problems with the structure of the
7546                  * table is L0's fault.
7547                  */
7548                 return false;
7549         case EXIT_REASON_WBINVD:
7550                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7551         case EXIT_REASON_XSETBV:
7552                 return true;
7553         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7554                 /*
7555                  * This should never happen, since it is not possible to
7556                  * set XSS to a non-zero value---neither in L1 nor in L2.
7557                  * If if it were, XSS would have to be checked against
7558                  * the XSS exit bitmap in vmcs12.
7559                  */
7560                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7561         default:
7562                 return true;
7563         }
7564 }
7565
7566 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7567 {
7568         *info1 = vmcs_readl(EXIT_QUALIFICATION);
7569         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7570 }
7571
7572 static int vmx_enable_pml(struct vcpu_vmx *vmx)
7573 {
7574         struct page *pml_pg;
7575         u32 exec_control;
7576
7577         pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7578         if (!pml_pg)
7579                 return -ENOMEM;
7580
7581         vmx->pml_pg = pml_pg;
7582
7583         vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7584         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7585
7586         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7587         exec_control |= SECONDARY_EXEC_ENABLE_PML;
7588         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7589
7590         return 0;
7591 }
7592
7593 static void vmx_disable_pml(struct vcpu_vmx *vmx)
7594 {
7595         u32 exec_control;
7596
7597         ASSERT(vmx->pml_pg);
7598         __free_page(vmx->pml_pg);
7599         vmx->pml_pg = NULL;
7600
7601         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7602         exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
7603         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7604 }
7605
7606 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7607 {
7608         struct vcpu_vmx *vmx = to_vmx(vcpu);
7609         u64 *pml_buf;
7610         u16 pml_idx;
7611
7612         pml_idx = vmcs_read16(GUEST_PML_INDEX);
7613
7614         /* Do nothing if PML buffer is empty */
7615         if (pml_idx == (PML_ENTITY_NUM - 1))
7616                 return;
7617
7618         /* PML index always points to next available PML buffer entity */
7619         if (pml_idx >= PML_ENTITY_NUM)
7620                 pml_idx = 0;
7621         else
7622                 pml_idx++;
7623
7624         pml_buf = page_address(vmx->pml_pg);
7625         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7626                 u64 gpa;
7627
7628                 gpa = pml_buf[pml_idx];
7629                 WARN_ON(gpa & (PAGE_SIZE - 1));
7630                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7631         }
7632
7633         /* reset PML index */
7634         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7635 }
7636
7637 /*
7638  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7639  * Called before reporting dirty_bitmap to userspace.
7640  */
7641 static void kvm_flush_pml_buffers(struct kvm *kvm)
7642 {
7643         int i;
7644         struct kvm_vcpu *vcpu;
7645         /*
7646          * We only need to kick vcpu out of guest mode here, as PML buffer
7647          * is flushed at beginning of all VMEXITs, and it's obvious that only
7648          * vcpus running in guest are possible to have unflushed GPAs in PML
7649          * buffer.
7650          */
7651         kvm_for_each_vcpu(i, vcpu, kvm)
7652                 kvm_vcpu_kick(vcpu);
7653 }
7654
7655 static void vmx_dump_sel(char *name, uint32_t sel)
7656 {
7657         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7658                name, vmcs_read32(sel),
7659                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7660                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7661                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7662 }
7663
7664 static void vmx_dump_dtsel(char *name, uint32_t limit)
7665 {
7666         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
7667                name, vmcs_read32(limit),
7668                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7669 }
7670
7671 static void dump_vmcs(void)
7672 {
7673         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7674         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7675         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7676         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7677         u32 secondary_exec_control = 0;
7678         unsigned long cr4 = vmcs_readl(GUEST_CR4);
7679         u64 efer = vmcs_readl(GUEST_IA32_EFER);
7680         int i, n;
7681
7682         if (cpu_has_secondary_exec_ctrls())
7683                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7684
7685         pr_err("*** Guest State ***\n");
7686         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7687                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7688                vmcs_readl(CR0_GUEST_HOST_MASK));
7689         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7690                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7691         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7692         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7693             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7694         {
7695                 pr_err("PDPTR0 = 0x%016lx  PDPTR1 = 0x%016lx\n",
7696                        vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
7697                 pr_err("PDPTR2 = 0x%016lx  PDPTR3 = 0x%016lx\n",
7698                        vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
7699         }
7700         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
7701                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
7702         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
7703                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
7704         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7705                vmcs_readl(GUEST_SYSENTER_ESP),
7706                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
7707         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
7708         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
7709         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
7710         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
7711         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
7712         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
7713         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
7714         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
7715         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
7716         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
7717         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
7718             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
7719                 pr_err("EFER =     0x%016llx  PAT = 0x%016lx\n",
7720                        efer, vmcs_readl(GUEST_IA32_PAT));
7721         pr_err("DebugCtl = 0x%016lx  DebugExceptions = 0x%016lx\n",
7722                vmcs_readl(GUEST_IA32_DEBUGCTL),
7723                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
7724         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
7725                 pr_err("PerfGlobCtl = 0x%016lx\n",
7726                        vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
7727         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
7728                 pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
7729         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
7730                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
7731                vmcs_read32(GUEST_ACTIVITY_STATE));
7732         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
7733                 pr_err("InterruptStatus = %04x\n",
7734                        vmcs_read16(GUEST_INTR_STATUS));
7735
7736         pr_err("*** Host State ***\n");
7737         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
7738                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
7739         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
7740                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
7741                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
7742                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
7743                vmcs_read16(HOST_TR_SELECTOR));
7744         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
7745                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
7746                vmcs_readl(HOST_TR_BASE));
7747         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
7748                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
7749         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
7750                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
7751                vmcs_readl(HOST_CR4));
7752         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7753                vmcs_readl(HOST_IA32_SYSENTER_ESP),
7754                vmcs_read32(HOST_IA32_SYSENTER_CS),
7755                vmcs_readl(HOST_IA32_SYSENTER_EIP));
7756         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
7757                 pr_err("EFER = 0x%016lx  PAT = 0x%016lx\n",
7758                        vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
7759         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7760                 pr_err("PerfGlobCtl = 0x%016lx\n",
7761                        vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
7762
7763         pr_err("*** Control State ***\n");
7764         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
7765                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
7766         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
7767         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
7768                vmcs_read32(EXCEPTION_BITMAP),
7769                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
7770                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
7771         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
7772                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7773                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
7774                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
7775         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
7776                vmcs_read32(VM_EXIT_INTR_INFO),
7777                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7778                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
7779         pr_err("        reason=%08x qualification=%016lx\n",
7780                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
7781         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
7782                vmcs_read32(IDT_VECTORING_INFO_FIELD),
7783                vmcs_read32(IDT_VECTORING_ERROR_CODE));
7784         pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
7785         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
7786                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
7787         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
7788                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
7789         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
7790                 pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
7791         n = vmcs_read32(CR3_TARGET_COUNT);
7792         for (i = 0; i + 1 < n; i += 4)
7793                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
7794                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
7795                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
7796         if (i < n)
7797                 pr_err("CR3 target%u=%016lx\n",
7798                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
7799         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
7800                 pr_err("PLE Gap=%08x Window=%08x\n",
7801                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
7802         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
7803                 pr_err("Virtual processor ID = 0x%04x\n",
7804                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
7805 }
7806
7807 /*
7808  * The guest has exited.  See if we can fix it or if we need userspace
7809  * assistance.
7810  */
7811 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7812 {
7813         struct vcpu_vmx *vmx = to_vmx(vcpu);
7814         u32 exit_reason = vmx->exit_reason;
7815         u32 vectoring_info = vmx->idt_vectoring_info;
7816
7817         /*
7818          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
7819          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
7820          * querying dirty_bitmap, we only need to kick all vcpus out of guest
7821          * mode as if vcpus is in root mode, the PML buffer must has been
7822          * flushed already.
7823          */
7824         if (enable_pml)
7825                 vmx_flush_pml_buffer(vcpu);
7826
7827         /* If guest state is invalid, start emulating */
7828         if (vmx->emulation_required)
7829                 return handle_invalid_guest_state(vcpu);
7830
7831         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7832                 nested_vmx_vmexit(vcpu, exit_reason,
7833                                   vmcs_read32(VM_EXIT_INTR_INFO),
7834                                   vmcs_readl(EXIT_QUALIFICATION));
7835                 return 1;
7836         }
7837
7838         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7839                 dump_vmcs();
7840                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7841                 vcpu->run->fail_entry.hardware_entry_failure_reason
7842                         = exit_reason;
7843                 return 0;
7844         }
7845
7846         if (unlikely(vmx->fail)) {
7847                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7848                 vcpu->run->fail_entry.hardware_entry_failure_reason
7849                         = vmcs_read32(VM_INSTRUCTION_ERROR);
7850                 return 0;
7851         }
7852
7853         /*
7854          * Note:
7855          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7856          * delivery event since it indicates guest is accessing MMIO.
7857          * The vm-exit can be triggered again after return to guest that
7858          * will cause infinite loop.
7859          */
7860         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7861                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7862                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
7863                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
7864                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7865                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7866                 vcpu->run->internal.ndata = 2;
7867                 vcpu->run->internal.data[0] = vectoring_info;
7868                 vcpu->run->internal.data[1] = exit_reason;
7869                 return 0;
7870         }
7871
7872         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7873             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7874                                         get_vmcs12(vcpu))))) {
7875                 if (vmx_interrupt_allowed(vcpu)) {
7876                         vmx->soft_vnmi_blocked = 0;
7877                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7878                            vcpu->arch.nmi_pending) {
7879                         /*
7880                          * This CPU don't support us in finding the end of an
7881                          * NMI-blocked window if the guest runs with IRQs
7882                          * disabled. So we pull the trigger after 1 s of
7883                          * futile waiting, but inform the user about this.
7884                          */
7885                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7886                                "state on VCPU %d after 1 s timeout\n",
7887                                __func__, vcpu->vcpu_id);
7888                         vmx->soft_vnmi_blocked = 0;
7889                 }
7890         }
7891
7892         if (exit_reason < kvm_vmx_max_exit_handlers
7893             && kvm_vmx_exit_handlers[exit_reason])
7894                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7895         else {
7896                 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7897                 kvm_queue_exception(vcpu, UD_VECTOR);
7898                 return 1;
7899         }
7900 }
7901
7902 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7903 {
7904         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7905
7906         if (is_guest_mode(vcpu) &&
7907                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7908                 return;
7909
7910         if (irr == -1 || tpr < irr) {
7911                 vmcs_write32(TPR_THRESHOLD, 0);
7912                 return;
7913         }
7914
7915         vmcs_write32(TPR_THRESHOLD, irr);
7916 }
7917
7918 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7919 {
7920         u32 sec_exec_control;
7921
7922         /*
7923          * There is not point to enable virtualize x2apic without enable
7924          * apicv
7925          */
7926         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7927                                 !vmx_vm_has_apicv(vcpu->kvm))
7928                 return;
7929
7930         if (!vm_need_tpr_shadow(vcpu->kvm))
7931                 return;
7932
7933         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7934
7935         if (set) {
7936                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7937                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7938         } else {
7939                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7940                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7941         }
7942         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7943
7944         vmx_set_msr_bitmap(vcpu);
7945 }
7946
7947 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7948 {
7949         struct vcpu_vmx *vmx = to_vmx(vcpu);
7950
7951         /*
7952          * Currently we do not handle the nested case where L2 has an
7953          * APIC access page of its own; that page is still pinned.
