]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
Merge remote-tracking branch 'mips/mips-for-linux-next'
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <trace/events/kvm.h>
55
56 #define CREATE_TRACE_POINTS
57 #include "trace.h"
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 static bool __read_mostly kvmclock_periodic_sync = true;
103 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
104
105 bool kvm_has_tsc_control;
106 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
107 u32  kvm_max_guest_tsc_khz;
108 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
109
110 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
111 static u32 tsc_tolerance_ppm = 250;
112 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
113
114 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
115 unsigned int lapic_timer_advance_ns = 0;
116 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
117
118 static bool backwards_tsc_observed = false;
119
120 #define KVM_NR_SHARED_MSRS 16
121
122 struct kvm_shared_msrs_global {
123         int nr;
124         u32 msrs[KVM_NR_SHARED_MSRS];
125 };
126
127 struct kvm_shared_msrs {
128         struct user_return_notifier urn;
129         bool registered;
130         struct kvm_shared_msr_values {
131                 u64 host;
132                 u64 curr;
133         } values[KVM_NR_SHARED_MSRS];
134 };
135
136 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
137 static struct kvm_shared_msrs __percpu *shared_msrs;
138
139 struct kvm_stats_debugfs_item debugfs_entries[] = {
140         { "pf_fixed", VCPU_STAT(pf_fixed) },
141         { "pf_guest", VCPU_STAT(pf_guest) },
142         { "tlb_flush", VCPU_STAT(tlb_flush) },
143         { "invlpg", VCPU_STAT(invlpg) },
144         { "exits", VCPU_STAT(exits) },
145         { "io_exits", VCPU_STAT(io_exits) },
146         { "mmio_exits", VCPU_STAT(mmio_exits) },
147         { "signal_exits", VCPU_STAT(signal_exits) },
148         { "irq_window", VCPU_STAT(irq_window_exits) },
149         { "nmi_window", VCPU_STAT(nmi_window_exits) },
150         { "halt_exits", VCPU_STAT(halt_exits) },
151         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
152         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
153         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
154         { "hypercalls", VCPU_STAT(hypercalls) },
155         { "request_irq", VCPU_STAT(request_irq_exits) },
156         { "irq_exits", VCPU_STAT(irq_exits) },
157         { "host_state_reload", VCPU_STAT(host_state_reload) },
158         { "efer_reload", VCPU_STAT(efer_reload) },
159         { "fpu_reload", VCPU_STAT(fpu_reload) },
160         { "insn_emulation", VCPU_STAT(insn_emulation) },
161         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
162         { "irq_injections", VCPU_STAT(irq_injections) },
163         { "nmi_injections", VCPU_STAT(nmi_injections) },
164         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
165         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
166         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
167         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
168         { "mmu_flooded", VM_STAT(mmu_flooded) },
169         { "mmu_recycled", VM_STAT(mmu_recycled) },
170         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
171         { "mmu_unsync", VM_STAT(mmu_unsync) },
172         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
173         { "largepages", VM_STAT(lpages) },
174         { NULL }
175 };
176
177 u64 __read_mostly host_xcr0;
178
179 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
180
181 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
182 {
183         int i;
184         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
185                 vcpu->arch.apf.gfns[i] = ~0;
186 }
187
188 static void kvm_on_user_return(struct user_return_notifier *urn)
189 {
190         unsigned slot;
191         struct kvm_shared_msrs *locals
192                 = container_of(urn, struct kvm_shared_msrs, urn);
193         struct kvm_shared_msr_values *values;
194
195         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
196                 values = &locals->values[slot];
197                 if (values->host != values->curr) {
198                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
199                         values->curr = values->host;
200                 }
201         }
202         locals->registered = false;
203         user_return_notifier_unregister(urn);
204 }
205
206 static void shared_msr_update(unsigned slot, u32 msr)
207 {
208         u64 value;
209         unsigned int cpu = smp_processor_id();
210         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
211
212         /* only read, and nobody should modify it at this time,
213          * so don't need lock */
214         if (slot >= shared_msrs_global.nr) {
215                 printk(KERN_ERR "kvm: invalid MSR slot!");
216                 return;
217         }
218         rdmsrl_safe(msr, &value);
219         smsr->values[slot].host = value;
220         smsr->values[slot].curr = value;
221 }
222
223 void kvm_define_shared_msr(unsigned slot, u32 msr)
224 {
225         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
226         shared_msrs_global.msrs[slot] = msr;
227         if (slot >= shared_msrs_global.nr)
228                 shared_msrs_global.nr = slot + 1;
229 }
230 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
231
232 static void kvm_shared_msr_cpu_online(void)
233 {
234         unsigned i;
235
236         for (i = 0; i < shared_msrs_global.nr; ++i)
237                 shared_msr_update(i, shared_msrs_global.msrs[i]);
238 }
239
240 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
241 {
242         unsigned int cpu = smp_processor_id();
243         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244         int err;
245
246         if (((value ^ smsr->values[slot].curr) & mask) == 0)
247                 return 0;
248         smsr->values[slot].curr = value;
249         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
250         if (err)
251                 return 1;
252
253         if (!smsr->registered) {
254                 smsr->urn.on_user_return = kvm_on_user_return;
255                 user_return_notifier_register(&smsr->urn);
256                 smsr->registered = true;
257         }
258         return 0;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
261
262 static void drop_user_return_notifiers(void)
263 {
264         unsigned int cpu = smp_processor_id();
265         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
266
267         if (smsr->registered)
268                 kvm_on_user_return(&smsr->urn);
269 }
270
271 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
272 {
273         return vcpu->arch.apic_base;
274 }
275 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
276
277 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
278 {
279         u64 old_state = vcpu->arch.apic_base &
280                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281         u64 new_state = msr_info->data &
282                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
283         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
284                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
285
286         if (!msr_info->host_initiated &&
287             ((msr_info->data & reserved_bits) != 0 ||
288              new_state == X2APIC_ENABLE ||
289              (new_state == MSR_IA32_APICBASE_ENABLE &&
