]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <trace/events/kvm.h>
55
56 #define CREATE_TRACE_POINTS
57 #include "trace.h"
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 static bool __read_mostly kvmclock_periodic_sync = true;
103 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
104
105 bool kvm_has_tsc_control;
106 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
107 u32  kvm_max_guest_tsc_khz;
108 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
109
110 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
111 static u32 tsc_tolerance_ppm = 250;
112 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
113
114 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
115 unsigned int lapic_timer_advance_ns = 0;
116 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
117
118 static bool backwards_tsc_observed = false;
119
120 #define KVM_NR_SHARED_MSRS 16
121
122 struct kvm_shared_msrs_global {
123         int nr;
124         u32 msrs[KVM_NR_SHARED_MSRS];
125 };
126
127 struct kvm_shared_msrs {
128         struct user_return_notifier urn;
129         bool registered;
130         struct kvm_shared_msr_values {
131                 u64 host;
132                 u64 curr;
133         } values[KVM_NR_SHARED_MSRS];
134 };
135
136 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
137 static struct kvm_shared_msrs __percpu *shared_msrs;
138
139 struct kvm_stats_debugfs_item debugfs_entries[] = {
140         { "pf_fixed", VCPU_STAT(pf_fixed) },
141         { "pf_guest", VCPU_STAT(pf_guest) },
142         { "tlb_flush", VCPU_STAT(tlb_flush) },
143         { "invlpg", VCPU_STAT(invlpg) },
144         { "exits", VCPU_STAT(exits) },
145         { "io_exits", VCPU_STAT(io_exits) },
146         { "mmio_exits", VCPU_STAT(mmio_exits) },
147         { "signal_exits", VCPU_STAT(signal_exits) },
148         { "irq_window", VCPU_STAT(irq_window_exits) },
149         { "nmi_window", VCPU_STAT(nmi_window_exits) },
150         { "halt_exits", VCPU_STAT(halt_exits) },
151         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
152         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
153         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
154         { "hypercalls", VCPU_STAT(hypercalls) },
155         { "request_irq", VCPU_STAT(request_irq_exits) },
156         { "irq_exits", VCPU_STAT(irq_exits) },
157         { "host_state_reload", VCPU_STAT(host_state_reload) },
158         { "efer_reload", VCPU_STAT(efer_reload) },
159         { "fpu_reload", VCPU_STAT(fpu_reload) },
160         { "insn_emulation", VCPU_STAT(insn_emulation) },
161         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
162         { "irq_injections", VCPU_STAT(irq_injections) },
163         { "nmi_injections", VCPU_STAT(nmi_injections) },
164         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
165         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
166         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
167         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
168         { "mmu_flooded", VM_STAT(mmu_flooded) },
169         { "mmu_recycled", VM_STAT(mmu_recycled) },
170         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
171         { "mmu_unsync", VM_STAT(mmu_unsync) },
172         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
173         { "largepages", VM_STAT(lpages) },
174         { NULL }
175 };
176
177 u64 __read_mostly host_xcr0;
178
179 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
180
181 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
182 {
183         int i;
184         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
185                 vcpu->arch.apf.gfns[i] = ~0;
186 }
187
188 static void kvm_on_user_return(struct user_return_notifier *urn)
189 {
190         unsigned slot;
191         struct kvm_shared_msrs *locals
192                 = container_of(urn, struct kvm_shared_msrs, urn);
193         struct kvm_shared_msr_values *values;
194
195         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
196                 values = &locals->values[slot];
197                 if (values->host != values->curr) {
198                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
199                         values->curr = values->host;
200                 }
201         }
202         locals->registered = false;
203         user_return_notifier_unregister(urn);
204 }
205
206 static void shared_msr_update(unsigned slot, u32 msr)
207 {
208         u64 value;
209         unsigned int cpu = smp_processor_id();
210         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
211
212         /* only read, and nobody should modify it at this time,
213          * so don't need lock */
214         if (slot >= shared_msrs_global.nr) {
215                 printk(KERN_ERR "kvm: invalid MSR slot!");
216                 return;
217         }
218         rdmsrl_safe(msr, &value);
219         smsr->values[slot].host = value;
220         smsr->values[slot].curr = value;
221 }
222
223 void kvm_define_shared_msr(unsigned slot, u32 msr)
224 {
225         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
226         shared_msrs_global.msrs[slot] = msr;
227         if (slot >= shared_msrs_global.nr)
228                 shared_msrs_global.nr = slot + 1;
229 }
230 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
231
232 static void kvm_shared_msr_cpu_online(void)
233 {
234         unsigned i;
235
236         for (i = 0; i < shared_msrs_global.nr; ++i)
237                 shared_msr_update(i, shared_msrs_global.msrs[i]);
238 }
239
240 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
241 {
242         unsigned int cpu = smp_processor_id();
243         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244         int err;
245
246         if (((value ^ smsr->values[slot].curr) & mask) == 0)
247                 return 0;
248         smsr->values[slot].curr = value;
249         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
250         if (err)
251                 return 1;
252
253         if (!smsr->registered) {
254                 smsr->urn.on_user_return = kvm_on_user_return;
255                 user_return_notifier_register(&smsr->urn);
256                 smsr->registered = true;
257         }
258         return 0;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
261
262 static void drop_user_return_notifiers(void)
263 {
264         unsigned int cpu = smp_processor_id();
265         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
266
267         if (smsr->registered)
268                 kvm_on_user_return(&smsr->urn);
269 }
270
271 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
272 {
273         return vcpu->arch.apic_base;
274 }
275 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
276
277 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
278 {
279         u64 old_state = vcpu->arch.apic_base &
280                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281         u64 new_state = msr_info->data &
282                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
283         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
284                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
285
286         if (!msr_info->host_initiated &&
287             ((msr_info->data & reserved_bits) != 0 ||
288              new_state == X2APIC_ENABLE ||
289              (new_state == MSR_IA32_APICBASE_ENABLE &&
290               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
291              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
292               old_state == 0)))
293                 return 1;
294
295         kvm_lapic_set_base(vcpu, msr_info->data);
296         return 0;
297 }
298 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
299
300 asmlinkage __visible void kvm_spurious_fault(void)
301 {
302         /* Fault while not rebooting.  We want the trace. */
303         BUG();
304 }
305 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
306
307 #define EXCPT_BENIGN            0
308 #define EXCPT_CONTRIBUTORY      1
309 #define EXCPT_PF                2
310
311 static int exception_class(int vector)
312 {
313         switch (vector) {
314         case PF_VECTOR:
315                 return EXCPT_PF;
316         case DE_VECTOR:
317         case TS_VECTOR:
318         case NP_VECTOR:
319         case SS_VECTOR:
320         case GP_VECTOR:
321                 return EXCPT_CONTRIBUTORY;
322         default:
323                 break;
324         }
325         return EXCPT_BENIGN;
326 }
327
328 #define EXCPT_FAULT             0
329 #define EXCPT_TRAP              1
330 #define EXCPT_ABORT             2
331 #define EXCPT_INTERRUPT         3
332
333 static int exception_type(int vector)
334 {
335         unsigned int mask;
336
337         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
338                 return EXCPT_INTERRUPT;
339
340         mask = 1 << vector;
341
342         /* #DB is trap, as instruction watchpoints are handled elsewhere */
343         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
344                 return EXCPT_TRAP;
345
346         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
347                 return EXCPT_ABORT;
348
349         /* Reserved exceptions will result in fault */
350         return EXCPT_FAULT;
351 }
352
353 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
354                 unsigned nr, bool has_error, u32 error_code,
355                 bool reinject)
356 {
357         u32 prev_nr;
358         int class1, class2;
359
360         kvm_make_request(KVM_REQ_EVENT, vcpu);
361
362         if (!vcpu->arch.exception.pending) {
363         queue:
364                 if (has_error && !is_protmode(vcpu))
365                         has_error = false;
366                 vcpu->arch.exception.pending = true;
367                 vcpu->arch.exception.has_error_code = has_error;
368                 vcpu->arch.exception.nr = nr;
369                 vcpu->arch.exception.error_code = error_code;
370                 vcpu->arch.exception.reinject = reinject;
371                 return;
372         }
373
374         /* to check exception */
375         prev_nr = vcpu->arch.exception.nr;
376         if (prev_nr == DF_VECTOR) {
377                 /* triple fault -> shutdown */
378                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
379                 return;
380         }
381         class1 = exception_class(prev_nr);
382         class2 = exception_class(nr);
383         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
384                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
385                 /* generate double fault per SDM Table 5-5 */
386                 vcpu->arch.exception.pending = true;
387                 vcpu->arch.exception.has_error_code = true;
388                 vcpu->arch.exception.nr = DF_VECTOR;
389                 vcpu->arch.exception.error_code = 0;
390         } else
391                 /* replace previous exception with a new one in a hope
392                    that instruction re-execution will regenerate lost
393                    exception */
394                 goto queue;
395 }
396
397 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
398 {
399         kvm_multiple_exception(vcpu, nr, false, 0, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception);
402
403 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
404 {
405         kvm_multiple_exception(vcpu, nr, false, 0, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
408
409 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
410 {
411         if (err)
412                 kvm_inject_gp(vcpu, 0);
413         else
414                 kvm_x86_ops->skip_emulated_instruction(vcpu);
415 }
416 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
417
418 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
419 {
420         ++vcpu->stat.pf_guest;
421         vcpu->arch.cr2 = fault->address;
422         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
423 }
424 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
425
426 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
429                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
430         else
431                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
432
433         return fault->nested_page_fault;
434 }
435
436 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
437 {
438         atomic_inc(&vcpu->arch.nmi_queued);
439         kvm_make_request(KVM_REQ_NMI, vcpu);
440 }
441 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
442
443 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
444 {
445         kvm_multiple_exception(vcpu, nr, true, error_code, false);
446 }
447 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
448
449 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
450 {
451         kvm_multiple_exception(vcpu, nr, true, error_code, true);
452 }
453 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
454
455 /*
456  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
457  * a #GP and return false.
458  */
459 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
460 {
461         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
462                 return true;
463         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
464         return false;
465 }
466 EXPORT_SYMBOL_GPL(kvm_require_cpl);
467
468 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
469 {
470         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
471                 return true;
472
473         kvm_queue_exception(vcpu, UD_VECTOR);
474         return false;
475 }
476 EXPORT_SYMBOL_GPL(kvm_require_dr);
477
478 /*
479  * This function will be used to read from the physical memory of the currently
480  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
481  * can read from guest physical or from the guest's guest physical memory.
482  */
483 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
484                             gfn_t ngfn, void *data, int offset, int len,
485                             u32 access)
486 {
487         struct x86_exception exception;
488         gfn_t real_gfn;
489         gpa_t ngpa;
490
491         ngpa     = gfn_to_gpa(ngfn);
492         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
493         if (real_gfn == UNMAPPED_GVA)
494                 return -EFAULT;
495
496         real_gfn = gpa_to_gfn(real_gfn);
497
498         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
499 }
500 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
501
502 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
503                                void *data, int offset, int len, u32 access)
504 {
505         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
506                                        data, offset, len, access);
507 }
508
509 /*
510  * Load the pae pdptrs.  Return true is they are all valid.
511  */
512 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
513 {
514         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
515         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
516         int i;
517         int ret;
518         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
519
520         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
521                                       offset * sizeof(u64), sizeof(pdpte),
522                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
523         if (ret < 0) {
524                 ret = 0;
525                 goto out;
526         }
527         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
528                 if (is_present_gpte(pdpte[i]) &&
529                     (pdpte[i] &
530                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
531                         ret = 0;
532                         goto out;
533                 }
534         }
535         ret = 1;
536
537         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
538         __set_bit(VCPU_EXREG_PDPTR,
539                   (unsigned long *)&vcpu->arch.regs_avail);
540         __set_bit(VCPU_EXREG_PDPTR,
541                   (unsigned long *)&vcpu->arch.regs_dirty);
542 out:
543
544         return ret;
545 }
546 EXPORT_SYMBOL_GPL(load_pdptrs);
547
548 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
549 {
550         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
551         bool changed = true;
552         int offset;
553         gfn_t gfn;
554         int r;
555
556         if (is_long_mode(vcpu) || !is_pae(vcpu))
557                 return false;
558
559         if (!test_bit(VCPU_EXREG_PDPTR,
560                       (unsigned long *)&vcpu->arch.regs_avail))
561                 return true;
562
563         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
564         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
565         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
566                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
567         if (r < 0)
568                 goto out;
569         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
570 out:
571
572         return changed;
573 }
574
575 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
576 {
577         unsigned long old_cr0 = kvm_read_cr0(vcpu);
578         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
579
580         cr0 |= X86_CR0_ET;
581
582 #ifdef CONFIG_X86_64
583         if (cr0 & 0xffffffff00000000UL)
584                 return 1;
585 #endif
586
587         cr0 &= ~CR0_RESERVED_BITS;
588
589         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
590                 return 1;
591
592         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
593                 return 1;
594
595         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
596 #ifdef CONFIG_X86_64
597                 if ((vcpu->arch.efer & EFER_LME)) {
598                         int cs_db, cs_l;
599
600                         if (!is_pae(vcpu))
601                                 return 1;
602                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
603                         if (cs_l)
604                                 return 1;
605                 } else
606 #endif
607                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
608                                                  kvm_read_cr3(vcpu)))
609                         return 1;
610         }
611
612         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
613                 return 1;
614
615         kvm_x86_ops->set_cr0(vcpu, cr0);
616
617         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
618                 kvm_clear_async_pf_completion_queue(vcpu);
619                 kvm_async_pf_hash_reset(vcpu);
620         }
621
622         if ((cr0 ^ old_cr0) & update_bits)
623                 kvm_mmu_reset_context(vcpu);
624
625         if ((cr0 ^ old_cr0) & X86_CR0_CD)
626                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
627
628         return 0;
629 }
630 EXPORT_SYMBOL_GPL(kvm_set_cr0);
631
632 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
633 {
634         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
635 }
636 EXPORT_SYMBOL_GPL(kvm_lmsw);
637
638 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
639 {
640         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
641                         !vcpu->guest_xcr0_loaded) {
642                 /* kvm_set_xcr() also depends on this */
643                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
644                 vcpu->guest_xcr0_loaded = 1;
645         }
646 }
647
648 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650         if (vcpu->guest_xcr0_loaded) {
651                 if (vcpu->arch.xcr0 != host_xcr0)
652                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
653                 vcpu->guest_xcr0_loaded = 0;
654         }
655 }
656
657 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
658 {
659         u64 xcr0 = xcr;
660         u64 old_xcr0 = vcpu->arch.xcr0;
661         u64 valid_bits;
662
663         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
664         if (index != XCR_XFEATURE_ENABLED_MASK)
665                 return 1;
666         if (!(xcr0 & XSTATE_FP))
667                 return 1;
668         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
669                 return 1;
670
671         /*
672          * Do not allow the guest to set bits that we do not support
673          * saving.  However, xcr0 bit 0 is always set, even if the
674          * emulated CPU does not support XSAVE (see fx_init).
675          */
676         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
677         if (xcr0 & ~valid_bits)
678                 return 1;
679
680         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
681                 return 1;
682
683         if (xcr0 & XSTATE_AVX512) {
684                 if (!(xcr0 & XSTATE_YMM))
685                         return 1;
686                 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
687                         return 1;
688         }
689         kvm_put_guest_xcr0(vcpu);
690         vcpu->arch.xcr0 = xcr0;
691
692         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
693                 kvm_update_cpuid(vcpu);
694         return 0;
695 }
696
697 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
698 {
699         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
700             __kvm_set_xcr(vcpu, index, xcr)) {
701                 kvm_inject_gp(vcpu, 0);
702                 return 1;
703         }
704         return 0;
705 }
706 EXPORT_SYMBOL_GPL(kvm_set_xcr);
707
708 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
709 {
710         unsigned long old_cr4 = kvm_read_cr4(vcpu);
711         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
712                                    X86_CR4_SMEP | X86_CR4_SMAP;
713
714         if (cr4 & CR4_RESERVED_BITS)
715                 return 1;
716
717         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
718                 return 1;
719
720         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
721                 return 1;
722
723         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
724                 return 1;
725
726         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
727                 return 1;
728
729         if (is_long_mode(vcpu)) {
730                 if (!(cr4 & X86_CR4_PAE))
731                         return 1;
732         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
733                    && ((cr4 ^ old_cr4) & pdptr_bits)
734                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
735                                    kvm_read_cr3(vcpu)))
736                 return 1;
737
738         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
739                 if (!guest_cpuid_has_pcid(vcpu))
740                         return 1;
741
742                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
743                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
744                         return 1;
745         }
746
747         if (kvm_x86_ops->set_cr4(vcpu, cr4))
748                 return 1;
749
750         if (((cr4 ^ old_cr4) & pdptr_bits) ||
751             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
752                 kvm_mmu_reset_context(vcpu);
753
754         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
755                 kvm_update_cpuid(vcpu);
756
757         return 0;
758 }
759 EXPORT_SYMBOL_GPL(kvm_set_cr4);
760
761 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
762 {
763 #ifdef CONFIG_X86_64
764         cr3 &= ~CR3_PCID_INVD;
765 #endif
766
767         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
768                 kvm_mmu_sync_roots(vcpu);
769                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
770                 return 0;
771         }
772
773         if (is_long_mode(vcpu)) {
774                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
775                         return 1;
776         } else if (is_pae(vcpu) && is_paging(vcpu) &&
777                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
778                 return 1;
779
780         vcpu->arch.cr3 = cr3;
781         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
782         kvm_mmu_new_cr3(vcpu);
783         return 0;
784 }
785 EXPORT_SYMBOL_GPL(kvm_set_cr3);
786
787 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
788 {
789         if (cr8 & CR8_RESERVED_BITS)
790                 return 1;
791         if (irqchip_in_kernel(vcpu->kvm))
792                 kvm_lapic_set_tpr(vcpu, cr8);
793         else
794                 vcpu->arch.cr8 = cr8;
795         return 0;
796 }
797 EXPORT_SYMBOL_GPL(kvm_set_cr8);
798
799 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
800 {
801         if (irqchip_in_kernel(vcpu->kvm))
802                 return kvm_lapic_get_cr8(vcpu);
803         else
804                 return vcpu->arch.cr8;
805 }
806 EXPORT_SYMBOL_GPL(kvm_get_cr8);
807
808 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
809 {
810         int i;
811
812         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
813                 for (i = 0; i < KVM_NR_DB_REGS; i++)
814                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
815                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
816         }
817 }
818
819 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
820 {
821         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
822                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
823 }
824
825 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
826 {
827         unsigned long dr7;
828
829         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
830                 dr7 = vcpu->arch.guest_debug_dr7;
831         else
832                 dr7 = vcpu->arch.dr7;
833         kvm_x86_ops->set_dr7(vcpu, dr7);
834         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
835         if (dr7 & DR7_BP_EN_MASK)
836                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
837 }
838
839 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
840 {
841         u64 fixed = DR6_FIXED_1;
842
843         if (!guest_cpuid_has_rtm(vcpu))
844                 fixed |= DR6_RTM;
845         return fixed;
846 }
847
848 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
849 {
850         switch (dr) {
851         case 0 ... 3:
852                 vcpu->arch.db[dr] = val;
853                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
854                         vcpu->arch.eff_db[dr] = val;
855                 break;
856         case 4:
857                 /* fall through */
858         case 6:
859                 if (val & 0xffffffff00000000ULL)
860                         return -1; /* #GP */
861                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
862                 kvm_update_dr6(vcpu);
863                 break;
864         case 5:
865                 /* fall through */
866         default: /* 7 */
867                 if (val & 0xffffffff00000000ULL)
868                         return -1; /* #GP */
869                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
870                 kvm_update_dr7(vcpu);
871                 break;
872         }
873
874         return 0;
875 }
876
877 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
878 {
879         if (__kvm_set_dr(vcpu, dr, val)) {
880                 kvm_inject_gp(vcpu, 0);
881                 return 1;
882         }
883         return 0;
884 }
885 EXPORT_SYMBOL_GPL(kvm_set_dr);
886
887 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
888 {
889         switch (dr) {
890         case 0 ... 3:
891                 *val = vcpu->arch.db[dr];
892                 break;
893         case 4:
894                 /* fall through */
895         case 6:
896                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
897                         *val = vcpu->arch.dr6;
898                 else
899                         *val = kvm_x86_ops->get_dr6(vcpu);
900                 break;
901         case 5:
902                 /* fall through */
903         default: /* 7 */
904                 *val = vcpu->arch.dr7;
905                 break;
906         }
907         return 0;
908 }
909 EXPORT_SYMBOL_GPL(kvm_get_dr);
910
911 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
912 {
913         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
914         u64 data;
915         int err;
916
917         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
918         if (err)
919                 return err;
920         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
921         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
922         return err;
923 }
924 EXPORT_SYMBOL_GPL(kvm_rdpmc);
925
926 /*
927  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
928  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
929  *
930  * This list is modified at module load time to reflect the
931  * capabilities of the host cpu. This capabilities test skips MSRs that are
932  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
933  * may depend on host virtualization features rather than host cpu features.
934  */
935
936 static u32 msrs_to_save[] = {
937         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
938         MSR_STAR,
939 #ifdef CONFIG_X86_64
940         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
941 #endif
942         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
943         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
944 };
945
946 static unsigned num_msrs_to_save;
947
948 static u32 emulated_msrs[] = {
949         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
950         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
951         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
952         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
953         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
954         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
955         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
956         MSR_KVM_PV_EOI_EN,
957
958         MSR_IA32_TSC_ADJUST,
959         MSR_IA32_TSCDEADLINE,
960         MSR_IA32_MISC_ENABLE,
961         MSR_IA32_MCG_STATUS,
962         MSR_IA32_MCG_CTL,
963         MSR_IA32_SMBASE,
964 };
965
966 static unsigned num_emulated_msrs;
967
968 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
969 {
970         if (efer & efer_reserved_bits)
971                 return false;
972
973         if (efer & EFER_FFXSR) {
974                 struct kvm_cpuid_entry2 *feat;
975
976                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
977                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
978                         return false;
979         }
980
981         if (efer & EFER_SVME) {
982                 struct kvm_cpuid_entry2 *feat;
983
984                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
985                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
986                         return false;
987         }
988
989         return true;
990 }
991 EXPORT_SYMBOL_GPL(kvm_valid_efer);
992
993 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
994 {
995         u64 old_efer = vcpu->arch.efer;
996
997         if (!kvm_valid_efer(vcpu, efer))
998                 return 1;
999
1000         if (is_paging(vcpu)
1001             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1002                 return 1;
1003
1004         efer &= ~EFER_LMA;
1005         efer |= vcpu->arch.efer & EFER_LMA;
1006
1007         kvm_x86_ops->set_efer(vcpu, efer);
1008
1009         /* Update reserved bits */
1010         if ((efer ^ old_efer) & EFER_NX)
1011                 kvm_mmu_reset_context(vcpu);
1012
1013         return 0;
1014 }
1015
1016 void kvm_enable_efer_bits(u64 mask)
1017 {
1018        efer_reserved_bits &= ~mask;
1019 }
1020 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1021
1022 /*
1023  * Writes msr value into into the appropriate "register".
1024  * Returns 0 on success, non-0 otherwise.
1025  * Assumes vcpu_load() was already called.
1026  */
1027 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1028 {
1029         switch (msr->index) {
1030         case MSR_FS_BASE:
1031         case MSR_GS_BASE:
1032         case MSR_KERNEL_GS_BASE:
1033         case MSR_CSTAR:
1034         case MSR_LSTAR:
1035                 if (is_noncanonical_address(msr->data))
1036                         return 1;
1037                 break;
1038         case MSR_IA32_SYSENTER_EIP:
1039         case MSR_IA32_SYSENTER_ESP:
1040                 /*
1041                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1042                  * non-canonical address is written on Intel but not on
1043                  * AMD (which ignores the top 32-bits, because it does
1044                  * not implement 64-bit SYSENTER).
1045                  *
1046                  * 64-bit code should hence be able to write a non-canonical
1047                  * value on AMD.  Making the address canonical ensures that
1048                  * vmentry does not fail on Intel after writing a non-canonical
1049                  * value, and that something deterministic happens if the guest
1050                  * invokes 64-bit SYSENTER.
1051                  */
1052                 msr->data = get_canonical(msr->data);
1053         }
1054         return kvm_x86_ops->set_msr(vcpu, msr);
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_set_msr);
1057
1058 /*
1059  * Adapt set_msr() to msr_io()'s calling convention
1060  */
1061 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1062 {
1063         struct msr_data msr;
1064         int r;
1065
1066         msr.index = index;
1067         msr.host_initiated = true;
1068         r = kvm_get_msr(vcpu, &msr);
1069         if (r)
1070                 return r;
1071
1072         *data = msr.data;
1073         return 0;
1074 }
1075
1076 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1077 {
1078         struct msr_data msr;
1079
1080         msr.data = *data;
1081         msr.index = index;
1082         msr.host_initiated = true;
1083         return kvm_set_msr(vcpu, &msr);
1084 }
1085
1086 #ifdef CONFIG_X86_64
1087 struct pvclock_gtod_data {
1088         seqcount_t      seq;
1089
1090         struct { /* extract of a clocksource struct */
1091                 int vclock_mode;
1092                 cycle_t cycle_last;
1093                 cycle_t mask;
1094                 u32     mult;
1095                 u32     shift;
1096         } clock;
1097
1098         u64             boot_ns;
1099         u64             nsec_base;
1100 };
1101
1102 static struct pvclock_gtod_data pvclock_gtod_data;
1103
1104 static void update_pvclock_gtod(struct timekeeper *tk)
1105 {
1106         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1107         u64 boot_ns;
1108
1109         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1110
1111         write_seqcount_begin(&vdata->seq);
1112
1113         /* copy pvclock gtod data */
1114         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1115         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1116         vdata->clock.mask               = tk->tkr_mono.mask;
1117         vdata->clock.mult               = tk->tkr_mono.mult;
1118         vdata->clock.shift              = tk->tkr_mono.shift;
1119
1120         vdata->boot_ns                  = boot_ns;
1121         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1122
1123         write_seqcount_end(&vdata->seq);
1124 }
1125 #endif
1126
1127 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1128 {
1129         /*
1130          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1131          * vcpu_enter_guest.  This function is only called from
1132          * the physical CPU that is running vcpu.
1133          */
1134         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1135 }
1136
1137 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1138 {
1139         int version;
1140         int r;
1141         struct pvclock_wall_clock wc;
1142         struct timespec boot;
1143
1144         if (!wall_clock)
1145                 return;
1146
1147         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1148         if (r)
1149                 return;
1150
1151         if (version & 1)
1152                 ++version;  /* first time write, random junk */
1153
1154         ++version;
1155
1156         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1157
1158         /*
1159          * The guest calculates current wall clock time by adding
1160          * system time (updated by kvm_guest_time_update below) to the
1161          * wall clock specified here.  guest system time equals host
1162          * system time for us, thus we must fill in host boot time here.