7954          * Hence, we skip the case where the VCPU is in guest mode _and_
7955          * L1 prepared an APIC access page for L2.
7956          *
7957          * For the case where L1 and L2 share the same APIC access page
7958          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7959          * in the vmcs12), this function will only update either the vmcs01
7960          * or the vmcs02.  If the former, the vmcs02 will be updated by
7961          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
7962          * the next L2->L1 exit.
7963          */
7964         if (!is_guest_mode(vcpu) ||
7965             !nested_cpu_has2(vmx->nested.current_vmcs12,
7966                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7967                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7968 }
7969
7970 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7971 {
7972         u16 status;
7973         u8 old;
7974
7975         if (isr == -1)
7976                 isr = 0;
7977
7978         status = vmcs_read16(GUEST_INTR_STATUS);
7979         old = status >> 8;
7980         if (isr != old) {
7981                 status &= 0xff;
7982                 status |= isr << 8;
7983                 vmcs_write16(GUEST_INTR_STATUS, status);
7984         }
7985 }
7986
7987 static void vmx_set_rvi(int vector)
7988 {
7989         u16 status;
7990         u8 old;
7991
7992         if (vector == -1)
7993                 vector = 0;
7994
7995         status = vmcs_read16(GUEST_INTR_STATUS);
7996         old = (u8)status & 0xff;
7997         if ((u8)vector != old) {
7998                 status &= ~0xff;
7999                 status |= (u8)vector;
8000                 vmcs_write16(GUEST_INTR_STATUS, status);
8001         }
8002 }
8003
8004 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8005 {
8006         if (!is_guest_mode(vcpu)) {
8007                 vmx_set_rvi(max_irr);
8008                 return;
8009         }
8010
8011         if (max_irr == -1)
8012                 return;
8013
8014         /*
8015          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8016          * handles it.
8017          */
8018         if (nested_exit_on_intr(vcpu))
8019                 return;
8020
8021         /*
8022          * Else, fall back to pre-APICv interrupt injection since L2
8023          * is run without virtual interrupt delivery.
8024          */
8025         if (!kvm_event_needs_reinjection(vcpu) &&
8026             vmx_interrupt_allowed(vcpu)) {
8027                 kvm_queue_interrupt(vcpu, max_irr, false);
8028                 vmx_inject_irq(vcpu);
8029         }
8030 }
8031
8032 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8033 {
8034         if (!vmx_vm_has_apicv(vcpu->kvm))
8035                 return;
8036
8037         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8038         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8039         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8040         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8041 }
8042
8043 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8044 {
8045         u32 exit_intr_info;
8046
8047         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8048               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8049                 return;
8050
8051         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8052         exit_intr_info = vmx->exit_intr_info;
8053
8054         /* Handle machine checks before interrupts are enabled */
8055         if (is_machine_check(exit_intr_info))
8056                 kvm_machine_check();
8057
8058         /* We need to handle NMIs before interrupts are enabled */
8059         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8060             (exit_intr_info & INTR_INFO_VALID_MASK)) {
8061                 kvm_before_handle_nmi(&vmx->vcpu);
8062                 asm("int $2");
8063                 kvm_after_handle_nmi(&vmx->vcpu);
8064         }
8065 }
8066
8067 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8068 {
8069         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8070
8071         /*
8072          * If external interrupt exists, IF bit is set in rflags/eflags on the
8073          * interrupt stack frame, and interrupt will be enabled on a return
8074          * from interrupt handler.
8075          */
8076         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8077                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8078                 unsigned int vector;
8079                 unsigned long entry;
8080                 gate_desc *desc;
8081                 struct vcpu_vmx *vmx = to_vmx(vcpu);
8082 #ifdef CONFIG_X86_64
8083                 unsigned long tmp;
8084 #endif
8085
8086                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8087                 desc = (gate_desc *)vmx->host_idt_base + vector;
8088                 entry = gate_offset(*desc);
8089                 asm volatile(
8090 #ifdef CONFIG_X86_64
8091                         "mov %%" _ASM_SP ", %[sp]\n\t"
8092                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8093                         "push $%c[ss]\n\t"
8094                         "push %[sp]\n\t"
8095 #endif
8096                         "pushf\n\t"
8097                         "orl $0x200, (%%" _ASM_SP ")\n\t"
8098                         __ASM_SIZE(push) " $%c[cs]\n\t"
8099                         "call *%[entry]\n\t"
8100                         :
8101 #ifdef CONFIG_X86_64
8102                         [sp]"=&r"(tmp)
8103 #endif
8104                         :
8105                         [entry]"r"(entry),
8106                         [ss]"i"(__KERNEL_DS),
8107                         [cs]"i"(__KERNEL_CS)
8108                         );
8109         } else
8110                 local_irq_enable();
8111 }
8112
8113 static bool vmx_has_high_real_mode_segbase(void)
8114 {
8115         return enable_unrestricted_guest || emulate_invalid_guest_state;
8116 }
8117
8118 static bool vmx_mpx_supported(void)
8119 {
8120         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8121                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8122 }
8123
8124 static bool vmx_xsaves_supported(void)
8125 {
8126         return vmcs_config.cpu_based_2nd_exec_ctrl &
8127                 SECONDARY_EXEC_XSAVES;
8128 }
8129
8130 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8131 {
8132         u32 exit_intr_info;
8133         bool unblock_nmi;
8134         u8 vector;
8135         bool idtv_info_valid;
8136
8137         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8138
8139         if (cpu_has_virtual_nmis()) {
8140                 if (vmx->nmi_known_unmasked)
8141                         return;
8142                 /*
8143                  * Can't use vmx->exit_intr_info since we're not sure what
8144                  * the exit reason is.
8145                  */
8146                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8147                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8148                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8149                 /*
8150                  * SDM 3: 27.7.1.2 (September 2008)
8151                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
8152                  * a guest IRET fault.
8153                  * SDM 3: 23.2.2 (September 2008)
8154                  * Bit 12 is undefined in any of the following cases:
8155                  *  If the VM exit sets the valid bit in the IDT-vectoring
8156                  *   information field.
8157                  *  If the VM exit is due to a double fault.
8158                  */
8159                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8160                     vector != DF_VECTOR && !idtv_info_valid)
8161                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8162                                       GUEST_INTR_STATE_NMI);
8163                 else
8164                         vmx->nmi_known_unmasked =
8165                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8166                                   & GUEST_INTR_STATE_NMI);
8167         } else if (unlikely(vmx->soft_vnmi_blocked))
8168                 vmx->vnmi_blocked_time +=
8169                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8170 }
8171
8172 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8173                                       u32 idt_vectoring_info,
8174                                       int instr_len_field,
8175                                       int error_code_field)
8176 {
8177         u8 vector;
8178         int type;
8179         bool idtv_info_valid;
8180
8181         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8182
8183         vcpu->arch.nmi_injected = false;
8184         kvm_clear_exception_queue(vcpu);
8185         kvm_clear_interrupt_queue(vcpu);
8186
8187         if (!idtv_info_valid)
8188                 return;
8189
8190         kvm_make_request(KVM_REQ_EVENT, vcpu);
8191
8192         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8193         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8194
8195         switch (type) {
8196         case INTR_TYPE_NMI_INTR:
8197                 vcpu->arch.nmi_injected = true;
8198                 /*
8199                  * SDM 3: 27.7.1.2 (September 2008)
8200                  * Clear bit "block by NMI" before VM entry if a NMI
8201                  * delivery faulted.