290               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
291              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
292               old_state == 0)))
293                 return 1;
294
295         kvm_lapic_set_base(vcpu, msr_info->data);
296         return 0;
297 }
298 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
299
300 asmlinkage __visible void kvm_spurious_fault(void)
301 {
302         /* Fault while not rebooting.  We want the trace. */
303         BUG();
304 }
305 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
306
307 #define EXCPT_BENIGN            0
308 #define EXCPT_CONTRIBUTORY      1
309 #define EXCPT_PF                2
310
311 static int exception_class(int vector)
312 {
313         switch (vector) {
314         case PF_VECTOR:
315                 return EXCPT_PF;
316         case DE_VECTOR:
317         case TS_VECTOR:
318         case NP_VECTOR:
319         case SS_VECTOR:
320         case GP_VECTOR:
321                 return EXCPT_CONTRIBUTORY;
322         default:
323                 break;
324         }
325         return EXCPT_BENIGN;
326 }
327
328 #define EXCPT_FAULT             0
329 #define EXCPT_TRAP              1
330 #define EXCPT_ABORT             2
331 #define EXCPT_INTERRUPT         3
332
333 static int exception_type(int vector)
334 {
335         unsigned int mask;
336
337         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
338                 return EXCPT_INTERRUPT;
339
340         mask = 1 << vector;
341
342         /* #DB is trap, as instruction watchpoints are handled elsewhere */
343         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
344                 return EXCPT_TRAP;
345
346         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
347                 return EXCPT_ABORT;
348
349         /* Reserved exceptions will result in fault */
350         return EXCPT_FAULT;
351 }
352
353 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
354                 unsigned nr, bool has_error, u32 error_code,
355                 bool reinject)
356 {
357         u32 prev_nr;
358         int class1, class2;
359
360         kvm_make_request(KVM_REQ_EVENT, vcpu);
361
362         if (!vcpu->arch.exception.pending) {
363         queue:
364                 if (has_error && !is_protmode(vcpu))
365                         has_error = false;
366                 vcpu->arch.exception.pending = true;
367                 vcpu->arch.exception.has_error_code = has_error;
368                 vcpu->arch.exception.nr = nr;
369                 vcpu->arch.exception.error_code = error_code;
370                 vcpu->arch.exception.reinject = reinject;
371                 return;
372         }
373
374         /* to check exception */
375         prev_nr = vcpu->arch.exception.nr;
376         if (prev_nr == DF_VECTOR) {
377                 /* triple fault -> shutdown */
378                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
379                 return;
380         }
381         class1 = exception_class(prev_nr);
382         class2 = exception_class(nr);
383         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
384                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
385                 /* generate double fault per SDM Table 5-5 */
386                 vcpu->arch.exception.pending = true;
387                 vcpu->arch.exception.has_error_code = true;
388                 vcpu->arch.exception.nr = DF_VECTOR;
389                 vcpu->arch.exception.error_code = 0;
390         } else
391                 /* replace previous exception with a new one in a hope
392                    that instruction re-execution will regenerate lost
393                    exception */
394                 goto queue;
395 }
396
397 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
398 {
399         kvm_multiple_exception(vcpu, nr, false, 0, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception);
402
403 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
404 {
405         kvm_multiple_exception(vcpu, nr, false, 0, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
408
409 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
410 {
411         if (err)
412                 kvm_inject_gp(vcpu, 0);
413         else
414                 kvm_x86_ops->skip_emulated_instruction(vcpu);
415 }
416 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
417
418 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
419 {
420         ++vcpu->stat.pf_guest;
421         vcpu->arch.cr2 = fault->address;
422         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
423 }
424 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
425
426 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
429                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
430         else
431                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
432
433         return fault->nested_page_fault;
434 }
435
436 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
437 {
438         atomic_inc(&vcpu->arch.nmi_queued);
439         kvm_make_request(KVM_REQ_NMI, vcpu);
440 }
441 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
442
443 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
444 {
445         kvm_multiple_exception(vcpu, nr, true, error_code, false);
446 }
447 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
448
449 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
450 {
451         kvm_multiple_exception(vcpu, nr, true, error_code, true);
452 }
453 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
454
455 /*
456  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
457  * a #GP and return false.
458  */
459 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
460 {
461         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
462                 return true;
463         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
464         return false;
465 }
466 EXPORT_SYMBOL_GPL(kvm_require_cpl);
467
468 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
469 {
470         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
471                 return true;
472
473         kvm_queue_exception(vcpu, UD_VECTOR);
474         return false;
475 }
476 EXPORT_SYMBOL_GPL(kvm_require_dr);
477
478 /*
479  * This function will be used to read from the physical memory of the currently
480  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
481  * can read from guest physical or from the guest's guest physical memory.
482  */
483 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
484                             gfn_t ngfn, void *data, int offset, int len,
485                             u32 access)
486 {
487         struct x86_exception exception;
488         gfn_t real_gfn;
489         gpa_t ngpa;
490
491         ngpa     = gfn_to_gpa(ngfn);
492         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
493         if (real_gfn == UNMAPPED_GVA)
494                 return -EFAULT;
495
496         real_gfn = gpa_to_gfn(real_gfn);
497
498         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
499 }
500 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
501
502 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
503                                void *data, int offset, int len, u32 access)
504 {
505         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
506                                        data, offset, len, access);
507 }
508
509 /*
510  * Load the pae pdptrs.  Return true is they are all valid.