1163          */
1164         getboottime(&boot);
1165
1166         if (kvm->arch.kvmclock_offset) {
1167                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1168                 boot = timespec_sub(boot, ts);
1169         }
1170         wc.sec = boot.tv_sec;
1171         wc.nsec = boot.tv_nsec;
1172         wc.version = version;
1173
1174         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1175
1176         version++;
1177         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1178 }
1179
1180 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1181 {
1182         uint32_t quotient, remainder;
1183
1184         /* Don't try to replace with do_div(), this one calculates
1185          * "(dividend << 32) / divisor" */
1186         __asm__ ( "divl %4"
1187                   : "=a" (quotient), "=d" (remainder)
1188                   : "0" (0), "1" (dividend), "r" (divisor) );
1189         return quotient;
1190 }
1191
1192 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1193                                s8 *pshift, u32 *pmultiplier)
1194 {
1195         uint64_t scaled64;
1196         int32_t  shift = 0;
1197         uint64_t tps64;
1198         uint32_t tps32;
1199
1200         tps64 = base_khz * 1000LL;
1201         scaled64 = scaled_khz * 1000LL;
1202         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1203                 tps64 >>= 1;
1204                 shift--;
1205         }
1206
1207         tps32 = (uint32_t)tps64;
1208         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1209                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1210                         scaled64 >>= 1;
1211                 else
1212                         tps32 <<= 1;
1213                 shift++;
1214         }
1215
1216         *pshift = shift;
1217         *pmultiplier = div_frac(scaled64, tps32);
1218
1219         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1220                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1221 }
1222
1223 #ifdef CONFIG_X86_64
1224 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1225 #endif
1226
1227 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1228 static unsigned long max_tsc_khz;
1229
1230 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1231 {
1232         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1233                                    vcpu->arch.virtual_tsc_shift);
1234 }
1235
1236 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1237 {
1238         u64 v = (u64)khz * (1000000 + ppm);
1239         do_div(v, 1000000);
1240         return v;
1241 }
1242
1243 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1244 {
1245         u32 thresh_lo, thresh_hi;
1246         int use_scaling = 0;
1247
1248         /* tsc_khz can be zero if TSC calibration fails */
1249         if (this_tsc_khz == 0)
1250                 return;
1251
1252         /* Compute a scale to convert nanoseconds in TSC cycles */
1253         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1254                            &vcpu->arch.virtual_tsc_shift,
1255                            &vcpu->arch.virtual_tsc_mult);
1256         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1257
1258         /*
1259          * Compute the variation in TSC rate which is acceptable
1260          * within the range of tolerance and decide if the
1261          * rate being applied is within that bounds of the hardware
1262          * rate.  If so, no scaling or compensation need be done.
1263          */
1264         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1265         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1266         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1267                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1268                 use_scaling = 1;
1269         }
1270         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1271 }
1272
1273 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1274 {
1275         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1276                                       vcpu->arch.virtual_tsc_mult,
1277                                       vcpu->arch.virtual_tsc_shift);
1278         tsc += vcpu->arch.this_tsc_write;
1279         return tsc;
1280 }
1281
1282 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1283 {
1284 #ifdef CONFIG_X86_64
1285         bool vcpus_matched;
1286         struct kvm_arch *ka = &vcpu->kvm->arch;
1287         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1288
1289         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1290                          atomic_read(&vcpu->kvm->online_vcpus));
1291
1292         /*
1293          * Once the masterclock is enabled, always perform request in
1294          * order to update it.
1295          *
1296          * In order to enable masterclock, the host clocksource must be TSC
1297          * and the vcpus need to have matched TSCs.  When that happens,
1298          * perform request to enable masterclock.
1299          */
1300         if (ka->use_master_clock ||
1301             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1302                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1303
1304         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1305                             atomic_read(&vcpu->kvm->online_vcpus),
1306                             ka->use_master_clock, gtod->clock.vclock_mode);
1307 #endif
1308 }
1309
1310 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1311 {
1312         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1313         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1314 }
1315
1316 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1317 {
1318         struct kvm *kvm = vcpu->kvm;
1319         u64 offset, ns, elapsed;
1320         unsigned long flags;
1321         s64 usdiff;
1322         bool matched;
1323         bool already_matched;
1324         u64 data = msr->data;
1325
1326         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1327         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1328         ns = get_kernel_ns();
1329         elapsed = ns - kvm->arch.last_tsc_nsec;
1330
1331         if (vcpu->arch.virtual_tsc_khz) {
1332                 int faulted = 0;
1333
1334                 /* n.b - signed multiplication and division required */
1335                 usdiff = data - kvm->arch.last_tsc_write;
1336 #ifdef CONFIG_X86_64
1337                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1338 #else
1339                 /* do_div() only does unsigned */
1340                 asm("1: idivl %[divisor]\n"
1341                     "2: xor %%edx, %%edx\n"
1342                     "   movl $0, %[faulted]\n"
1343                     "3:\n"
1344                     ".section .fixup,\"ax\"\n"
1345                     "4: movl $1, %[faulted]\n"
1346                     "   jmp  3b\n"
1347                     ".previous\n"
1348
1349                 _ASM_EXTABLE(1b, 4b)
1350
1351                 : "=A"(usdiff), [faulted] "=r" (faulted)
1352                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1353
1354 #endif
1355                 do_div(elapsed, 1000);
1356                 usdiff -= elapsed;
1357                 if (usdiff < 0)
1358                         usdiff = -usdiff;
1359
1360                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1361                 if (faulted)
1362                         usdiff = USEC_PER_SEC;
1363         } else
1364                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1365
1366         /*
1367          * Special case: TSC write with a small delta (1 second) of virtual
1368          * cycle time against real time is interpreted as an attempt to
1369          * synchronize the CPU.
1370          *
1371          * For a reliable TSC, we can match TSC offsets, and for an unstable
1372          * TSC, we add elapsed time in this computation.  We could let the
1373          * compensation code attempt to catch up if we fall behind, but
1374          * it's better to try to match offsets from the beginning.
1375          */
1376         if (usdiff < USEC_PER_SEC &&
1377             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1378                 if (!check_tsc_unstable()) {
1379                         offset = kvm->arch.cur_tsc_offset;
1380                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1381                 } else {
1382                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1383                         data += delta;
1384                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1385                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1386                 }
1387                 matched = true;
1388                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1389         } else {
1390                 /*
1391                  * We split periods of matched TSC writes into generations.
1392                  * For each generation, we track the original measured
1393                  * nanosecond time, offset, and write, so if TSCs are in
1394                  * sync, we can match exact offset, and if not, we can match
1395                  * exact software computation in compute_guest_tsc()
1396                  *
1397                  * These values are tracked in kvm->arch.cur_xxx variables.
1398                  */
1399                 kvm->arch.cur_tsc_generation++;
1400                 kvm->arch.cur_tsc_nsec = ns;
1401                 kvm->arch.cur_tsc_write = data;
1402                 kvm->arch.cur_tsc_offset = offset;
1403                 matched = false;
1404                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1405                          kvm->arch.cur_tsc_generation, data);
1406         }
1407
1408         /*
1409          * We also track th most recent recorded KHZ, write and time to
1410          * allow the matching interval to be extended at each write.
1411          */
1412         kvm->arch.last_tsc_nsec = ns;
1413         kvm->arch.last_tsc_write = data;
1414         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1415
1416         vcpu->arch.last_guest_tsc = data;
1417
1418         /* Keep track of which generation this VCPU has synchronized to */
1419         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1420         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1421         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1422
1423         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1424                 update_ia32_tsc_adjust_msr(vcpu, offset);
1425         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1426         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1427
1428         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1429         if (!matched) {
1430                 kvm->arch.nr_vcpus_matched_tsc = 0;
1431         } else if (!already_matched) {
1432                 kvm->arch.nr_vcpus_matched_tsc++;
1433         }
1434
1435         kvm_track_tsc_matching(vcpu);
1436         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1437 }
1438
1439 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1440
1441 #ifdef CONFIG_X86_64
1442
1443 static cycle_t read_tsc(void)
1444 {
1445         cycle_t ret = (cycle_t)rdtsc_ordered();
1446         u64 last = pvclock_gtod_data.clock.cycle_last;
1447
1448         if (likely(ret >= last))
1449                 return ret;
1450
1451         /*
1452          * GCC likes to generate cmov here, but this branch is extremely
1453          * predictable (it's just a funciton of time and the likely is
1454          * very likely) and there's a data dependence, so force GCC
1455          * to generate a branch instead.  I don't barrier() because
1456          * we don't actually need a barrier, and if this function
1457          * ever gets inlined it will generate worse code.
1458          */
1459         asm volatile ("");
1460         return last;
1461 }
1462
1463 static inline u64 vgettsc(cycle_t *cycle_now)
1464 {
1465         long v;
1466         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1467
1468         *cycle_now = read_tsc();
1469
1470         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1471         return v * gtod->clock.mult;
1472 }
1473
1474 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1475 {
1476         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1477         unsigned long seq;
1478         int mode;
1479         u64 ns;
1480
1481         do {
1482                 seq = read_seqcount_begin(&gtod->seq);
1483                 mode = gtod->clock.vclock_mode;
1484                 ns = gtod->nsec_base;
1485                 ns += vgettsc(cycle_now);
1486                 ns >>= gtod->clock.shift;
1487                 ns += gtod->boot_ns;
1488         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1489         *t = ns;
1490
1491         return mode;
1492 }
1493
1494 /* returns true if host is using tsc clocksource */
1495 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1496 {
1497         /* checked again under seqlock below */
1498         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1499                 return false;
1500
1501         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1502 }
1503 #endif
1504
1505 /*
1506  *
1507  * Assuming a stable TSC across physical CPUS, and a stable TSC
1508  * across virtual CPUs, the following condition is possible.
1509  * Each numbered line represents an event visible to both
1510  * CPUs at the next numbered event.
1511  *
1512  * "timespecX" represents host monotonic time. "tscX" represents
1513  * RDTSC value.
1514  *
1515  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1516  *
1517  * 1.  read timespec0,tsc0
1518  * 2.                                   | timespec1 = timespec0 + N
1519  *                                      | tsc1 = tsc0 + M
1520  * 3. transition to guest               | transition to guest
1521  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1522  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1523  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1524  *
1525  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1526  *
1527  *      - ret0 < ret1
1528  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1529  *              ...
1530  *      - 0 < N - M => M < N
1531  *
1532  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1533  * always the case (the difference between two distinct xtime instances
1534  * might be smaller then the difference between corresponding TSC reads,
1535  * when updating guest vcpus pvclock areas).
1536  *
1537  * To avoid that problem, do not allow visibility of distinct
1538  * system_timestamp/tsc_timestamp values simultaneously: use a master
1539  * copy of host monotonic time values. Update that master copy
1540  * in lockstep.
1541  *
1542  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1543  *
1544  */
1545
1546 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1547 {
1548 #ifdef CONFIG_X86_64
1549         struct kvm_arch *ka = &kvm->arch;
1550         int vclock_mode;
1551         bool host_tsc_clocksource, vcpus_matched;
1552
1553         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1554                         atomic_read(&kvm->online_vcpus));
1555
1556         /*
1557          * If the host uses TSC clock, then passthrough TSC as stable
1558          * to the guest.
1559          */
1560         host_tsc_clocksource = kvm_get_time_and_clockread(
1561                                         &ka->master_kernel_ns,
1562                                         &ka->master_cycle_now);
1563
1564         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1565                                 && !backwards_tsc_observed
1566                                 && !ka->boot_vcpu_runs_old_kvmclock;
1567
1568         if (ka->use_master_clock)
1569                 atomic_set(&kvm_guest_has_master_clock, 1);
1570
1571         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1572         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1573                                         vcpus_matched);
1574 #endif
1575 }
1576
1577 static void kvm_gen_update_masterclock(struct kvm *kvm)
1578 {
1579 #ifdef CONFIG_X86_64
1580         int i;
1581         struct kvm_vcpu *vcpu;
1582         struct kvm_arch *ka = &kvm->arch;
1583
1584         spin_lock(&ka->pvclock_gtod_sync_lock);
1585         kvm_make_mclock_inprogress_request(kvm);
1586         /* no guest entries from this point */
1587         pvclock_update_vm_gtod_copy(kvm);
1588
1589         kvm_for_each_vcpu(i, vcpu, kvm)
1590                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1591
1592         /* guest entries allowed */
1593         kvm_for_each_vcpu(i, vcpu, kvm)
1594                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1595
1596         spin_unlock(&ka->pvclock_gtod_sync_lock);
1597 #endif
1598 }
1599
1600 static int kvm_guest_time_update(struct kvm_vcpu *v)
1601 {
1602         unsigned long flags, this_tsc_khz;
1603         struct kvm_vcpu_arch *vcpu = &v->arch;
1604         struct kvm_arch *ka = &v->kvm->arch;
1605         s64 kernel_ns;
1606         u64 tsc_timestamp, host_tsc;
1607         struct pvclock_vcpu_time_info guest_hv_clock;
1608         u8 pvclock_flags;
1609         bool use_master_clock;
1610
1611         kernel_ns = 0;
1612         host_tsc = 0;
1613
1614         /*
1615          * If the host uses TSC clock, then passthrough TSC as stable
1616          * to the guest.
1617          */
1618         spin_lock(&ka->pvclock_gtod_sync_lock);
1619         use_master_clock = ka->use_master_clock;
1620         if (use_master_clock) {
1621                 host_tsc = ka->master_cycle_now;
1622                 kernel_ns = ka->master_kernel_ns;
1623         }
1624         spin_unlock(&ka->pvclock_gtod_sync_lock);
1625
1626         /* Keep irq disabled to prevent changes to the clock */
1627         local_irq_save(flags);
1628         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1629         if (unlikely(this_tsc_khz == 0)) {
1630                 local_irq_restore(flags);
1631                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1632                 return 1;
1633         }
1634         if (!use_master_clock) {
1635                 host_tsc = rdtsc();
1636                 kernel_ns = get_kernel_ns();
1637         }
1638
1639         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1640
1641         /*
1642          * We may have to catch up the TSC to match elapsed wall clock
1643          * time for two reasons, even if kvmclock is used.
1644          *   1) CPU could have been running below the maximum TSC rate
1645          *   2) Broken TSC compensation resets the base at each VCPU
1646          *      entry to avoid unknown leaps of TSC even when running
1647          *      again on the same CPU.  This may cause apparent elapsed
1648          *      time to disappear, and the guest to stand still or run
1649          *      very slowly.
1650          */
1651         if (vcpu->tsc_catchup) {
1652                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1653                 if (tsc > tsc_timestamp) {
1654                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1655                         tsc_timestamp = tsc;
1656                 }
1657         }
1658
1659         local_irq_restore(flags);
1660
1661         if (!vcpu->pv_time_enabled)
1662                 return 0;
1663
1664         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1665                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1666                                    &vcpu->hv_clock.tsc_shift,
1667                                    &vcpu->hv_clock.tsc_to_system_mul);
1668                 vcpu->hw_tsc_khz = this_tsc_khz;
1669         }
1670
1671         /* With all the info we got, fill in the values */
1672         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1673         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1674         vcpu->last_guest_tsc = tsc_timestamp;
1675
1676         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1677                 &guest_hv_clock, sizeof(guest_hv_clock))))
1678                 return 0;
1679
1680         /* This VCPU is paused, but it's legal for a guest to read another
1681          * VCPU's kvmclock, so we really have to follow the specification where
1682          * it says that version is odd if data is being modified, and even after
1683          * it is consistent.
1684          *
1685          * Version field updates must be kept separate.  This is because
1686          * kvm_write_guest_cached might use a "rep movs" instruction, and
1687          * writes within a string instruction are weakly ordered.  So there
1688          * are three writes overall.
1689          *
1690          * As a small optimization, only write the version field in the first
1691          * and third write.  The vcpu->pv_time cache is still valid, because the
1692          * version field is the first in the struct.
1693          */
1694         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1695
1696         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1697         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1698                                 &vcpu->hv_clock,
1699                                 sizeof(vcpu->hv_clock.version));
1700
1701         smp_wmb();
1702
1703         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1704         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1705
1706         if (vcpu->pvclock_set_guest_stopped_request) {
1707                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1708                 vcpu->pvclock_set_guest_stopped_request = false;
1709         }
1710
1711         /* If the host uses TSC clocksource, then it is stable */
1712         if (use_master_clock)
1713                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1714
1715         vcpu->hv_clock.flags = pvclock_flags;
1716
1717         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1718
1719         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1720                                 &vcpu->hv_clock,
1721                                 sizeof(vcpu->hv_clock));
1722
1723         smp_wmb();
1724
1725         vcpu->hv_clock.version++;
1726         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1727                                 &vcpu->hv_clock,
1728                                 sizeof(vcpu->hv_clock.version));
1729         return 0;
1730 }
1731
1732 /*
1733  * kvmclock updates which are isolated to a given vcpu, such as
1734  * vcpu->cpu migration, should not allow system_timestamp from
1735  * the rest of the vcpus to remain static. Otherwise ntp frequency
1736  * correction applies to one vcpu's system_timestamp but not
1737  * the others.
1738  *
1739  * So in those cases, request a kvmclock update for all vcpus.
1740  * We need to rate-limit these requests though, as they can
1741  * considerably slow guests that have a large number of vcpus.
1742  * The time for a remote vcpu to update its kvmclock is bound
1743  * by the delay we use to rate-limit the updates.
1744  */
1745
1746 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1747
1748 static void kvmclock_update_fn(struct work_struct *work)
1749 {
1750         int i;
1751         struct delayed_work *dwork = to_delayed_work(work);
1752         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1753                                            kvmclock_update_work);
1754         struct kvm *kvm = container_of(ka, struct kvm, arch);
1755         struct kvm_vcpu *vcpu;
1756
1757         kvm_for_each_vcpu(i, vcpu, kvm) {
1758                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1759                 kvm_vcpu_kick(vcpu);
1760         }
1761 }
1762
1763 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1764 {
1765         struct kvm *kvm = v->kvm;
1766
1767         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1768         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1769                                         KVMCLOCK_UPDATE_DELAY);
1770 }
1771
1772 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1773
1774 static void kvmclock_sync_fn(struct work_struct *work)
1775 {
1776         struct delayed_work *dwork = to_delayed_work(work);
1777         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1778                                            kvmclock_sync_work);
1779         struct kvm *kvm = container_of(ka, struct kvm, arch);
1780
1781         if (!kvmclock_periodic_sync)
1782                 return;
1783
1784         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1785         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1786                                         KVMCLOCK_SYNC_PERIOD);
1787 }
1788
1789 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1790 {
1791         u64 mcg_cap = vcpu->arch.mcg_cap;
1792         unsigned bank_num = mcg_cap & 0xff;
1793
1794         switch (msr) {
1795         case MSR_IA32_MCG_STATUS:
1796                 vcpu->arch.mcg_status = data;
1797                 break;
1798         case MSR_IA32_MCG_CTL:
1799                 if (!(mcg_cap & MCG_CTL_P))
1800                         return 1;
1801                 if (data != 0 && data != ~(u64)0)
1802                         return -1;
1803                 vcpu->arch.mcg_ctl = data;
1804                 break;
1805         default:
1806                 if (msr >= MSR_IA32_MC0_CTL &&
1807                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1808                         u32 offset = msr - MSR_IA32_MC0_CTL;
1809                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1810                          * some Linux kernels though clear bit 10 in bank 4 to
1811                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1812                          * this to avoid an uncatched #GP in the guest
1813                          */
1814                         if ((offset & 0x3) == 0 &&
1815                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1816                                 return -1;
1817                         vcpu->arch.mce_banks[offset] = data;
1818                         break;
1819                 }
1820                 return 1;
1821         }
1822         return 0;
1823 }
1824
1825 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1826 {
1827         struct kvm *kvm = vcpu->kvm;
1828         int lm = is_long_mode(vcpu);
1829         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1830                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1831         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1832                 : kvm->arch.xen_hvm_config.blob_size_32;
1833         u32 page_num = data & ~PAGE_MASK;
1834         u64 page_addr = data & PAGE_MASK;
1835         u8 *page;
1836         int r;
1837
1838         r = -E2BIG;
1839         if (page_num >= blob_size)
1840                 goto out;
1841         r = -ENOMEM;
1842         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1843         if (IS_ERR(page)) {
1844                 r = PTR_ERR(page);
1845                 goto out;
1846         }
1847         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1848                 goto out_free;
1849         r = 0;
1850 out_free:
1851         kfree(page);
1852 out:
1853         return r;
1854 }
1855
1856 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1857 {
1858         gpa_t gpa = data & ~0x3f;
1859
1860         /* Bits 2:5 are reserved, Should be zero */
1861         if (data & 0x3c)
1862                 return 1;
1863
1864         vcpu->arch.apf.msr_val = data;
1865
1866         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1867                 kvm_clear_async_pf_completion_queue(vcpu);
1868                 kvm_async_pf_hash_reset(vcpu);
1869                 return 0;
1870         }
1871
1872         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1873                                         sizeof(u32)))
1874                 return 1;
1875
1876         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1877         kvm_async_pf_wakeup_all(vcpu);
1878         return 0;
1879 }
1880
1881 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1882 {
1883         vcpu->arch.pv_time_enabled = false;
1884 }
1885
1886 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1887 {
1888         u64 delta;
1889
1890         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1891                 return;
1892
1893         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1894         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1895         vcpu->arch.st.accum_steal = delta;
1896 }
1897
1898 static void record_steal_time(struct kvm_vcpu *vcpu)
1899 {
1900         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1901                 return;
1902
1903         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1904                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1905                 return;
1906
1907         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1908         vcpu->arch.st.steal.version += 2;
1909         vcpu->arch.st.accum_steal = 0;
1910
1911         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1912                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1913 }
1914
1915 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1916 {
1917         bool pr = false;
1918         u32 msr = msr_info->index;
1919         u64 data = msr_info->data;
1920
1921         switch (msr) {
1922         case MSR_AMD64_NB_CFG:
1923         case MSR_IA32_UCODE_REV:
1924         case MSR_IA32_UCODE_WRITE:
1925         case MSR_VM_HSAVE_PA:
1926         case MSR_AMD64_PATCH_LOADER:
1927         case MSR_AMD64_BU_CFG2:
1928                 break;
1929
1930         case MSR_EFER:
1931                 return set_efer(vcpu, data);
1932         case MSR_K7_HWCR:
1933                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1934                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1935                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1936                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
1937                 if (data != 0) {
1938                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1939                                     data);
1940                         return 1;
1941                 }
1942                 break;
1943         case MSR_FAM10H_MMIO_CONF_BASE:
1944                 if (data != 0) {
1945                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1946                                     "0x%llx\n", data);
1947                         return 1;
1948                 }
1949                 break;
1950         case MSR_IA32_DEBUGCTLMSR:
1951                 if (!data) {
1952                         /* We support the non-activated case already */
1953                         break;
1954                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1955                         /* Values other than LBR and BTF are vendor-specific,
1956                            thus reserved and should throw a #GP */
1957                         return 1;
1958                 }
1959                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1960                             __func__, data);
1961                 break;
1962         case 0x200 ... 0x2ff:
1963                 return kvm_mtrr_set_msr(vcpu, msr, data);
1964         case MSR_IA32_APICBASE:
1965                 return kvm_set_apic_base(vcpu, msr_info);
1966         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1967                 return kvm_x2apic_msr_write(vcpu, msr, data);
1968         case MSR_IA32_TSCDEADLINE:
1969                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1970                 break;
1971         case MSR_IA32_TSC_ADJUST:
1972                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1973                         if (!msr_info->host_initiated) {
1974                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1975                                 adjust_tsc_offset_guest(vcpu, adj);
1976                         }
1977                         vcpu->arch.ia32_tsc_adjust_msr = data;
1978                 }
1979                 break;
1980         case MSR_IA32_MISC_ENABLE:
1981                 vcpu->arch.ia32_misc_enable_msr = data;
1982                 break;
1983         case MSR_IA32_SMBASE:
1984                 if (!msr_info->host_initiated)
1985                         return 1;
1986                 vcpu->arch.smbase = data;
1987                 break;
1988         case MSR_KVM_WALL_CLOCK_NEW:
1989         case MSR_KVM_WALL_CLOCK:
1990                 vcpu->kvm->arch.wall_clock = data;
1991                 kvm_write_wall_clock(vcpu->kvm, data);
1992                 break;
1993         case MSR_KVM_SYSTEM_TIME_NEW:
1994         case MSR_KVM_SYSTEM_TIME: {
1995                 u64 gpa_offset;
1996                 struct kvm_arch *ka = &vcpu->kvm->arch;
1997
1998                 kvmclock_reset(vcpu);
1999
2000                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2001                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2002
2003                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2004                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2005                                         &vcpu->requests);
2006
2007                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2008                 }
2009
2010                 vcpu->arch.time = data;
2011                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2012
2013                 /* we verify if the enable bit is set... */
2014                 if (!(data & 1))
2015                         break;
2016
2017                 gpa_offset = data & ~(PAGE_MASK | 1);
2018
2019                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2020                      &vcpu->arch.pv_time, data & ~1ULL,
2021                      sizeof(struct pvclock_vcpu_time_info)))
2022                         vcpu->arch.pv_time_enabled = false;
2023                 else
2024                         vcpu->arch.pv_time_enabled = true;
2025
2026                 break;
2027         }
2028         case MSR_KVM_ASYNC_PF_EN:
2029                 if (kvm_pv_enable_async_pf(vcpu, data))
2030                         return 1;
2031                 break;
2032         case MSR_KVM_STEAL_TIME:
2033
2034                 if (unlikely(!sched_info_on()))
2035                         return 1;
2036
2037                 if (data & KVM_STEAL_RESERVED_MASK)
2038                         return 1;
2039
2040                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2041                                                 data & KVM_STEAL_VALID_BITS,
2042                                                 sizeof(struct kvm_steal_time)))
2043                         return 1;
2044
2045                 vcpu->arch.st.msr_val = data;
2046
2047                 if (!(data & KVM_MSR_ENABLED))
2048                         break;
2049
2050                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2051
2052                 preempt_disable();
2053                 accumulate_steal_time(vcpu);
2054                 preempt_enable();
2055
2056                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2057
2058                 break;
2059         case MSR_KVM_PV_EOI_EN:
2060                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2061                         return 1;
2062                 break;
2063
2064         case MSR_IA32_MCG_CTL:
2065         case MSR_IA32_MCG_STATUS:
2066         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2067                 return set_msr_mce(vcpu, msr, data);
2068
2069         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2070         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2071                 pr = true; /* fall through */
2072         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2073         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2074                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2075                         return kvm_pmu_set_msr(vcpu, msr_info);
2076
2077                 if (pr || data != 0)
2078                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2079                                     "0x%x data 0x%llx\n", msr, data);
2080                 break;
2081         case MSR_K7_CLK_CTL:
2082                 /*
2083                  * Ignore all writes to this no longer documented MSR.
2084                  * Writes are only relevant for old K7 processors,
2085                  * all pre-dating SVM, but a recommended workaround from
2086                  * AMD for these chips. It is possible to specify the
2087                  * affected processor models on the command line, hence
2088                  * the need to ignore the workaround.
2089                  */
2090                 break;
2091         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2092         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2093         case HV_X64_MSR_CRASH_CTL:
2094                 return kvm_hv_set_msr_common(vcpu, msr, data,
2095                                              msr_info->host_initiated);
2096         case MSR_IA32_BBL_CR_CTL3:
2097                 /* Drop writes to this legacy MSR -- see rdmsr
2098                  * counterpart for further detail.