8202                  */
8203                 vmx_set_nmi_mask(vcpu, false);
8204                 break;
8205         case INTR_TYPE_SOFT_EXCEPTION:
8206                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8207                 /* fall through */
8208         case INTR_TYPE_HARD_EXCEPTION:
8209                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8210                         u32 err = vmcs_read32(error_code_field);
8211                         kvm_requeue_exception_e(vcpu, vector, err);
8212                 } else
8213                         kvm_requeue_exception(vcpu, vector);
8214                 break;
8215         case INTR_TYPE_SOFT_INTR:
8216                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8217                 /* fall through */
8218         case INTR_TYPE_EXT_INTR:
8219                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8220                 break;
8221         default:
8222                 break;
8223         }
8224 }
8225
8226 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8227 {
8228         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8229                                   VM_EXIT_INSTRUCTION_LEN,
8230                                   IDT_VECTORING_ERROR_CODE);
8231 }
8232
8233 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8234 {
8235         __vmx_complete_interrupts(vcpu,
8236                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8237                                   VM_ENTRY_INSTRUCTION_LEN,
8238                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
8239
8240         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8241 }
8242
8243 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8244 {
8245         int i, nr_msrs;
8246         struct perf_guest_switch_msr *msrs;
8247
8248         msrs = perf_guest_get_msrs(&nr_msrs);
8249
8250         if (!msrs)
8251                 return;
8252
8253         for (i = 0; i < nr_msrs; i++)
8254                 if (msrs[i].host == msrs[i].guest)
8255                         clear_atomic_switch_msr(vmx, msrs[i].msr);
8256                 else
8257                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8258                                         msrs[i].host);
8259 }
8260
8261 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8262 {
8263         struct vcpu_vmx *vmx = to_vmx(vcpu);
8264         unsigned long debugctlmsr, cr4;
8265
8266         /* Record the guest's net vcpu time for enforced NMI injections. */
8267         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8268                 vmx->entry_time = ktime_get();
8269
8270         /* Don't enter VMX if guest state is invalid, let the exit handler
8271            start emulation until we arrive back to a valid state */
8272         if (vmx->emulation_required)
8273                 return;
8274
8275         if (vmx->ple_window_dirty) {
8276                 vmx->ple_window_dirty = false;
8277                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8278         }
8279
8280         if (vmx->nested.sync_shadow_vmcs) {
8281                 copy_vmcs12_to_shadow(vmx);
8282                 vmx->nested.sync_shadow_vmcs = false;
8283         }
8284
8285         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8286                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8287         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8288                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8289
8290         cr4 = cr4_read_shadow();
8291         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8292                 vmcs_writel(HOST_CR4, cr4);
8293                 vmx->host_state.vmcs_host_cr4 = cr4;
8294         }
8295
8296         /* When single-stepping over STI and MOV SS, we must clear the
8297          * corresponding interruptibility bits in the guest state. Otherwise
8298          * vmentry fails as it then expects bit 14 (BS) in pending debug
8299          * exceptions being set, but that's not correct for the guest debugging
8300          * case. */
8301         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8302                 vmx_set_interrupt_shadow(vcpu, 0);
8303
8304         atomic_switch_perf_msrs(vmx);
8305         debugctlmsr = get_debugctlmsr();
8306
8307         vmx->__launched = vmx->loaded_vmcs->launched;
8308         asm(
8309                 /* Store host registers */
8310                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8311                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8312                 "push %%" _ASM_CX " \n\t"
8313                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8314                 "je 1f \n\t"
8315                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8316                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8317                 "1: \n\t"
8318                 /* Reload cr2 if changed */
8319                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8320                 "mov %%cr2, %%" _ASM_DX " \n\t"
8321                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8322                 "je 2f \n\t"
8323                 "mov %%" _ASM_AX", %%cr2 \n\t"
8324                 "2: \n\t"
8325                 /* Check if vmlaunch of vmresume is needed */
8326                 "cmpl $0, %c[launched](%0) \n\t"
8327                 /* Load guest registers.  Don't clobber flags. */
8328                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8329                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8330                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8331                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8332                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8333                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8334 #ifdef CONFIG_X86_64
8335                 "mov %c[r8](%0),  %%r8  \n\t"
8336                 "mov %c[r9](%0),  %%r9  \n\t"
8337                 "mov %c[r10](%0), %%r10 \n\t"
8338                 "mov %c[r11](%0), %%r11 \n\t"
8339                 "mov %c[r12](%0), %%r12 \n\t"
8340                 "mov %c[r13](%0), %%r13 \n\t"
8341                 "mov %c[r14](%0), %%r14 \n\t"
8342                 "mov %c[r15](%0), %%r15 \n\t"
8343 #endif
8344                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8345
8346                 /* Enter guest mode */
8347                 "jne 1f \n\t"
8348                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8349                 "jmp 2f \n\t"
8350                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8351                 "2: "
8352                 /* Save guest registers, load host registers, keep flags */
8353                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8354                 "pop %0 \n\t"
8355                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8356                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8357                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8358                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8359                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8360                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8361                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8362 #ifdef CONFIG_X86_64
8363                 "mov %%r8,  %c[r8](%0) \n\t"
8364                 "mov %%r9,  %c[r9](%0) \n\t"
8365                 "mov %%r10, %c[r10](%0) \n\t"
8366                 "mov %%r11, %c[r11](%0) \n\t"
8367                 "mov %%r12, %c[r12](%0) \n\t"
8368                 "mov %%r13, %c[r13](%0) \n\t"
8369                 "mov %%r14, %c[r14](%0) \n\t"
8370                 "mov %%r15, %c[r15](%0) \n\t"
8371 #endif
8372                 "mov %%cr2, %%" _ASM_AX "   \n\t"
8373                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8374
8375                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8376                 "setbe %c[fail](%0) \n\t"
8377                 ".pushsection .rodata \n\t"
8378                 ".global vmx_return \n\t"
8379                 "vmx_return: " _ASM_PTR " 2b \n\t"
8380                 ".popsection"
8381               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8382                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8383                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8384                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8385                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8386                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8387                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8388                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8389                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8390                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8391                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8392 #ifdef CONFIG_X86_64
8393                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8394                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8395                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8396                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8397                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8398                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8399                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8400                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8401 #endif
8402                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8403                 [wordsize]"i"(sizeof(ulong))
8404               : "cc", "memory"
8405 #ifdef CONFIG_X86_64
8406                 , "rax", "rbx", "rdi", "rsi"
8407                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8408 #else
8409                 , "eax", "ebx", "edi", "esi"
8410 #endif
8411               );
8412
8413         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8414         if (debugctlmsr)
8415                 update_debugctlmsr(debugctlmsr);
8416
8417 #ifndef CONFIG_X86_64
8418         /*
8419          * The sysexit path does not restore ds/es, so we must set them to
8420          * a reasonable value ourselves.
8421          *
8422          * We can't defer this to vmx_load_host_state() since that function
8423          * may be executed in interrupt context, which saves and restore segments
8424          * around it, nullifying its effect.
8425          */
8426         loadsegment(ds, __USER_DS);
8427         loadsegment(es, __USER_DS);
8428 #endif
8429
8430         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8431                                   | (1 << VCPU_EXREG_RFLAGS)
8432                                   | (1 << VCPU_EXREG_PDPTR)
8433                                   | (1 << VCPU_EXREG_SEGMENTS)
8434                                   | (1 << VCPU_EXREG_CR3));
8435         vcpu->arch.regs_dirty = 0;
8436
8437         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8438
8439         vmx->loaded_vmcs->launched = 1;
8440
8441         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8442         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
8443
8444         /*
8445          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8446          * we did not inject a still-pending event to L1 now because of
8447          * nested_run_pending, we need to re-enable this bit.
8448          */
8449         if (vmx->nested.nested_run_pending)
8450                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8451
8452         vmx->nested.nested_run_pending = 0;
8453
8454         vmx_complete_atomic_exit(vmx);
8455         vmx_recover_nmi_blocking(vmx);
8456         vmx_complete_interrupts(vmx);
8457 }
8458
8459 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8460 {
8461         struct vcpu_vmx *vmx = to_vmx(vcpu);
8462         int cpu;
8463
8464         if (vmx->loaded_vmcs == &vmx->vmcs01)
8465                 return;
8466
8467         cpu = get_cpu();
8468         vmx->loaded_vmcs = &vmx->vmcs01;
8469         vmx_vcpu_put(vcpu);
8470         vmx_vcpu_load(vcpu, cpu);
8471         vcpu->cpu = cpu;
8472         put_cpu();
8473 }
8474
8475 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8476 {
8477         struct vcpu_vmx *vmx = to_vmx(vcpu);
8478
8479         if (enable_pml)
8480                 vmx_disable_pml(vmx);
8481         free_vpid(vmx);
8482         leave_guest_mode(vcpu);
8483         vmx_load_vmcs01(vcpu);
8484         free_nested(vmx);
8485         free_loaded_vmcs(vmx->loaded_vmcs);
8486         kfree(vmx->guest_msrs);
8487         kvm_vcpu_uninit(vcpu);
8488         kmem_cache_free(kvm_vcpu_cache, vmx);
8489 }
8490
8491 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8492 {
8493         int err;
8494         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8495         int cpu;
8496
8497         if (!vmx)
8498                 return ERR_PTR(-ENOMEM);
8499
8500         allocate_vpid(vmx);
8501
8502         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8503         if (err)
8504                 goto free_vcpu;
8505
8506         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8507         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8508                      > PAGE_SIZE);
8509
8510         err = -ENOMEM;
8511         if (!vmx->guest_msrs) {
8512                 goto uninit_vcpu;
8513         }
8514
8515         vmx->loaded_vmcs = &vmx->vmcs01;
8516         vmx->loaded_vmcs->vmcs = alloc_vmcs();
8517         if (!vmx->loaded_vmcs->vmcs)
8518                 goto free_msrs;
8519         if (!vmm_exclusive)
8520                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8521         loaded_vmcs_init(vmx->loaded_vmcs);
8522         if (!vmm_exclusive)
8523                 kvm_cpu_vmxoff();
8524
8525         cpu = get_cpu();
8526         vmx_vcpu_load(&vmx->vcpu, cpu);
8527         vmx->vcpu.cpu = cpu;
8528         err = vmx_vcpu_setup(vmx);
8529         vmx_vcpu_put(&vmx->vcpu);
8530         put_cpu();
8531         if (err)
8532                 goto free_vmcs;
8533         if (vm_need_virtualize_apic_accesses(kvm)) {
8534                 err = alloc_apic_access_page(kvm);
8535                 if (err)
8536                         goto free_vmcs;
8537         }
8538
8539         if (enable_ept) {
8540                 if (!kvm->arch.ept_identity_map_addr)
8541                         kvm->arch.ept_identity_map_addr =
8542                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8543                 err = init_rmode_identity_map(kvm);
8544                 if (err)
8545                         goto free_vmcs;
8546         }
8547
8548         if (nested)
8549                 nested_vmx_setup_ctls_msrs(vmx);
8550
8551         vmx->nested.posted_intr_nv = -1;
8552         vmx->nested.current_vmptr = -1ull;
8553         vmx->nested.current_vmcs12 = NULL;
8554
8555         /*
8556          * If PML is turned on, failure on enabling PML just results in failure
8557          * of creating the vcpu, therefore we can simplify PML logic (by
8558          * avoiding dealing with cases, such as enabling PML partially on vcpus
8559          * for the guest, etc.
8560          */
8561         if (enable_pml) {
8562                 err = vmx_enable_pml(vmx);
8563                 if (err)
8564                         goto free_vmcs;
8565         }
8566
8567         return &vmx->vcpu;
8568
8569 free_vmcs:
8570         free_loaded_vmcs(vmx->loaded_vmcs);
8571 free_msrs:
8572         kfree(vmx->guest_msrs);
8573 uninit_vcpu:
8574         kvm_vcpu_uninit(&vmx->vcpu);
8575 free_vcpu:
8576         free_vpid(vmx);
8577         kmem_cache_free(kvm_vcpu_cache, vmx);
8578         return ERR_PTR(err);
8579 }
8580
8581 static void __init vmx_check_processor_compat(void *rtn)
8582 {
8583         struct vmcs_config vmcs_conf;
8584
8585         *(int *)rtn = 0;
8586         if (setup_vmcs_config(&vmcs_conf) < 0)
8587                 *(int *)rtn = -EIO;
8588         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8589                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8590                                 smp_processor_id());
8591                 *(int *)rtn = -EIO;
8592         }
8593 }
8594
8595 static int get_ept_level(void)
8596 {
8597         return VMX_EPT_DEFAULT_GAW + 1;
8598 }
8599
8600 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8601 {
8602         u8 cache;
8603         u64 ipat = 0;
8604
8605         /* For VT-d and EPT combination
8606          * 1. MMIO: always map as UC
8607          * 2. EPT with VT-d:
8608          *   a. VT-d without snooping control feature: can't guarantee the
8609          *      result, try to trust guest.
8610          *   b. VT-d with snooping control feature: snooping control feature of
8611          *      VT-d engine can guarantee the cache correctness. Just set it
8612          *      to WB to keep consistent with host. So the same as item 3.