511  */
512 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
513 {
514         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
515         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
516         int i;
517         int ret;
518         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
519
520         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
521                                       offset * sizeof(u64), sizeof(pdpte),
522                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
523         if (ret < 0) {
524                 ret = 0;
525                 goto out;
526         }
527         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
528                 if (is_present_gpte(pdpte[i]) &&
529                     (pdpte[i] &
530                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
531                         ret = 0;
532                         goto out;
533                 }
534         }
535         ret = 1;
536
537         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
538         __set_bit(VCPU_EXREG_PDPTR,
539                   (unsigned long *)&vcpu->arch.regs_avail);
540         __set_bit(VCPU_EXREG_PDPTR,
541                   (unsigned long *)&vcpu->arch.regs_dirty);
542 out:
543
544         return ret;
545 }
546 EXPORT_SYMBOL_GPL(load_pdptrs);
547
548 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
549 {
550         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
551         bool changed = true;
552         int offset;
553         gfn_t gfn;
554         int r;
555
556         if (is_long_mode(vcpu) || !is_pae(vcpu))
557                 return false;
558
559         if (!test_bit(VCPU_EXREG_PDPTR,
560                       (unsigned long *)&vcpu->arch.regs_avail))
561                 return true;
562
563         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
564         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
565         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
566                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
567         if (r < 0)
568                 goto out;
569         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
570 out:
571
572         return changed;
573 }
574
575 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
576 {
577         unsigned long old_cr0 = kvm_read_cr0(vcpu);
578         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
579
580         cr0 |= X86_CR0_ET;
581
582 #ifdef CONFIG_X86_64
583         if (cr0 & 0xffffffff00000000UL)
584                 return 1;
585 #endif
586
587         cr0 &= ~CR0_RESERVED_BITS;
588
589         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
590                 return 1;
591
592         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
593                 return 1;
594
595         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
596 #ifdef CONFIG_X86_64
597                 if ((vcpu->arch.efer & EFER_LME)) {
598                         int cs_db, cs_l;
599
600                         if (!is_pae(vcpu))
601                                 return 1;
602                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
603                         if (cs_l)
604                                 return 1;
605                 } else
606 #endif
607                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
608                                                  kvm_read_cr3(vcpu)))
609                         return 1;
610         }
611
612         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
613                 return 1;
614
615         kvm_x86_ops->set_cr0(vcpu, cr0);
616
617         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
618                 kvm_clear_async_pf_completion_queue(vcpu);
619                 kvm_async_pf_hash_reset(vcpu);
620         }
621
622         if ((cr0 ^ old_cr0) & update_bits)
623                 kvm_mmu_reset_context(vcpu);
624
625         if ((cr0 ^ old_cr0) & X86_CR0_CD)
626                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
627
628         return 0;
629 }
630 EXPORT_SYMBOL_GPL(kvm_set_cr0);
631
632 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
633 {
634         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
635 }
636 EXPORT_SYMBOL_GPL(kvm_lmsw);
637
638 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
639 {
640         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
641                         !vcpu->guest_xcr0_loaded) {
642                 /* kvm_set_xcr() also depends on this */
643                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
644                 vcpu->guest_xcr0_loaded = 1;
645         }
646 }
647
648 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650         if (vcpu->guest_xcr0_loaded) {
651                 if (vcpu->arch.xcr0 != host_xcr0)
652                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
653                 vcpu->guest_xcr0_loaded = 0;
654         }
655 }
656
657 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
658 {
659         u64 xcr0 = xcr;
660         u64 old_xcr0 = vcpu->arch.xcr0;
661         u64 valid_bits;
662
663         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
664         if (index != XCR_XFEATURE_ENABLED_MASK)
665                 return 1;
666         if (!(xcr0 & XFEATURE_MASK_FP))
667                 return 1;
668         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
669                 return 1;
670
671         /*
672          * Do not allow the guest to set bits that we do not support
673          * saving.  However, xcr0 bit 0 is always set, even if the
674          * emulated CPU does not support XSAVE (see fx_init).
675          */
676         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
677         if (xcr0 & ~valid_bits)
678                 return 1;
679
680         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
681             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
682                 return 1;
683
684         if (xcr0 & XFEATURE_MASK_AVX512) {
685                 if (!(xcr0 & XFEATURE_MASK_YMM))
686                         return 1;
687                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
688                         return 1;
689         }
690         kvm_put_guest_xcr0(vcpu);
691         vcpu->arch.xcr0 = xcr0;
692
693         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
694                 kvm_update_cpuid(vcpu);
695         return 0;
696 }
697
698 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
699 {
700         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
701             __kvm_set_xcr(vcpu, index, xcr)) {
702                 kvm_inject_gp(vcpu, 0);
703                 return 1;
704         }
705         return 0;
706 }
707 EXPORT_SYMBOL_GPL(kvm_set_xcr);
708
709 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
710 {
711         unsigned long old_cr4 = kvm_read_cr4(vcpu);
712         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
713                                    X86_CR4_SMEP | X86_CR4_SMAP;
714
715         if (cr4 & CR4_RESERVED_BITS)
716                 return 1;
717
718         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
719                 return 1;
720
721         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
722                 return 1;
723
724         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
725                 return 1;
726
727         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
728                 return 1;
729
730         if (is_long_mode(vcpu)) {
731                 if (!(cr4 & X86_CR4_PAE))
732                         return 1;
733         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
734                    && ((cr4 ^ old_cr4) & pdptr_bits)
735                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
736                                    kvm_read_cr3(vcpu)))
737                 return 1;
738
739         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
740                 if (!guest_cpuid_has_pcid(vcpu))
741                         return 1;
742
743                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
744                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
745                         return 1;
746         }
747
748         if (kvm_x86_ops->set_cr4(vcpu, cr4))
749                 return 1;
750
751         if (((cr4 ^ old_cr4) & pdptr_bits) ||
752             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
753                 kvm_mmu_reset_context(vcpu);
754
755         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
756                 kvm_update_cpuid(vcpu);