2099                  */
2100                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2101                 break;
2102         case MSR_AMD64_OSVW_ID_LENGTH:
2103                 if (!guest_cpuid_has_osvw(vcpu))
2104                         return 1;
2105                 vcpu->arch.osvw.length = data;
2106                 break;
2107         case MSR_AMD64_OSVW_STATUS:
2108                 if (!guest_cpuid_has_osvw(vcpu))
2109                         return 1;
2110                 vcpu->arch.osvw.status = data;
2111                 break;
2112         default:
2113                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2114                         return xen_hvm_config(vcpu, data);
2115                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2116                         return kvm_pmu_set_msr(vcpu, msr_info);
2117                 if (!ignore_msrs) {
2118                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2119                                     msr, data);
2120                         return 1;
2121                 } else {
2122                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2123                                     msr, data);
2124                         break;
2125                 }
2126         }
2127         return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2130
2131
2132 /*
2133  * Reads an msr value (of 'msr_index') into 'pdata'.
2134  * Returns 0 on success, non-0 otherwise.
2135  * Assumes vcpu_load() was already called.
2136  */
2137 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2138 {
2139         return kvm_x86_ops->get_msr(vcpu, msr);
2140 }
2141 EXPORT_SYMBOL_GPL(kvm_get_msr);
2142
2143 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2144 {
2145         u64 data;
2146         u64 mcg_cap = vcpu->arch.mcg_cap;
2147         unsigned bank_num = mcg_cap & 0xff;
2148
2149         switch (msr) {
2150         case MSR_IA32_P5_MC_ADDR:
2151         case MSR_IA32_P5_MC_TYPE:
2152                 data = 0;
2153                 break;
2154         case MSR_IA32_MCG_CAP:
2155                 data = vcpu->arch.mcg_cap;
2156                 break;
2157         case MSR_IA32_MCG_CTL:
2158                 if (!(mcg_cap & MCG_CTL_P))
2159                         return 1;
2160                 data = vcpu->arch.mcg_ctl;
2161                 break;
2162         case MSR_IA32_MCG_STATUS:
2163                 data = vcpu->arch.mcg_status;
2164                 break;
2165         default:
2166                 if (msr >= MSR_IA32_MC0_CTL &&
2167                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2168                         u32 offset = msr - MSR_IA32_MC0_CTL;
2169                         data = vcpu->arch.mce_banks[offset];
2170                         break;
2171                 }
2172                 return 1;
2173         }
2174         *pdata = data;
2175         return 0;
2176 }
2177
2178 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2179 {
2180         switch (msr_info->index) {
2181         case MSR_IA32_PLATFORM_ID:
2182         case MSR_IA32_EBL_CR_POWERON:
2183         case MSR_IA32_DEBUGCTLMSR:
2184         case MSR_IA32_LASTBRANCHFROMIP:
2185         case MSR_IA32_LASTBRANCHTOIP:
2186         case MSR_IA32_LASTINTFROMIP:
2187         case MSR_IA32_LASTINTTOIP:
2188         case MSR_K8_SYSCFG:
2189         case MSR_K8_TSEG_ADDR:
2190         case MSR_K8_TSEG_MASK:
2191         case MSR_K7_HWCR:
2192         case MSR_VM_HSAVE_PA:
2193         case MSR_K8_INT_PENDING_MSG:
2194         case MSR_AMD64_NB_CFG:
2195         case MSR_FAM10H_MMIO_CONF_BASE:
2196         case MSR_AMD64_BU_CFG2:
2197                 msr_info->data = 0;
2198                 break;
2199         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2200         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2201         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2202         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2203                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2204                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2205                 msr_info->data = 0;
2206                 break;
2207         case MSR_IA32_UCODE_REV:
2208                 msr_info->data = 0x100000000ULL;
2209                 break;
2210         case MSR_MTRRcap:
2211         case 0x200 ... 0x2ff:
2212                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2213         case 0xcd: /* fsb frequency */
2214                 msr_info->data = 3;
2215                 break;
2216                 /*
2217                  * MSR_EBC_FREQUENCY_ID
2218                  * Conservative value valid for even the basic CPU models.
2219                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2220                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2221                  * and 266MHz for model 3, or 4. Set Core Clock
2222                  * Frequency to System Bus Frequency Ratio to 1 (bits
2223                  * 31:24) even though these are only valid for CPU
2224                  * models > 2, however guests may end up dividing or
2225                  * multiplying by zero otherwise.
2226                  */
2227         case MSR_EBC_FREQUENCY_ID:
2228                 msr_info->data = 1 << 24;
2229                 break;
2230         case MSR_IA32_APICBASE:
2231                 msr_info->data = kvm_get_apic_base(vcpu);
2232                 break;
2233         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2234                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2235                 break;
2236         case MSR_IA32_TSCDEADLINE:
2237                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2238                 break;
2239         case MSR_IA32_TSC_ADJUST:
2240                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2241                 break;
2242         case MSR_IA32_MISC_ENABLE:
2243                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2244                 break;
2245         case MSR_IA32_SMBASE:
2246                 if (!msr_info->host_initiated)
2247                         return 1;
2248                 msr_info->data = vcpu->arch.smbase;
2249                 break;
2250         case MSR_IA32_PERF_STATUS:
2251                 /* TSC increment by tick */
2252                 msr_info->data = 1000ULL;
2253                 /* CPU multiplier */
2254                 msr_info->data |= (((uint64_t)4ULL) << 40);
2255                 break;
2256         case MSR_EFER:
2257                 msr_info->data = vcpu->arch.efer;
2258                 break;
2259         case MSR_KVM_WALL_CLOCK:
2260         case MSR_KVM_WALL_CLOCK_NEW:
2261                 msr_info->data = vcpu->kvm->arch.wall_clock;
2262                 break;
2263         case MSR_KVM_SYSTEM_TIME:
2264         case MSR_KVM_SYSTEM_TIME_NEW:
2265                 msr_info->data = vcpu->arch.time;
2266                 break;
2267         case MSR_KVM_ASYNC_PF_EN:
2268                 msr_info->data = vcpu->arch.apf.msr_val;
2269                 break;
2270         case MSR_KVM_STEAL_TIME:
2271                 msr_info->data = vcpu->arch.st.msr_val;
2272                 break;
2273         case MSR_KVM_PV_EOI_EN:
2274                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2275                 break;
2276         case MSR_IA32_P5_MC_ADDR:
2277         case MSR_IA32_P5_MC_TYPE:
2278         case MSR_IA32_MCG_CAP:
2279         case MSR_IA32_MCG_CTL:
2280         case MSR_IA32_MCG_STATUS:
2281         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2282                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2283         case MSR_K7_CLK_CTL:
2284                 /*
2285                  * Provide expected ramp-up count for K7. All other
2286                  * are set to zero, indicating minimum divisors for
2287                  * every field.
2288                  *
2289                  * This prevents guest kernels on AMD host with CPU
2290                  * type 6, model 8 and higher from exploding due to
2291                  * the rdmsr failing.
2292                  */
2293                 msr_info->data = 0x20000000;
2294                 break;
2295         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2296         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2297         case HV_X64_MSR_CRASH_CTL:
2298                 return kvm_hv_get_msr_common(vcpu,
2299                                              msr_info->index, &msr_info->data);
2300                 break;
2301         case MSR_IA32_BBL_CR_CTL3:
2302                 /* This legacy MSR exists but isn't fully documented in current
2303                  * silicon.  It is however accessed by winxp in very narrow
2304                  * scenarios where it sets bit #19, itself documented as
2305                  * a "reserved" bit.  Best effort attempt to source coherent
2306                  * read data here should the balance of the register be
2307                  * interpreted by the guest:
2308                  *
2309                  * L2 cache control register 3: 64GB range, 256KB size,
2310                  * enabled, latency 0x1, configured
2311                  */
2312                 msr_info->data = 0xbe702111;
2313                 break;
2314         case MSR_AMD64_OSVW_ID_LENGTH:
2315                 if (!guest_cpuid_has_osvw(vcpu))
2316                         return 1;
2317                 msr_info->data = vcpu->arch.osvw.length;
2318                 break;
2319         case MSR_AMD64_OSVW_STATUS:
2320                 if (!guest_cpuid_has_osvw(vcpu))
2321                         return 1;
2322                 msr_info->data = vcpu->arch.osvw.status;
2323                 break;
2324         default:
2325                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2326                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2327                 if (!ignore_msrs) {
2328                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2329                         return 1;
2330                 } else {
2331                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2332                         msr_info->data = 0;
2333                 }
2334                 break;
2335         }
2336         return 0;
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2339
2340 /*
2341  * Read or write a bunch of msrs. All parameters are kernel addresses.
2342  *
2343  * @return number of msrs set successfully.
2344  */
2345 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2346                     struct kvm_msr_entry *entries,
2347                     int (*do_msr)(struct kvm_vcpu *vcpu,
2348                                   unsigned index, u64 *data))
2349 {
2350         int i, idx;
2351
2352         idx = srcu_read_lock(&vcpu->kvm->srcu);
2353         for (i = 0; i < msrs->nmsrs; ++i)
2354                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2355                         break;
2356         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2357
2358         return i;
2359 }
2360
2361 /*
2362  * Read or write a bunch of msrs. Parameters are user addresses.
2363  *
2364  * @return number of msrs set successfully.
2365  */
2366 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2367                   int (*do_msr)(struct kvm_vcpu *vcpu,
2368                                 unsigned index, u64 *data),
2369                   int writeback)
2370 {
2371         struct kvm_msrs msrs;
2372         struct kvm_msr_entry *entries;
2373         int r, n;
2374         unsigned size;
2375
2376         r = -EFAULT;
2377         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2378                 goto out;
2379
2380         r = -E2BIG;
2381         if (msrs.nmsrs >= MAX_IO_MSRS)
2382                 goto out;
2383
2384         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2385         entries = memdup_user(user_msrs->entries, size);
2386         if (IS_ERR(entries)) {
2387                 r = PTR_ERR(entries);
2388                 goto out;
2389         }
2390
2391         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2392         if (r < 0)
2393                 goto out_free;
2394
2395         r = -EFAULT;
2396         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2397                 goto out_free;
2398
2399         r = n;
2400
2401 out_free:
2402         kfree(entries);
2403 out:
2404         return r;
2405 }
2406
2407 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2408 {
2409         int r;
2410
2411         switch (ext) {
2412         case KVM_CAP_IRQCHIP:
2413         case KVM_CAP_HLT:
2414         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2415         case KVM_CAP_SET_TSS_ADDR:
2416         case KVM_CAP_EXT_CPUID:
2417         case KVM_CAP_EXT_EMUL_CPUID:
2418         case KVM_CAP_CLOCKSOURCE:
2419         case KVM_CAP_PIT:
2420         case KVM_CAP_NOP_IO_DELAY:
2421         case KVM_CAP_MP_STATE:
2422         case KVM_CAP_SYNC_MMU:
2423         case KVM_CAP_USER_NMI:
2424         case KVM_CAP_REINJECT_CONTROL:
2425         case KVM_CAP_IRQ_INJECT_STATUS:
2426         case KVM_CAP_IOEVENTFD:
2427         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2428         case KVM_CAP_PIT2:
2429         case KVM_CAP_PIT_STATE2:
2430         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2431         case KVM_CAP_XEN_HVM:
2432         case KVM_CAP_ADJUST_CLOCK:
2433         case KVM_CAP_VCPU_EVENTS:
2434         case KVM_CAP_HYPERV:
2435         case KVM_CAP_HYPERV_VAPIC:
2436         case KVM_CAP_HYPERV_SPIN:
2437         case KVM_CAP_PCI_SEGMENT:
2438         case KVM_CAP_DEBUGREGS:
2439         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2440         case KVM_CAP_XSAVE:
2441         case KVM_CAP_ASYNC_PF:
2442         case KVM_CAP_GET_TSC_KHZ:
2443         case KVM_CAP_KVMCLOCK_CTRL:
2444         case KVM_CAP_READONLY_MEM:
2445         case KVM_CAP_HYPERV_TIME:
2446         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2447         case KVM_CAP_TSC_DEADLINE_TIMER:
2448         case KVM_CAP_ENABLE_CAP_VM:
2449         case KVM_CAP_DISABLE_QUIRKS:
2450         case KVM_CAP_SET_BOOT_CPU_ID:
2451 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2452         case KVM_CAP_ASSIGN_DEV_IRQ:
2453         case KVM_CAP_PCI_2_3:
2454 #endif
2455                 r = 1;
2456                 break;
2457         case KVM_CAP_X86_SMM:
2458                 /* SMBASE is usually relocated above 1M on modern chipsets,
2459                  * and SMM handlers might indeed rely on 4G segment limits,
2460                  * so do not report SMM to be available if real mode is
2461                  * emulated via vm86 mode.  Still, do not go to great lengths
2462                  * to avoid userspace's usage of the feature, because it is a
2463                  * fringe case that is not enabled except via specific settings
2464                  * of the module parameters.
2465                  */
2466                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2467                 break;
2468         case KVM_CAP_COALESCED_MMIO:
2469                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2470                 break;
2471         case KVM_CAP_VAPIC:
2472                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2473                 break;
2474         case KVM_CAP_NR_VCPUS:
2475                 r = KVM_SOFT_MAX_VCPUS;
2476                 break;
2477         case KVM_CAP_MAX_VCPUS:
2478                 r = KVM_MAX_VCPUS;
2479                 break;
2480         case KVM_CAP_NR_MEMSLOTS:
2481                 r = KVM_USER_MEM_SLOTS;
2482                 break;
2483         case KVM_CAP_PV_MMU:    /* obsolete */
2484                 r = 0;
2485                 break;
2486 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2487         case KVM_CAP_IOMMU:
2488                 r = iommu_present(&pci_bus_type);
2489                 break;
2490 #endif
2491         case KVM_CAP_MCE:
2492                 r = KVM_MAX_MCE_BANKS;
2493                 break;
2494         case KVM_CAP_XCRS:
2495                 r = cpu_has_xsave;
2496                 break;
2497         case KVM_CAP_TSC_CONTROL:
2498                 r = kvm_has_tsc_control;
2499                 break;
2500         default:
2501                 r = 0;
2502                 break;
2503         }
2504         return r;
2505
2506 }
2507
2508 long kvm_arch_dev_ioctl(struct file *filp,
2509                         unsigned int ioctl, unsigned long arg)
2510 {
2511         void __user *argp = (void __user *)arg;
2512         long r;
2513
2514         switch (ioctl) {
2515         case KVM_GET_MSR_INDEX_LIST: {
2516                 struct kvm_msr_list __user *user_msr_list = argp;
2517                 struct kvm_msr_list msr_list;
2518                 unsigned n;
2519
2520                 r = -EFAULT;
2521                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2522                         goto out;
2523                 n = msr_list.nmsrs;
2524                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2525                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2526                         goto out;
2527                 r = -E2BIG;
2528                 if (n < msr_list.nmsrs)
2529                         goto out;
2530                 r = -EFAULT;
2531                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2532                                  num_msrs_to_save * sizeof(u32)))
2533                         goto out;
2534                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2535                                  &emulated_msrs,
2536                                  num_emulated_msrs * sizeof(u32)))
2537                         goto out;
2538                 r = 0;
2539                 break;
2540         }
2541         case KVM_GET_SUPPORTED_CPUID:
2542         case KVM_GET_EMULATED_CPUID: {
2543                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2544                 struct kvm_cpuid2 cpuid;
2545
2546                 r = -EFAULT;
2547                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2548                         goto out;
2549
2550                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2551                                             ioctl);
2552                 if (r)
2553                         goto out;
2554
2555                 r = -EFAULT;
2556                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2557                         goto out;
2558                 r = 0;
2559                 break;
2560         }
2561         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2562                 u64 mce_cap;
2563
2564                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2565                 r = -EFAULT;
2566                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2567                         goto out;
2568                 r = 0;
2569                 break;
2570         }
2571         default:
2572                 r = -EINVAL;
2573         }
2574 out:
2575         return r;
2576 }
2577
2578 static void wbinvd_ipi(void *garbage)
2579 {
2580         wbinvd();
2581 }
2582
2583 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2584 {
2585         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2586 }
2587
2588 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2589 {
2590         /* Address WBINVD may be executed by guest */
2591         if (need_emulate_wbinvd(vcpu)) {
2592                 if (kvm_x86_ops->has_wbinvd_exit())
2593                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2594                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2595                         smp_call_function_single(vcpu->cpu,
2596                                         wbinvd_ipi, NULL, 1);
2597         }
2598
2599         kvm_x86_ops->vcpu_load(vcpu, cpu);
2600
2601         /* Apply any externally detected TSC adjustments (due to suspend) */
2602         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2603                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2604                 vcpu->arch.tsc_offset_adjustment = 0;
2605                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2606         }
2607
2608         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2609                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2610                                 rdtsc() - vcpu->arch.last_host_tsc;
2611                 if (tsc_delta < 0)
2612                         mark_tsc_unstable("KVM discovered backwards TSC");
2613                 if (check_tsc_unstable()) {
2614                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2615                                                 vcpu->arch.last_guest_tsc);
2616                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2617                         vcpu->arch.tsc_catchup = 1;
2618                 }
2619                 /*
2620                  * On a host with synchronized TSC, there is no need to update
2621                  * kvmclock on vcpu->cpu migration
2622                  */
2623                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2624                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2625                 if (vcpu->cpu != cpu)
2626                         kvm_migrate_timers(vcpu);
2627                 vcpu->cpu = cpu;
2628         }
2629
2630         accumulate_steal_time(vcpu);
2631         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2632 }
2633
2634 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2635 {
2636         kvm_x86_ops->vcpu_put(vcpu);
2637         kvm_put_guest_fpu(vcpu);
2638         vcpu->arch.last_host_tsc = rdtsc();
2639 }
2640
2641 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2642                                     struct kvm_lapic_state *s)
2643 {
2644         kvm_x86_ops->sync_pir_to_irr(vcpu);
2645         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2646
2647         return 0;
2648 }
2649
2650 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2651                                     struct kvm_lapic_state *s)
2652 {
2653         kvm_apic_post_state_restore(vcpu, s);
2654         update_cr8_intercept(vcpu);
2655
2656         return 0;
2657 }
2658
2659 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2660                                     struct kvm_interrupt *irq)
2661 {
2662         if (irq->irq >= KVM_NR_INTERRUPTS)
2663                 return -EINVAL;
2664         if (irqchip_in_kernel(vcpu->kvm))
2665                 return -ENXIO;
2666
2667         kvm_queue_interrupt(vcpu, irq->irq, false);
2668         kvm_make_request(KVM_REQ_EVENT, vcpu);
2669
2670         return 0;
2671 }
2672
2673 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2674 {
2675         kvm_inject_nmi(vcpu);
2676
2677         return 0;
2678 }
2679
2680 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2681 {
2682         kvm_make_request(KVM_REQ_SMI, vcpu);
2683
2684         return 0;
2685 }
2686
2687 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2688                                            struct kvm_tpr_access_ctl *tac)
2689 {
2690         if (tac->flags)
2691                 return -EINVAL;
2692         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2693         return 0;
2694 }
2695
2696 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2697                                         u64 mcg_cap)
2698 {
2699         int r;
2700         unsigned bank_num = mcg_cap & 0xff, bank;
2701
2702         r = -EINVAL;
2703         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2704                 goto out;
2705         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2706                 goto out;
2707         r = 0;
2708         vcpu->arch.mcg_cap = mcg_cap;
2709         /* Init IA32_MCG_CTL to all 1s */
2710         if (mcg_cap & MCG_CTL_P)
2711                 vcpu->arch.mcg_ctl = ~(u64)0;
2712         /* Init IA32_MCi_CTL to all 1s */
2713         for (bank = 0; bank < bank_num; bank++)
2714                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2715 out:
2716         return r;
2717 }
2718
2719 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2720                                       struct kvm_x86_mce *mce)
2721 {
2722         u64 mcg_cap = vcpu->arch.mcg_cap;
2723         unsigned bank_num = mcg_cap & 0xff;
2724         u64 *banks = vcpu->arch.mce_banks;
2725
2726         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2727                 return -EINVAL;
2728         /*
2729          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2730          * reporting is disabled
2731          */
2732         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2733             vcpu->arch.mcg_ctl != ~(u64)0)
2734                 return 0;
2735         banks += 4 * mce->bank;
2736         /*
2737          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2738          * reporting is disabled for the bank
2739          */
2740         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2741                 return 0;
2742         if (mce->status & MCI_STATUS_UC) {
2743                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2744                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2745                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2746                         return 0;
2747                 }
2748                 if (banks[1] & MCI_STATUS_VAL)
2749                         mce->status |= MCI_STATUS_OVER;
2750                 banks[2] = mce->addr;
2751                 banks[3] = mce->misc;
2752                 vcpu->arch.mcg_status = mce->mcg_status;
2753                 banks[1] = mce->status;
2754                 kvm_queue_exception(vcpu, MC_VECTOR);
2755         } else if (!(banks[1] & MCI_STATUS_VAL)
2756                    || !(banks[1] & MCI_STATUS_UC)) {
2757                 if (banks[1] & MCI_STATUS_VAL)
2758                         mce->status |= MCI_STATUS_OVER;
2759                 banks[2] = mce->addr;
2760                 banks[3] = mce->misc;
2761                 banks[1] = mce->status;
2762         } else
2763                 banks[1] |= MCI_STATUS_OVER;
2764         return 0;
2765 }
2766
2767 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2768                                                struct kvm_vcpu_events *events)
2769 {
2770         process_nmi(vcpu);
2771         events->exception.injected =
2772                 vcpu->arch.exception.pending &&
2773                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2774         events->exception.nr = vcpu->arch.exception.nr;
2775         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2776         events->exception.pad = 0;
2777         events->exception.error_code = vcpu->arch.exception.error_code;
2778
2779         events->interrupt.injected =
2780                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2781         events->interrupt.nr = vcpu->arch.interrupt.nr;
2782         events->interrupt.soft = 0;
2783         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2784
2785         events->nmi.injected = vcpu->arch.nmi_injected;
2786         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2787         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2788         events->nmi.pad = 0;
2789
2790         events->sipi_vector = 0; /* never valid when reporting to user space */
2791
2792         events->smi.smm = is_smm(vcpu);
2793         events->smi.pending = vcpu->arch.smi_pending;
2794         events->smi.smm_inside_nmi =
2795                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2796         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2797
2798         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2799                          | KVM_VCPUEVENT_VALID_SHADOW
2800                          | KVM_VCPUEVENT_VALID_SMM);
2801         memset(&events->reserved, 0, sizeof(events->reserved));
2802 }
2803
2804 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2805                                               struct kvm_vcpu_events *events)
2806 {
2807         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2808                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2809                               | KVM_VCPUEVENT_VALID_SHADOW
2810                               | KVM_VCPUEVENT_VALID_SMM))
2811                 return -EINVAL;
2812
2813         process_nmi(vcpu);
2814         vcpu->arch.exception.pending = events->exception.injected;
2815         vcpu->arch.exception.nr = events->exception.nr;
2816         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2817         vcpu->arch.exception.error_code = events->exception.error_code;
2818
2819         vcpu->arch.interrupt.pending = events->interrupt.injected;
2820         vcpu->arch.interrupt.nr = events->interrupt.nr;
2821         vcpu->arch.interrupt.soft = events->interrupt.soft;
2822         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2823                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2824                                                   events->interrupt.shadow);
2825
2826         vcpu->arch.nmi_injected = events->nmi.injected;
2827         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2828                 vcpu->arch.nmi_pending = events->nmi.pending;
2829         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2830
2831         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2832             kvm_vcpu_has_lapic(vcpu))
2833                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2834
2835         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2836                 if (events->smi.smm)
2837                         vcpu->arch.hflags |= HF_SMM_MASK;
2838                 else
2839                         vcpu->arch.hflags &= ~HF_SMM_MASK;
2840                 vcpu->arch.smi_pending = events->smi.pending;
2841                 if (events->smi.smm_inside_nmi)
2842                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2843                 else
2844                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2845                 if (kvm_vcpu_has_lapic(vcpu)) {
2846                         if (events->smi.latched_init)
2847                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2848                         else
2849                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2850                 }
2851         }
2852
2853         kvm_make_request(KVM_REQ_EVENT, vcpu);
2854
2855         return 0;
2856 }
2857
2858 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2859                                              struct kvm_debugregs *dbgregs)
2860 {
2861         unsigned long val;
2862
2863         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2864         kvm_get_dr(vcpu, 6, &val);
2865         dbgregs->dr6 = val;
2866         dbgregs->dr7 = vcpu->arch.dr7;
2867         dbgregs->flags = 0;
2868         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2869 }
2870
2871 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2872                                             struct kvm_debugregs *dbgregs)
2873 {
2874         if (dbgregs->flags)
2875                 return -EINVAL;
2876
2877         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2878         kvm_update_dr0123(vcpu);
2879         vcpu->arch.dr6 = dbgregs->dr6;
2880         kvm_update_dr6(vcpu);
2881         vcpu->arch.dr7 = dbgregs->dr7;
2882         kvm_update_dr7(vcpu);
2883
2884         return 0;
2885 }
2886
2887 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
2888
2889 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
2890 {
2891         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2892         u64 xstate_bv = xsave->header.xfeatures;
2893         u64 valid;
2894
2895         /*
2896          * Copy legacy XSAVE area, to avoid complications with CPUID
2897          * leaves 0 and 1 in the loop below.
2898          */
2899         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
2900
2901         /* Set XSTATE_BV */
2902         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
2903
2904         /*
2905          * Copy each region from the possibly compacted offset to the
2906          * non-compacted offset.
2907          */
2908         valid = xstate_bv & ~XSTATE_FPSSE;
2909         while (valid) {
2910                 u64 feature = valid & -valid;
2911                 int index = fls64(feature) - 1;
2912                 void *src = get_xsave_addr(xsave, feature);
2913
2914                 if (src) {
2915                         u32 size, offset, ecx, edx;
2916                         cpuid_count(XSTATE_CPUID, index,
2917                                     &size, &offset, &ecx, &edx);
2918                         memcpy(dest + offset, src, size);
2919                 }
2920
2921                 valid -= feature;
2922         }
2923 }
2924
2925 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
2926 {
2927         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2928         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
2929         u64 valid;
2930
2931         /*
2932          * Copy legacy XSAVE area, to avoid complications with CPUID
2933          * leaves 0 and 1 in the loop below.
2934          */
2935         memcpy(xsave, src, XSAVE_HDR_OFFSET);
2936
2937         /* Set XSTATE_BV and possibly XCOMP_BV.  */
2938         xsave->header.xfeatures = xstate_bv;
2939         if (cpu_has_xsaves)
2940                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
2941
2942         /*
2943          * Copy each region from the non-compacted offset to the
2944          * possibly compacted offset.
2945          */
2946         valid = xstate_bv & ~XSTATE_FPSSE;
2947         while (valid) {
2948                 u64 feature = valid & -valid;
2949                 int index = fls64(feature) - 1;
2950                 void *dest = get_xsave_addr(xsave, feature);
2951
2952                 if (dest) {
2953                         u32 size, offset, ecx, edx;
2954                         cpuid_count(XSTATE_CPUID, index,
2955                                     &size, &offset, &ecx, &edx);
2956                         memcpy(dest, src + offset, size);
2957                 }
2958
2959                 valid -= feature;
2960         }
2961 }
2962
2963 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2964                                          struct kvm_xsave *guest_xsave)
2965 {
2966         if (cpu_has_xsave) {
2967                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
2968                 fill_xsave((u8 *) guest_xsave->region, vcpu);
2969         } else {
2970                 memcpy(guest_xsave->region,
2971                         &vcpu->arch.guest_fpu.state.fxsave,
2972                         sizeof(struct fxregs_state));
2973                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2974                         XSTATE_FPSSE;
2975         }
2976 }
2977
2978 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2979                                         struct kvm_xsave *guest_xsave)
2980 {
2981         u64 xstate_bv =
2982                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2983
2984         if (cpu_has_xsave) {
2985                 /*
2986                  * Here we allow setting states that are not present in
2987                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
2988                  * with old userspace.