8613          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8614          *    consistent with host MTRR
8615          */
8616         if (is_mmio) {
8617                 cache = MTRR_TYPE_UNCACHABLE;
8618                 goto exit;
8619         }
8620
8621         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
8622                 ipat = VMX_EPT_IPAT_BIT;
8623                 cache = MTRR_TYPE_WRBACK;
8624                 goto exit;
8625         }
8626
8627         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8628                 ipat = VMX_EPT_IPAT_BIT;
8629                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
8630                         cache = MTRR_TYPE_WRBACK;
8631                 else
8632                         cache = MTRR_TYPE_UNCACHABLE;
8633                 goto exit;
8634         }
8635
8636         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
8637
8638 exit:
8639         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
8640 }
8641
8642 static int vmx_get_lpage_level(void)
8643 {
8644         if (enable_ept && !cpu_has_vmx_ept_1g_page())
8645                 return PT_DIRECTORY_LEVEL;
8646         else
8647                 /* For shadow and EPT supported 1GB page */
8648                 return PT_PDPE_LEVEL;
8649 }
8650
8651 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8652 {
8653         struct kvm_cpuid_entry2 *best;
8654         struct vcpu_vmx *vmx = to_vmx(vcpu);
8655         u32 exec_control;
8656
8657         vmx->rdtscp_enabled = false;
8658         if (vmx_rdtscp_supported()) {
8659                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8660                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8661                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8662                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8663                                 vmx->rdtscp_enabled = true;
8664                         else {
8665                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8666                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8667                                                 exec_control);
8668                         }
8669                 }
8670                 if (nested && !vmx->rdtscp_enabled)
8671                         vmx->nested.nested_vmx_secondary_ctls_high &=
8672                                 ~SECONDARY_EXEC_RDTSCP;
8673         }
8674
8675         /* Exposing INVPCID only when PCID is exposed */
8676         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8677         if (vmx_invpcid_supported() &&
8678             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
8679             guest_cpuid_has_pcid(vcpu)) {
8680                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8681                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8682                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8683                              exec_control);
8684         } else {
8685                 if (cpu_has_secondary_exec_ctrls()) {
8686                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8687                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8688                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8689                                      exec_control);
8690                 }
8691                 if (best)
8692                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
8693         }
8694 }
8695
8696 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8697 {
8698         if (func == 1 && nested)
8699                 entry->ecx |= bit(X86_FEATURE_VMX);
8700 }
8701
8702 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8703                 struct x86_exception *fault)
8704 {
8705         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8706         u32 exit_reason;
8707
8708         if (fault->error_code & PFERR_RSVD_MASK)
8709                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8710         else
8711                 exit_reason = EXIT_REASON_EPT_VIOLATION;
8712         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8713         vmcs12->guest_physical_address = fault->address;
8714 }
8715
8716 /* Callbacks for nested_ept_init_mmu_context: */
8717
8718 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8719 {
8720         /* return the page table to be shadowed - in our case, EPT12 */
8721         return get_vmcs12(vcpu)->ept_pointer;
8722 }
8723
8724 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8725 {
8726         WARN_ON(mmu_is_nested(vcpu));
8727         kvm_init_shadow_ept_mmu(vcpu,
8728                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8729                         VMX_EPT_EXECUTE_ONLY_BIT);
8730         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
8731         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
8732         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8733
8734         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
8735 }
8736
8737 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8738 {
8739         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8740 }
8741
8742 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8743                                             u16 error_code)
8744 {
8745         bool inequality, bit;
8746
8747         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8748         inequality =
8749                 (error_code & vmcs12->page_fault_error_code_mask) !=
8750                  vmcs12->page_fault_error_code_match;
8751         return inequality ^ bit;
8752 }
8753
8754 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8755                 struct x86_exception *fault)
8756 {
8757         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8758
8759         WARN_ON(!is_guest_mode(vcpu));
8760
8761         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
8762                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8763                                   vmcs_read32(VM_EXIT_INTR_INFO),
8764                                   vmcs_readl(EXIT_QUALIFICATION));
8765         else
8766                 kvm_inject_page_fault(vcpu, fault);
8767 }
8768
8769 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8770                                         struct vmcs12 *vmcs12)
8771 {
8772         struct vcpu_vmx *vmx = to_vmx(vcpu);
8773         int maxphyaddr = cpuid_maxphyaddr(vcpu);
8774
8775         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8776                 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
8777                     vmcs12->apic_access_addr >> maxphyaddr)
8778                         return false;
8779
8780                 /*
8781                  * Translate L1 physical address to host physical
8782                  * address for vmcs02. Keep the page pinned, so this
8783                  * physical address remains valid. We keep a reference
8784                  * to it so we can release it later.
8785                  */
8786                 if (vmx->nested.apic_access_page) /* shouldn't happen */
8787                         nested_release_page(vmx->nested.apic_access_page);
8788                 vmx->nested.apic_access_page =
8789                         nested_get_page(vcpu, vmcs12->apic_access_addr);
8790         }
8791
8792         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8793                 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
8794                     vmcs12->virtual_apic_page_addr >> maxphyaddr)
8795                         return false;
8796
8797                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8798                         nested_release_page(vmx->nested.virtual_apic_page);
8799                 vmx->nested.virtual_apic_page =
8800                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8801
8802                 /*
8803                  * Failing the vm entry is _not_ what the processor does
8804                  * but it's basically the only possibility we have.
8805                  * We could still enter the guest if CR8 load exits are
8806                  * enabled, CR8 store exits are enabled, and virtualize APIC
8807                  * access is disabled; in this case the processor would never
8808                  * use the TPR shadow and we could simply clear the bit from
8809                  * the execution control.  But such a configuration is useless,
8810                  * so let's keep the code simple.
8811                  */
8812                 if (!vmx->nested.virtual_apic_page)
8813                         return false;
8814         }
8815
8816         if (nested_cpu_has_posted_intr(vmcs12)) {
8817                 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
8818                     vmcs12->posted_intr_desc_addr >> maxphyaddr)
8819                         return false;
8820
8821                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
8822                         kunmap(vmx->nested.pi_desc_page);
8823                         nested_release_page(vmx->nested.pi_desc_page);
8824                 }
8825                 vmx->nested.pi_desc_page =
8826                         nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
8827                 if (!vmx->nested.pi_desc_page)
8828                         return false;
8829
8830                 vmx->nested.pi_desc =
8831                         (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
8832                 if (!vmx->nested.pi_desc) {
8833                         nested_release_page_clean(vmx->nested.pi_desc_page);
8834                         return false;
8835                 }
8836                 vmx->nested.pi_desc =
8837                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
8838                         (unsigned long)(vmcs12->posted_intr_desc_addr &
8839                         (PAGE_SIZE - 1)));
8840         }
8841
8842         return true;
8843 }
8844
8845 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8846 {
8847         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8848         struct vcpu_vmx *vmx = to_vmx(vcpu);
8849
8850         if (vcpu->arch.virtual_tsc_khz == 0)
8851                 return;
8852
8853         /* Make sure short timeouts reliably trigger an immediate vmexit.
8854          * hrtimer_start does not guarantee this. */
8855         if (preemption_timeout <= 1) {
8856                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8857                 return;
8858         }
8859
8860         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8861         preemption_timeout *= 1000000;
8862         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8863         hrtimer_start(&vmx->nested.preemption_timer,
8864                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8865 }
8866
8867 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
8868                                                 struct vmcs12 *vmcs12)
8869 {
8870         int maxphyaddr;
8871         u64 addr;
8872
8873         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8874                 return 0;
8875
8876         if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
8877                 WARN_ON(1);
8878                 return -EINVAL;
8879         }
8880         maxphyaddr = cpuid_maxphyaddr(vcpu);
8881
8882         if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
8883            ((addr + PAGE_SIZE) >> maxphyaddr))
8884                 return -EINVAL;
8885
8886         return 0;
8887 }
8888
8889 /*
8890  * Merge L0's and L1's MSR bitmap, return false to indicate that
8891  * we do not use the hardware.
8892  */
8893 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
8894                                                struct vmcs12 *vmcs12)
8895 {
8896         int msr;
8897         struct page *page;
8898         unsigned long *msr_bitmap;
8899
8900         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
8901                 return false;
8902
8903         page = nested_get_page(vcpu, vmcs12->msr_bitmap);
8904         if (!page) {
8905                 WARN_ON(1);
8906                 return false;
8907         }
8908         msr_bitmap = (unsigned long *)kmap(page);
8909         if (!msr_bitmap) {
8910                 nested_release_page_clean(page);
8911                 WARN_ON(1);
8912                 return false;
8913         }
8914
8915         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
8916                 if (nested_cpu_has_apic_reg_virt(vmcs12))
8917                         for (msr = 0x800; msr <= 0x8ff; msr++)
8918                                 nested_vmx_disable_intercept_for_msr(
8919                                         msr_bitmap,
8920                                         vmx_msr_bitmap_nested,
8921                                         msr, MSR_TYPE_R);
8922                 /* TPR is allowed */
8923                 nested_vmx_disable_intercept_for_msr(msr_bitmap,
8924                                 vmx_msr_bitmap_nested,
8925                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8926                                 MSR_TYPE_R | MSR_TYPE_W);
8927                 if (nested_cpu_has_vid(vmcs12)) {
8928                         /* EOI and self-IPI are allowed */
8929                         nested_vmx_disable_intercept_for_msr(
8930                                 msr_bitmap,
8931                                 vmx_msr_bitmap_nested,
8932                                 APIC_BASE_MSR + (APIC_EOI >> 4),
8933                                 MSR_TYPE_W);
8934                         nested_vmx_disable_intercept_for_msr(
8935                                 msr_bitmap,
8936                                 vmx_msr_bitmap_nested,
8937                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8938                                 MSR_TYPE_W);
8939                 }
8940         } else {
8941                 /*
8942                  * Enable reading intercept of all the x2apic
8943                  * MSRs. We should not rely on vmcs12 to do any
8944                  * optimizations here, it may have been modified
8945                  * by L1.
8946                  */
8947                 for (msr = 0x800; msr <= 0x8ff; msr++)
8948                         __vmx_enable_intercept_for_msr(
8949                                 vmx_msr_bitmap_nested,
8950                                 msr,
8951                                 MSR_TYPE_R);
8952
8953                 __vmx_enable_intercept_for_msr(
8954                                 vmx_msr_bitmap_nested,
8955                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8956                                 MSR_TYPE_W);
8957                 __vmx_enable_intercept_for_msr(
8958                                 vmx_msr_bitmap_nested,
8959                                 APIC_BASE_MSR + (APIC_EOI >> 4),
8960                                 MSR_TYPE_W);
8961                 __vmx_enable_intercept_for_msr(
8962                                 vmx_msr_bitmap_nested,
8963                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8964                                 MSR_TYPE_W);
8965         }
8966         kunmap(page);
8967         nested_release_page_clean(page);
8968
8969         return true;
8970 }
8971
8972 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
8973                                            struct vmcs12 *vmcs12)
8974 {
8975         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8976             !nested_cpu_has_apic_reg_virt(vmcs12) &&
8977             !nested_cpu_has_vid(vmcs12) &&
8978             !nested_cpu_has_posted_intr(vmcs12))
8979                 return 0;
8980
8981         /*
8982          * If virtualize x2apic mode is enabled,
8983          * virtualize apic access must be disabled.