757
758         return 0;
759 }
760 EXPORT_SYMBOL_GPL(kvm_set_cr4);
761
762 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
763 {
764 #ifdef CONFIG_X86_64
765         cr3 &= ~CR3_PCID_INVD;
766 #endif
767
768         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
769                 kvm_mmu_sync_roots(vcpu);
770                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
771                 return 0;
772         }
773
774         if (is_long_mode(vcpu)) {
775                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
776                         return 1;
777         } else if (is_pae(vcpu) && is_paging(vcpu) &&
778                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
779                 return 1;
780
781         vcpu->arch.cr3 = cr3;
782         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
783         kvm_mmu_new_cr3(vcpu);
784         return 0;
785 }
786 EXPORT_SYMBOL_GPL(kvm_set_cr3);
787
788 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
789 {
790         if (cr8 & CR8_RESERVED_BITS)
791                 return 1;
792         if (irqchip_in_kernel(vcpu->kvm))
793                 kvm_lapic_set_tpr(vcpu, cr8);
794         else
795                 vcpu->arch.cr8 = cr8;
796         return 0;
797 }
798 EXPORT_SYMBOL_GPL(kvm_set_cr8);
799
800 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
801 {
802         if (irqchip_in_kernel(vcpu->kvm))
803                 return kvm_lapic_get_cr8(vcpu);
804         else
805                 return vcpu->arch.cr8;
806 }
807 EXPORT_SYMBOL_GPL(kvm_get_cr8);
808
809 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
810 {
811         int i;
812
813         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
814                 for (i = 0; i < KVM_NR_DB_REGS; i++)
815                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
816                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
817         }
818 }
819
820 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
821 {
822         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
823                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
824 }
825
826 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
827 {
828         unsigned long dr7;
829
830         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
831                 dr7 = vcpu->arch.guest_debug_dr7;
832         else
833                 dr7 = vcpu->arch.dr7;
834         kvm_x86_ops->set_dr7(vcpu, dr7);
835         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
836         if (dr7 & DR7_BP_EN_MASK)
837                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
838 }
839
840 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
841 {
842         u64 fixed = DR6_FIXED_1;
843
844         if (!guest_cpuid_has_rtm(vcpu))
845                 fixed |= DR6_RTM;
846         return fixed;
847 }
848
849 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
850 {
851         switch (dr) {
852         case 0 ... 3:
853                 vcpu->arch.db[dr] = val;
854                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
855                         vcpu->arch.eff_db[dr] = val;
856                 break;
857         case 4:
858                 /* fall through */
859         case 6:
860                 if (val & 0xffffffff00000000ULL)
861                         return -1; /* #GP */
862                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
863                 kvm_update_dr6(vcpu);
864                 break;
865         case 5:
866                 /* fall through */
867         default: /* 7 */
868                 if (val & 0xffffffff00000000ULL)
869                         return -1; /* #GP */
870                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
871                 kvm_update_dr7(vcpu);
872                 break;
873         }
874
875         return 0;
876 }
877
878 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
879 {
880         if (__kvm_set_dr(vcpu, dr, val)) {
881                 kvm_inject_gp(vcpu, 0);
882                 return 1;
883         }
884         return 0;
885 }
886 EXPORT_SYMBOL_GPL(kvm_set_dr);
887
888 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
889 {
890         switch (dr) {
891         case 0 ... 3:
892                 *val = vcpu->arch.db[dr];
893                 break;
894         case 4:
895                 /* fall through */
896         case 6:
897                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
898                         *val = vcpu->arch.dr6;
899                 else
900                         *val = kvm_x86_ops->get_dr6(vcpu);
901                 break;
902         case 5:
903                 /* fall through */
904         default: /* 7 */
905                 *val = vcpu->arch.dr7;
906                 break;
907         }
908         return 0;
909 }
910 EXPORT_SYMBOL_GPL(kvm_get_dr);
911
912 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
913 {
914         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
915         u64 data;
916         int err;
917
918         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
919         if (err)
920                 return err;
921         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
922         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
923         return err;
924 }
925 EXPORT_SYMBOL_GPL(kvm_rdpmc);
926
927 /*
928  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
929  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
930  *
931  * This list is modified at module load time to reflect the
932  * capabilities of the host cpu. This capabilities test skips MSRs that are
933  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
934  * may depend on host virtualization features rather than host cpu features.
935  */
936
937 static u32 msrs_to_save[] = {
938         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
939         MSR_STAR,
940 #ifdef CONFIG_X86_64
941         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
942 #endif
943         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
944         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
945 };
946
947 static unsigned num_msrs_to_save;
948
949 static u32 emulated_msrs[] = {
950         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
951         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
952         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
953         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
954         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
955         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
956         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
957         MSR_KVM_PV_EOI_EN,
958
959         MSR_IA32_TSC_ADJUST,
960         MSR_IA32_TSCDEADLINE,
961         MSR_IA32_MISC_ENABLE,
962         MSR_IA32_MCG_STATUS,
963         MSR_IA32_MCG_CTL,
964         MSR_IA32_SMBASE,
965 };
966
967 static unsigned num_emulated_msrs;
968
969 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
970 {
971         if (efer & efer_reserved_bits)
972                 return false;
973
974         if (efer & EFER_FFXSR) {
975                 struct kvm_cpuid_entry2 *feat;
976
977                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
978                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
979                         return false;
980         }
981
982         if (efer & EFER_SVME) {
983                 struct kvm_cpuid_entry2 *feat;
984
985                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
986                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
987                         return false;
988         }
989
990         return true;
991 }
992 EXPORT_SYMBOL_GPL(kvm_valid_efer);
993
994 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
995 {
996         u64 old_efer = vcpu->arch.efer;
997
998         if (!kvm_valid_efer(vcpu, efer))
999                 return 1;
1000
1001         if (is_paging(vcpu)
1002             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1003                 return 1;
1004
1005         efer &= ~EFER_LMA;
1006         efer |= vcpu->arch.efer & EFER_LMA;
1007
1008         kvm_x86_ops->set_efer(vcpu, efer);
1009
1010         /* Update reserved bits */
1011         if ((efer ^ old_efer) & EFER_NX)
1012                 kvm_mmu_reset_context(vcpu);
1013
1014         return 0;
1015 }
1016
1017 void kvm_enable_efer_bits(u64 mask)
1018 {
1019        efer_reserved_bits &= ~mask;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1022
1023 /*
1024  * Writes msr value into into the appropriate "register".