2989                  */
2990                 if (xstate_bv & ~kvm_supported_xcr0())
2991                         return -EINVAL;
2992                 load_xsave(vcpu, (u8 *)guest_xsave->region);
2993         } else {
2994                 if (xstate_bv & ~XSTATE_FPSSE)
2995                         return -EINVAL;
2996                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
2997                         guest_xsave->region, sizeof(struct fxregs_state));
2998         }
2999         return 0;
3000 }
3001
3002 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3003                                         struct kvm_xcrs *guest_xcrs)
3004 {
3005         if (!cpu_has_xsave) {
3006                 guest_xcrs->nr_xcrs = 0;
3007                 return;
3008         }
3009
3010         guest_xcrs->nr_xcrs = 1;
3011         guest_xcrs->flags = 0;
3012         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3013         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3014 }
3015
3016 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3017                                        struct kvm_xcrs *guest_xcrs)
3018 {
3019         int i, r = 0;
3020
3021         if (!cpu_has_xsave)
3022                 return -EINVAL;
3023
3024         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3025                 return -EINVAL;
3026
3027         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3028                 /* Only support XCR0 currently */
3029                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3030                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3031                                 guest_xcrs->xcrs[i].value);
3032                         break;
3033                 }
3034         if (r)
3035                 r = -EINVAL;
3036         return r;
3037 }
3038
3039 /*
3040  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3041  * stopped by the hypervisor.  This function will be called from the host only.
3042  * EINVAL is returned when the host attempts to set the flag for a guest that
3043  * does not support pv clocks.
3044  */
3045 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3046 {
3047         if (!vcpu->arch.pv_time_enabled)
3048                 return -EINVAL;
3049         vcpu->arch.pvclock_set_guest_stopped_request = true;
3050         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3051         return 0;
3052 }
3053
3054 long kvm_arch_vcpu_ioctl(struct file *filp,
3055                          unsigned int ioctl, unsigned long arg)
3056 {
3057         struct kvm_vcpu *vcpu = filp->private_data;
3058         void __user *argp = (void __user *)arg;
3059         int r;
3060         union {
3061                 struct kvm_lapic_state *lapic;
3062                 struct kvm_xsave *xsave;
3063                 struct kvm_xcrs *xcrs;
3064                 void *buffer;
3065         } u;
3066
3067         u.buffer = NULL;
3068         switch (ioctl) {
3069         case KVM_GET_LAPIC: {
3070                 r = -EINVAL;
3071                 if (!vcpu->arch.apic)
3072                         goto out;
3073                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3074
3075                 r = -ENOMEM;
3076                 if (!u.lapic)
3077                         goto out;
3078                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3079                 if (r)
3080                         goto out;
3081                 r = -EFAULT;
3082                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3083                         goto out;
3084                 r = 0;
3085                 break;
3086         }
3087         case KVM_SET_LAPIC: {
3088                 r = -EINVAL;
3089                 if (!vcpu->arch.apic)
3090                         goto out;
3091                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3092                 if (IS_ERR(u.lapic))
3093                         return PTR_ERR(u.lapic);
3094
3095                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3096                 break;
3097         }
3098         case KVM_INTERRUPT: {
3099                 struct kvm_interrupt irq;
3100
3101                 r = -EFAULT;
3102                 if (copy_from_user(&irq, argp, sizeof irq))
3103                         goto out;
3104                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3105                 break;
3106         }
3107         case KVM_NMI: {
3108                 r = kvm_vcpu_ioctl_nmi(vcpu);
3109                 break;
3110         }
3111         case KVM_SMI: {
3112                 r = kvm_vcpu_ioctl_smi(vcpu);
3113                 break;
3114         }
3115         case KVM_SET_CPUID: {
3116                 struct kvm_cpuid __user *cpuid_arg = argp;
3117                 struct kvm_cpuid cpuid;
3118
3119                 r = -EFAULT;
3120                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3121                         goto out;
3122                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3123                 break;
3124         }
3125         case KVM_SET_CPUID2: {
3126                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3127                 struct kvm_cpuid2 cpuid;
3128
3129                 r = -EFAULT;
3130                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3131                         goto out;
3132                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3133                                               cpuid_arg->entries);
3134                 break;
3135         }
3136         case KVM_GET_CPUID2: {
3137                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3138                 struct kvm_cpuid2 cpuid;
3139
3140                 r = -EFAULT;
3141                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3142                         goto out;
3143                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3144                                               cpuid_arg->entries);
3145                 if (r)
3146                         goto out;
3147                 r = -EFAULT;
3148                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3149                         goto out;
3150                 r = 0;
3151                 break;
3152         }
3153         case KVM_GET_MSRS:
3154                 r = msr_io(vcpu, argp, do_get_msr, 1);
3155                 break;
3156         case KVM_SET_MSRS:
3157                 r = msr_io(vcpu, argp, do_set_msr, 0);
3158                 break;
3159         case KVM_TPR_ACCESS_REPORTING: {
3160                 struct kvm_tpr_access_ctl tac;
3161
3162                 r = -EFAULT;
3163                 if (copy_from_user(&tac, argp, sizeof tac))
3164                         goto out;
3165                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3166                 if (r)
3167                         goto out;
3168                 r = -EFAULT;
3169                 if (copy_to_user(argp, &tac, sizeof tac))
3170                         goto out;
3171                 r = 0;
3172                 break;
3173         };
3174         case KVM_SET_VAPIC_ADDR: {
3175                 struct kvm_vapic_addr va;
3176
3177                 r = -EINVAL;
3178                 if (!irqchip_in_kernel(vcpu->kvm))
3179                         goto out;
3180                 r = -EFAULT;
3181                 if (copy_from_user(&va, argp, sizeof va))
3182                         goto out;
3183                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3184                 break;
3185         }
3186         case KVM_X86_SETUP_MCE: {
3187                 u64 mcg_cap;
3188
3189                 r = -EFAULT;
3190                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3191                         goto out;
3192                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3193                 break;
3194         }
3195         case KVM_X86_SET_MCE: {
3196                 struct kvm_x86_mce mce;
3197
3198                 r = -EFAULT;
3199                 if (copy_from_user(&mce, argp, sizeof mce))
3200                         goto out;
3201                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3202                 break;
3203         }
3204         case KVM_GET_VCPU_EVENTS: {
3205                 struct kvm_vcpu_events events;
3206
3207                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3208
3209                 r = -EFAULT;
3210                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3211                         break;
3212                 r = 0;
3213                 break;
3214         }
3215         case KVM_SET_VCPU_EVENTS: {
3216                 struct kvm_vcpu_events events;
3217
3218                 r = -EFAULT;
3219                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3220                         break;
3221
3222                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3223                 break;
3224         }
3225         case KVM_GET_DEBUGREGS: {
3226                 struct kvm_debugregs dbgregs;
3227
3228                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3229
3230                 r = -EFAULT;
3231                 if (copy_to_user(argp, &dbgregs,
3232                                  sizeof(struct kvm_debugregs)))
3233                         break;
3234                 r = 0;
3235                 break;
3236         }
3237         case KVM_SET_DEBUGREGS: {
3238                 struct kvm_debugregs dbgregs;
3239
3240                 r = -EFAULT;
3241                 if (copy_from_user(&dbgregs, argp,
3242                                    sizeof(struct kvm_debugregs)))
3243                         break;
3244
3245                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3246                 break;
3247         }
3248         case KVM_GET_XSAVE: {
3249                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3250                 r = -ENOMEM;
3251                 if (!u.xsave)
3252                         break;
3253
3254                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3255
3256                 r = -EFAULT;
3257                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3258                         break;
3259                 r = 0;
3260                 break;
3261         }
3262         case KVM_SET_XSAVE: {
3263                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3264                 if (IS_ERR(u.xsave))
3265                         return PTR_ERR(u.xsave);
3266
3267                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3268                 break;
3269         }
3270         case KVM_GET_XCRS: {
3271                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3272                 r = -ENOMEM;
3273                 if (!u.xcrs)
3274                         break;
3275
3276                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3277
3278                 r = -EFAULT;
3279                 if (copy_to_user(argp, u.xcrs,
3280                                  sizeof(struct kvm_xcrs)))
3281                         break;
3282                 r = 0;
3283                 break;
3284         }
3285         case KVM_SET_XCRS: {
3286                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3287                 if (IS_ERR(u.xcrs))
3288                         return PTR_ERR(u.xcrs);
3289
3290                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3291                 break;
3292         }
3293         case KVM_SET_TSC_KHZ: {
3294                 u32 user_tsc_khz;
3295
3296                 r = -EINVAL;
3297                 user_tsc_khz = (u32)arg;
3298
3299                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3300                         goto out;
3301
3302                 if (user_tsc_khz == 0)
3303                         user_tsc_khz = tsc_khz;
3304
3305                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3306
3307                 r = 0;
3308                 goto out;
3309         }
3310         case KVM_GET_TSC_KHZ: {
3311                 r = vcpu->arch.virtual_tsc_khz;
3312                 goto out;
3313         }
3314         case KVM_KVMCLOCK_CTRL: {
3315                 r = kvm_set_guest_paused(vcpu);
3316                 goto out;
3317         }
3318         default:
3319                 r = -EINVAL;
3320         }
3321 out:
3322         kfree(u.buffer);
3323         return r;
3324 }
3325
3326 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3327 {
3328         return VM_FAULT_SIGBUS;
3329 }
3330
3331 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3332 {
3333         int ret;
3334
3335         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3336                 return -EINVAL;
3337         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3338         return ret;
3339 }
3340
3341 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3342                                               u64 ident_addr)
3343 {
3344         kvm->arch.ept_identity_map_addr = ident_addr;
3345         return 0;
3346 }
3347
3348 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3349                                           u32 kvm_nr_mmu_pages)
3350 {
3351         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3352                 return -EINVAL;
3353
3354         mutex_lock(&kvm->slots_lock);
3355
3356         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3357         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3358
3359         mutex_unlock(&kvm->slots_lock);
3360         return 0;
3361 }
3362
3363 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3364 {
3365         return kvm->arch.n_max_mmu_pages;
3366 }
3367
3368 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3369 {
3370         int r;
3371
3372         r = 0;
3373         switch (chip->chip_id) {
3374         case KVM_IRQCHIP_PIC_MASTER:
3375                 memcpy(&chip->chip.pic,
3376                         &pic_irqchip(kvm)->pics[0],
3377                         sizeof(struct kvm_pic_state));
3378                 break;
3379         case KVM_IRQCHIP_PIC_SLAVE:
3380                 memcpy(&chip->chip.pic,
3381                         &pic_irqchip(kvm)->pics[1],
3382                         sizeof(struct kvm_pic_state));
3383                 break;
3384         case KVM_IRQCHIP_IOAPIC:
3385                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3386                 break;
3387         default:
3388                 r = -EINVAL;
3389                 break;
3390         }
3391         return r;
3392 }
3393
3394 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3395 {
3396         int r;
3397
3398         r = 0;
3399         switch (chip->chip_id) {
3400         case KVM_IRQCHIP_PIC_MASTER:
3401                 spin_lock(&pic_irqchip(kvm)->lock);
3402                 memcpy(&pic_irqchip(kvm)->pics[0],
3403                         &chip->chip.pic,
3404                         sizeof(struct kvm_pic_state));
3405                 spin_unlock(&pic_irqchip(kvm)->lock);
3406                 break;
3407         case KVM_IRQCHIP_PIC_SLAVE:
3408                 spin_lock(&pic_irqchip(kvm)->lock);
3409                 memcpy(&pic_irqchip(kvm)->pics[1],
3410                         &chip->chip.pic,
3411                         sizeof(struct kvm_pic_state));
3412                 spin_unlock(&pic_irqchip(kvm)->lock);
3413                 break;
3414         case KVM_IRQCHIP_IOAPIC:
3415                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3416                 break;
3417         default:
3418                 r = -EINVAL;
3419                 break;
3420         }
3421         kvm_pic_update_irq(pic_irqchip(kvm));
3422         return r;
3423 }
3424
3425 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3426 {
3427         int r = 0;
3428
3429         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3430         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3431         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3432         return r;
3433 }
3434
3435 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3436 {
3437         int r = 0;
3438
3439         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3440         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3441         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3442         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3443         return r;
3444 }
3445
3446 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3447 {
3448         int r = 0;
3449
3450         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3451         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3452                 sizeof(ps->channels));
3453         ps->flags = kvm->arch.vpit->pit_state.flags;
3454         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3455         memset(&ps->reserved, 0, sizeof(ps->reserved));
3456         return r;
3457 }
3458
3459 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3460 {
3461         int r = 0, start = 0;
3462         u32 prev_legacy, cur_legacy;
3463         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3464         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3465         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3466         if (!prev_legacy && cur_legacy)
3467                 start = 1;
3468         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3469                sizeof(kvm->arch.vpit->pit_state.channels));
3470         kvm->arch.vpit->pit_state.flags = ps->flags;
3471         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3472         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3473         return r;
3474 }
3475
3476 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3477                                  struct kvm_reinject_control *control)
3478 {
3479         if (!kvm->arch.vpit)
3480                 return -ENXIO;
3481         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3482         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3483         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3484         return 0;
3485 }
3486
3487 /**
3488  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3489  * @kvm: kvm instance
3490  * @log: slot id and address to which we copy the log
3491  *
3492  * Steps 1-4 below provide general overview of dirty page logging. See
3493  * kvm_get_dirty_log_protect() function description for additional details.
3494  *
3495  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3496  * always flush the TLB (step 4) even if previous step failed  and the dirty
3497  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3498  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3499  * writes will be marked dirty for next log read.
3500  *
3501  *   1. Take a snapshot of the bit and clear it if needed.
3502  *   2. Write protect the corresponding page.
3503  *   3. Copy the snapshot to the userspace.
3504  *   4. Flush TLB's if needed.
3505  */
3506 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3507 {
3508         bool is_dirty = false;
3509         int r;
3510
3511         mutex_lock(&kvm->slots_lock);
3512
3513         /*
3514          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3515          */
3516         if (kvm_x86_ops->flush_log_dirty)
3517                 kvm_x86_ops->flush_log_dirty(kvm);
3518
3519         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3520
3521         /*
3522          * All the TLBs can be flushed out of mmu lock, see the comments in
3523          * kvm_mmu_slot_remove_write_access().
3524          */
3525         lockdep_assert_held(&kvm->slots_lock);
3526         if (is_dirty)
3527                 kvm_flush_remote_tlbs(kvm);
3528
3529         mutex_unlock(&kvm->slots_lock);
3530         return r;
3531 }
3532
3533 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3534                         bool line_status)
3535 {
3536         if (!irqchip_in_kernel(kvm))
3537                 return -ENXIO;
3538
3539         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3540                                         irq_event->irq, irq_event->level,
3541                                         line_status);
3542         return 0;
3543 }
3544
3545 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3546                                    struct kvm_enable_cap *cap)
3547 {
3548         int r;
3549
3550         if (cap->flags)
3551                 return -EINVAL;
3552
3553         switch (cap->cap) {
3554         case KVM_CAP_DISABLE_QUIRKS:
3555                 kvm->arch.disabled_quirks = cap->args[0];
3556                 r = 0;
3557                 break;
3558         default:
3559                 r = -EINVAL;
3560                 break;
3561         }
3562         return r;
3563 }
3564
3565 long kvm_arch_vm_ioctl(struct file *filp,
3566                        unsigned int ioctl, unsigned long arg)
3567 {
3568         struct kvm *kvm = filp->private_data;
3569         void __user *argp = (void __user *)arg;
3570         int r = -ENOTTY;
3571         /*
3572          * This union makes it completely explicit to gcc-3.x
3573          * that these two variables' stack usage should be
3574          * combined, not added together.
3575          */
3576         union {
3577                 struct kvm_pit_state ps;
3578                 struct kvm_pit_state2 ps2;
3579                 struct kvm_pit_config pit_config;
3580         } u;
3581
3582         switch (ioctl) {
3583         case KVM_SET_TSS_ADDR:
3584                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3585                 break;
3586         case KVM_SET_IDENTITY_MAP_ADDR: {
3587                 u64 ident_addr;
3588
3589                 r = -EFAULT;
3590                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3591                         goto out;
3592                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3593                 break;
3594         }
3595         case KVM_SET_NR_MMU_PAGES:
3596                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3597                 break;
3598         case KVM_GET_NR_MMU_PAGES:
3599                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3600                 break;
3601         case KVM_CREATE_IRQCHIP: {
3602                 struct kvm_pic *vpic;
3603
3604                 mutex_lock(&kvm->lock);
3605                 r = -EEXIST;
3606                 if (kvm->arch.vpic)
3607                         goto create_irqchip_unlock;
3608                 r = -EINVAL;
3609                 if (atomic_read(&kvm->online_vcpus))
3610                         goto create_irqchip_unlock;
3611                 r = -ENOMEM;
3612                 vpic = kvm_create_pic(kvm);
3613                 if (vpic) {
3614                         r = kvm_ioapic_init(kvm);
3615                         if (r) {
3616                                 mutex_lock(&kvm->slots_lock);
3617                                 kvm_destroy_pic(vpic);
3618                                 mutex_unlock(&kvm->slots_lock);
3619                                 goto create_irqchip_unlock;
3620                         }
3621                 } else
3622                         goto create_irqchip_unlock;
3623                 r = kvm_setup_default_irq_routing(kvm);
3624                 if (r) {
3625                         mutex_lock(&kvm->slots_lock);
3626                         mutex_lock(&kvm->irq_lock);
3627                         kvm_ioapic_destroy(kvm);
3628                         kvm_destroy_pic(vpic);
3629                         mutex_unlock(&kvm->irq_lock);
3630                         mutex_unlock(&kvm->slots_lock);
3631                         goto create_irqchip_unlock;
3632                 }
3633                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3634                 smp_wmb();
3635                 kvm->arch.vpic = vpic;
3636         create_irqchip_unlock:
3637                 mutex_unlock(&kvm->lock);
3638                 break;
3639         }
3640         case KVM_CREATE_PIT:
3641                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3642                 goto create_pit;
3643         case KVM_CREATE_PIT2:
3644                 r = -EFAULT;
3645                 if (copy_from_user(&u.pit_config, argp,
3646                                    sizeof(struct kvm_pit_config)))
3647                         goto out;
3648         create_pit:
3649                 mutex_lock(&kvm->slots_lock);
3650                 r = -EEXIST;
3651                 if (kvm->arch.vpit)
3652                         goto create_pit_unlock;
3653                 r = -ENOMEM;
3654                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3655                 if (kvm->arch.vpit)
3656                         r = 0;
3657         create_pit_unlock:
3658                 mutex_unlock(&kvm->slots_lock);
3659                 break;
3660         case KVM_GET_IRQCHIP: {
3661                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3662                 struct kvm_irqchip *chip;
3663
3664                 chip = memdup_user(argp, sizeof(*chip));
3665                 if (IS_ERR(chip)) {
3666                         r = PTR_ERR(chip);
3667                         goto out;
3668                 }
3669
3670                 r = -ENXIO;
3671                 if (!irqchip_in_kernel(kvm))
3672                         goto get_irqchip_out;
3673                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3674                 if (r)
3675                         goto get_irqchip_out;
3676                 r = -EFAULT;
3677                 if (copy_to_user(argp, chip, sizeof *chip))
3678                         goto get_irqchip_out;
3679                 r = 0;
3680         get_irqchip_out:
3681                 kfree(chip);
3682                 break;
3683         }
3684         case KVM_SET_IRQCHIP: {
3685                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3686                 struct kvm_irqchip *chip;
3687
3688                 chip = memdup_user(argp, sizeof(*chip));
3689                 if (IS_ERR(chip)) {
3690                         r = PTR_ERR(chip);
3691                         goto out;
3692                 }
3693
3694                 r = -ENXIO;
3695                 if (!irqchip_in_kernel(kvm))
3696                         goto set_irqchip_out;
3697                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3698                 if (r)
3699                         goto set_irqchip_out;
3700                 r = 0;
3701         set_irqchip_out:
3702                 kfree(chip);
3703                 break;
3704         }
3705         case KVM_GET_PIT: {
3706                 r = -EFAULT;
3707                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3708                         goto out;
3709                 r = -ENXIO;
3710                 if (!kvm->arch.vpit)
3711                         goto out;
3712                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3713                 if (r)
3714                         goto out;
3715                 r = -EFAULT;
3716                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3717                         goto out;
3718                 r = 0;
3719                 break;
3720         }
3721         case KVM_SET_PIT: {
3722                 r = -EFAULT;
3723                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3724                         goto out;
3725                 r = -ENXIO;
3726                 if (!kvm->arch.vpit)
3727                         goto out;
3728                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3729                 break;
3730         }
3731         case KVM_GET_PIT2: {
3732                 r = -ENXIO;
3733                 if (!kvm->arch.vpit)
3734                         goto out;
3735                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3736                 if (r)
3737                         goto out;
3738                 r = -EFAULT;
3739                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3740                         goto out;
3741                 r = 0;
3742                 break;
3743         }
3744         case KVM_SET_PIT2: {
3745                 r = -EFAULT;
3746                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3747                         goto out;
3748                 r = -ENXIO;
3749                 if (!kvm->arch.vpit)
3750                         goto out;
3751                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3752                 break;
3753         }
3754         case KVM_REINJECT_CONTROL: {
3755                 struct kvm_reinject_control control;
3756                 r =  -EFAULT;
3757                 if (copy_from_user(&control, argp, sizeof(control)))
3758                         goto out;
3759                 r = kvm_vm_ioctl_reinject(kvm, &control);
3760                 break;
3761         }
3762         case KVM_SET_BOOT_CPU_ID:
3763                 r = 0;
3764                 mutex_lock(&kvm->lock);
3765                 if (atomic_read(&kvm->online_vcpus) != 0)
3766                         r = -EBUSY;
3767                 else
3768                         kvm->arch.bsp_vcpu_id = arg;
3769                 mutex_unlock(&kvm->lock);
3770                 break;
3771         case KVM_XEN_HVM_CONFIG: {
3772                 r = -EFAULT;
3773                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3774                                    sizeof(struct kvm_xen_hvm_config)))
3775                         goto out;
3776                 r = -EINVAL;
3777                 if (kvm->arch.xen_hvm_config.flags)
3778                         goto out;
3779                 r = 0;
3780                 break;
3781         }
3782         case KVM_SET_CLOCK: {
3783                 struct kvm_clock_data user_ns;
3784                 u64 now_ns;
3785                 s64 delta;
3786
3787                 r = -EFAULT;
3788                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3789                         goto out;
3790
3791                 r = -EINVAL;
3792                 if (user_ns.flags)
3793                         goto out;
3794
3795                 r = 0;
3796                 local_irq_disable();
3797                 now_ns = get_kernel_ns();
3798                 delta = user_ns.clock - now_ns;
3799                 local_irq_enable();
3800                 kvm->arch.kvmclock_offset = delta;
3801                 kvm_gen_update_masterclock(kvm);
3802                 break;
3803         }
3804         case KVM_GET_CLOCK: {
3805                 struct kvm_clock_data user_ns;
3806                 u64 now_ns;
3807
3808                 local_irq_disable();
3809                 now_ns = get_kernel_ns();
3810                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3811                 local_irq_enable();
3812                 user_ns.flags = 0;
3813                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3814
3815                 r = -EFAULT;
3816                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3817                         goto out;
3818                 r = 0;
3819                 break;
3820         }
3821         case KVM_ENABLE_CAP: {
3822                 struct kvm_enable_cap cap;
3823
3824                 r = -EFAULT;
3825                 if (copy_from_user(&cap, argp, sizeof(cap)))
3826                         goto out;
3827                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3828                 break;
3829         }
3830         default:
3831                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3832         }
3833 out:
3834         return r;
3835 }
3836
3837 static void kvm_init_msr_list(void)
3838 {
3839         u32 dummy[2];
3840         unsigned i, j;
3841
3842         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
3843                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3844                         continue;
3845
3846                 /*
3847                  * Even MSRs that are valid in the host may not be exposed
3848                  * to the guests in some cases.  We could work around this
3849                  * in VMX with the generic MSR save/load machinery, but it
3850                  * is not really worthwhile since it will really only
3851                  * happen with nested virtualization.