8984          */
8985         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8986             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8987                 return -EINVAL;
8988
8989         /*
8990          * If virtual interrupt delivery is enabled,
8991          * we must exit on external interrupts.
8992          */
8993         if (nested_cpu_has_vid(vmcs12) &&
8994            !nested_exit_on_intr(vcpu))
8995                 return -EINVAL;
8996
8997         /*
8998          * bits 15:8 should be zero in posted_intr_nv,
8999          * the descriptor address has been already checked
9000          * in nested_get_vmcs12_pages.
9001          */
9002         if (nested_cpu_has_posted_intr(vmcs12) &&
9003            (!nested_cpu_has_vid(vmcs12) ||
9004             !nested_exit_intr_ack_set(vcpu) ||
9005             vmcs12->posted_intr_nv & 0xff00))
9006                 return -EINVAL;
9007
9008         /* tpr shadow is needed by all apicv features. */
9009         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9010                 return -EINVAL;
9011
9012         return 0;
9013 }
9014
9015 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9016                                        unsigned long count_field,
9017                                        unsigned long addr_field)
9018 {
9019         int maxphyaddr;
9020         u64 count, addr;
9021
9022         if (vmcs12_read_any(vcpu, count_field, &count) ||
9023             vmcs12_read_any(vcpu, addr_field, &addr)) {
9024                 WARN_ON(1);
9025                 return -EINVAL;
9026         }
9027         if (count == 0)
9028                 return 0;
9029         maxphyaddr = cpuid_maxphyaddr(vcpu);
9030         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9031             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9032                 pr_warn_ratelimited(
9033                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9034                         addr_field, maxphyaddr, count, addr);
9035                 return -EINVAL;
9036         }
9037         return 0;
9038 }
9039
9040 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9041                                                 struct vmcs12 *vmcs12)
9042 {
9043         if (vmcs12->vm_exit_msr_load_count == 0 &&
9044             vmcs12->vm_exit_msr_store_count == 0 &&
9045             vmcs12->vm_entry_msr_load_count == 0)
9046                 return 0; /* Fast path */
9047         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9048                                         VM_EXIT_MSR_LOAD_ADDR) ||
9049             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9050                                         VM_EXIT_MSR_STORE_ADDR) ||
9051             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9052                                         VM_ENTRY_MSR_LOAD_ADDR))
9053                 return -EINVAL;
9054         return 0;
9055 }
9056
9057 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9058                                        struct vmx_msr_entry *e)
9059 {
9060         /* x2APIC MSR accesses are not allowed */
9061         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9062                 return -EINVAL;
9063         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9064             e->index == MSR_IA32_UCODE_REV)
9065                 return -EINVAL;
9066         if (e->reserved != 0)
9067                 return -EINVAL;
9068         return 0;
9069 }
9070
9071 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9072                                      struct vmx_msr_entry *e)
9073 {
9074         if (e->index == MSR_FS_BASE ||
9075             e->index == MSR_GS_BASE ||
9076             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9077             nested_vmx_msr_check_common(vcpu, e))
9078                 return -EINVAL;
9079         return 0;
9080 }
9081
9082 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9083                                       struct vmx_msr_entry *e)
9084 {
9085         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9086             nested_vmx_msr_check_common(vcpu, e))
9087                 return -EINVAL;
9088         return 0;
9089 }
9090
9091 /*
9092  * Load guest's/host's msr at nested entry/exit.
9093  * return 0 for success, entry index for failure.
9094  */
9095 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9096 {
9097         u32 i;
9098         struct vmx_msr_entry e;
9099         struct msr_data msr;
9100
9101         msr.host_initiated = false;
9102         for (i = 0; i < count; i++) {
9103                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9104                                         &e, sizeof(e))) {
9105                         pr_warn_ratelimited(
9106                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9107                                 __func__, i, gpa + i * sizeof(e));
9108                         goto fail;
9109                 }
9110                 if (nested_vmx_load_msr_check(vcpu, &e)) {
9111                         pr_warn_ratelimited(
9112                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9113                                 __func__, i, e.index, e.reserved);
9114                         goto fail;
9115                 }
9116                 msr.index = e.index;
9117                 msr.data = e.value;
9118                 if (kvm_set_msr(vcpu, &msr)) {
9119                         pr_warn_ratelimited(
9120                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9121                                 __func__, i, e.index, e.value);
9122                         goto fail;
9123                 }
9124         }
9125         return 0;
9126 fail:
9127         return i + 1;
9128 }
9129
9130 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9131 {
9132         u32 i;
9133         struct vmx_msr_entry e;
9134
9135         for (i = 0; i < count; i++) {
9136                 struct msr_data msr_info;
9137                 if (kvm_vcpu_read_guest(vcpu,
9138                                         gpa + i * sizeof(e),
9139                                         &e, 2 * sizeof(u32))) {
9140                         pr_warn_ratelimited(
9141                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9142                                 __func__, i, gpa + i * sizeof(e));
9143                         return -EINVAL;
9144                 }
9145                 if (nested_vmx_store_msr_check(vcpu, &e)) {
9146                         pr_warn_ratelimited(
9147                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9148                                 __func__, i, e.index, e.reserved);
9149                         return -EINVAL;
9150                 }
9151                 msr_info.host_initiated = false;
9152                 msr_info.index = e.index;
9153                 if (kvm_get_msr(vcpu, &msr_info)) {
9154                         pr_warn_ratelimited(
9155                                 "%s cannot read MSR (%u, 0x%x)\n",
9156                                 __func__, i, e.index);
9157                         return -EINVAL;
9158                 }
9159                 if (kvm_vcpu_write_guest(vcpu,
9160                                          gpa + i * sizeof(e) +
9161                                              offsetof(struct vmx_msr_entry, value),
9162                                          &msr_info.data, sizeof(msr_info.data))) {
9163                         pr_warn_ratelimited(
9164                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9165                                 __func__, i, e.index, msr_info.data);
9166                         return -EINVAL;
9167                 }
9168         }
9169         return 0;
9170 }
9171
9172 /*
9173  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9174  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9175  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9176  * guest in a way that will both be appropriate to L1's requests, and our
9177  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9178  * function also has additional necessary side-effects, like setting various
9179  * vcpu->arch fields.
9180  */
9181 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9182 {
9183         struct vcpu_vmx *vmx = to_vmx(vcpu);
9184         u32 exec_control;
9185
9186         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9187         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9188         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9189         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9190         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9191         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9192         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9193         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9194         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9195         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9196         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9197         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9198         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9199         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9200         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9201         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9202         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9203         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9204         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9205         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9206         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9207         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9208         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9209         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9210         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9211         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9212         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9213         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9214         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9215         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9216         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9217         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9218         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9219         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9220         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9221         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9222
9223         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9224                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9225                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9226         } else {
9227                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9228                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9229         }
9230         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9231                 vmcs12->vm_entry_intr_info_field);
9232         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9233                 vmcs12->vm_entry_exception_error_code);
9234         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9235                 vmcs12->vm_entry_instruction_len);
9236         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9237                 vmcs12->guest_interruptibility_info);
9238         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9239         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9240         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9241                 vmcs12->guest_pending_dbg_exceptions);
9242         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9243         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9244
9245         if (nested_cpu_has_xsaves(vmcs12))
9246                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9247         vmcs_write64(VMCS_LINK_POINTER, -1ull);
9248
9249         exec_control = vmcs12->pin_based_vm_exec_control;
9250         exec_control |= vmcs_config.pin_based_exec_ctrl;
9251         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9252
9253         if (nested_cpu_has_posted_intr(vmcs12)) {
9254                 /*
9255                  * Note that we use L0's vector here and in
9256                  * vmx_deliver_nested_posted_interrupt.
9257                  */
9258                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9259                 vmx->nested.pi_pending = false;
9260                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9261                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9262                         page_to_phys(vmx->nested.pi_desc_page) +
9263                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9264                         (PAGE_SIZE - 1)));
9265         } else
9266                 exec_control &= ~PIN_BASED_POSTED_INTR;
9267
9268         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9269
9270         vmx->nested.preemption_timer_expired = false;
9271         if (nested_cpu_has_preemption_timer(vmcs12))
9272                 vmx_start_preemption_timer(vcpu);
9273
9274         /*
9275          * Whether page-faults are trapped is determined by a combination of
9276          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9277          * If enable_ept, L0 doesn't care about page faults and we should
9278          * set all of these to L1's desires. However, if !enable_ept, L0 does
9279          * care about (at least some) page faults, and because it is not easy
9280          * (if at all possible?) to merge L0 and L1's desires, we simply ask
9281          * to exit on each and every L2 page fault. This is done by setting
9282          * MASK=MATCH=0 and (see below) EB.PF=1.
9283          * Note that below we don't need special code to set EB.PF beyond the
9284          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9285          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9286          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9287          *
9288          * A problem with this approach (when !enable_ept) is that L1 may be
9289          * injected with more page faults than it asked for. This could have
9290          * caused problems, but in practice existing hypervisors don't care.
9291          * To fix this, we will need to emulate the PFEC checking (on the L1
9292          * page tables), using walk_addr(), when injecting PFs to L1.
9293          */
9294         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9295                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9296         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9297                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9298
9299         if (cpu_has_secondary_exec_ctrls()) {
9300                 exec_control = vmx_secondary_exec_control(vmx);
9301                 if (!vmx->rdtscp_enabled)
9302                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
9303                 /* Take the following fields only from vmcs12 */
9304                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9305                                   SECONDARY_EXEC_RDTSCP |
9306                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9307                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
9308                 if (nested_cpu_has(vmcs12,
9309                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9310                         exec_control |= vmcs12->secondary_vm_exec_control;
9311
9312                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9313                         /*
9314                          * If translation failed, no matter: This feature asks
9315                          * to exit when accessing the given address, and if it
9316                          * can never be accessed, this feature won't do
9317                          * anything anyway.
9318                          */
9319                         if (!vmx->nested.apic_access_page)
9320                                 exec_control &=
9321                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9322                         else
9323                                 vmcs_write64(APIC_ACCESS_ADDR,
9324                                   page_to_phys(vmx->nested.apic_access_page));
9325                 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9326                             (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))) {
9327                         exec_control |=
9328                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9329                         kvm_vcpu_reload_apic_access_page(vcpu);
9330                 }
9331
9332                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9333                         vmcs_write64(EOI_EXIT_BITMAP0,
9334                                 vmcs12->eoi_exit_bitmap0);
9335                         vmcs_write64(EOI_EXIT_BITMAP1,
9336                                 vmcs12->eoi_exit_bitmap1);
9337                         vmcs_write64(EOI_EXIT_BITMAP2,
9338                                 vmcs12->eoi_exit_bitmap2);
9339                         vmcs_write64(EOI_EXIT_BITMAP3,
9340                                 vmcs12->eoi_exit_bitmap3);
9341                         vmcs_write16(GUEST_INTR_STATUS,
9342                                 vmcs12->guest_intr_status);
9343                 }
9344
9345                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9346         }
9347
9348
9349         /*
9350          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9351          * Some constant fields are set here by vmx_set_constant_host_state().