1025  * Returns 0 on success, non-0 otherwise.
1026  * Assumes vcpu_load() was already called.
1027  */
1028 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1029 {
1030         switch (msr->index) {
1031         case MSR_FS_BASE:
1032         case MSR_GS_BASE:
1033         case MSR_KERNEL_GS_BASE:
1034         case MSR_CSTAR:
1035         case MSR_LSTAR:
1036                 if (is_noncanonical_address(msr->data))
1037                         return 1;
1038                 break;
1039         case MSR_IA32_SYSENTER_EIP:
1040         case MSR_IA32_SYSENTER_ESP:
1041                 /*
1042                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1043                  * non-canonical address is written on Intel but not on
1044                  * AMD (which ignores the top 32-bits, because it does
1045                  * not implement 64-bit SYSENTER).
1046                  *
1047                  * 64-bit code should hence be able to write a non-canonical
1048                  * value on AMD.  Making the address canonical ensures that
1049                  * vmentry does not fail on Intel after writing a non-canonical
1050                  * value, and that something deterministic happens if the guest
1051                  * invokes 64-bit SYSENTER.
1052                  */
1053                 msr->data = get_canonical(msr->data);
1054         }
1055         return kvm_x86_ops->set_msr(vcpu, msr);
1056 }
1057 EXPORT_SYMBOL_GPL(kvm_set_msr);
1058
1059 /*
1060  * Adapt set_msr() to msr_io()'s calling convention
1061  */
1062 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1063 {
1064         struct msr_data msr;
1065         int r;
1066
1067         msr.index = index;
1068         msr.host_initiated = true;
1069         r = kvm_get_msr(vcpu, &msr);
1070         if (r)
1071                 return r;
1072
1073         *data = msr.data;
1074         return 0;
1075 }
1076
1077 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1078 {
1079         struct msr_data msr;
1080
1081         msr.data = *data;
1082         msr.index = index;
1083         msr.host_initiated = true;
1084         return kvm_set_msr(vcpu, &msr);
1085 }
1086
1087 #ifdef CONFIG_X86_64
1088 struct pvclock_gtod_data {
1089         seqcount_t      seq;
1090
1091         struct { /* extract of a clocksource struct */
1092                 int vclock_mode;
1093                 cycle_t cycle_last;
1094                 cycle_t mask;
1095                 u32     mult;
1096                 u32     shift;
1097         } clock;
1098
1099         u64             boot_ns;
1100         u64             nsec_base;
1101 };
1102
1103 static struct pvclock_gtod_data pvclock_gtod_data;
1104
1105 static void update_pvclock_gtod(struct timekeeper *tk)
1106 {
1107         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1108         u64 boot_ns;
1109
1110         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1111
1112         write_seqcount_begin(&vdata->seq);
1113
1114         /* copy pvclock gtod data */
1115         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1116         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1117         vdata->clock.mask               = tk->tkr_mono.mask;
1118         vdata->clock.mult               = tk->tkr_mono.mult;
1119         vdata->clock.shift              = tk->tkr_mono.shift;
1120
1121         vdata->boot_ns                  = boot_ns;
1122         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1123
1124         write_seqcount_end(&vdata->seq);
1125 }
1126 #endif
1127
1128 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1129 {
1130         /*
1131          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1132          * vcpu_enter_guest.  This function is only called from
1133          * the physical CPU that is running vcpu.
1134          */
1135         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1136 }
1137
1138 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1139 {
1140         int version;
1141         int r;
1142         struct pvclock_wall_clock wc;
1143         struct timespec boot;
1144
1145         if (!wall_clock)
1146                 return;
1147
1148         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1149         if (r)
1150                 return;
1151
1152         if (version & 1)
1153                 ++version;  /* first time write, random junk */
1154
1155         ++version;
1156
1157         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1158
1159         /*
1160          * The guest calculates current wall clock time by adding
1161          * system time (updated by kvm_guest_time_update below) to the
1162          * wall clock specified here.  guest system time equals host
1163          * system time for us, thus we must fill in host boot time here.