3852                  */
3853                 switch (msrs_to_save[i]) {
3854                 case MSR_IA32_BNDCFGS:
3855                         if (!kvm_x86_ops->mpx_supported())
3856                                 continue;
3857                         break;
3858                 default:
3859                         break;
3860                 }
3861
3862                 if (j < i)
3863                         msrs_to_save[j] = msrs_to_save[i];
3864                 j++;
3865         }
3866         num_msrs_to_save = j;
3867
3868         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
3869                 switch (emulated_msrs[i]) {
3870                 case MSR_IA32_SMBASE:
3871                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
3872                                 continue;
3873                         break;
3874                 default:
3875                         break;
3876                 }
3877
3878                 if (j < i)
3879                         emulated_msrs[j] = emulated_msrs[i];
3880                 j++;
3881         }
3882         num_emulated_msrs = j;
3883 }
3884
3885 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3886                            const void *v)
3887 {
3888         int handled = 0;
3889         int n;
3890
3891         do {
3892                 n = min(len, 8);
3893                 if (!(vcpu->arch.apic &&
3894                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
3895                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
3896                         break;
3897                 handled += n;
3898                 addr += n;
3899                 len -= n;
3900                 v += n;
3901         } while (len);
3902
3903         return handled;
3904 }
3905
3906 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3907 {
3908         int handled = 0;
3909         int n;
3910
3911         do {
3912                 n = min(len, 8);
3913                 if (!(vcpu->arch.apic &&
3914                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
3915                                          addr, n, v))
3916                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
3917                         break;
3918                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3919                 handled += n;
3920                 addr += n;
3921                 len -= n;
3922                 v += n;
3923         } while (len);
3924
3925         return handled;
3926 }
3927
3928 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3929                         struct kvm_segment *var, int seg)
3930 {
3931         kvm_x86_ops->set_segment(vcpu, var, seg);
3932 }
3933
3934 void kvm_get_segment(struct kvm_vcpu *vcpu,
3935                      struct kvm_segment *var, int seg)
3936 {
3937         kvm_x86_ops->get_segment(vcpu, var, seg);
3938 }
3939
3940 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
3941                            struct x86_exception *exception)
3942 {
3943         gpa_t t_gpa;
3944
3945         BUG_ON(!mmu_is_nested(vcpu));
3946
3947         /* NPT walks are always user-walks */
3948         access |= PFERR_USER_MASK;
3949         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
3950
3951         return t_gpa;
3952 }
3953
3954 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3955                               struct x86_exception *exception)
3956 {
3957         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3958         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3959 }
3960
3961  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3962                                 struct x86_exception *exception)
3963 {
3964         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3965         access |= PFERR_FETCH_MASK;
3966         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3967 }
3968
3969 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3970                                struct x86_exception *exception)
3971 {
3972         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3973         access |= PFERR_WRITE_MASK;
3974         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3975 }
3976
3977 /* uses this to access any guest's mapped memory without checking CPL */
3978 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3979                                 struct x86_exception *exception)
3980 {
3981         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3982 }
3983
3984 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3985                                       struct kvm_vcpu *vcpu, u32 access,
3986                                       struct x86_exception *exception)
3987 {
3988         void *data = val;
3989         int r = X86EMUL_CONTINUE;
3990
3991         while (bytes) {
3992                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3993                                                             exception);
3994                 unsigned offset = addr & (PAGE_SIZE-1);
3995                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3996                 int ret;
3997
3998                 if (gpa == UNMAPPED_GVA)
3999                         return X86EMUL_PROPAGATE_FAULT;
4000                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4001                                                offset, toread);
4002                 if (ret < 0) {
4003                         r = X86EMUL_IO_NEEDED;
4004                         goto out;
4005                 }
4006
4007                 bytes -= toread;
4008                 data += toread;
4009                 addr += toread;
4010         }
4011 out:
4012         return r;
4013 }
4014
4015 /* used for instruction fetching */
4016 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4017                                 gva_t addr, void *val, unsigned int bytes,
4018                                 struct x86_exception *exception)
4019 {
4020         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4021         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4022         unsigned offset;
4023         int ret;
4024
4025         /* Inline kvm_read_guest_virt_helper for speed.  */
4026         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4027                                                     exception);
4028         if (unlikely(gpa == UNMAPPED_GVA))
4029                 return X86EMUL_PROPAGATE_FAULT;
4030
4031         offset = addr & (PAGE_SIZE-1);
4032         if (WARN_ON(offset + bytes > PAGE_SIZE))
4033                 bytes = (unsigned)PAGE_SIZE - offset;
4034         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4035                                        offset, bytes);
4036         if (unlikely(ret < 0))
4037                 return X86EMUL_IO_NEEDED;
4038
4039         return X86EMUL_CONTINUE;
4040 }
4041
4042 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4043                                gva_t addr, void *val, unsigned int bytes,
4044                                struct x86_exception *exception)
4045 {
4046         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4047         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4048
4049         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4050                                           exception);
4051 }
4052 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4053
4054 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4055                                       gva_t addr, void *val, unsigned int bytes,
4056                                       struct x86_exception *exception)
4057 {
4058         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4059         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4060 }
4061
4062 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4063                                        gva_t addr, void *val,
4064                                        unsigned int bytes,
4065                                        struct x86_exception *exception)
4066 {
4067         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4068         void *data = val;
4069         int r = X86EMUL_CONTINUE;
4070
4071         while (bytes) {
4072                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4073                                                              PFERR_WRITE_MASK,
4074                                                              exception);
4075                 unsigned offset = addr & (PAGE_SIZE-1);
4076                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4077                 int ret;
4078
4079                 if (gpa == UNMAPPED_GVA)
4080                         return X86EMUL_PROPAGATE_FAULT;
4081                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4082                 if (ret < 0) {
4083                         r = X86EMUL_IO_NEEDED;
4084                         goto out;
4085                 }
4086
4087                 bytes -= towrite;
4088                 data += towrite;
4089                 addr += towrite;
4090         }
4091 out:
4092         return r;
4093 }
4094 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4095
4096 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4097                                 gpa_t *gpa, struct x86_exception *exception,
4098                                 bool write)
4099 {
4100         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4101                 | (write ? PFERR_WRITE_MASK : 0);
4102
4103         if (vcpu_match_mmio_gva(vcpu, gva)
4104             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4105                                  vcpu->arch.access, access)) {
4106                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4107                                         (gva & (PAGE_SIZE - 1));
4108                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4109                 return 1;
4110         }
4111
4112         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4113
4114         if (*gpa == UNMAPPED_GVA)
4115                 return -1;
4116
4117         /* For APIC access vmexit */
4118         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4119                 return 1;
4120
4121         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4122                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4123                 return 1;
4124         }
4125
4126         return 0;
4127 }
4128
4129 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4130                         const void *val, int bytes)
4131 {
4132         int ret;
4133
4134         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4135         if (ret < 0)
4136                 return 0;
4137         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4138         return 1;
4139 }
4140
4141 struct read_write_emulator_ops {
4142         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4143                                   int bytes);
4144         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4145                                   void *val, int bytes);
4146         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4147                                int bytes, void *val);
4148         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4149                                     void *val, int bytes);
4150         bool write;
4151 };
4152
4153 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4154 {
4155         if (vcpu->mmio_read_completed) {
4156                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4157                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4158                 vcpu->mmio_read_completed = 0;
4159                 return 1;
4160         }
4161
4162         return 0;
4163 }
4164
4165 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4166                         void *val, int bytes)
4167 {
4168         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4169 }
4170
4171 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4172                          void *val, int bytes)
4173 {
4174         return emulator_write_phys(vcpu, gpa, val, bytes);
4175 }
4176
4177 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4178 {
4179         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4180         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4181 }
4182
4183 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4184                           void *val, int bytes)
4185 {
4186         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4187         return X86EMUL_IO_NEEDED;
4188 }
4189
4190 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4191                            void *val, int bytes)
4192 {
4193         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4194
4195         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4196         return X86EMUL_CONTINUE;
4197 }
4198
4199 static const struct read_write_emulator_ops read_emultor = {
4200         .read_write_prepare = read_prepare,
4201         .read_write_emulate = read_emulate,
4202         .read_write_mmio = vcpu_mmio_read,
4203         .read_write_exit_mmio = read_exit_mmio,
4204 };
4205
4206 static const struct read_write_emulator_ops write_emultor = {
4207         .read_write_emulate = write_emulate,
4208         .read_write_mmio = write_mmio,
4209         .read_write_exit_mmio = write_exit_mmio,
4210         .write = true,
4211 };
4212
4213 static int emulator_read_write_onepage(unsigned long addr, void *val,
4214                                        unsigned int bytes,
4215                                        struct x86_exception *exception,
4216                                        struct kvm_vcpu *vcpu,
4217                                        const struct read_write_emulator_ops *ops)
4218 {
4219         gpa_t gpa;
4220         int handled, ret;
4221         bool write = ops->write;
4222         struct kvm_mmio_fragment *frag;
4223
4224         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4225
4226         if (ret < 0)
4227                 return X86EMUL_PROPAGATE_FAULT;
4228
4229         /* For APIC access vmexit */
4230         if (ret)
4231                 goto mmio;
4232
4233         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4234                 return X86EMUL_CONTINUE;
4235
4236 mmio:
4237         /*
4238          * Is this MMIO handled locally?
4239          */
4240         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4241         if (handled == bytes)
4242                 return X86EMUL_CONTINUE;
4243
4244         gpa += handled;
4245         bytes -= handled;
4246         val += handled;
4247
4248         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4249         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4250         frag->gpa = gpa;
4251         frag->data = val;
4252         frag->len = bytes;
4253         return X86EMUL_CONTINUE;
4254 }
4255
4256 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4257                         unsigned long addr,
4258                         void *val, unsigned int bytes,
4259                         struct x86_exception *exception,
4260                         const struct read_write_emulator_ops *ops)
4261 {
4262         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4263         gpa_t gpa;
4264         int rc;
4265
4266         if (ops->read_write_prepare &&
4267                   ops->read_write_prepare(vcpu, val, bytes))
4268                 return X86EMUL_CONTINUE;
4269
4270         vcpu->mmio_nr_fragments = 0;
4271
4272         /* Crossing a page boundary? */
4273         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4274                 int now;
4275
4276                 now = -addr & ~PAGE_MASK;
4277                 rc = emulator_read_write_onepage(addr, val, now, exception,
4278                                                  vcpu, ops);
4279
4280                 if (rc != X86EMUL_CONTINUE)
4281                         return rc;
4282                 addr += now;
4283                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4284                         addr = (u32)addr;
4285                 val += now;
4286                 bytes -= now;
4287         }
4288
4289         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4290                                          vcpu, ops);
4291         if (rc != X86EMUL_CONTINUE)
4292                 return rc;
4293
4294         if (!vcpu->mmio_nr_fragments)
4295                 return rc;
4296
4297         gpa = vcpu->mmio_fragments[0].gpa;
4298
4299         vcpu->mmio_needed = 1;
4300         vcpu->mmio_cur_fragment = 0;
4301
4302         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4303         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4304         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4305         vcpu->run->mmio.phys_addr = gpa;
4306
4307         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4308 }
4309
4310 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4311                                   unsigned long addr,
4312                                   void *val,
4313                                   unsigned int bytes,
4314                                   struct x86_exception *exception)
4315 {
4316         return emulator_read_write(ctxt, addr, val, bytes,
4317                                    exception, &read_emultor);
4318 }
4319
4320 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4321                             unsigned long addr,
4322                             const void *val,
4323                             unsigned int bytes,
4324                             struct x86_exception *exception)
4325 {
4326         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4327                                    exception, &write_emultor);
4328 }
4329
4330 #define CMPXCHG_TYPE(t, ptr, old, new) \
4331         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4332
4333 #ifdef CONFIG_X86_64
4334 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4335 #else
4336 #  define CMPXCHG64(ptr, old, new) \
4337         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4338 #endif
4339
4340 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4341                                      unsigned long addr,
4342                                      const void *old,
4343                                      const void *new,
4344                                      unsigned int bytes,
4345                                      struct x86_exception *exception)
4346 {
4347         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4348         gpa_t gpa;
4349         struct page *page;
4350         char *kaddr;
4351         bool exchanged;
4352
4353         /* guests cmpxchg8b have to be emulated atomically */
4354         if (bytes > 8 || (bytes & (bytes - 1)))
4355                 goto emul_write;
4356
4357         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4358
4359         if (gpa == UNMAPPED_GVA ||
4360             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4361                 goto emul_write;
4362
4363         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4364                 goto emul_write;
4365
4366         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4367         if (is_error_page(page))
4368                 goto emul_write;
4369
4370         kaddr = kmap_atomic(page);
4371         kaddr += offset_in_page(gpa);
4372         switch (bytes) {
4373         case 1:
4374                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4375                 break;
4376         case 2:
4377                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4378                 break;
4379         case 4:
4380                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4381                 break;
4382         case 8:
4383                 exchanged = CMPXCHG64(kaddr, old, new);
4384                 break;
4385         default:
4386                 BUG();
4387         }
4388         kunmap_atomic(kaddr);
4389         kvm_release_page_dirty(page);
4390
4391         if (!exchanged)
4392                 return X86EMUL_CMPXCHG_FAILED;
4393
4394         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4395         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4396
4397         return X86EMUL_CONTINUE;
4398
4399 emul_write:
4400         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4401
4402         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4403 }
4404
4405 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4406 {
4407         /* TODO: String I/O for in kernel device */
4408         int r;
4409
4410         if (vcpu->arch.pio.in)
4411                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4412                                     vcpu->arch.pio.size, pd);
4413         else
4414                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4415                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4416                                      pd);
4417         return r;
4418 }
4419
4420 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4421                                unsigned short port, void *val,
4422                                unsigned int count, bool in)
4423 {
4424         vcpu->arch.pio.port = port;
4425         vcpu->arch.pio.in = in;
4426         vcpu->arch.pio.count  = count;
4427         vcpu->arch.pio.size = size;
4428
4429         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4430                 vcpu->arch.pio.count = 0;
4431                 return 1;
4432         }
4433
4434         vcpu->run->exit_reason = KVM_EXIT_IO;
4435         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4436         vcpu->run->io.size = size;
4437         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4438         vcpu->run->io.count = count;
4439         vcpu->run->io.port = port;
4440
4441         return 0;
4442 }
4443
4444 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4445                                     int size, unsigned short port, void *val,
4446                                     unsigned int count)
4447 {
4448         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4449         int ret;
4450
4451         if (vcpu->arch.pio.count)
4452                 goto data_avail;
4453
4454         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4455         if (ret) {
4456 data_avail:
4457                 memcpy(val, vcpu->arch.pio_data, size * count);
4458                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4459                 vcpu->arch.pio.count = 0;
4460                 return 1;
4461         }
4462
4463         return 0;
4464 }
4465
4466 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4467                                      int size, unsigned short port,
4468                                      const void *val, unsigned int count)
4469 {
4470         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4471
4472         memcpy(vcpu->arch.pio_data, val, size * count);
4473         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4474         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4475 }
4476
4477 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4478 {
4479         return kvm_x86_ops->get_segment_base(vcpu, seg);
4480 }
4481
4482 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4483 {
4484         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4485 }
4486
4487 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4488 {
4489         if (!need_emulate_wbinvd(vcpu))
4490                 return X86EMUL_CONTINUE;
4491
4492         if (kvm_x86_ops->has_wbinvd_exit()) {
4493                 int cpu = get_cpu();
4494
4495                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4496                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4497                                 wbinvd_ipi, NULL, 1);
4498                 put_cpu();
4499                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4500         } else
4501                 wbinvd();
4502         return X86EMUL_CONTINUE;
4503 }
4504
4505 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4506 {
4507         kvm_x86_ops->skip_emulated_instruction(vcpu);
4508         return kvm_emulate_wbinvd_noskip(vcpu);
4509 }
4510 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4511
4512
4513
4514 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4515 {
4516         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4517 }
4518
4519 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4520                            unsigned long *dest)
4521 {
4522         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4523 }
4524
4525 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4526                            unsigned long value)
4527 {
4528
4529         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4530 }
4531
4532 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4533 {
4534         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4535 }
4536
4537 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4538 {
4539         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4540         unsigned long value;
4541
4542         switch (cr) {
4543         case 0:
4544                 value = kvm_read_cr0(vcpu);
4545                 break;
4546         case 2:
4547                 value = vcpu->arch.cr2;
4548                 break;
4549         case 3:
4550                 value = kvm_read_cr3(vcpu);
4551                 break;
4552         case 4:
4553                 value = kvm_read_cr4(vcpu);
4554                 break;
4555         case 8:
4556                 value = kvm_get_cr8(vcpu);
4557                 break;
4558         default:
4559                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4560                 return 0;
4561         }
4562
4563         return value;
4564 }
4565
4566 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4567 {
4568         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4569         int res = 0;
4570
4571         switch (cr) {
4572         case 0:
4573                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4574                 break;
4575         case 2:
4576                 vcpu->arch.cr2 = val;
4577                 break;
4578         case 3:
4579                 res = kvm_set_cr3(vcpu, val);
4580                 break;
4581         case 4:
4582                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4583                 break;
4584         case 8:
4585                 res = kvm_set_cr8(vcpu, val);
4586                 break;
4587         default:
4588                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4589                 res = -1;
4590         }
4591
4592         return res;
4593 }
4594
4595 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4596 {
4597         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4598 }
4599
4600 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4601 {
4602         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4603 }
4604
4605 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4606 {
4607         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4608 }
4609
4610 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4611 {
4612         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4613 }
4614
4615 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4616 {
4617         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4618 }
4619
4620 static unsigned long emulator_get_cached_segment_base(
4621         struct x86_emulate_ctxt *ctxt, int seg)
4622 {
4623         return get_segment_base(emul_to_vcpu(ctxt), seg);
4624 }
4625
4626 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4627                                  struct desc_struct *desc, u32 *base3,
4628                                  int seg)
4629 {
4630         struct kvm_segment var;
4631
4632         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4633         *selector = var.selector;
4634
4635         if (var.unusable) {
4636                 memset(desc, 0, sizeof(*desc));
4637                 return false;
4638         }
4639
4640         if (var.g)
4641                 var.limit >>= 12;
4642         set_desc_limit(desc, var.limit);
4643         set_desc_base(desc, (unsigned long)var.base);
4644 #ifdef CONFIG_X86_64
4645         if (base3)
4646                 *base3 = var.base >> 32;
4647 #endif
4648         desc->type = var.type;
4649         desc->s = var.s;
4650         desc->dpl = var.dpl;
4651         desc->p = var.present;
4652         desc->avl = var.avl;
4653         desc->l = var.l;
4654         desc->d = var.db;
4655         desc->g = var.g;
4656
4657         return true;
4658 }
4659
4660 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4661                                  struct desc_struct *desc, u32 base3,
4662                                  int seg)
4663 {
4664         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4665         struct kvm_segment var;
4666
4667         var.selector = selector;
4668         var.base = get_desc_base(desc);
4669 #ifdef CONFIG_X86_64
4670         var.base |= ((u64)base3) << 32;
4671 #endif
4672         var.limit = get_desc_limit(desc);
4673         if (desc->g)
4674                 var.limit = (var.limit << 12) | 0xfff;
4675         var.type = desc->type;
4676         var.dpl = desc->dpl;
4677         var.db = desc->d;
4678         var.s = desc->s;
4679         var.l = desc->l;
4680         var.g = desc->g;
4681         var.avl = desc->avl;
4682         var.present = desc->p;
4683         var.unusable = !var.present;
4684         var.padding = 0;
4685
4686         kvm_set_segment(vcpu, &var, seg);
4687         return;
4688 }
4689
4690 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4691                             u32 msr_index, u64 *pdata)
4692 {
4693         struct msr_data msr;
4694         int r;
4695
4696         msr.index = msr_index;
4697         msr.host_initiated = false;
4698         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4699         if (r)
4700                 return r;
4701
4702         *pdata = msr.data;
4703         return 0;
4704 }
4705
4706 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4707                             u32 msr_index, u64 data)
4708 {
4709         struct msr_data msr;
4710
4711         msr.data = data;
4712         msr.index = msr_index;
4713         msr.host_initiated = false;
4714         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4715 }
4716
4717 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4718 {
4719         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4720
4721         return vcpu->arch.smbase;
4722 }
4723
4724 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4725 {
4726         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4727
4728         vcpu->arch.smbase = smbase;
4729 }
4730
4731 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4732                               u32 pmc)
4733 {
4734         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4735 }
4736
4737 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4738                              u32 pmc, u64 *pdata)
4739 {
4740         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4741 }
4742
4743 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4744 {
4745         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4746 }
4747
4748 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4749 {
4750         preempt_disable();
4751         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4752         /*
4753          * CR0.TS may reference the host fpu state, not the guest fpu state,
4754          * so it may be clear at this point.
4755          */
4756         clts();
4757 }
4758
4759 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4760 {
4761         preempt_enable();
4762 }
4763
4764 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4765                               struct x86_instruction_info *info,
4766                               enum x86_intercept_stage stage)
4767 {
4768         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4769 }
4770
4771 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4772                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4773 {
4774         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4775 }
4776
4777 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4778 {
4779         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4780 }
4781
4782 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4783 {
4784         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4785 }
4786
4787 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4788 {
4789         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4790 }
4791
4792 static const struct x86_emulate_ops emulate_ops = {
4793         .read_gpr            = emulator_read_gpr,
4794         .write_gpr           = emulator_write_gpr,
4795         .read_std            = kvm_read_guest_virt_system,
4796         .write_std           = kvm_write_guest_virt_system,
4797         .fetch               = kvm_fetch_guest_virt,
4798         .read_emulated       = emulator_read_emulated,
4799         .write_emulated      = emulator_write_emulated,
4800         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4801         .invlpg              = emulator_invlpg,
4802         .pio_in_emulated     = emulator_pio_in_emulated,
4803         .pio_out_emulated    = emulator_pio_out_emulated,
4804         .get_segment         = emulator_get_segment,
4805         .set_segment         = emulator_set_segment,
4806         .get_cached_segment_base = emulator_get_cached_segment_base,
4807         .get_gdt             = emulator_get_gdt,
4808         .get_idt             = emulator_get_idt,
4809         .set_gdt             = emulator_set_gdt,
4810         .set_idt             = emulator_set_idt,
4811         .get_cr              = emulator_get_cr,
4812         .set_cr              = emulator_set_cr,
4813         .cpl                 = emulator_get_cpl,
4814         .get_dr              = emulator_get_dr,
4815         .set_dr              = emulator_set_dr,
4816         .get_smbase          = emulator_get_smbase,
4817         .set_smbase          = emulator_set_smbase,
4818         .set_msr             = emulator_set_msr,
4819         .get_msr             = emulator_get_msr,
4820         .check_pmc           = emulator_check_pmc,
4821         .read_pmc            = emulator_read_pmc,
4822         .halt                = emulator_halt,
4823         .wbinvd              = emulator_wbinvd,
4824         .fix_hypercall       = emulator_fix_hypercall,
4825         .get_fpu             = emulator_get_fpu,
4826         .put_fpu             = emulator_put_fpu,
4827         .intercept           = emulator_intercept,
4828         .get_cpuid           = emulator_get_cpuid,
4829         .set_nmi_mask        = emulator_set_nmi_mask,
4830 };
4831
4832 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4833 {
4834         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4835         /*
4836          * an sti; sti; sequence only disable interrupts for the first
4837          * instruction. So, if the last instruction, be it emulated or
4838          * not, left the system with the INT_STI flag enabled, it
4839          * means that the last instruction is an sti. We should not
4840          * leave the flag on in this case. The same goes for mov ss
4841          */
4842         if (int_shadow & mask)
4843                 mask = 0;
4844         if (unlikely(int_shadow || mask)) {
4845                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4846                 if (!mask)
4847                         kvm_make_request(KVM_REQ_EVENT, vcpu);
4848         }
4849 }
4850
4851 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
4852 {
4853         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4854         if (ctxt->exception.vector == PF_VECTOR)
4855                 return kvm_propagate_fault(vcpu, &ctxt->exception);
4856
4857         if (ctxt->exception.error_code_valid)
4858                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4859                                       ctxt->exception.error_code);
4860         else
4861                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4862         return false;
4863 }
4864
4865 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4866 {
4867         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4868         int cs_db, cs_l;
4869
4870         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4871
4872         ctxt->eflags = kvm_get_rflags(vcpu);
4873         ctxt->eip = kvm_rip_read(vcpu);
4874         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4875                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4876                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
4877                      cs_db                              ? X86EMUL_MODE_PROT32 :
4878                                                           X86EMUL_MODE_PROT16;
4879         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
4880         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
4881         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
4882         ctxt->emul_flags = vcpu->arch.hflags;
4883
4884         init_decode_cache(ctxt);
4885         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4886 }
4887
4888 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4889 {
4890         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4891         int ret;
4892
4893         init_emulate_ctxt(vcpu);
4894
4895         ctxt->op_bytes = 2;
4896         ctxt->ad_bytes = 2;
4897         ctxt->_eip = ctxt->eip + inc_eip;
4898         ret = emulate_int_real(ctxt, irq);
4899
4900         if (ret != X86EMUL_CONTINUE)
4901                 return EMULATE_FAIL;
4902
4903         ctxt->eip = ctxt->_eip;
4904         kvm_rip_write(vcpu, ctxt->eip);
4905         kvm_set_rflags(vcpu, ctxt->eflags);
4906
4907         if (irq == NMI_VECTOR)
4908                 vcpu->arch.nmi_pending = 0;
4909         else
4910                 vcpu->arch.interrupt.pending = false;
4911
4912         return EMULATE_DONE;
4913 }
4914 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4915
4916 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4917 {
4918         int r = EMULATE_DONE;
4919
4920         ++vcpu->stat.insn_emulation_fail;
4921         trace_kvm_emulate_insn_failed(vcpu);
4922         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
4923                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4924                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4925                 vcpu->run->internal.ndata = 0;
4926                 r = EMULATE_FAIL;
4927         }
4928         kvm_queue_exception(vcpu, UD_VECTOR);
4929
4930         return r;
4931 }
4932
4933 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4934                                   bool write_fault_to_shadow_pgtable,
4935                                   int emulation_type)
4936 {
4937         gpa_t gpa = cr2;
4938         pfn_t pfn;
4939
4940         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4941                 return false;
4942
4943         if (!vcpu->arch.mmu.direct_map) {
4944                 /*
4945                  * Write permission should be allowed since only
4946                  * write access need to be emulated.
4947                  */
4948                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4949
4950                 /*
4951                  * If the mapping is invalid in guest, let cpu retry
4952                  * it to generate fault.
4953                  */
4954                 if (gpa == UNMAPPED_GVA)
4955                         return true;
4956         }
4957
4958         /*
4959          * Do not retry the unhandleable instruction if it faults on the
4960          * readonly host memory, otherwise it will goto a infinite loop:
4961          * retry instruction -> write #PF -> emulation fail -> retry
4962          * instruction -> ...
4963          */
4964         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4965
4966         /*
4967          * If the instruction failed on the error pfn, it can not be fixed,
4968          * report the error to userspace.
4969          */
4970         if (is_error_noslot_pfn(pfn))
4971                 return false;
4972
4973         kvm_release_pfn_clean(pfn);
4974
4975         /* The instructions are well-emulated on direct mmu. */
4976         if (vcpu->arch.mmu.direct_map) {
4977                 unsigned int indirect_shadow_pages;
4978
4979                 spin_lock(&vcpu->kvm->mmu_lock);
4980                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4981                 spin_unlock(&vcpu->kvm->mmu_lock);
4982
4983                 if (indirect_shadow_pages)
4984                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4985
4986                 return true;
4987         }
4988
4989         /*
4990          * if emulation was due to access to shadowed page table
4991          * and it failed try to unshadow page and re-enter the
4992          * guest to let CPU execute the instruction.
4993          */
4994         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4995
4996         /*
4997          * If the access faults on its page table, it can not
4998          * be fixed by unprotecting shadow page and it should
4999          * be reported to userspace.
5000          */
5001         return !write_fault_to_shadow_pgtable;
5002 }
5003
5004 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5005                               unsigned long cr2,  int emulation_type)
5006 {
5007         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5008         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5009
5010         last_retry_eip = vcpu->arch.last_retry_eip;
5011         last_retry_addr = vcpu->arch.last_retry_addr;
5012
5013         /*
5014          * If the emulation is caused by #PF and it is non-page_table
5015          * writing instruction, it means the VM-EXIT is caused by shadow
5016          * page protected, we can zap the shadow page and retry this
5017          * instruction directly.
5018          *
5019          * Note: if the guest uses a non-page-table modifying instruction
5020          * on the PDE that points to the instruction, then we will unmap
5021          * the instruction and go to an infinite loop. So, we cache the
5022          * last retried eip and the last fault address, if we meet the eip
5023          * and the address again, we can break out of the potential infinite
5024          * loop.
5025          */
5026         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5027
5028         if (!(emulation_type & EMULTYPE_RETRY))
5029                 return false;
5030
5031         if (x86_page_table_writing_insn(ctxt))
5032                 return false;
5033
5034         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5035                 return false;
5036
5037         vcpu->arch.last_retry_eip = ctxt->eip;
5038         vcpu->arch.last_retry_addr = cr2;
5039
5040         if (!vcpu->arch.mmu.direct_map)
5041                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5042
5043         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5044
5045         return true;
5046 }
5047
5048 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5049 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5050
5051 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5052 {
5053         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5054                 /* This is a good place to trace that we are exiting SMM.  */
5055                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5056
5057                 if (unlikely(vcpu->arch.smi_pending)) {
5058                         kvm_make_request(KVM_REQ_SMI, vcpu);
5059                         vcpu->arch.smi_pending = 0;
5060                 } else {
5061                         /* Process a latched INIT, if any.  */
5062                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5063                 }
5064         }
5065
5066         kvm_mmu_reset_context(vcpu);
5067 }
5068
5069 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5070 {
5071         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5072
5073         vcpu->arch.hflags = emul_flags;
5074
5075         if (changed & HF_SMM_MASK)
5076                 kvm_smm_changed(vcpu);
5077 }
5078
5079 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5080                                 unsigned long *db)
5081 {
5082         u32 dr6 = 0;
5083         int i;
5084         u32 enable, rwlen;
5085
5086         enable = dr7;
5087         rwlen = dr7 >> 16;
5088         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5089                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5090                         dr6 |= (1 << i);
5091         return dr6;
5092 }
5093
5094 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5095 {
5096         struct kvm_run *kvm_run = vcpu->run;
5097
5098         /*
5099          * rflags is the old, "raw" value of the flags.  The new value has
5100          * not been saved yet.