9352          * Other fields are different per CPU, and will be set later when
9353          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9354          */
9355         vmx_set_constant_host_state(vmx);
9356
9357         /*
9358          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9359          * entry, but only if the current (host) sp changed from the value
9360          * we wrote last (vmx->host_rsp). This cache is no longer relevant
9361          * if we switch vmcs, and rather than hold a separate cache per vmcs,
9362          * here we just force the write to happen on entry.
9363          */
9364         vmx->host_rsp = 0;
9365
9366         exec_control = vmx_exec_control(vmx); /* L0's desires */
9367         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9368         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9369         exec_control &= ~CPU_BASED_TPR_SHADOW;
9370         exec_control |= vmcs12->cpu_based_vm_exec_control;
9371
9372         if (exec_control & CPU_BASED_TPR_SHADOW) {
9373                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9374                                 page_to_phys(vmx->nested.virtual_apic_page));
9375                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9376         }
9377
9378         if (cpu_has_vmx_msr_bitmap() &&
9379             exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9380                 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9381                 /* MSR_BITMAP will be set by following vmx_set_efer. */
9382         } else
9383                 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9384
9385         /*
9386          * Merging of IO bitmap not currently supported.
9387          * Rather, exit every time.
9388          */
9389         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9390         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9391
9392         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9393
9394         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9395          * bitwise-or of what L1 wants to trap for L2, and what we want to
9396          * trap. Note that CR0.TS also needs updating - we do this later.
9397          */
9398         update_exception_bitmap(vcpu);
9399         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9400         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9401
9402         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9403          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9404          * bits are further modified by vmx_set_efer() below.
9405          */
9406         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9407
9408         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9409          * emulated by vmx_set_efer(), below.
9410          */
9411         vm_entry_controls_init(vmx, 
9412                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9413                         ~VM_ENTRY_IA32E_MODE) |
9414                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9415
9416         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9417                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9418                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9419         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9420                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9421
9422
9423         set_cr4_guest_host_mask(vmx);
9424
9425         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9426                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9427
9428         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9429                 vmcs_write64(TSC_OFFSET,
9430                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9431         else
9432                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9433
9434         if (enable_vpid) {
9435                 /*
9436                  * Trivially support vpid by letting L2s share their parent
9437                  * L1's vpid. TODO: move to a more elaborate solution, giving
9438                  * each L2 its own vpid and exposing the vpid feature to L1.
9439                  */
9440                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9441                 vmx_flush_tlb(vcpu);
9442         }
9443
9444         if (nested_cpu_has_ept(vmcs12)) {
9445                 kvm_mmu_unload(vcpu);
9446                 nested_ept_init_mmu_context(vcpu);
9447         }
9448
9449         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9450                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9451         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9452                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9453         else
9454                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9455         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9456         vmx_set_efer(vcpu, vcpu->arch.efer);
9457
9458         /*
9459          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9460          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9461          * The CR0_READ_SHADOW is what L2 should have expected to read given
9462          * the specifications by L1; It's not enough to take
9463          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9464          * have more bits than L1 expected.
9465          */
9466         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9467         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9468
9469         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9470         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9471
9472         /* shadow page tables on either EPT or shadow page tables */
9473         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9474         kvm_mmu_reset_context(vcpu);
9475
9476         if (!enable_ept)
9477                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9478
9479         /*
9480          * L1 may access the L2's PDPTR, so save them to construct vmcs12
9481          */
9482         if (enable_ept) {
9483                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9484                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9485                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9486                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9487         }
9488
9489         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9490         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9491 }
9492
9493 /*
9494  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9495  * for running an L2 nested guest.
9496  */
9497 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9498 {
9499         struct vmcs12 *vmcs12;
9500         struct vcpu_vmx *vmx = to_vmx(vcpu);
9501         int cpu;
9502         struct loaded_vmcs *vmcs02;
9503         bool ia32e;
9504         u32 msr_entry_idx;
9505
9506         if (!nested_vmx_check_permission(vcpu) ||
9507             !nested_vmx_check_vmcs12(vcpu))
9508                 return 1;
9509
9510         skip_emulated_instruction(vcpu);
9511         vmcs12 = get_vmcs12(vcpu);
9512
9513         if (enable_shadow_vmcs)
9514                 copy_shadow_to_vmcs12(vmx);
9515
9516         /*
9517          * The nested entry process starts with enforcing various prerequisites
9518          * on vmcs12 as required by the Intel SDM, and act appropriately when
9519          * they fail: As the SDM explains, some conditions should cause the
9520          * instruction to fail, while others will cause the instruction to seem
9521          * to succeed, but return an EXIT_REASON_INVALID_STATE.
9522          * To speed up the normal (success) code path, we should avoid checking
9523          * for misconfigurations which will anyway be caught by the processor
9524          * when using the merged vmcs02.
9525          */
9526         if (vmcs12->launch_state == launch) {
9527                 nested_vmx_failValid(vcpu,
9528                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9529                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9530                 return 1;
9531         }
9532
9533         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9534             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9535                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9536                 return 1;
9537         }
9538
9539         if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9540                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9541                 return 1;
9542         }
9543
9544         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9545                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9546                 return 1;
9547         }
9548
9549         if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9550                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9551                 return 1;
9552         }
9553
9554         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9555                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9556                 return 1;
9557         }
9558
9559         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9560                                 vmx->nested.nested_vmx_true_procbased_ctls_low,
9561                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
9562             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9563                                 vmx->nested.nested_vmx_secondary_ctls_low,
9564                                 vmx->nested.nested_vmx_secondary_ctls_high) ||
9565             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9566                                 vmx->nested.nested_vmx_pinbased_ctls_low,
9567                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9568             !vmx_control_verify(vmcs12->vm_exit_controls,
9569                                 vmx->nested.nested_vmx_true_exit_ctls_low,
9570                                 vmx->nested.nested_vmx_exit_ctls_high) ||
9571             !vmx_control_verify(vmcs12->vm_entry_controls,
9572                                 vmx->nested.nested_vmx_true_entry_ctls_low,
9573                                 vmx->nested.nested_vmx_entry_ctls_high))
9574         {
9575                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9576                 return 1;
9577         }
9578
9579         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9580             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9581                 nested_vmx_failValid(vcpu,
9582                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9583                 return 1;
9584         }
9585
9586         if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9587             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9588                 nested_vmx_entry_failure(vcpu, vmcs12,
9589                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9590                 return 1;
9591         }
9592         if (vmcs12->vmcs_link_pointer != -1ull) {
9593                 nested_vmx_entry_failure(vcpu, vmcs12,
9594                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9595                 return 1;
9596         }
9597
9598         /*
9599          * If the load IA32_EFER VM-entry control is 1, the following checks
9600          * are performed on the field for the IA32_EFER MSR:
9601          * - Bits reserved in the IA32_EFER MSR must be 0.
9602          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9603          *   the IA-32e mode guest VM-exit control. It must also be identical
9604          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9605          *   CR0.PG) is 1.
9606          */
9607         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9608                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9609                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9610                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9611                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9612                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9613                         nested_vmx_entry_failure(vcpu, vmcs12,
9614                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9615                         return 1;
9616                 }
9617         }
9618
9619         /*
9620          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9621          * IA32_EFER MSR must be 0 in the field for that register. In addition,
9622          * the values of the LMA and LME bits in the field must each be that of
9623          * the host address-space size VM-exit control.
9624          */
9625         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9626                 ia32e = (vmcs12->vm_exit_controls &
9627                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9628                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9629                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9630                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9631                         nested_vmx_entry_failure(vcpu, vmcs12,
9632                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9633                         return 1;
9634                 }
9635         }
9636
9637         /*
9638          * We're finally done with prerequisite checking, and can start with
9639          * the nested entry.
9640          */
9641
9642         vmcs02 = nested_get_current_vmcs02(vmx);
9643         if (!vmcs02)
9644                 return -ENOMEM;
9645
9646         enter_guest_mode(vcpu);
9647
9648         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9649
9650         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9651                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9652
9653         cpu = get_cpu();
9654         vmx->loaded_vmcs = vmcs02;
9655         vmx_vcpu_put(vcpu);
9656         vmx_vcpu_load(vcpu, cpu);
9657         vcpu->cpu = cpu;
9658         put_cpu();
9659
9660         vmx_segment_cache_clear(vmx);
9661
9662         prepare_vmcs02(vcpu, vmcs12);
9663
9664         msr_entry_idx = nested_vmx_load_msr(vcpu,
9665                                             vmcs12->vm_entry_msr_load_addr,
9666                                             vmcs12->vm_entry_msr_load_count);
9667         if (msr_entry_idx) {
9668                 leave_guest_mode(vcpu);
9669                 vmx_load_vmcs01(vcpu);
9670                 nested_vmx_entry_failure(vcpu, vmcs12,
9671                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9672                 return 1;
9673         }
9674
9675         vmcs12->launch_state = 1;
9676
9677         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
9678                 return kvm_vcpu_halt(vcpu);
9679
9680         vmx->nested.nested_run_pending = 1;
9681
9682         /*
9683          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9684          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9685          * returned as far as L1 is concerned. It will only return (and set
9686          * the success flag) when L2 exits (see nested_vmx_vmexit()).
9687          */
9688         return 1;
9689 }
9690
9691 /*
9692  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9693  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9694  * This function returns the new value we should put in vmcs12.guest_cr0.
9695  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9696  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9697  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9698  *     didn't trap the bit, because if L1 did, so would L0).
9699  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9700  *     been modified by L2, and L1 knows it. So just leave the old value of
9701  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9702  *     isn't relevant, because if L0 traps this bit it can set it to anything.