1164          */
1165         getboottime(&boot);
1166
1167         if (kvm->arch.kvmclock_offset) {
1168                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1169                 boot = timespec_sub(boot, ts);
1170         }
1171         wc.sec = boot.tv_sec;
1172         wc.nsec = boot.tv_nsec;
1173         wc.version = version;
1174
1175         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1176
1177         version++;
1178         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1179 }
1180
1181 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1182 {
1183         uint32_t quotient, remainder;
1184
1185         /* Don't try to replace with do_div(), this one calculates
1186          * "(dividend << 32) / divisor" */
1187         __asm__ ( "divl %4"
1188                   : "=a" (quotient), "=d" (remainder)
1189                   : "0" (0), "1" (dividend), "r" (divisor) );
1190         return quotient;
1191 }
1192
1193 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1194                                s8 *pshift, u32 *pmultiplier)
1195 {
1196         uint64_t scaled64;
1197         int32_t  shift = 0;
1198         uint64_t tps64;
1199         uint32_t tps32;
1200
1201         tps64 = base_khz * 1000LL;
1202         scaled64 = scaled_khz * 1000LL;
1203         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1204                 tps64 >>= 1;
1205                 shift--;
1206         }
1207
1208         tps32 = (uint32_t)tps64;
1209         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1210                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1211                         scaled64 >>= 1;
1212                 else
1213                         tps32 <<= 1;
1214                 shift++;
1215         }
1216
1217         *pshift = shift;
1218         *pmultiplier = div_frac(scaled64, tps32);
1219
1220         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1221                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1222 }
1223
1224 #ifdef CONFIG_X86_64
1225 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1226 #endif
1227
1228 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1229 static unsigned long max_tsc_khz;
1230
1231 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1232 {
1233         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1234                                    vcpu->arch.virtual_tsc_shift);
1235 }
1236
1237 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1238 {
1239         u64 v = (u64)khz * (1000000 + ppm);
1240         do_div(v, 1000000);
1241         return v;
1242 }
1243
1244 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1245 {
1246         u32 thresh_lo, thresh_hi;
1247         int use_scaling = 0;
1248
1249         /* tsc_khz can be zero if TSC calibration fails */
1250         if (this_tsc_khz == 0)
1251                 return;
1252
1253         /* Compute a scale to convert nanoseconds in TSC cycles */
1254         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1255                            &vcpu->arch.virtual_tsc_shift,
1256                            &vcpu->arch.virtual_tsc_mult);
1257         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1258
1259         /*
1260          * Compute the variation in TSC rate which is acceptable
1261          * within the range of tolerance and decide if the
1262          * rate being applied is within that bounds of the hardware
1263          * rate.  If so, no scaling or compensation need be done.
1264          */
1265         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1266         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1267         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1268                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1269                 use_scaling = 1;
1270         }
1271         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1272 }
1273
1274 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1275 {
1276         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1277                                       vcpu->arch.virtual_tsc_mult,
1278                                       vcpu->arch.virtual_tsc_shift);
1279         tsc += vcpu->arch.this_tsc_write;
1280         return tsc;
1281 }
1282
1283 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1284 {
1285 #ifdef CONFIG_X86_64
1286         bool vcpus_matched;
1287         struct kvm_arch *ka = &vcpu->kvm->arch;
1288         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1289
1290         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1291                          atomic_read(&vcpu->kvm->online_vcpus));
1292
1293         /*
1294          * Once the masterclock is enabled, always perform request in
1295          * order to update it.
1296          *
1297          * In order to enable masterclock, the host clocksource must be TSC
1298          * and the vcpus need to have matched TSCs.  When that happens,
1299          * perform request to enable masterclock.
1300          */
1301         if (ka->use_master_clock ||
1302             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1303                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1304
1305         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1306                             atomic_read(&vcpu->kvm->online_vcpus),
1307                             ka->use_master_clock, gtod->clock.vclock_mode);
1308 #endif
1309 }
1310
1311 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1312 {
1313         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1314         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1315 }
1316
1317 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1318 {
1319         struct kvm *kvm = vcpu->kvm;
1320         u64 offset, ns, elapsed;
1321         unsigned long flags;
1322         s64 usdiff;
1323         bool matched;
1324         bool already_matched;
1325         u64 data = msr->data;
1326
1327         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1328         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1329         ns = get_kernel_ns();
1330         elapsed = ns - kvm->arch.last_tsc_nsec;
1331
1332         if (vcpu->arch.virtual_tsc_khz) {
1333                 int faulted = 0;
1334
1335                 /* n.b - signed multiplication and division required */
1336                 usdiff = data - kvm->arch.last_tsc_write;
1337 #ifdef CONFIG_X86_64
1338                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1339 #else
1340                 /* do_div() only does unsigned */
1341                 asm("1: idivl %[divisor]\n"
1342                     "2: xor %%edx, %%edx\n"
1343                     "   movl $0, %[faulted]\n"
1344                     "3:\n"
1345                     ".section .fixup,\"ax\"\n"
1346                     "4: movl $1, %[faulted]\n"
1347                     "   jmp  3b\n"
1348                     ".previous\n"
1349
1350                 _ASM_EXTABLE(1b, 4b)
1351
1352                 : "=A"(usdiff), [faulted] "=r" (faulted)
1353                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1354
1355 #endif
1356                 do_div(elapsed, 1000);
1357                 usdiff -= elapsed;
1358                 if (usdiff < 0)
1359                         usdiff = -usdiff;
1360
1361                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1362                 if (faulted)
1363                         usdiff = USEC_PER_SEC;
1364         } else
1365                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1366
1367         /*
1368          * Special case: TSC write with a small delta (1 second) of virtual
1369          * cycle time against real time is interpreted as an attempt to
1370          * synchronize the CPU.
1371          *
1372          * For a reliable TSC, we can match TSC offsets, and for an unstable
1373          * TSC, we add elapsed time in this computation.  We could let the
1374          * compensation code attempt to catch up if we fall behind, but
1375          * it's better to try to match offsets from the beginning.
1376          */
1377         if (usdiff < USEC_PER_SEC &&
1378             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1379                 if (!check_tsc_unstable()) {
1380                         offset = kvm->arch.cur_tsc_offset;
1381                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1382                 } else {
1383                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1384                         data += delta;
1385                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1386                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1387                 }
1388                 matched = true;
1389                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1390         } else {
1391                 /*
1392                  * We split periods of matched TSC writes into generations.