5101          *
5102          * This is correct even for TF set by the guest, because "the
5103          * processor will not generate this exception after the instruction
5104          * that sets the TF flag".
5105          */
5106         if (unlikely(rflags & X86_EFLAGS_TF)) {
5107                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5108                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5109                                                   DR6_RTM;
5110                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5111                         kvm_run->debug.arch.exception = DB_VECTOR;
5112                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5113                         *r = EMULATE_USER_EXIT;
5114                 } else {
5115                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5116                         /*
5117                          * "Certain debug exceptions may clear bit 0-3.  The
5118                          * remaining contents of the DR6 register are never
5119                          * cleared by the processor".
5120                          */
5121                         vcpu->arch.dr6 &= ~15;
5122                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5123                         kvm_queue_exception(vcpu, DB_VECTOR);
5124                 }
5125         }
5126 }
5127
5128 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5129 {
5130         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5131             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5132                 struct kvm_run *kvm_run = vcpu->run;
5133                 unsigned long eip = kvm_get_linear_rip(vcpu);
5134                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5135                                            vcpu->arch.guest_debug_dr7,
5136                                            vcpu->arch.eff_db);
5137
5138                 if (dr6 != 0) {
5139                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5140                         kvm_run->debug.arch.pc = eip;
5141                         kvm_run->debug.arch.exception = DB_VECTOR;
5142                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5143                         *r = EMULATE_USER_EXIT;
5144                         return true;
5145                 }
5146         }
5147
5148         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5149             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5150                 unsigned long eip = kvm_get_linear_rip(vcpu);
5151                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5152                                            vcpu->arch.dr7,
5153                                            vcpu->arch.db);
5154
5155                 if (dr6 != 0) {
5156                         vcpu->arch.dr6 &= ~15;
5157                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5158                         kvm_queue_exception(vcpu, DB_VECTOR);
5159                         *r = EMULATE_DONE;
5160                         return true;
5161                 }
5162         }
5163
5164         return false;
5165 }
5166
5167 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5168                             unsigned long cr2,
5169                             int emulation_type,
5170                             void *insn,
5171                             int insn_len)
5172 {
5173         int r;
5174         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5175         bool writeback = true;
5176         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5177
5178         /*
5179          * Clear write_fault_to_shadow_pgtable here to ensure it is
5180          * never reused.
5181          */
5182         vcpu->arch.write_fault_to_shadow_pgtable = false;
5183         kvm_clear_exception_queue(vcpu);
5184
5185         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5186                 init_emulate_ctxt(vcpu);
5187
5188                 /*
5189                  * We will reenter on the same instruction since
5190                  * we do not set complete_userspace_io.  This does not
5191                  * handle watchpoints yet, those would be handled in
5192                  * the emulate_ops.
5193                  */
5194                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5195                         return r;
5196
5197                 ctxt->interruptibility = 0;
5198                 ctxt->have_exception = false;
5199                 ctxt->exception.vector = -1;
5200                 ctxt->perm_ok = false;
5201
5202                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5203
5204                 r = x86_decode_insn(ctxt, insn, insn_len);
5205
5206                 trace_kvm_emulate_insn_start(vcpu);
5207                 ++vcpu->stat.insn_emulation;
5208                 if (r != EMULATION_OK)  {
5209                         if (emulation_type & EMULTYPE_TRAP_UD)
5210                                 return EMULATE_FAIL;
5211                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5212                                                 emulation_type))
5213                                 return EMULATE_DONE;
5214                         if (emulation_type & EMULTYPE_SKIP)
5215                                 return EMULATE_FAIL;
5216                         return handle_emulation_failure(vcpu);
5217                 }
5218         }
5219
5220         if (emulation_type & EMULTYPE_SKIP) {
5221                 kvm_rip_write(vcpu, ctxt->_eip);
5222                 if (ctxt->eflags & X86_EFLAGS_RF)
5223                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5224                 return EMULATE_DONE;
5225         }
5226
5227         if (retry_instruction(ctxt, cr2, emulation_type))
5228                 return EMULATE_DONE;
5229
5230         /* this is needed for vmware backdoor interface to work since it
5231            changes registers values  during IO operation */
5232         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5233                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5234                 emulator_invalidate_register_cache(ctxt);
5235         }
5236
5237 restart:
5238         r = x86_emulate_insn(ctxt);
5239
5240         if (r == EMULATION_INTERCEPTED)
5241                 return EMULATE_DONE;
5242
5243         if (r == EMULATION_FAILED) {
5244                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5245                                         emulation_type))
5246                         return EMULATE_DONE;
5247
5248                 return handle_emulation_failure(vcpu);
5249         }
5250
5251         if (ctxt->have_exception) {
5252                 r = EMULATE_DONE;
5253                 if (inject_emulated_exception(vcpu))
5254                         return r;
5255         } else if (vcpu->arch.pio.count) {
5256                 if (!vcpu->arch.pio.in) {
5257                         /* FIXME: return into emulator if single-stepping.  */
5258                         vcpu->arch.pio.count = 0;
5259                 } else {
5260                         writeback = false;
5261                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5262                 }
5263                 r = EMULATE_USER_EXIT;
5264         } else if (vcpu->mmio_needed) {
5265                 if (!vcpu->mmio_is_write)
5266                         writeback = false;
5267                 r = EMULATE_USER_EXIT;
5268                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5269         } else if (r == EMULATION_RESTART)
5270                 goto restart;
5271         else
5272                 r = EMULATE_DONE;
5273
5274         if (writeback) {
5275                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5276                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5277                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5278                 if (vcpu->arch.hflags != ctxt->emul_flags)
5279                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5280                 kvm_rip_write(vcpu, ctxt->eip);
5281                 if (r == EMULATE_DONE)
5282                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5283                 if (!ctxt->have_exception ||
5284                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5285                         __kvm_set_rflags(vcpu, ctxt->eflags);
5286
5287                 /*
5288                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5289                  * do nothing, and it will be requested again as soon as
5290                  * the shadow expires.  But we still need to check here,
5291                  * because POPF has no interrupt shadow.
5292                  */
5293                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5294                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5295         } else
5296                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5297
5298         return r;
5299 }
5300 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5301
5302 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5303 {
5304         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5305         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5306                                             size, port, &val, 1);
5307         /* do not return to emulator after return from userspace */
5308         vcpu->arch.pio.count = 0;
5309         return ret;
5310 }
5311 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5312
5313 static void tsc_bad(void *info)
5314 {
5315         __this_cpu_write(cpu_tsc_khz, 0);
5316 }
5317
5318 static void tsc_khz_changed(void *data)
5319 {
5320         struct cpufreq_freqs *freq = data;
5321         unsigned long khz = 0;
5322
5323         if (data)
5324                 khz = freq->new;
5325         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5326                 khz = cpufreq_quick_get(raw_smp_processor_id());
5327         if (!khz)
5328                 khz = tsc_khz;
5329         __this_cpu_write(cpu_tsc_khz, khz);
5330 }
5331
5332 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5333                                      void *data)
5334 {
5335         struct cpufreq_freqs *freq = data;
5336         struct kvm *kvm;
5337         struct kvm_vcpu *vcpu;
5338         int i, send_ipi = 0;
5339
5340         /*
5341          * We allow guests to temporarily run on slowing clocks,
5342          * provided we notify them after, or to run on accelerating
5343          * clocks, provided we notify them before.  Thus time never
5344          * goes backwards.
5345          *
5346          * However, we have a problem.  We can't atomically update
5347          * the frequency of a given CPU from this function; it is
5348          * merely a notifier, which can be called from any CPU.
5349          * Changing the TSC frequency at arbitrary points in time
5350          * requires a recomputation of local variables related to
5351          * the TSC for each VCPU.  We must flag these local variables
5352          * to be updated and be sure the update takes place with the
5353          * new frequency before any guests proceed.
5354          *
5355          * Unfortunately, the combination of hotplug CPU and frequency
5356          * change creates an intractable locking scenario; the order
5357          * of when these callouts happen is undefined with respect to
5358          * CPU hotplug, and they can race with each other.  As such,
5359          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5360          * undefined; you can actually have a CPU frequency change take
5361          * place in between the computation of X and the setting of the
5362          * variable.  To protect against this problem, all updates of
5363          * the per_cpu tsc_khz variable are done in an interrupt
5364          * protected IPI, and all callers wishing to update the value
5365          * must wait for a synchronous IPI to complete (which is trivial
5366          * if the caller is on the CPU already).  This establishes the
5367          * necessary total order on variable updates.
5368          *
5369          * Note that because a guest time update may take place
5370          * anytime after the setting of the VCPU's request bit, the
5371          * correct TSC value must be set before the request.  However,
5372          * to ensure the update actually makes it to any guest which
5373          * starts running in hardware virtualization between the set
5374          * and the acquisition of the spinlock, we must also ping the
5375          * CPU after setting the request bit.
5376          *
5377          */
5378
5379         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5380                 return 0;
5381         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5382                 return 0;
5383
5384         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5385
5386         spin_lock(&kvm_lock);
5387         list_for_each_entry(kvm, &vm_list, vm_list) {
5388                 kvm_for_each_vcpu(i, vcpu, kvm) {
5389                         if (vcpu->cpu != freq->cpu)
5390                                 continue;
5391                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5392                         if (vcpu->cpu != smp_processor_id())
5393                                 send_ipi = 1;
5394                 }
5395         }
5396         spin_unlock(&kvm_lock);
5397
5398         if (freq->old < freq->new && send_ipi) {
5399                 /*
5400                  * We upscale the frequency.  Must make the guest
5401                  * doesn't see old kvmclock values while running with
5402                  * the new frequency, otherwise we risk the guest sees
5403                  * time go backwards.
5404                  *
5405                  * In case we update the frequency for another cpu
5406                  * (which might be in guest context) send an interrupt
5407                  * to kick the cpu out of guest context.  Next time
5408                  * guest context is entered kvmclock will be updated,
5409                  * so the guest will not see stale values.
5410                  */
5411                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5412         }
5413         return 0;
5414 }
5415
5416 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5417         .notifier_call  = kvmclock_cpufreq_notifier
5418 };
5419
5420 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5421                                         unsigned long action, void *hcpu)
5422 {
5423         unsigned int cpu = (unsigned long)hcpu;
5424
5425         switch (action) {
5426                 case CPU_ONLINE:
5427                 case CPU_DOWN_FAILED:
5428                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5429                         break;
5430                 case CPU_DOWN_PREPARE:
5431                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5432                         break;
5433         }
5434         return NOTIFY_OK;
5435 }
5436
5437 static struct notifier_block kvmclock_cpu_notifier_block = {
5438         .notifier_call  = kvmclock_cpu_notifier,
5439         .priority = -INT_MAX
5440 };
5441
5442 static void kvm_timer_init(void)
5443 {
5444         int cpu;
5445
5446         max_tsc_khz = tsc_khz;
5447
5448         cpu_notifier_register_begin();
5449         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5450 #ifdef CONFIG_CPU_FREQ
5451                 struct cpufreq_policy policy;
5452                 memset(&policy, 0, sizeof(policy));
5453                 cpu = get_cpu();
5454                 cpufreq_get_policy(&policy, cpu);
5455                 if (policy.cpuinfo.max_freq)
5456                         max_tsc_khz = policy.cpuinfo.max_freq;
5457                 put_cpu();
5458 #endif
5459                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5460                                           CPUFREQ_TRANSITION_NOTIFIER);
5461         }
5462         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5463         for_each_online_cpu(cpu)
5464                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5465
5466         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5467         cpu_notifier_register_done();
5468
5469 }
5470
5471 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5472
5473 int kvm_is_in_guest(void)
5474 {
5475         return __this_cpu_read(current_vcpu) != NULL;
5476 }
5477
5478 static int kvm_is_user_mode(void)
5479 {
5480         int user_mode = 3;
5481
5482         if (__this_cpu_read(current_vcpu))
5483                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5484
5485         return user_mode != 0;
5486 }
5487
5488 static unsigned long kvm_get_guest_ip(void)
5489 {
5490         unsigned long ip = 0;
5491
5492         if (__this_cpu_read(current_vcpu))
5493                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5494
5495         return ip;
5496 }
5497
5498 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5499         .is_in_guest            = kvm_is_in_guest,
5500         .is_user_mode           = kvm_is_user_mode,
5501         .get_guest_ip           = kvm_get_guest_ip,
5502 };
5503
5504 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5505 {
5506         __this_cpu_write(current_vcpu, vcpu);
5507 }
5508 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5509
5510 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5511 {
5512         __this_cpu_write(current_vcpu, NULL);
5513 }
5514 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5515
5516 static void kvm_set_mmio_spte_mask(void)
5517 {
5518         u64 mask;
5519         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5520
5521         /*
5522          * Set the reserved bits and the present bit of an paging-structure
5523          * entry to generate page fault with PFER.RSV = 1.
5524          */
5525          /* Mask the reserved physical address bits. */
5526         mask = rsvd_bits(maxphyaddr, 51);
5527
5528         /* Bit 62 is always reserved for 32bit host. */
5529         mask |= 0x3ull << 62;
5530
5531         /* Set the present bit. */
5532         mask |= 1ull;
5533
5534 #ifdef CONFIG_X86_64
5535         /*
5536          * If reserved bit is not supported, clear the present bit to disable
5537          * mmio page fault.
5538          */
5539         if (maxphyaddr == 52)
5540                 mask &= ~1ull;
5541 #endif
5542
5543         kvm_mmu_set_mmio_spte_mask(mask);
5544 }
5545
5546 #ifdef CONFIG_X86_64
5547 static void pvclock_gtod_update_fn(struct work_struct *work)
5548 {
5549         struct kvm *kvm;
5550
5551         struct kvm_vcpu *vcpu;
5552         int i;
5553
5554         spin_lock(&kvm_lock);
5555         list_for_each_entry(kvm, &vm_list, vm_list)
5556                 kvm_for_each_vcpu(i, vcpu, kvm)
5557                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5558         atomic_set(&kvm_guest_has_master_clock, 0);
5559         spin_unlock(&kvm_lock);
5560 }
5561
5562 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5563
5564 /*
5565  * Notification about pvclock gtod data update.
5566  */
5567 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5568                                void *priv)
5569 {
5570         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5571         struct timekeeper *tk = priv;
5572
5573         update_pvclock_gtod(tk);
5574
5575         /* disable master clock if host does not trust, or does not
5576          * use, TSC clocksource
5577          */
5578         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5579             atomic_read(&kvm_guest_has_master_clock) != 0)
5580                 queue_work(system_long_wq, &pvclock_gtod_work);
5581
5582         return 0;
5583 }
5584
5585 static struct notifier_block pvclock_gtod_notifier = {
5586         .notifier_call = pvclock_gtod_notify,
5587 };
5588 #endif
5589
5590 int kvm_arch_init(void *opaque)
5591 {
5592         int r;
5593         struct kvm_x86_ops *ops = opaque;
5594
5595         if (kvm_x86_ops) {
5596                 printk(KERN_ERR "kvm: already loaded the other module\n");
5597                 r = -EEXIST;
5598                 goto out;
5599         }
5600
5601         if (!ops->cpu_has_kvm_support()) {
5602                 printk(KERN_ERR "kvm: no hardware support\n");
5603                 r = -EOPNOTSUPP;
5604                 goto out;
5605         }
5606         if (ops->disabled_by_bios()) {
5607                 printk(KERN_ERR "kvm: disabled by bios\n");
5608                 r = -EOPNOTSUPP;
5609                 goto out;
5610         }
5611
5612         r = -ENOMEM;
5613         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5614         if (!shared_msrs) {
5615                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5616                 goto out;
5617         }
5618
5619         r = kvm_mmu_module_init();
5620         if (r)
5621                 goto out_free_percpu;
5622
5623         kvm_set_mmio_spte_mask();
5624
5625         kvm_x86_ops = ops;
5626
5627         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5628                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5629
5630         kvm_timer_init();
5631
5632         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5633
5634         if (cpu_has_xsave)
5635                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5636
5637         kvm_lapic_init();
5638 #ifdef CONFIG_X86_64
5639         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5640 #endif
5641
5642         return 0;
5643
5644 out_free_percpu:
5645         free_percpu(shared_msrs);
5646 out:
5647         return r;
5648 }
5649
5650 void kvm_arch_exit(void)
5651 {
5652         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5653
5654         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5655                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5656                                             CPUFREQ_TRANSITION_NOTIFIER);
5657         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5658 #ifdef CONFIG_X86_64
5659         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5660 #endif
5661         kvm_x86_ops = NULL;
5662         kvm_mmu_module_exit();
5663         free_percpu(shared_msrs);
5664 }
5665
5666 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5667 {
5668         ++vcpu->stat.halt_exits;
5669         if (irqchip_in_kernel(vcpu->kvm)) {
5670                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5671                 return 1;
5672         } else {
5673                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5674                 return 0;
5675         }
5676 }
5677 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5678
5679 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5680 {
5681         kvm_x86_ops->skip_emulated_instruction(vcpu);
5682         return kvm_vcpu_halt(vcpu);
5683 }
5684 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5685
5686 /*
5687  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5688  *
5689  * @apicid - apicid of vcpu to be kicked.
5690  */
5691 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5692 {
5693         struct kvm_lapic_irq lapic_irq;
5694
5695         lapic_irq.shorthand = 0;
5696         lapic_irq.dest_mode = 0;
5697         lapic_irq.dest_id = apicid;
5698         lapic_irq.msi_redir_hint = false;
5699
5700         lapic_irq.delivery_mode = APIC_DM_REMRD;
5701         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5702 }
5703
5704 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5705 {
5706         unsigned long nr, a0, a1, a2, a3, ret;
5707         int op_64_bit, r = 1;
5708
5709         kvm_x86_ops->skip_emulated_instruction(vcpu);
5710
5711         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5712                 return kvm_hv_hypercall(vcpu);
5713
5714         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5715         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5716         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5717         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5718         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5719
5720         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5721
5722         op_64_bit = is_64_bit_mode(vcpu);
5723         if (!op_64_bit) {
5724                 nr &= 0xFFFFFFFF;
5725                 a0 &= 0xFFFFFFFF;
5726                 a1 &= 0xFFFFFFFF;
5727                 a2 &= 0xFFFFFFFF;
5728                 a3 &= 0xFFFFFFFF;
5729         }
5730
5731         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5732                 ret = -KVM_EPERM;
5733                 goto out;
5734         }
5735
5736         switch (nr) {
5737         case KVM_HC_VAPIC_POLL_IRQ:
5738                 ret = 0;
5739                 break;
5740         case KVM_HC_KICK_CPU:
5741                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5742                 ret = 0;
5743                 break;
5744         default:
5745                 ret = -KVM_ENOSYS;
5746                 break;
5747         }
5748 out:
5749         if (!op_64_bit)
5750                 ret = (u32)ret;
5751         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5752         ++vcpu->stat.hypercalls;
5753         return r;
5754 }
5755 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5756
5757 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5758 {
5759         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5760         char instruction[3];
5761         unsigned long rip = kvm_rip_read(vcpu);
5762
5763         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5764
5765         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5766 }
5767
5768 /*
5769  * Check if userspace requested an interrupt window, and that the
5770  * interrupt window is open.
5771  *
5772  * No need to exit to userspace if we already have an interrupt queued.
5773  */
5774 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5775 {
5776         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5777                 vcpu->run->request_interrupt_window &&
5778                 kvm_arch_interrupt_allowed(vcpu));
5779 }
5780
5781 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5782 {
5783         struct kvm_run *kvm_run = vcpu->run;
5784
5785         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5786         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5787         kvm_run->cr8 = kvm_get_cr8(vcpu);
5788         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5789         if (irqchip_in_kernel(vcpu->kvm))
5790                 kvm_run->ready_for_interrupt_injection = 1;
5791         else
5792                 kvm_run->ready_for_interrupt_injection =
5793                         kvm_arch_interrupt_allowed(vcpu) &&
5794                         !kvm_cpu_has_interrupt(vcpu) &&
5795                         !kvm_event_needs_reinjection(vcpu);
5796 }
5797
5798 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5799 {
5800         int max_irr, tpr;
5801
5802         if (!kvm_x86_ops->update_cr8_intercept)
5803                 return;
5804
5805         if (!vcpu->arch.apic)
5806                 return;
5807
5808         if (!vcpu->arch.apic->vapic_addr)
5809                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5810         else
5811                 max_irr = -1;
5812
5813         if (max_irr != -1)
5814                 max_irr >>= 4;
5815
5816         tpr = kvm_lapic_get_cr8(vcpu);
5817
5818         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5819 }
5820
5821 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5822 {
5823         int r;
5824
5825         /* try to reinject previous events if any */
5826         if (vcpu->arch.exception.pending) {
5827                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5828                                         vcpu->arch.exception.has_error_code,
5829                                         vcpu->arch.exception.error_code);
5830
5831                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5832                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5833                                              X86_EFLAGS_RF);
5834
5835                 if (vcpu->arch.exception.nr == DB_VECTOR &&
5836                     (vcpu->arch.dr7 & DR7_GD)) {
5837                         vcpu->arch.dr7 &= ~DR7_GD;
5838                         kvm_update_dr7(vcpu);
5839                 }
5840
5841                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5842                                           vcpu->arch.exception.has_error_code,
5843                                           vcpu->arch.exception.error_code,
5844                                           vcpu->arch.exception.reinject);
5845                 return 0;
5846         }
5847
5848         if (vcpu->arch.nmi_injected) {
5849                 kvm_x86_ops->set_nmi(vcpu);
5850                 return 0;
5851         }
5852
5853         if (vcpu->arch.interrupt.pending) {
5854                 kvm_x86_ops->set_irq(vcpu);
5855                 return 0;
5856         }
5857
5858         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5859                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5860                 if (r != 0)
5861                         return r;
5862         }
5863
5864         /* try to inject new event if pending */
5865         if (vcpu->arch.nmi_pending) {
5866                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5867                         --vcpu->arch.nmi_pending;
5868                         vcpu->arch.nmi_injected = true;
5869                         kvm_x86_ops->set_nmi(vcpu);
5870                 }
5871         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5872                 /*
5873                  * Because interrupts can be injected asynchronously, we are
5874                  * calling check_nested_events again here to avoid a race condition.
5875                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
5876                  * proposal and current concerns.  Perhaps we should be setting
5877                  * KVM_REQ_EVENT only on certain events and not unconditionally?
5878                  */
5879                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5880                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5881                         if (r != 0)
5882                                 return r;
5883                 }
5884                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5885                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5886                                             false);
5887                         kvm_x86_ops->set_irq(vcpu);
5888                 }
5889         }
5890         return 0;
5891 }
5892
5893 static void process_nmi(struct kvm_vcpu *vcpu)
5894 {
5895         unsigned limit = 2;
5896
5897         /*
5898          * x86 is limited to one NMI running, and one NMI pending after it.
5899          * If an NMI is already in progress, limit further NMIs to just one.
5900          * Otherwise, allow two (and we'll inject the first one immediately).
5901          */
5902         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5903                 limit = 1;
5904
5905         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5906         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5907         kvm_make_request(KVM_REQ_EVENT, vcpu);
5908 }
5909
5910 #define put_smstate(type, buf, offset, val)                       \
5911         *(type *)((buf) + (offset) - 0x7e00) = val
5912
5913 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
5914 {
5915         u32 flags = 0;
5916         flags |= seg->g       << 23;
5917         flags |= seg->db      << 22;
5918         flags |= seg->l       << 21;
5919         flags |= seg->avl     << 20;
5920         flags |= seg->present << 15;
5921         flags |= seg->dpl     << 13;
5922         flags |= seg->s       << 12;
5923         flags |= seg->type    << 8;
5924         return flags;
5925 }
5926
5927 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
5928 {
5929         struct kvm_segment seg;
5930         int offset;
5931
5932         kvm_get_segment(vcpu, &seg, n);
5933         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
5934
5935         if (n < 3)
5936                 offset = 0x7f84 + n * 12;
5937         else
5938                 offset = 0x7f2c + (n - 3) * 12;
5939
5940         put_smstate(u32, buf, offset + 8, seg.base);
5941         put_smstate(u32, buf, offset + 4, seg.limit);
5942         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
5943 }
5944
5945 #ifdef CONFIG_X86_64
5946 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
5947 {
5948         struct kvm_segment seg;
5949         int offset;
5950         u16 flags;
5951
5952         kvm_get_segment(vcpu, &seg, n);
5953         offset = 0x7e00 + n * 16;
5954
5955         flags = process_smi_get_segment_flags(&seg) >> 8;
5956         put_smstate(u16, buf, offset, seg.selector);
5957         put_smstate(u16, buf, offset + 2, flags);
5958         put_smstate(u32, buf, offset + 4, seg.limit);
5959         put_smstate(u64, buf, offset + 8, seg.base);
5960 }
5961 #endif
5962
5963 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
5964 {
5965         struct desc_ptr dt;
5966         struct kvm_segment seg;
5967         unsigned long val;
5968         int i;
5969
5970         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
5971         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
5972         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
5973         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
5974
5975         for (i = 0; i < 8; i++)
5976                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
5977
5978         kvm_get_dr(vcpu, 6, &val);
5979         put_smstate(u32, buf, 0x7fcc, (u32)val);
5980         kvm_get_dr(vcpu, 7, &val);
5981         put_smstate(u32, buf, 0x7fc8, (u32)val);
5982
5983         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
5984         put_smstate(u32, buf, 0x7fc4, seg.selector);
5985         put_smstate(u32, buf, 0x7f64, seg.base);
5986         put_smstate(u32, buf, 0x7f60, seg.limit);
5987         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
5988
5989         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
5990         put_smstate(u32, buf, 0x7fc0, seg.selector);
5991         put_smstate(u32, buf, 0x7f80, seg.base);
5992         put_smstate(u32, buf, 0x7f7c, seg.limit);
5993         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
5994
5995         kvm_x86_ops->get_gdt(vcpu, &dt);
5996         put_smstate(u32, buf, 0x7f74, dt.address);
5997         put_smstate(u32, buf, 0x7f70, dt.size);
5998
5999         kvm_x86_ops->get_idt(vcpu, &dt);
6000         put_smstate(u32, buf, 0x7f58, dt.address);
6001         put_smstate(u32, buf, 0x7f54, dt.size);
6002
6003         for (i = 0; i < 6; i++)
6004                 process_smi_save_seg_32(vcpu, buf, i);
6005
6006         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6007
6008         /* revision id */
6009         put_smstate(u32, buf, 0x7efc, 0x00020000);
6010         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6011 }
6012
6013 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6014 {
6015 #ifdef CONFIG_X86_64
6016         struct desc_ptr dt;
6017         struct kvm_segment seg;
6018         unsigned long val;
6019         int i;
6020
6021         for (i = 0; i < 16; i++)
6022                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6023
6024         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6025         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6026
6027         kvm_get_dr(vcpu, 6, &val);
6028         put_smstate(u64, buf, 0x7f68, val);
6029         kvm_get_dr(vcpu, 7, &val);
6030         put_smstate(u64, buf, 0x7f60, val);
6031
6032         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6033         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6034         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6035
6036         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6037
6038         /* revision id */
6039         put_smstate(u32, buf, 0x7efc, 0x00020064);
6040
6041         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6042
6043         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6044         put_smstate(u16, buf, 0x7e90, seg.selector);
6045         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6046         put_smstate(u32, buf, 0x7e94, seg.limit);
6047         put_smstate(u64, buf, 0x7e98, seg.base);
6048
6049         kvm_x86_ops->get_idt(vcpu, &dt);
6050         put_smstate(u32, buf, 0x7e84, dt.size);
6051         put_smstate(u64, buf, 0x7e88, dt.address);
6052
6053         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6054         put_smstate(u16, buf, 0x7e70, seg.selector);
6055         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6056         put_smstate(u32, buf, 0x7e74, seg.limit);
6057         put_smstate(u64, buf, 0x7e78, seg.base);
6058
6059         kvm_x86_ops->get_gdt(vcpu, &dt);
6060         put_smstate(u32, buf, 0x7e64, dt.size);
6061         put_smstate(u64, buf, 0x7e68, dt.address);
6062
6063         for (i = 0; i < 6; i++)
6064                 process_smi_save_seg_64(vcpu, buf, i);
6065 #else
6066         WARN_ON_ONCE(1);
6067 #endif
6068 }
6069
6070 static void process_smi(struct kvm_vcpu *vcpu)
6071 {
6072         struct kvm_segment cs, ds;
6073         struct desc_ptr dt;
6074         char buf[512];
6075         u32 cr0;
6076
6077         if (is_smm(vcpu)) {
6078                 vcpu->arch.smi_pending = true;
6079                 return;
6080         }
6081
6082         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6083         vcpu->arch.hflags |= HF_SMM_MASK;
6084         memset(buf, 0, 512);
6085         if (guest_cpuid_has_longmode(vcpu))
6086                 process_smi_save_state_64(vcpu, buf);
6087         else
6088                 process_smi_save_state_32(vcpu, buf);
6089
6090         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6091
6092         if (kvm_x86_ops->get_nmi_mask(vcpu))
6093                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6094         else
6095                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6096
6097         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6098         kvm_rip_write(vcpu, 0x8000);
6099
6100         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6101         kvm_x86_ops->set_cr0(vcpu, cr0);
6102         vcpu->arch.cr0 = cr0;
6103
6104         kvm_x86_ops->set_cr4(vcpu, 0);
6105
6106         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6107         dt.address = dt.size = 0;
6108         kvm_x86_ops->set_idt(vcpu, &dt);
6109
6110         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6111
6112         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6113         cs.base = vcpu->arch.smbase;
6114
6115         ds.selector = 0;
6116         ds.base = 0;
6117
6118         cs.limit    = ds.limit = 0xffffffff;
6119         cs.type     = ds.type = 0x3;
6120         cs.dpl      = ds.dpl = 0;
6121         cs.db       = ds.db = 0;
6122         cs.s        = ds.s = 1;
6123         cs.l        = ds.l = 0;
6124         cs.g        = ds.g = 1;
6125         cs.avl      = ds.avl = 0;
6126         cs.present  = ds.present = 1;
6127         cs.unusable = ds.unusable = 0;
6128         cs.padding  = ds.padding = 0;
6129
6130         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6131         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6132         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6133         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6134         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6135         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6136
6137         if (guest_cpuid_has_longmode(vcpu))
6138                 kvm_x86_ops->set_efer(vcpu, 0);
6139
6140         kvm_update_cpuid(vcpu);
6141         kvm_mmu_reset_context(vcpu);
6142 }
6143
6144 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6145 {
6146         u64 eoi_exit_bitmap[4];
6147         u32 tmr[8];
6148
6149         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6150                 return;
6151
6152         memset(eoi_exit_bitmap, 0, 32);
6153         memset(tmr, 0, 32);
6154
6155         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6156         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6157         kvm_apic_update_tmr(vcpu, tmr);
6158 }
6159
6160 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6161 {
6162         ++vcpu->stat.tlb_flush;
6163         kvm_x86_ops->tlb_flush(vcpu);
6164 }
6165
6166 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6167 {
6168         struct page *page = NULL;
6169
6170         if (!irqchip_in_kernel(vcpu->kvm))
6171                 return;
6172
6173         if (!kvm_x86_ops->set_apic_access_page_addr)
6174                 return;
6175
6176         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6177         if (is_error_page(page))
6178                 return;
6179         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6180
6181         /*
6182          * Do not pin apic access page in memory, the MMU notifier
6183          * will call us again if it is migrated or swapped out.