9703  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9704  *     changed these bits, and therefore they need to be updated, but L0
9705  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9706  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9707  */
9708 static inline unsigned long
9709 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9710 {
9711         return
9712         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9713         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9714         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9715                         vcpu->arch.cr0_guest_owned_bits));
9716 }
9717
9718 static inline unsigned long
9719 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9720 {
9721         return
9722         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9723         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9724         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9725                         vcpu->arch.cr4_guest_owned_bits));
9726 }
9727
9728 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9729                                        struct vmcs12 *vmcs12)
9730 {
9731         u32 idt_vectoring;
9732         unsigned int nr;
9733
9734         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
9735                 nr = vcpu->arch.exception.nr;
9736                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9737
9738                 if (kvm_exception_is_soft(nr)) {
9739                         vmcs12->vm_exit_instruction_len =
9740                                 vcpu->arch.event_exit_inst_len;
9741                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
9742                 } else
9743                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
9744
9745                 if (vcpu->arch.exception.has_error_code) {
9746                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
9747                         vmcs12->idt_vectoring_error_code =
9748                                 vcpu->arch.exception.error_code;
9749                 }
9750
9751                 vmcs12->idt_vectoring_info_field = idt_vectoring;
9752         } else if (vcpu->arch.nmi_injected) {
9753                 vmcs12->idt_vectoring_info_field =
9754                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
9755         } else if (vcpu->arch.interrupt.pending) {
9756                 nr = vcpu->arch.interrupt.nr;
9757                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9758
9759                 if (vcpu->arch.interrupt.soft) {
9760                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
9761                         vmcs12->vm_entry_instruction_len =
9762                                 vcpu->arch.event_exit_inst_len;
9763                 } else
9764                         idt_vectoring |= INTR_TYPE_EXT_INTR;
9765
9766                 vmcs12->idt_vectoring_info_field = idt_vectoring;
9767         }
9768 }
9769
9770 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
9771 {
9772         struct vcpu_vmx *vmx = to_vmx(vcpu);
9773
9774         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
9775             vmx->nested.preemption_timer_expired) {
9776                 if (vmx->nested.nested_run_pending)
9777                         return -EBUSY;
9778                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
9779                 return 0;
9780         }
9781
9782         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
9783                 if (vmx->nested.nested_run_pending ||
9784                     vcpu->arch.interrupt.pending)
9785                         return -EBUSY;
9786                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9787                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
9788                                   INTR_INFO_VALID_MASK, 0);
9789                 /*
9790                  * The NMI-triggered VM exit counts as injection:
9791                  * clear this one and block further NMIs.
9792                  */
9793                 vcpu->arch.nmi_pending = 0;
9794                 vmx_set_nmi_mask(vcpu, true);
9795                 return 0;
9796         }
9797
9798         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
9799             nested_exit_on_intr(vcpu)) {
9800                 if (vmx->nested.nested_run_pending)
9801                         return -EBUSY;
9802                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
9803                 return 0;
9804         }
9805
9806         return vmx_complete_nested_posted_interrupt(vcpu);
9807 }
9808
9809 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
9810 {
9811         ktime_t remaining =
9812                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
9813         u64 value;
9814
9815         if (ktime_to_ns(remaining) <= 0)
9816                 return 0;
9817
9818         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
9819         do_div(value, 1000000);
9820         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9821 }
9822
9823 /*
9824  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
9825  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
9826  * and this function updates it to reflect the changes to the guest state while
9827  * L2 was running (and perhaps made some exits which were handled directly by L0
9828  * without going back to L1), and to reflect the exit reason.
9829  * Note that we do not have to copy here all VMCS fields, just those that
9830  * could have changed by the L2 guest or the exit - i.e., the guest-state and
9831  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
9832  * which already writes to vmcs12 directly.
9833  */
9834 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9835                            u32 exit_reason, u32 exit_intr_info,
9836                            unsigned long exit_qualification)
9837 {
9838         /* update guest state fields: */
9839         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
9840         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
9841
9842         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
9843         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
9844         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
9845
9846         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
9847         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
9848         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
9849         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
9850         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
9851         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
9852         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
9853         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
9854         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
9855         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
9856         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
9857         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
9858         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
9859         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
9860         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
9861         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
9862         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
9863         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
9864         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
9865         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
9866         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
9867         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
9868         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
9869         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
9870         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
9871         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
9872         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
9873         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
9874         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
9875         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
9876         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
9877         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
9878         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
9879         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
9880         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
9881         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
9882
9883         vmcs12->guest_interruptibility_info =
9884                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
9885         vmcs12->guest_pending_dbg_exceptions =
9886                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
9887         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
9888                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
9889         else
9890                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
9891
9892         if (nested_cpu_has_preemption_timer(vmcs12)) {
9893                 if (vmcs12->vm_exit_controls &
9894                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
9895                         vmcs12->vmx_preemption_timer_value =
9896                                 vmx_get_preemption_timer_value(vcpu);
9897                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
9898         }
9899
9900         /*
9901          * In some cases (usually, nested EPT), L2 is allowed to change its
9902          * own CR3 without exiting. If it has changed it, we must keep it.
9903          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
9904          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
9905          *
9906          * Additionally, restore L2's PDPTR to vmcs12.
9907          */
9908         if (enable_ept) {
9909                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
9910                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
9911                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
9912                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
9913                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
9914         }
9915
9916         if (nested_cpu_has_vid(vmcs12))
9917                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
9918
9919         vmcs12->vm_entry_controls =
9920                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
9921                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
9922
9923         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
9924                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
9925                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9926         }
9927
9928         /* TODO: These cannot have changed unless we have MSR bitmaps and
9929          * the relevant bit asks not to trap the change */
9930         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
9931                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
9932         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
9933                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
9934         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
9935         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
9936         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
9937         if (vmx_mpx_supported())
9938                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
9939         if (nested_cpu_has_xsaves(vmcs12))
9940                 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
9941
9942         /* update exit information fields: */
9943
9944         vmcs12->vm_exit_reason = exit_reason;
9945         vmcs12->exit_qualification = exit_qualification;
9946
9947         vmcs12->vm_exit_intr_info = exit_intr_info;
9948         if ((vmcs12->vm_exit_intr_info &
9949              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9950             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
9951                 vmcs12->vm_exit_intr_error_code =
9952                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9953         vmcs12->idt_vectoring_info_field = 0;
9954         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
9955         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9956
9957         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
9958                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
9959                  * instead of reading the real value. */
9960                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
9961
9962                 /*
9963                  * Transfer the event that L0 or L1 may wanted to inject into
9964                  * L2 to IDT_VECTORING_INFO_FIELD.
9965                  */
9966                 vmcs12_save_pending_event(vcpu, vmcs12);
9967         }
9968
9969         /*
9970          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9971          * preserved above and would only end up incorrectly in L1.
9972          */
9973         vcpu->arch.nmi_injected = false;
9974         kvm_clear_exception_queue(vcpu);
9975         kvm_clear_interrupt_queue(vcpu);
9976 }
9977
9978 /*
9979  * A part of what we need to when the nested L2 guest exits and we want to
9980  * run its L1 parent, is to reset L1's guest state to the host state specified
9981  * in vmcs12.
9982  * This function is to be called not only on normal nested exit, but also on
9983  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
9984  * Failures During or After Loading Guest State").
9985  * This function should be called when the active VMCS is L1's (vmcs01).
9986  */
9987 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
9988                                    struct vmcs12 *vmcs12)
9989 {
9990         struct kvm_segment seg;
9991
9992         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
9993                 vcpu->arch.efer = vmcs12->host_ia32_efer;
9994         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9995                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9996         else
9997                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9998         vmx_set_efer(vcpu, vcpu->arch.efer);
9999
10000         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10001         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10002         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10003         /*
10004          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10005          * actually changed, because it depends on the current state of
10006          * fpu_active (which may have changed).
10007          * Note that vmx_set_cr0 refers to efer set above.
10008          */
10009         vmx_set_cr0(vcpu, vmcs12->host_cr0);
10010         /*
10011          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10012          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10013          * but we also need to update cr0_guest_host_mask and exception_bitmap.
10014          */
10015         update_exception_bitmap(vcpu);
10016         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10017         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10018
10019         /*
10020          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10021          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10022          */
10023         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10024         kvm_set_cr4(vcpu, vmcs12->host_cr4);
10025
10026         nested_ept_uninit_mmu_context(vcpu);
10027
10028         kvm_set_cr3(vcpu, vmcs12->host_cr3);
10029         kvm_mmu_reset_context(vcpu);
10030
10031         if (!enable_ept)
10032                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10033
10034         if (enable_vpid) {
10035                 /*
10036                  * Trivially support vpid by letting L2s share their parent
10037                  * L1's vpid. TODO: move to a more elaborate solution, giving
10038                  * each L2 its own vpid and exposing the vpid feature to L1.
10039                  */
10040                 vmx_flush_tlb(vcpu);
10041         }
10042
10043
10044         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10045         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10046         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10047         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10048         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10049
10050         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10051         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10052                 vmcs_write64(GUEST_BNDCFGS, 0);
10053
10054         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10055                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10056                 vcpu->arch.pat = vmcs12->host_ia32_pat;
10057         }
10058         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10059                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10060                         vmcs12->host_ia32_perf_global_ctrl);
10061
10062         /* Set L1 segment info according to Intel SDM
10063             27.5.2 Loading Host Segment and Descriptor-Table Registers */
10064         seg = (struct kvm_segment) {
10065                 .base = 0,
10066                 .limit = 0xFFFFFFFF,
10067                 .selector = vmcs12->host_cs_selector,
10068                 .type = 11,
10069                 .present = 1,
10070                 .s = 1,
10071                 .g = 1
10072         };
10073         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10074                 seg.l = 1;
10075         else
10076                 seg.db = 1;
10077         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10078         seg = (struct kvm_segment) {
10079                 .base = 0,
10080                 .limit = 0xFFFFFFFF,
10081                 .type = 3,
10082                 .present = 1,
10083                 .s = 1,
10084                 .db = 1,
10085                 .g = 1
10086         };
10087         seg.selector = vmcs12->host_ds_selector;
10088         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10089         seg.selector = vmcs12->host_es_selector;
10090         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10091         seg.selector = vmcs12->host_ss_selector;
10092         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10093         seg.selector = vmcs12->host_fs_selector;
10094         seg.base = vmcs12->host_fs_base;
10095         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10096         seg.selector = vmcs12->host_gs_selector;
10097         seg.base = vmcs12->host_gs_base;
10098         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10099         seg = (struct kvm_segment) {
10100                 .base = vmcs12->host_tr_base,
10101                 .limit = 0x67,
10102                 .selector = vmcs12->host_tr_selector,
10103                 .type = 11,
10104                 .present = 1
10105         };
10106         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10107
10108         kvm_set_dr(vcpu, 7, 0x400);
10109         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10110
10111         if (cpu_has_vmx_msr_bitmap())
10112                 vmx_set_msr_bitmap(vcpu);
10113
10114         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10115                                 vmcs12->vm_exit_msr_load_count))
10116                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10117 }
10118
10119 /*
10120  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10121  * and modify vmcs12 to make it see what it would expect to see there if
10122  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10123  */
10124 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10125                               u32 exit_intr_info,
10126                               unsigned long exit_qualification)
10127 {
10128         struct vcpu_vmx *vmx = to_vmx(vcpu);
10129         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10130
10131         /* trying to cancel vmlaunch/vmresume is a bug */
10132         WARN_ON_ONCE(vmx->nested.nested_run_pending);
10133
10134         leave_guest_mode(vcpu);
10135         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10136                        exit_qualification);
10137
10138         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10139                                  vmcs12->vm_exit_msr_store_count))
10140                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10141
10142         vmx_load_vmcs01(vcpu);
10143
10144         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10145             && nested_exit_intr_ack_set(vcpu)) {
10146                 int irq = kvm_cpu_get_interrupt(vcpu);
10147                 WARN_ON(irq < 0);
10148                 vmcs12->vm_exit_intr_info = irq |
10149                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10150         }
10151
10152         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10153                                        vmcs12->exit_qualification,
10154                                        vmcs12->idt_vectoring_info_field,
10155                                        vmcs12->vm_exit_intr_info,
10156                                        vmcs12->vm_exit_intr_error_code,
10157                                        KVM_ISA_VMX);
10158
10159         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10160         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10161         vmx_segment_cache_clear(vmx);
10162
10163         /* if no vmcs02 cache requested, remove the one we used */
10164         if (VMCS02_POOL_SIZE == 0)
10165                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10166
10167         load_vmcs12_host_state(vcpu, vmcs12);
10168
10169         /* Update TSC_OFFSET if TSC was changed while L2 ran */
10170         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10171
10172         /* This is needed for same reason as it was needed in prepare_vmcs02 */
10173         vmx->host_rsp = 0;
10174
10175         /* Unpin physical memory we referred to in vmcs02 */
10176         if (vmx->nested.apic_access_page) {
10177                 nested_release_page(vmx->nested.apic_access_page);
10178                 vmx->nested.apic_access_page = NULL;
10179         }
10180         if (vmx->nested.virtual_apic_page) {
10181                 nested_release_page(vmx->nested.virtual_apic_page);
10182                 vmx->nested.virtual_apic_page = NULL;
10183         }
10184         if (vmx->nested.pi_desc_page) {
10185                 kunmap(vmx->nested.pi_desc_page);
10186                 nested_release_page(vmx->nested.pi_desc_page);
10187                 vmx->nested.pi_desc_page = NULL;
10188                 vmx->nested.pi_desc = NULL;
10189         }
10190
10191         /*
10192          * We are now running in L2, mmu_notifier will force to reload the
10193          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10194          */
10195         kvm_vcpu_reload_apic_access_page(vcpu);
10196
10197         /*
10198          * Exiting from L2 to L1, we're now back to L1 which thinks it just
10199          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10200          * success or failure flag accordingly.