1393                  * For each generation, we track the original measured
1394                  * nanosecond time, offset, and write, so if TSCs are in
1395                  * sync, we can match exact offset, and if not, we can match
1396                  * exact software computation in compute_guest_tsc()
1397                  *
1398                  * These values are tracked in kvm->arch.cur_xxx variables.
1399                  */
1400                 kvm->arch.cur_tsc_generation++;
1401                 kvm->arch.cur_tsc_nsec = ns;
1402                 kvm->arch.cur_tsc_write = data;
1403                 kvm->arch.cur_tsc_offset = offset;
1404                 matched = false;
1405                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1406                          kvm->arch.cur_tsc_generation, data);
1407         }
1408
1409         /*
1410          * We also track th most recent recorded KHZ, write and time to
1411          * allow the matching interval to be extended at each write.
1412          */
1413         kvm->arch.last_tsc_nsec = ns;
1414         kvm->arch.last_tsc_write = data;
1415         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1416
1417         vcpu->arch.last_guest_tsc = data;
1418
1419         /* Keep track of which generation this VCPU has synchronized to */
1420         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1421         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1422         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1423
1424         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1425                 update_ia32_tsc_adjust_msr(vcpu, offset);
1426         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1427         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1428
1429         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1430         if (!matched) {
1431                 kvm->arch.nr_vcpus_matched_tsc = 0;
1432         } else if (!already_matched) {
1433                 kvm->arch.nr_vcpus_matched_tsc++;
1434         }
1435
1436         kvm_track_tsc_matching(vcpu);
1437         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1438 }
1439
1440 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1441
1442 #ifdef CONFIG_X86_64
1443
1444 static cycle_t read_tsc(void)
1445 {
1446         cycle_t ret = (cycle_t)rdtsc_ordered();
1447         u64 last = pvclock_gtod_data.clock.cycle_last;
1448
1449         if (likely(ret >= last))
1450                 return ret;
1451
1452         /*
1453          * GCC likes to generate cmov here, but this branch is extremely
1454          * predictable (it's just a funciton of time and the likely is
1455          * very likely) and there's a data dependence, so force GCC
1456          * to generate a branch instead.  I don't barrier() because
1457          * we don't actually need a barrier, and if this function
1458          * ever gets inlined it will generate worse code.
1459          */
1460         asm volatile ("");
1461         return last;
1462 }
1463
1464 static inline u64 vgettsc(cycle_t *cycle_now)
1465 {
1466         long v;
1467         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1468
1469         *cycle_now = read_tsc();
1470
1471         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1472         return v * gtod->clock.mult;
1473 }
1474
1475 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1476 {
1477         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1478         unsigned long seq;
1479         int mode;
1480         u64 ns;
1481
1482         do {
1483                 seq = read_seqcount_begin(&gtod->seq);
1484                 mode = gtod->clock.vclock_mode;
1485                 ns = gtod->nsec_base;
1486                 ns += vgettsc(cycle_now);
1487                 ns >>= gtod->clock.shift;
1488                 ns += gtod->boot_ns;
1489         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1490         *t = ns;
1491
1492         return mode;
1493 }
1494
1495 /* returns true if host is using tsc clocksource */
1496 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1497 {
1498         /* checked again under seqlock below */
1499         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1500                 return false;
1501
1502         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1503 }
1504 #endif
1505
1506 /*
1507  *
1508  * Assuming a stable TSC across physical CPUS, and a stable TSC
1509  * across virtual CPUs, the following condition is possible.
1510  * Each numbered line represents an event visible to both
1511  * CPUs at the next numbered event.
1512  *
1513  * "timespecX" represents host monotonic time. "tscX" represents
1514  * RDTSC value.
1515  *
1516  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1517  *
1518  * 1.  read timespec0,tsc0
1519  * 2.                                   | timespec1 = timespec0 + N
1520  *                                      | tsc1 = tsc0 + M
1521  * 3. transition to guest               | transition to guest
1522  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1523  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1524  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1525  *
1526  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1527  *
1528  *      - ret0 < ret1
1529  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1530  *              ...
1531  *      - 0 < N - M => M < N
1532  *
1533  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1534  * always the case (the difference between two distinct xtime instances
1535  * might be smaller then the difference between corresponding TSC reads,
1536  * when updating guest vcpus pvclock areas).
1537  *
1538  * To avoid that problem, do not allow visibility of distinct
1539  * system_timestamp/tsc_timestamp values simultaneously: use a master
1540  * copy of host monotonic time values. Update that master copy
1541  * in lockstep.
1542  *
1543  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1544  *
1545  */
1546
1547 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1548 {
1549 #ifdef CONFIG_X86_64
1550         struct kvm_arch *ka = &kvm->arch;
1551         int vclock_mode;
1552         bool host_tsc_clocksource, vcpus_matched;
1553
1554         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1555                         atomic_read(&kvm->online_vcpus));
1556
1557         /*
1558          * If the host uses TSC clock, then passthrough TSC as stable
1559          * to the guest.