6184          */
6185         put_page(page);
6186 }
6187 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6188
6189 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6190                                            unsigned long address)
6191 {
6192         /*
6193          * The physical address of apic access page is stored in the VMCS.
6194          * Update it when it becomes invalid.
6195          */
6196         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6197                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6198 }
6199
6200 /*
6201  * Returns 1 to let vcpu_run() continue the guest execution loop without
6202  * exiting to the userspace.  Otherwise, the value will be returned to the
6203  * userspace.
6204  */
6205 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6206 {
6207         int r;
6208         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6209                 vcpu->run->request_interrupt_window;
6210         bool req_immediate_exit = false;
6211
6212         if (vcpu->requests) {
6213                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6214                         kvm_mmu_unload(vcpu);
6215                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6216                         __kvm_migrate_timers(vcpu);
6217                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6218                         kvm_gen_update_masterclock(vcpu->kvm);
6219                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6220                         kvm_gen_kvmclock_update(vcpu);
6221                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6222                         r = kvm_guest_time_update(vcpu);
6223                         if (unlikely(r))
6224                                 goto out;
6225                 }
6226                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6227                         kvm_mmu_sync_roots(vcpu);
6228                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6229                         kvm_vcpu_flush_tlb(vcpu);
6230                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6231                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6232                         r = 0;
6233                         goto out;
6234                 }
6235                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6236                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6237                         r = 0;
6238                         goto out;
6239                 }
6240                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6241                         vcpu->fpu_active = 0;
6242                         kvm_x86_ops->fpu_deactivate(vcpu);
6243                 }
6244                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6245                         /* Page is swapped out. Do synthetic halt */
6246                         vcpu->arch.apf.halted = true;
6247                         r = 1;
6248                         goto out;
6249                 }
6250                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6251                         record_steal_time(vcpu);
6252                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6253                         process_smi(vcpu);
6254                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6255                         process_nmi(vcpu);
6256                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6257                         kvm_pmu_handle_event(vcpu);
6258                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6259                         kvm_pmu_deliver_pmi(vcpu);
6260                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6261                         vcpu_scan_ioapic(vcpu);
6262                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6263                         kvm_vcpu_reload_apic_access_page(vcpu);
6264                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6265                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6266                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6267                         r = 0;
6268                         goto out;
6269                 }
6270         }
6271
6272         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6273                 kvm_apic_accept_events(vcpu);
6274                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6275                         r = 1;
6276                         goto out;
6277                 }
6278
6279                 if (inject_pending_event(vcpu, req_int_win) != 0)
6280                         req_immediate_exit = true;
6281                 /* enable NMI/IRQ window open exits if needed */
6282                 else if (vcpu->arch.nmi_pending)
6283                         kvm_x86_ops->enable_nmi_window(vcpu);
6284                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6285                         kvm_x86_ops->enable_irq_window(vcpu);
6286
6287                 if (kvm_lapic_enabled(vcpu)) {
6288                         /*
6289                          * Update architecture specific hints for APIC
6290                          * virtual interrupt delivery.
6291                          */
6292                         if (kvm_x86_ops->hwapic_irr_update)
6293                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6294                                         kvm_lapic_find_highest_irr(vcpu));
6295                         update_cr8_intercept(vcpu);
6296                         kvm_lapic_sync_to_vapic(vcpu);
6297                 }
6298         }
6299
6300         r = kvm_mmu_reload(vcpu);
6301         if (unlikely(r)) {
6302                 goto cancel_injection;
6303         }
6304
6305         preempt_disable();
6306
6307         kvm_x86_ops->prepare_guest_switch(vcpu);
6308         if (vcpu->fpu_active)
6309                 kvm_load_guest_fpu(vcpu);
6310         kvm_load_guest_xcr0(vcpu);
6311
6312         vcpu->mode = IN_GUEST_MODE;
6313
6314         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6315
6316         /* We should set ->mode before check ->requests,
6317          * see the comment in make_all_cpus_request.
6318          */
6319         smp_mb__after_srcu_read_unlock();
6320
6321         local_irq_disable();
6322
6323         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6324             || need_resched() || signal_pending(current)) {
6325                 vcpu->mode = OUTSIDE_GUEST_MODE;
6326                 smp_wmb();
6327                 local_irq_enable();
6328                 preempt_enable();
6329                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6330                 r = 1;
6331                 goto cancel_injection;
6332         }
6333
6334         if (req_immediate_exit)
6335                 smp_send_reschedule(vcpu->cpu);
6336
6337         __kvm_guest_enter();
6338
6339         if (unlikely(vcpu->arch.switch_db_regs)) {
6340                 set_debugreg(0, 7);
6341                 set_debugreg(vcpu->arch.eff_db[0], 0);
6342                 set_debugreg(vcpu->arch.eff_db[1], 1);
6343                 set_debugreg(vcpu->arch.eff_db[2], 2);
6344                 set_debugreg(vcpu->arch.eff_db[3], 3);
6345                 set_debugreg(vcpu->arch.dr6, 6);
6346                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6347         }
6348
6349         trace_kvm_entry(vcpu->vcpu_id);
6350         wait_lapic_expire(vcpu);
6351         kvm_x86_ops->run(vcpu);
6352
6353         /*
6354          * Do this here before restoring debug registers on the host.  And
6355          * since we do this before handling the vmexit, a DR access vmexit
6356          * can (a) read the correct value of the debug registers, (b) set
6357          * KVM_DEBUGREG_WONT_EXIT again.
6358          */
6359         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6360                 int i;
6361
6362                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6363                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6364                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6365                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6366         }
6367
6368         /*
6369          * If the guest has used debug registers, at least dr7
6370          * will be disabled while returning to the host.
6371          * If we don't have active breakpoints in the host, we don't
6372          * care about the messed up debug address registers. But if
6373          * we have some of them active, restore the old state.
6374          */
6375         if (hw_breakpoint_active())
6376                 hw_breakpoint_restore();
6377
6378         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6379                                                            rdtsc());
6380
6381         vcpu->mode = OUTSIDE_GUEST_MODE;
6382         smp_wmb();
6383
6384         /* Interrupt is enabled by handle_external_intr() */
6385         kvm_x86_ops->handle_external_intr(vcpu);
6386
6387         ++vcpu->stat.exits;
6388
6389         /*
6390          * We must have an instruction between local_irq_enable() and
6391          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6392          * the interrupt shadow.  The stat.exits increment will do nicely.
6393          * But we need to prevent reordering, hence this barrier():
6394          */
6395         barrier();
6396
6397         kvm_guest_exit();
6398
6399         preempt_enable();
6400
6401         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6402
6403         /*
6404          * Profile KVM exit RIPs:
6405          */
6406         if (unlikely(prof_on == KVM_PROFILING)) {
6407                 unsigned long rip = kvm_rip_read(vcpu);
6408                 profile_hit(KVM_PROFILING, (void *)rip);
6409         }
6410
6411         if (unlikely(vcpu->arch.tsc_always_catchup))
6412                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6413
6414         if (vcpu->arch.apic_attention)
6415                 kvm_lapic_sync_from_vapic(vcpu);
6416
6417         r = kvm_x86_ops->handle_exit(vcpu);
6418         return r;
6419
6420 cancel_injection:
6421         kvm_x86_ops->cancel_injection(vcpu);
6422         if (unlikely(vcpu->arch.apic_attention))
6423                 kvm_lapic_sync_from_vapic(vcpu);
6424 out:
6425         return r;
6426 }
6427
6428 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6429 {
6430         if (!kvm_arch_vcpu_runnable(vcpu)) {
6431                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6432                 kvm_vcpu_block(vcpu);
6433                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6434                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6435                         return 1;
6436         }
6437
6438         kvm_apic_accept_events(vcpu);
6439         switch(vcpu->arch.mp_state) {
6440         case KVM_MP_STATE_HALTED:
6441                 vcpu->arch.pv.pv_unhalted = false;
6442                 vcpu->arch.mp_state =
6443                         KVM_MP_STATE_RUNNABLE;
6444         case KVM_MP_STATE_RUNNABLE:
6445                 vcpu->arch.apf.halted = false;
6446                 break;
6447         case KVM_MP_STATE_INIT_RECEIVED:
6448                 break;
6449         default:
6450                 return -EINTR;
6451                 break;
6452         }
6453         return 1;
6454 }
6455
6456 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6457 {
6458         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6459                 !vcpu->arch.apf.halted);
6460 }
6461
6462 static int vcpu_run(struct kvm_vcpu *vcpu)
6463 {
6464         int r;
6465         struct kvm *kvm = vcpu->kvm;
6466
6467         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6468
6469         for (;;) {
6470                 if (kvm_vcpu_running(vcpu))
6471                         r = vcpu_enter_guest(vcpu);
6472                 else
6473                         r = vcpu_block(kvm, vcpu);
6474                 if (r <= 0)
6475                         break;
6476
6477                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6478                 if (kvm_cpu_has_pending_timer(vcpu))
6479                         kvm_inject_pending_timer_irqs(vcpu);
6480
6481                 if (dm_request_for_irq_injection(vcpu)) {
6482                         r = -EINTR;
6483                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6484                         ++vcpu->stat.request_irq_exits;
6485                         break;
6486                 }
6487
6488                 kvm_check_async_pf_completion(vcpu);
6489
6490                 if (signal_pending(current)) {
6491                         r = -EINTR;
6492                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6493                         ++vcpu->stat.signal_exits;
6494                         break;
6495                 }
6496                 if (need_resched()) {
6497                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6498                         cond_resched();
6499                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6500                 }
6501         }
6502
6503         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6504
6505         return r;
6506 }
6507
6508 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6509 {
6510         int r;
6511         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6512         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6513         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6514         if (r != EMULATE_DONE)
6515                 return 0;
6516         return 1;
6517 }
6518
6519 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6520 {
6521         BUG_ON(!vcpu->arch.pio.count);
6522
6523         return complete_emulated_io(vcpu);
6524 }
6525
6526 /*
6527  * Implements the following, as a state machine:
6528  *
6529  * read:
6530  *   for each fragment
6531  *     for each mmio piece in the fragment
6532  *       write gpa, len
6533  *       exit
6534  *       copy data
6535  *   execute insn
6536  *
6537  * write:
6538  *   for each fragment
6539  *     for each mmio piece in the fragment
6540  *       write gpa, len
6541  *       copy data
6542  *       exit
6543  */
6544 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6545 {
6546         struct kvm_run *run = vcpu->run;
6547         struct kvm_mmio_fragment *frag;
6548         unsigned len;
6549
6550         BUG_ON(!vcpu->mmio_needed);
6551
6552         /* Complete previous fragment */
6553         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6554         len = min(8u, frag->len);
6555         if (!vcpu->mmio_is_write)
6556                 memcpy(frag->data, run->mmio.data, len);
6557
6558         if (frag->len <= 8) {
6559                 /* Switch to the next fragment. */
6560                 frag++;
6561                 vcpu->mmio_cur_fragment++;
6562         } else {
6563                 /* Go forward to the next mmio piece. */
6564                 frag->data += len;
6565                 frag->gpa += len;
6566                 frag->len -= len;
6567         }
6568
6569         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6570                 vcpu->mmio_needed = 0;
6571
6572                 /* FIXME: return into emulator if single-stepping.  */
6573                 if (vcpu->mmio_is_write)
6574                         return 1;
6575                 vcpu->mmio_read_completed = 1;
6576                 return complete_emulated_io(vcpu);
6577         }
6578
6579         run->exit_reason = KVM_EXIT_MMIO;
6580         run->mmio.phys_addr = frag->gpa;
6581         if (vcpu->mmio_is_write)
6582                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6583         run->mmio.len = min(8u, frag->len);
6584         run->mmio.is_write = vcpu->mmio_is_write;
6585         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6586         return 0;
6587 }
6588
6589
6590 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6591 {
6592         struct fpu *fpu = &current->thread.fpu;
6593         int r;
6594         sigset_t sigsaved;
6595
6596         fpu__activate_curr(fpu);
6597
6598         if (vcpu->sigset_active)
6599                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6600
6601         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6602                 kvm_vcpu_block(vcpu);
6603                 kvm_apic_accept_events(vcpu);
6604                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6605                 r = -EAGAIN;
6606                 goto out;
6607         }
6608
6609         /* re-sync apic's tpr */
6610         if (!irqchip_in_kernel(vcpu->kvm)) {
6611                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6612                         r = -EINVAL;
6613                         goto out;
6614                 }
6615         }
6616
6617         if (unlikely(vcpu->arch.complete_userspace_io)) {
6618                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6619                 vcpu->arch.complete_userspace_io = NULL;
6620                 r = cui(vcpu);
6621                 if (r <= 0)
6622                         goto out;
6623         } else
6624                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6625
6626         r = vcpu_run(vcpu);
6627
6628 out:
6629         post_kvm_run_save(vcpu);
6630         if (vcpu->sigset_active)
6631                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6632
6633         return r;
6634 }
6635
6636 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6637 {
6638         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6639                 /*
6640                  * We are here if userspace calls get_regs() in the middle of
6641                  * instruction emulation. Registers state needs to be copied
6642                  * back from emulation context to vcpu. Userspace shouldn't do
6643                  * that usually, but some bad designed PV devices (vmware
6644                  * backdoor interface) need this to work
6645                  */
6646                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6647                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6648         }
6649         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6650         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6651         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6652         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6653         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6654         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6655         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6656         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6657 #ifdef CONFIG_X86_64
6658         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6659         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6660         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6661         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6662         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6663         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6664         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6665         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6666 #endif
6667
6668         regs->rip = kvm_rip_read(vcpu);
6669         regs->rflags = kvm_get_rflags(vcpu);
6670
6671         return 0;
6672 }
6673
6674 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6675 {
6676         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6677         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6678
6679         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6680         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6681         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6682         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6683         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6684         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6685         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6686         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6687 #ifdef CONFIG_X86_64
6688         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6689         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6690         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6691         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6692         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6693         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6694         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6695         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6696 #endif
6697
6698         kvm_rip_write(vcpu, regs->rip);
6699         kvm_set_rflags(vcpu, regs->rflags);
6700
6701         vcpu->arch.exception.pending = false;
6702
6703         kvm_make_request(KVM_REQ_EVENT, vcpu);
6704
6705         return 0;
6706 }
6707
6708 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6709 {
6710         struct kvm_segment cs;
6711
6712         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6713         *db = cs.db;
6714         *l = cs.l;
6715 }
6716 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6717
6718 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6719                                   struct kvm_sregs *sregs)
6720 {
6721         struct desc_ptr dt;
6722
6723         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6724         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6725         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6726         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6727         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6728         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6729
6730         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6731         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6732
6733         kvm_x86_ops->get_idt(vcpu, &dt);
6734         sregs->idt.limit = dt.size;
6735         sregs->idt.base = dt.address;
6736         kvm_x86_ops->get_gdt(vcpu, &dt);
6737         sregs->gdt.limit = dt.size;
6738         sregs->gdt.base = dt.address;
6739
6740         sregs->cr0 = kvm_read_cr0(vcpu);
6741         sregs->cr2 = vcpu->arch.cr2;
6742         sregs->cr3 = kvm_read_cr3(vcpu);
6743         sregs->cr4 = kvm_read_cr4(vcpu);
6744         sregs->cr8 = kvm_get_cr8(vcpu);
6745         sregs->efer = vcpu->arch.efer;
6746         sregs->apic_base = kvm_get_apic_base(vcpu);
6747
6748         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6749
6750         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6751                 set_bit(vcpu->arch.interrupt.nr,
6752                         (unsigned long *)sregs->interrupt_bitmap);
6753
6754         return 0;
6755 }
6756
6757 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6758                                     struct kvm_mp_state *mp_state)
6759 {
6760         kvm_apic_accept_events(vcpu);
6761         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6762                                         vcpu->arch.pv.pv_unhalted)
6763                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6764         else
6765                 mp_state->mp_state = vcpu->arch.mp_state;
6766
6767         return 0;
6768 }
6769
6770 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6771                                     struct kvm_mp_state *mp_state)
6772 {
6773         if (!kvm_vcpu_has_lapic(vcpu) &&
6774             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6775                 return -EINVAL;
6776
6777         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6778                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6779                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6780         } else
6781                 vcpu->arch.mp_state = mp_state->mp_state;
6782         kvm_make_request(KVM_REQ_EVENT, vcpu);
6783         return 0;
6784 }
6785
6786 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6787                     int reason, bool has_error_code, u32 error_code)
6788 {
6789         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6790         int ret;
6791
6792         init_emulate_ctxt(vcpu);
6793
6794         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6795                                    has_error_code, error_code);
6796
6797         if (ret)
6798                 return EMULATE_FAIL;
6799
6800         kvm_rip_write(vcpu, ctxt->eip);
6801         kvm_set_rflags(vcpu, ctxt->eflags);
6802         kvm_make_request(KVM_REQ_EVENT, vcpu);
6803         return EMULATE_DONE;
6804 }
6805 EXPORT_SYMBOL_GPL(kvm_task_switch);
6806
6807 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6808                                   struct kvm_sregs *sregs)
6809 {
6810         struct msr_data apic_base_msr;
6811         int mmu_reset_needed = 0;
6812         int pending_vec, max_bits, idx;
6813         struct desc_ptr dt;
6814
6815         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6816                 return -EINVAL;
6817
6818         dt.size = sregs->idt.limit;
6819         dt.address = sregs->idt.base;
6820         kvm_x86_ops->set_idt(vcpu, &dt);
6821         dt.size = sregs->gdt.limit;
6822         dt.address = sregs->gdt.base;
6823         kvm_x86_ops->set_gdt(vcpu, &dt);
6824
6825         vcpu->arch.cr2 = sregs->cr2;
6826         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6827         vcpu->arch.cr3 = sregs->cr3;
6828         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6829
6830         kvm_set_cr8(vcpu, sregs->cr8);
6831
6832         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6833         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6834         apic_base_msr.data = sregs->apic_base;
6835         apic_base_msr.host_initiated = true;
6836         kvm_set_apic_base(vcpu, &apic_base_msr);
6837
6838         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6839         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6840         vcpu->arch.cr0 = sregs->cr0;
6841
6842         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6843         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6844         if (sregs->cr4 & X86_CR4_OSXSAVE)
6845                 kvm_update_cpuid(vcpu);
6846
6847         idx = srcu_read_lock(&vcpu->kvm->srcu);
6848         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6849                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6850                 mmu_reset_needed = 1;
6851         }
6852         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6853
6854         if (mmu_reset_needed)
6855                 kvm_mmu_reset_context(vcpu);
6856
6857         max_bits = KVM_NR_INTERRUPTS;
6858         pending_vec = find_first_bit(
6859                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6860         if (pending_vec < max_bits) {
6861                 kvm_queue_interrupt(vcpu, pending_vec, false);
6862                 pr_debug("Set back pending irq %d\n", pending_vec);
6863         }
6864
6865         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6866         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6867         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6868         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6869         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6870         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6871
6872         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6873         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6874
6875         update_cr8_intercept(vcpu);
6876
6877         /* Older userspace won't unhalt the vcpu on reset. */
6878         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6879             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6880             !is_protmode(vcpu))
6881                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6882
6883         kvm_make_request(KVM_REQ_EVENT, vcpu);
6884
6885         return 0;
6886 }
6887
6888 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6889                                         struct kvm_guest_debug *dbg)
6890 {
6891         unsigned long rflags;
6892         int i, r;
6893
6894         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6895                 r = -EBUSY;
6896                 if (vcpu->arch.exception.pending)
6897                         goto out;
6898                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6899                         kvm_queue_exception(vcpu, DB_VECTOR);
6900                 else
6901                         kvm_queue_exception(vcpu, BP_VECTOR);
6902         }
6903
6904         /*
6905          * Read rflags as long as potentially injected trace flags are still
6906          * filtered out.
6907          */
6908         rflags = kvm_get_rflags(vcpu);
6909
6910         vcpu->guest_debug = dbg->control;
6911         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6912                 vcpu->guest_debug = 0;
6913
6914         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6915                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6916                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6917                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6918         } else {
6919                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6920                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6921         }
6922         kvm_update_dr7(vcpu);
6923
6924         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6925                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6926                         get_segment_base(vcpu, VCPU_SREG_CS);
6927
6928         /*
6929          * Trigger an rflags update that will inject or remove the trace
6930          * flags.
6931          */
6932         kvm_set_rflags(vcpu, rflags);
6933
6934         kvm_x86_ops->update_db_bp_intercept(vcpu);
6935
6936         r = 0;
6937
6938 out:
6939
6940         return r;
6941 }
6942
6943 /*
6944  * Translate a guest virtual address to a guest physical address.
6945  */
6946 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6947                                     struct kvm_translation *tr)
6948 {
6949         unsigned long vaddr = tr->linear_address;
6950         gpa_t gpa;
6951         int idx;
6952
6953         idx = srcu_read_lock(&vcpu->kvm->srcu);
6954         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6955         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6956         tr->physical_address = gpa;
6957         tr->valid = gpa != UNMAPPED_GVA;
6958         tr->writeable = 1;
6959         tr->usermode = 0;
6960
6961         return 0;
6962 }
6963
6964 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6965 {
6966         struct fxregs_state *fxsave =
6967                         &vcpu->arch.guest_fpu.state.fxsave;
6968
6969         memcpy(fpu->fpr, fxsave->st_space, 128);
6970         fpu->fcw = fxsave->cwd;
6971         fpu->fsw = fxsave->swd;
6972         fpu->ftwx = fxsave->twd;
6973         fpu->last_opcode = fxsave->fop;
6974         fpu->last_ip = fxsave->rip;
6975         fpu->last_dp = fxsave->rdp;
6976         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6977
6978         return 0;
6979 }
6980
6981 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6982 {
6983         struct fxregs_state *fxsave =
6984                         &vcpu->arch.guest_fpu.state.fxsave;
6985
6986         memcpy(fxsave->st_space, fpu->fpr, 128);
6987         fxsave->cwd = fpu->fcw;
6988         fxsave->swd = fpu->fsw;
6989         fxsave->twd = fpu->ftwx;
6990         fxsave->fop = fpu->last_opcode;
6991         fxsave->rip = fpu->last_ip;
6992         fxsave->rdp = fpu->last_dp;
6993         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6994
6995         return 0;
6996 }
6997
6998 static void fx_init(struct kvm_vcpu *vcpu)
6999 {
7000         fpstate_init(&vcpu->arch.guest_fpu.state);
7001         if (cpu_has_xsaves)
7002                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7003                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7004
7005         /*
7006          * Ensure guest xcr0 is valid for loading
7007          */
7008         vcpu->arch.xcr0 = XSTATE_FP;
7009
7010         vcpu->arch.cr0 |= X86_CR0_ET;
7011 }
7012
7013 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7014 {
7015         if (vcpu->guest_fpu_loaded)
7016                 return;
7017
7018         /*
7019          * Restore all possible states in the guest,
7020          * and assume host would use all available bits.
7021          * Guest xcr0 would be loaded later.
7022          */
7023         kvm_put_guest_xcr0(vcpu);
7024         vcpu->guest_fpu_loaded = 1;
7025         __kernel_fpu_begin();
7026         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7027         trace_kvm_fpu(1);
7028 }
7029
7030 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7031 {
7032         kvm_put_guest_xcr0(vcpu);
7033
7034         if (!vcpu->guest_fpu_loaded) {
7035                 vcpu->fpu_counter = 0;
7036                 return;
7037         }
7038
7039         vcpu->guest_fpu_loaded = 0;
7040         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7041         __kernel_fpu_end();
7042         ++vcpu->stat.fpu_reload;
7043         /*
7044          * If using eager FPU mode, or if the guest is a frequent user
7045          * of the FPU, just leave the FPU active for next time.