10201          */
10202         if (unlikely(vmx->fail)) {
10203                 vmx->fail = 0;
10204                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10205         } else
10206                 nested_vmx_succeed(vcpu);
10207         if (enable_shadow_vmcs)
10208                 vmx->nested.sync_shadow_vmcs = true;
10209
10210         /* in case we halted in L2 */
10211         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10212 }
10213
10214 /*
10215  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10216  */
10217 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10218 {
10219         if (is_guest_mode(vcpu))
10220                 nested_vmx_vmexit(vcpu, -1, 0, 0);
10221         free_nested(to_vmx(vcpu));
10222 }
10223
10224 /*
10225  * L1's failure to enter L2 is a subset of a normal exit, as explained in
10226  * 23.7 "VM-entry failures during or after loading guest state" (this also
10227  * lists the acceptable exit-reason and exit-qualification parameters).
10228  * It should only be called before L2 actually succeeded to run, and when
10229  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10230  */
10231 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10232                         struct vmcs12 *vmcs12,
10233                         u32 reason, unsigned long qualification)
10234 {
10235         load_vmcs12_host_state(vcpu, vmcs12);
10236         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10237         vmcs12->exit_qualification = qualification;
10238         nested_vmx_succeed(vcpu);
10239         if (enable_shadow_vmcs)
10240                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10241 }
10242
10243 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10244                                struct x86_instruction_info *info,
10245                                enum x86_intercept_stage stage)
10246 {
10247         return X86EMUL_CONTINUE;
10248 }
10249
10250 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10251 {
10252         if (ple_gap)
10253                 shrink_ple_window(vcpu);
10254 }
10255
10256 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10257                                      struct kvm_memory_slot *slot)
10258 {
10259         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10260         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10261 }
10262
10263 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10264                                        struct kvm_memory_slot *slot)
10265 {
10266         kvm_mmu_slot_set_dirty(kvm, slot);
10267 }
10268
10269 static void vmx_flush_log_dirty(struct kvm *kvm)
10270 {
10271         kvm_flush_pml_buffers(kvm);
10272 }
10273
10274 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10275                                            struct kvm_memory_slot *memslot,
10276                                            gfn_t offset, unsigned long mask)
10277 {
10278         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10279 }
10280
10281 static struct kvm_x86_ops vmx_x86_ops = {
10282         .cpu_has_kvm_support = cpu_has_kvm_support,
10283         .disabled_by_bios = vmx_disabled_by_bios,
10284         .hardware_setup = hardware_setup,
10285         .hardware_unsetup = hardware_unsetup,
10286         .check_processor_compatibility = vmx_check_processor_compat,
10287         .hardware_enable = hardware_enable,
10288         .hardware_disable = hardware_disable,
10289         .cpu_has_accelerated_tpr = report_flexpriority,
10290         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10291
10292         .vcpu_create = vmx_create_vcpu,
10293         .vcpu_free = vmx_free_vcpu,
10294         .vcpu_reset = vmx_vcpu_reset,
10295
10296         .prepare_guest_switch = vmx_save_host_state,
10297         .vcpu_load = vmx_vcpu_load,
10298         .vcpu_put = vmx_vcpu_put,
10299
10300         .update_db_bp_intercept = update_exception_bitmap,
10301         .get_msr = vmx_get_msr,
10302         .set_msr = vmx_set_msr,
10303         .get_segment_base = vmx_get_segment_base,
10304         .get_segment = vmx_get_segment,
10305         .set_segment = vmx_set_segment,
10306         .get_cpl = vmx_get_cpl,
10307         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10308         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10309         .decache_cr3 = vmx_decache_cr3,
10310         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10311         .set_cr0 = vmx_set_cr0,
10312         .set_cr3 = vmx_set_cr3,
10313         .set_cr4 = vmx_set_cr4,
10314         .set_efer = vmx_set_efer,
10315         .get_idt = vmx_get_idt,
10316         .set_idt = vmx_set_idt,
10317         .get_gdt = vmx_get_gdt,
10318         .set_gdt = vmx_set_gdt,
10319         .get_dr6 = vmx_get_dr6,
10320         .set_dr6 = vmx_set_dr6,
10321         .set_dr7 = vmx_set_dr7,
10322         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10323         .cache_reg = vmx_cache_reg,
10324         .get_rflags = vmx_get_rflags,
10325         .set_rflags = vmx_set_rflags,
10326         .fpu_activate = vmx_fpu_activate,
10327         .fpu_deactivate = vmx_fpu_deactivate,
10328
10329         .tlb_flush = vmx_flush_tlb,
10330
10331         .run = vmx_vcpu_run,
10332         .handle_exit = vmx_handle_exit,
10333         .skip_emulated_instruction = skip_emulated_instruction,
10334         .set_interrupt_shadow = vmx_set_interrupt_shadow,
10335         .get_interrupt_shadow = vmx_get_interrupt_shadow,
10336         .patch_hypercall = vmx_patch_hypercall,
10337         .set_irq = vmx_inject_irq,
10338         .set_nmi = vmx_inject_nmi,
10339         .queue_exception = vmx_queue_exception,
10340         .cancel_injection = vmx_cancel_injection,
10341         .interrupt_allowed = vmx_interrupt_allowed,
10342         .nmi_allowed = vmx_nmi_allowed,
10343         .get_nmi_mask = vmx_get_nmi_mask,
10344         .set_nmi_mask = vmx_set_nmi_mask,
10345         .enable_nmi_window = enable_nmi_window,
10346         .enable_irq_window = enable_irq_window,
10347         .update_cr8_intercept = update_cr8_intercept,
10348         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10349         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10350         .vm_has_apicv = vmx_vm_has_apicv,
10351         .load_eoi_exitmap = vmx_load_eoi_exitmap,
10352         .hwapic_irr_update = vmx_hwapic_irr_update,
10353         .hwapic_isr_update = vmx_hwapic_isr_update,
10354         .sync_pir_to_irr = vmx_sync_pir_to_irr,
10355         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10356
10357         .set_tss_addr = vmx_set_tss_addr,
10358         .get_tdp_level = get_ept_level,
10359         .get_mt_mask = vmx_get_mt_mask,
10360
10361         .get_exit_info = vmx_get_exit_info,
10362
10363         .get_lpage_level = vmx_get_lpage_level,
10364
10365         .cpuid_update = vmx_cpuid_update,
10366
10367         .rdtscp_supported = vmx_rdtscp_supported,
10368         .invpcid_supported = vmx_invpcid_supported,
10369
10370         .set_supported_cpuid = vmx_set_supported_cpuid,
10371
10372         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10373
10374         .set_tsc_khz = vmx_set_tsc_khz,
10375         .read_tsc_offset = vmx_read_tsc_offset,
10376         .write_tsc_offset = vmx_write_tsc_offset,
10377         .adjust_tsc_offset = vmx_adjust_tsc_offset,
10378         .compute_tsc_offset = vmx_compute_tsc_offset,
10379         .read_l1_tsc = vmx_read_l1_tsc,
10380
10381         .set_tdp_cr3 = vmx_set_cr3,
10382
10383         .check_intercept = vmx_check_intercept,
10384         .handle_external_intr = vmx_handle_external_intr,
10385         .mpx_supported = vmx_mpx_supported,
10386         .xsaves_supported = vmx_xsaves_supported,
10387
10388         .check_nested_events = vmx_check_nested_events,
10389
10390         .sched_in = vmx_sched_in,
10391
10392         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10393         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10394         .flush_log_dirty = vmx_flush_log_dirty,
10395         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10396
10397         .pmu_ops = &intel_pmu_ops,
10398 };
10399
10400 static int __init vmx_init(void)
10401 {
10402         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10403                      __alignof__(struct vcpu_vmx), THIS_MODULE);
10404         if (r)
10405                 return r;
10406
10407 #ifdef CONFIG_KEXEC_CORE
10408         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10409                            crash_vmclear_local_loaded_vmcss);
10410 #endif
10411
10412         return 0;
10413 }
10414
10415 static void __exit vmx_exit(void)
10416 {
10417 #ifdef CONFIG_KEXEC_CORE
10418         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10419         synchronize_rcu();
10420 #endif
10421
10422         kvm_exit();
10423 }
10424
10425 module_init(vmx_init)
10426 module_exit(vmx_exit)