7046          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7047          * the FPU in bursts will revert to loading it on demand.
7048          */
7049         if (!vcpu->arch.eager_fpu) {
7050                 if (++vcpu->fpu_counter < 5)
7051                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7052         }
7053         trace_kvm_fpu(0);
7054 }
7055
7056 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7057 {
7058         kvmclock_reset(vcpu);
7059
7060         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7061         kvm_x86_ops->vcpu_free(vcpu);
7062 }
7063
7064 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7065                                                 unsigned int id)
7066 {
7067         struct kvm_vcpu *vcpu;
7068
7069         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7070                 printk_once(KERN_WARNING
7071                 "kvm: SMP vm created on host with unstable TSC; "
7072                 "guest TSC will not be reliable\n");
7073
7074         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7075
7076         return vcpu;
7077 }
7078
7079 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7080 {
7081         int r;
7082
7083         kvm_vcpu_mtrr_init(vcpu);
7084         r = vcpu_load(vcpu);
7085         if (r)
7086                 return r;
7087         kvm_vcpu_reset(vcpu, false);
7088         kvm_mmu_setup(vcpu);
7089         vcpu_put(vcpu);
7090         return r;
7091 }
7092
7093 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7094 {
7095         struct msr_data msr;
7096         struct kvm *kvm = vcpu->kvm;
7097
7098         if (vcpu_load(vcpu))
7099                 return;
7100         msr.data = 0x0;
7101         msr.index = MSR_IA32_TSC;
7102         msr.host_initiated = true;
7103         kvm_write_tsc(vcpu, &msr);
7104         vcpu_put(vcpu);
7105
7106         if (!kvmclock_periodic_sync)
7107                 return;
7108
7109         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7110                                         KVMCLOCK_SYNC_PERIOD);
7111 }
7112
7113 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7114 {
7115         int r;
7116         vcpu->arch.apf.msr_val = 0;
7117
7118         r = vcpu_load(vcpu);
7119         BUG_ON(r);
7120         kvm_mmu_unload(vcpu);
7121         vcpu_put(vcpu);
7122
7123         kvm_x86_ops->vcpu_free(vcpu);
7124 }
7125
7126 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7127 {
7128         vcpu->arch.hflags = 0;
7129
7130         atomic_set(&vcpu->arch.nmi_queued, 0);
7131         vcpu->arch.nmi_pending = 0;
7132         vcpu->arch.nmi_injected = false;
7133         kvm_clear_interrupt_queue(vcpu);
7134         kvm_clear_exception_queue(vcpu);
7135
7136         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7137         kvm_update_dr0123(vcpu);
7138         vcpu->arch.dr6 = DR6_INIT;
7139         kvm_update_dr6(vcpu);
7140         vcpu->arch.dr7 = DR7_FIXED_1;
7141         kvm_update_dr7(vcpu);
7142
7143         vcpu->arch.cr2 = 0;
7144
7145         kvm_make_request(KVM_REQ_EVENT, vcpu);
7146         vcpu->arch.apf.msr_val = 0;
7147         vcpu->arch.st.msr_val = 0;
7148
7149         kvmclock_reset(vcpu);
7150
7151         kvm_clear_async_pf_completion_queue(vcpu);
7152         kvm_async_pf_hash_reset(vcpu);
7153         vcpu->arch.apf.halted = false;
7154
7155         if (!init_event) {
7156                 kvm_pmu_reset(vcpu);
7157                 vcpu->arch.smbase = 0x30000;
7158         }
7159
7160         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7161         vcpu->arch.regs_avail = ~0;
7162         vcpu->arch.regs_dirty = ~0;
7163
7164         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7165 }
7166
7167 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7168 {
7169         struct kvm_segment cs;
7170
7171         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7172         cs.selector = vector << 8;
7173         cs.base = vector << 12;
7174         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7175         kvm_rip_write(vcpu, 0);
7176 }
7177
7178 int kvm_arch_hardware_enable(void)
7179 {
7180         struct kvm *kvm;
7181         struct kvm_vcpu *vcpu;
7182         int i;
7183         int ret;
7184         u64 local_tsc;
7185         u64 max_tsc = 0;
7186         bool stable, backwards_tsc = false;
7187
7188         kvm_shared_msr_cpu_online();
7189         ret = kvm_x86_ops->hardware_enable();
7190         if (ret != 0)
7191                 return ret;
7192
7193         local_tsc = rdtsc();
7194         stable = !check_tsc_unstable();
7195         list_for_each_entry(kvm, &vm_list, vm_list) {
7196                 kvm_for_each_vcpu(i, vcpu, kvm) {
7197                         if (!stable && vcpu->cpu == smp_processor_id())
7198                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7199                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7200                                 backwards_tsc = true;
7201                                 if (vcpu->arch.last_host_tsc > max_tsc)
7202                                         max_tsc = vcpu->arch.last_host_tsc;
7203                         }
7204                 }
7205         }
7206
7207         /*
7208          * Sometimes, even reliable TSCs go backwards.  This happens on
7209          * platforms that reset TSC during suspend or hibernate actions, but
7210          * maintain synchronization.  We must compensate.  Fortunately, we can
7211          * detect that condition here, which happens early in CPU bringup,
7212          * before any KVM threads can be running.  Unfortunately, we can't
7213          * bring the TSCs fully up to date with real time, as we aren't yet far
7214          * enough into CPU bringup that we know how much real time has actually
7215          * elapsed; our helper function, get_kernel_ns() will be using boot
7216          * variables that haven't been updated yet.
7217          *
7218          * So we simply find the maximum observed TSC above, then record the
7219          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7220          * the adjustment will be applied.  Note that we accumulate
7221          * adjustments, in case multiple suspend cycles happen before some VCPU
7222          * gets a chance to run again.  In the event that no KVM threads get a
7223          * chance to run, we will miss the entire elapsed period, as we'll have
7224          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7225          * loose cycle time.  This isn't too big a deal, since the loss will be
7226          * uniform across all VCPUs (not to mention the scenario is extremely
7227          * unlikely). It is possible that a second hibernate recovery happens
7228          * much faster than a first, causing the observed TSC here to be
7229          * smaller; this would require additional padding adjustment, which is
7230          * why we set last_host_tsc to the local tsc observed here.
7231          *
7232          * N.B. - this code below runs only on platforms with reliable TSC,
7233          * as that is the only way backwards_tsc is set above.  Also note
7234          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7235          * have the same delta_cyc adjustment applied if backwards_tsc
7236          * is detected.  Note further, this adjustment is only done once,
7237          * as we reset last_host_tsc on all VCPUs to stop this from being
7238          * called multiple times (one for each physical CPU bringup).
7239          *
7240          * Platforms with unreliable TSCs don't have to deal with this, they
7241          * will be compensated by the logic in vcpu_load, which sets the TSC to
7242          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7243          * guarantee that they stay in perfect synchronization.
7244          */
7245         if (backwards_tsc) {
7246                 u64 delta_cyc = max_tsc - local_tsc;
7247                 backwards_tsc_observed = true;
7248                 list_for_each_entry(kvm, &vm_list, vm_list) {
7249                         kvm_for_each_vcpu(i, vcpu, kvm) {
7250                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7251                                 vcpu->arch.last_host_tsc = local_tsc;
7252                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7253                         }
7254
7255                         /*
7256                          * We have to disable TSC offset matching.. if you were
7257                          * booting a VM while issuing an S4 host suspend....
7258                          * you may have some problem.  Solving this issue is
7259                          * left as an exercise to the reader.
7260                          */
7261                         kvm->arch.last_tsc_nsec = 0;
7262                         kvm->arch.last_tsc_write = 0;
7263                 }
7264
7265         }
7266         return 0;
7267 }
7268
7269 void kvm_arch_hardware_disable(void)
7270 {
7271         kvm_x86_ops->hardware_disable();
7272         drop_user_return_notifiers();
7273 }
7274
7275 int kvm_arch_hardware_setup(void)
7276 {
7277         int r;
7278
7279         r = kvm_x86_ops->hardware_setup();
7280         if (r != 0)
7281                 return r;
7282
7283         kvm_init_msr_list();
7284         return 0;
7285 }
7286
7287 void kvm_arch_hardware_unsetup(void)
7288 {
7289         kvm_x86_ops->hardware_unsetup();
7290 }
7291
7292 void kvm_arch_check_processor_compat(void *rtn)
7293 {
7294         kvm_x86_ops->check_processor_compatibility(rtn);
7295 }
7296
7297 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7298 {
7299         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7300 }
7301 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7302
7303 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7304 {
7305         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7306 }
7307
7308 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7309 {
7310         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7311 }
7312
7313 struct static_key kvm_no_apic_vcpu __read_mostly;
7314
7315 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7316 {
7317         struct page *page;
7318         struct kvm *kvm;
7319         int r;
7320
7321         BUG_ON(vcpu->kvm == NULL);
7322         kvm = vcpu->kvm;
7323
7324         vcpu->arch.pv.pv_unhalted = false;
7325         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7326         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7327                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7328         else
7329                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7330
7331         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7332         if (!page) {
7333                 r = -ENOMEM;
7334                 goto fail;
7335         }
7336         vcpu->arch.pio_data = page_address(page);
7337
7338         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7339
7340         r = kvm_mmu_create(vcpu);
7341         if (r < 0)
7342                 goto fail_free_pio_data;
7343
7344         if (irqchip_in_kernel(kvm)) {
7345                 r = kvm_create_lapic(vcpu);
7346                 if (r < 0)
7347                         goto fail_mmu_destroy;
7348         } else
7349                 static_key_slow_inc(&kvm_no_apic_vcpu);
7350
7351         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7352                                        GFP_KERNEL);
7353         if (!vcpu->arch.mce_banks) {
7354                 r = -ENOMEM;
7355                 goto fail_free_lapic;
7356         }
7357         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7358
7359         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7360                 r = -ENOMEM;
7361                 goto fail_free_mce_banks;
7362         }
7363
7364         fx_init(vcpu);
7365
7366         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7367         vcpu->arch.pv_time_enabled = false;
7368
7369         vcpu->arch.guest_supported_xcr0 = 0;
7370         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7371
7372         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7373
7374         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7375
7376         kvm_async_pf_hash_reset(vcpu);
7377         kvm_pmu_init(vcpu);
7378
7379         return 0;
7380
7381 fail_free_mce_banks:
7382         kfree(vcpu->arch.mce_banks);
7383 fail_free_lapic:
7384         kvm_free_lapic(vcpu);
7385 fail_mmu_destroy:
7386         kvm_mmu_destroy(vcpu);
7387 fail_free_pio_data:
7388         free_page((unsigned long)vcpu->arch.pio_data);
7389 fail:
7390         return r;
7391 }
7392
7393 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7394 {
7395         int idx;
7396
7397         kvm_pmu_destroy(vcpu);
7398         kfree(vcpu->arch.mce_banks);
7399         kvm_free_lapic(vcpu);
7400         idx = srcu_read_lock(&vcpu->kvm->srcu);
7401         kvm_mmu_destroy(vcpu);
7402         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7403         free_page((unsigned long)vcpu->arch.pio_data);
7404         if (!irqchip_in_kernel(vcpu->kvm))
7405                 static_key_slow_dec(&kvm_no_apic_vcpu);
7406 }
7407
7408 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7409 {
7410         kvm_x86_ops->sched_in(vcpu, cpu);
7411 }
7412
7413 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7414 {
7415         if (type)
7416                 return -EINVAL;
7417
7418         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7419         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7420         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7421         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7422         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7423
7424         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7425         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7426         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7427         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7428                 &kvm->arch.irq_sources_bitmap);
7429
7430         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7431         mutex_init(&kvm->arch.apic_map_lock);
7432         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7433
7434         pvclock_update_vm_gtod_copy(kvm);
7435
7436         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7437         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7438
7439         return 0;
7440 }
7441
7442 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7443 {
7444         int r;
7445         r = vcpu_load(vcpu);
7446         BUG_ON(r);
7447         kvm_mmu_unload(vcpu);
7448         vcpu_put(vcpu);
7449 }
7450
7451 static void kvm_free_vcpus(struct kvm *kvm)
7452 {
7453         unsigned int i;
7454         struct kvm_vcpu *vcpu;
7455
7456         /*
7457          * Unpin any mmu pages first.
7458          */
7459         kvm_for_each_vcpu(i, vcpu, kvm) {
7460                 kvm_clear_async_pf_completion_queue(vcpu);
7461                 kvm_unload_vcpu_mmu(vcpu);
7462         }
7463         kvm_for_each_vcpu(i, vcpu, kvm)
7464                 kvm_arch_vcpu_free(vcpu);
7465
7466         mutex_lock(&kvm->lock);
7467         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7468                 kvm->vcpus[i] = NULL;
7469
7470         atomic_set(&kvm->online_vcpus, 0);
7471         mutex_unlock(&kvm->lock);
7472 }
7473
7474 void kvm_arch_sync_events(struct kvm *kvm)
7475 {
7476         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7477         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7478         kvm_free_all_assigned_devices(kvm);
7479         kvm_free_pit(kvm);
7480 }
7481
7482 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7483 {
7484         int i, r;
7485         unsigned long hva;
7486         struct kvm_memslots *slots = kvm_memslots(kvm);
7487         struct kvm_memory_slot *slot, old;
7488
7489         /* Called with kvm->slots_lock held.  */
7490         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7491                 return -EINVAL;
7492
7493         slot = id_to_memslot(slots, id);
7494         if (size) {
7495                 if (WARN_ON(slot->npages))
7496                         return -EEXIST;
7497
7498                 /*
7499                  * MAP_SHARED to prevent internal slot pages from being moved
7500                  * by fork()/COW.
7501                  */
7502                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7503                               MAP_SHARED | MAP_ANONYMOUS, 0);
7504                 if (IS_ERR((void *)hva))
7505                         return PTR_ERR((void *)hva);
7506         } else {
7507                 if (!slot->npages)
7508                         return 0;
7509
7510                 hva = 0;
7511         }
7512
7513         old = *slot;
7514         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7515                 struct kvm_userspace_memory_region m;
7516
7517                 m.slot = id | (i << 16);
7518                 m.flags = 0;
7519                 m.guest_phys_addr = gpa;
7520                 m.userspace_addr = hva;
7521                 m.memory_size = size;
7522                 r = __kvm_set_memory_region(kvm, &m);
7523                 if (r < 0)
7524                         return r;
7525         }
7526
7527         if (!size) {
7528                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7529                 WARN_ON(r < 0);
7530         }
7531
7532         return 0;
7533 }
7534 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7535
7536 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7537 {
7538         int r;
7539
7540         mutex_lock(&kvm->slots_lock);
7541         r = __x86_set_memory_region(kvm, id, gpa, size);
7542         mutex_unlock(&kvm->slots_lock);
7543
7544         return r;
7545 }
7546 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7547
7548 void kvm_arch_destroy_vm(struct kvm *kvm)
7549 {
7550         if (current->mm == kvm->mm) {
7551                 /*
7552                  * Free memory regions allocated on behalf of userspace,
7553                  * unless the the memory map has changed due to process exit
7554                  * or fd copying.
7555                  */
7556                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7557                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7558                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7559         }
7560         kvm_iommu_unmap_guest(kvm);
7561         kfree(kvm->arch.vpic);
7562         kfree(kvm->arch.vioapic);
7563         kvm_free_vcpus(kvm);
7564         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7565 }
7566
7567 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7568                            struct kvm_memory_slot *dont)
7569 {
7570         int i;
7571
7572         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7573                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7574                         kvfree(free->arch.rmap[i]);
7575                         free->arch.rmap[i] = NULL;
7576                 }
7577                 if (i == 0)
7578                         continue;
7579
7580                 if (!dont || free->arch.lpage_info[i - 1] !=
7581                              dont->arch.lpage_info[i - 1]) {
7582                         kvfree(free->arch.lpage_info[i - 1]);
7583                         free->arch.lpage_info[i - 1] = NULL;
7584                 }
7585         }
7586 }
7587
7588 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7589                             unsigned long npages)
7590 {
7591         int i;
7592
7593         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7594                 unsigned long ugfn;
7595                 int lpages;
7596                 int level = i + 1;
7597
7598                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7599                                       slot->base_gfn, level) + 1;
7600
7601                 slot->arch.rmap[i] =
7602                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7603                 if (!slot->arch.rmap[i])
7604                         goto out_free;
7605                 if (i == 0)
7606                         continue;
7607
7608                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7609                                         sizeof(*slot->arch.lpage_info[i - 1]));
7610                 if (!slot->arch.lpage_info[i - 1])
7611                         goto out_free;
7612
7613                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7614                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7615                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7616                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7617                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7618                 /*
7619                  * If the gfn and userspace address are not aligned wrt each
7620                  * other, or if explicitly asked to, disable large page
7621                  * support for this slot
7622                  */
7623                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7624                     !kvm_largepages_enabled()) {
7625                         unsigned long j;
7626
7627                         for (j = 0; j < lpages; ++j)
7628                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7629                 }
7630         }
7631
7632         return 0;
7633
7634 out_free:
7635         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7636                 kvfree(slot->arch.rmap[i]);
7637                 slot->arch.rmap[i] = NULL;
7638                 if (i == 0)
7639                         continue;
7640
7641                 kvfree(slot->arch.lpage_info[i - 1]);
7642                 slot->arch.lpage_info[i - 1] = NULL;
7643         }
7644         return -ENOMEM;
7645 }
7646
7647 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7648 {
7649         /*
7650          * memslots->generation has been incremented.
7651          * mmio generation may have reached its maximum value.
7652          */
7653         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7654 }
7655
7656 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7657                                 struct kvm_memory_slot *memslot,
7658                                 const struct kvm_userspace_memory_region *mem,
7659                                 enum kvm_mr_change change)
7660 {
7661         return 0;
7662 }
7663
7664 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7665                                      struct kvm_memory_slot *new)
7666 {
7667         /* Still write protect RO slot */
7668         if (new->flags & KVM_MEM_READONLY) {
7669                 kvm_mmu_slot_remove_write_access(kvm, new);
7670                 return;
7671         }
7672
7673         /*
7674          * Call kvm_x86_ops dirty logging hooks when they are valid.
7675          *
7676          * kvm_x86_ops->slot_disable_log_dirty is called when:
7677          *
7678          *  - KVM_MR_CREATE with dirty logging is disabled
7679          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7680          *
7681          * The reason is, in case of PML, we need to set D-bit for any slots
7682          * with dirty logging disabled in order to eliminate unnecessary GPA
7683          * logging in PML buffer (and potential PML buffer full VMEXT). This
7684          * guarantees leaving PML enabled during guest's lifetime won't have
7685          * any additonal overhead from PML when guest is running with dirty
7686          * logging disabled for memory slots.
7687          *
7688          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7689          * to dirty logging mode.
7690          *
7691          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7692          *
7693          * In case of write protect:
7694          *
7695          * Write protect all pages for dirty logging.
7696          *
7697          * All the sptes including the large sptes which point to this
7698          * slot are set to readonly. We can not create any new large
7699          * spte on this slot until the end of the logging.
7700          *
7701          * See the comments in fast_page_fault().
7702          */
7703         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7704                 if (kvm_x86_ops->slot_enable_log_dirty)
7705                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7706                 else
7707                         kvm_mmu_slot_remove_write_access(kvm, new);
7708         } else {
7709                 if (kvm_x86_ops->slot_disable_log_dirty)
7710                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7711         }
7712 }
7713
7714 void kvm_arch_commit_memory_region(struct kvm *kvm,
7715                                 const struct kvm_userspace_memory_region *mem,
7716                                 const struct kvm_memory_slot *old,
7717                                 const struct kvm_memory_slot *new,
7718                                 enum kvm_mr_change change)
7719 {
7720         int nr_mmu_pages = 0;
7721
7722         if (!kvm->arch.n_requested_mmu_pages)
7723                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7724
7725         if (nr_mmu_pages)
7726                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7727
7728         /*
7729          * Dirty logging tracks sptes in 4k granularity, meaning that large
7730          * sptes have to be split.  If live migration is successful, the guest
7731          * in the source machine will be destroyed and large sptes will be
7732          * created in the destination. However, if the guest continues to run
7733          * in the source machine (for example if live migration fails), small
7734          * sptes will remain around and cause bad performance.
7735          *
7736          * Scan sptes if dirty logging has been stopped, dropping those
7737          * which can be collapsed into a single large-page spte.  Later
7738          * page faults will create the large-page sptes.
7739          */
7740         if ((change != KVM_MR_DELETE) &&
7741                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7742                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7743                 kvm_mmu_zap_collapsible_sptes(kvm, new);
7744
7745         /*
7746          * Set up write protection and/or dirty logging for the new slot.
7747          *
7748          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7749          * been zapped so no dirty logging staff is needed for old slot. For
7750          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7751          * new and it's also covered when dealing with the new slot.
7752          *
7753          * FIXME: const-ify all uses of struct kvm_memory_slot.
7754          */
7755         if (change != KVM_MR_DELETE)
7756                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7757 }
7758
7759 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7760 {
7761         kvm_mmu_invalidate_zap_all_pages(kvm);
7762 }
7763
7764 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7765                                    struct kvm_memory_slot *slot)
7766 {
7767         kvm_mmu_invalidate_zap_all_pages(kvm);
7768 }
7769
7770 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
7771 {
7772         if (!list_empty_careful(&vcpu->async_pf.done))
7773                 return true;
7774
7775         if (kvm_apic_has_events(vcpu))
7776                 return true;
7777
7778         if (vcpu->arch.pv.pv_unhalted)
7779                 return true;
7780
7781         if (atomic_read(&vcpu->arch.nmi_queued))
7782                 return true;
7783
7784         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
7785                 return true;
7786
7787         if (kvm_arch_interrupt_allowed(vcpu) &&
7788             kvm_cpu_has_interrupt(vcpu))
7789                 return true;
7790
7791         return false;
7792 }
7793
7794 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7795 {
7796         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7797                 kvm_x86_ops->check_nested_events(vcpu, false);
7798
7799         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
7800 }
7801
7802 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7803 {
7804         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7805 }
7806
7807 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7808 {
7809         return kvm_x86_ops->interrupt_allowed(vcpu);
7810 }
7811
7812 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7813 {
7814         if (is_64_bit_mode(vcpu))
7815                 return kvm_rip_read(vcpu);
7816         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7817                      kvm_rip_read(vcpu));
7818 }
7819 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7820
7821 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7822 {
7823         return kvm_get_linear_rip(vcpu) == linear_rip;
7824 }
7825 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7826
7827 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7828 {
7829         unsigned long rflags;
7830
7831         rflags = kvm_x86_ops->get_rflags(vcpu);
7832         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7833                 rflags &= ~X86_EFLAGS_TF;
7834         return rflags;
7835 }
7836 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7837
7838 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7839 {
7840         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7841             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7842                 rflags |= X86_EFLAGS_TF;
7843         kvm_x86_ops->set_rflags(vcpu, rflags);
7844 }
7845
7846 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7847 {
7848         __kvm_set_rflags(vcpu, rflags);
7849         kvm_make_request(KVM_REQ_EVENT, vcpu);
7850 }
7851 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7852
7853 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7854 {
7855         int r;
7856
7857         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7858               work->wakeup_all)
7859                 return;
7860
7861         r = kvm_mmu_reload(vcpu);
7862         if (unlikely(r))
7863                 return;
7864
7865         if (!vcpu->arch.mmu.direct_map &&
7866               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7867                 return;
7868
7869         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7870 }
7871
7872 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7873 {
7874         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7875 }
7876
7877 static inline u32 kvm_async_pf_next_probe(u32 key)
7878 {
7879         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7880 }
7881
7882 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7883 {
7884         u32 key = kvm_async_pf_hash_fn(gfn);
7885
7886         while (vcpu->arch.apf.gfns[key] != ~0)
7887                 key = kvm_async_pf_next_probe(key);
7888
7889         vcpu->arch.apf.gfns[key] = gfn;
7890 }
7891
7892 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7893 {
7894         int i;
7895         u32 key = kvm_async_pf_hash_fn(gfn);
7896
7897         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7898                      (vcpu->arch.apf.gfns[key] != gfn &&
7899                       vcpu->arch.apf.gfns[key] != ~0); i++)
7900                 key = kvm_async_pf_next_probe(key);
7901
7902         return key;
7903 }
7904
7905 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7906 {
7907         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7908 }
7909
7910 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7911 {
7912         u32 i, j, k;
7913
7914         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7915         while (true) {
7916                 vcpu->arch.apf.gfns[i] = ~0;
7917                 do {
7918                         j = kvm_async_pf_next_probe(j);
7919                         if (vcpu->arch.apf.gfns[j] == ~0)
7920                                 return;
7921                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7922                         /*
7923                          * k lies cyclically in ]i,j]
7924                          * |    i.k.j |
7925                          * |....j i.k.| or  |.k..j i...|
7926                          */
7927                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7928                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7929                 i = j;
7930         }
7931 }
7932
7933 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7934 {
7935
7936         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7937                                       sizeof(val));
7938 }
7939
7940 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7941                                      struct kvm_async_pf *work)
7942 {
7943         struct x86_exception fault;
7944
7945         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7946         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7947
7948         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7949             (vcpu->arch.apf.send_user_only &&
7950              kvm_x86_ops->get_cpl(vcpu) == 0))
7951                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7952         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7953                 fault.vector = PF_VECTOR;
7954                 fault.error_code_valid = true;
7955                 fault.error_code = 0;
7956                 fault.nested_page_fault = false;
7957                 fault.address = work->arch.token;
7958                 kvm_inject_page_fault(vcpu, &fault);
7959         }
7960 }
7961
7962 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7963                                  struct kvm_async_pf *work)
7964 {
7965         struct x86_exception fault;
7966
7967         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7968         if (work->wakeup_all)
7969                 work->arch.token = ~0; /* broadcast wakeup */
7970         else
7971                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7972
7973         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7974             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7975                 fault.vector = PF_VECTOR;
7976                 fault.error_code_valid = true;
7977                 fault.error_code = 0;
7978                 fault.nested_page_fault = false;
7979                 fault.address = work->arch.token;
7980                 kvm_inject_page_fault(vcpu, &fault);
7981         }
7982         vcpu->arch.apf.halted = false;
7983         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7984 }
7985
7986 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7987 {
7988         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7989                 return true;
7990         else
7991                 return !kvm_event_needs_reinjection(vcpu) &&
7992                         kvm_x86_ops->interrupt_allowed(vcpu);
7993 }
7994
7995 void kvm_arch_start_assignment(struct kvm *kvm)
7996 {
7997         atomic_inc(&kvm->arch.assigned_device_count);
7998 }
7999 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8000
8001 void kvm_arch_end_assignment(struct kvm *kvm)
8002 {
8003         atomic_dec(&kvm->arch.assigned_device_count);
8004 }
8005 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8006
8007 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8008 {
8009         return atomic_read(&kvm->arch.assigned_device_count);
8010 }
8011 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8012
8013 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8014 {
8015         atomic_inc(&kvm->arch.noncoherent_dma_count);
8016 }
8017 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8018
8019 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8020 {
8021         atomic_dec(&kvm->arch.noncoherent_dma_count);
8022 }
8023 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8024
8025 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8026 {
8027         return atomic_read(&kvm->arch.noncoherent_dma_count);
8028 }
8029 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8030
8031 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8032 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8033 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8034 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8035 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8036 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8037 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8038 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8039 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8040 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8041 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8042 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8043 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8044 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8045 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);