1560          */
1561         host_tsc_clocksource = kvm_get_time_and_clockread(
1562                                         &ka->master_kernel_ns,
1563                                         &ka->master_cycle_now);
1564
1565         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1566                                 && !backwards_tsc_observed
1567                                 && !ka->boot_vcpu_runs_old_kvmclock;
1568
1569         if (ka->use_master_clock)
1570                 atomic_set(&kvm_guest_has_master_clock, 1);
1571
1572         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1573         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1574                                         vcpus_matched);
1575 #endif
1576 }
1577
1578 static void kvm_gen_update_masterclock(struct kvm *kvm)
1579 {
1580 #ifdef CONFIG_X86_64
1581         int i;
1582         struct kvm_vcpu *vcpu;
1583         struct kvm_arch *ka = &kvm->arch;
1584
1585         spin_lock(&ka->pvclock_gtod_sync_lock);
1586         kvm_make_mclock_inprogress_request(kvm);
1587         /* no guest entries from this point */
1588         pvclock_update_vm_gtod_copy(kvm);
1589
1590         kvm_for_each_vcpu(i, vcpu, kvm)
1591                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1592
1593         /* guest entries allowed */
1594         kvm_for_each_vcpu(i, vcpu, kvm)
1595                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1596
1597         spin_unlock(&ka->pvclock_gtod_sync_lock);
1598 #endif
1599 }
1600
1601 static int kvm_guest_time_update(struct kvm_vcpu *v)
1602 {
1603         unsigned long flags, this_tsc_khz;
1604         struct kvm_vcpu_arch *vcpu = &v->arch;
1605         struct kvm_arch *ka = &v->kvm->arch;
1606         s64 kernel_ns;
1607         u64 tsc_timestamp, host_tsc;
1608         struct pvclock_vcpu_time_info guest_hv_clock;
1609         u8 pvclock_flags;
1610         bool use_master_clock;
1611
1612         kernel_ns = 0;
1613         host_tsc = 0;
1614
1615         /*
1616          * If the host uses TSC clock, then passthrough TSC as stable
1617          * to the guest.
1618          */
1619         spin_lock(&ka->pvclock_gtod_sync_lock);
1620         use_master_clock = ka->use_master_clock;
1621         if (use_master_clock) {
1622                 host_tsc = ka->master_cycle_now;
1623                 kernel_ns = ka->master_kernel_ns;
1624         }
1625         spin_unlock(&ka->pvclock_gtod_sync_lock);
1626
1627         /* Keep irq disabled to prevent changes to the clock */
1628         local_irq_save(flags);
1629         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1630         if (unlikely(this_tsc_khz == 0)) {
1631                 local_irq_restore(flags);
1632                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1633                 return 1;
1634         }
1635         if (!use_master_clock) {
1636                 host_tsc = rdtsc();
1637                 kernel_ns = get_kernel_ns();
1638         }
1639
1640         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1641
1642         /*
1643          * We may have to catch up the TSC to match elapsed wall clock
1644          * time for two reasons, even if kvmclock is used.
1645          *   1) CPU could have been running below the maximum TSC rate
1646          *   2) Broken TSC compensation resets the base at each VCPU
1647          *      entry to avoid unknown leaps of TSC even when running
1648          *      again on the same CPU.  This may cause apparent elapsed
1649          *      time to disappear, and the guest to stand still or run
1650          *      very slowly.
1651          */
1652         if (vcpu->tsc_catchup) {
1653                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1654                 if (tsc > tsc_timestamp) {
1655                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1656                         tsc_timestamp = tsc;
1657                 }
1658         }
1659
1660         local_irq_restore(flags);
1661
1662         if (!vcpu->pv_time_enabled)
1663                 return 0;
1664
1665         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1666                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1667                                    &vcpu->hv_clock.tsc_shift,
1668                                    &vcpu->hv_clock.tsc_to_system_mul);
1669                 vcpu->hw_tsc_khz = this_tsc_khz;
1670         }
1671
1672         /* With all the info we got, fill in the values */
1673         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1674         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1675         vcpu->last_guest_tsc = tsc_timestamp;
1676
1677         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1678                 &guest_hv_clock, sizeof(guest_hv_clock))))
1679                 return 0;
1680
1681         /* This VCPU is paused, but it's legal for a guest to read another
1682          * VCPU's kvmclock, so we really have to follow the specification where
1683          * it says that version is odd if data is being modified, and even after
1684          * it is consistent.
1685          *
1686          * Version field updates must be kept separate.  This is because
1687          * kvm_write_guest_cached might use a "rep movs" instruction, and
1688          * writes within a string instruction are weakly ordered.  So there
1689          * are three writes overall.
1690          *
1691          * As a small optimization, only write the version field in the first
1692          * and third write.  The vcpu->pv_time cache is still valid, because the
1693          * version field is the first in the struct.
1694          */
1695         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1696
1697         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1698         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1699                                 &vcpu->hv_clock,
1700                                 sizeof(vcpu->hv_clock.version));
1701
1702         smp_wmb();
1703
1704         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1705         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1706
1707         if (vcpu->pvclock_set_guest_stopped_request) {
1708                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1709                 vcpu->pvclock_set_guest_stopped_request = false;
1710         }
1711
1712         /* If the host uses TSC clocksource, then it is stable */
1713         if (use_master_clock)
1714                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1715
1716         vcpu->hv_clock.flags = pvclock_flags;
1717
1718         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1719
1720         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1721                                 &vcpu->hv_clock,
1722                                 sizeof(vcpu->hv_clock));
1723
1724         smp_wmb();
1725
1726         vcpu->hv_clock.version++;
1727         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1728                                 &vcpu->hv_clock,
1729                                 sizeof(vcpu->hv_clock.version));
1730         return 0;
1731 }
1732
1733 /*
1734  * kvmclock updates which are isolated to a given vcpu, such as
1735  * vcpu->cpu migration, should not allow system_timestamp from
1736  * the rest of the vcpus to remain static. Otherwise ntp frequency
1737  * correction applies to one vcpu's system_timestamp but not
1738  * the others.
1739  *
1740  * So in those cases, request a kvmclock update for all vcpus.
1741  * We need to rate-limit these requests though, as they can
1742  * considerably slow guests that have a large number of vcpus.
1743  * The time for a remote vcpu to update its kvmclock is bound
1744  * by the delay we use to rate-limit the updates.
1745  */
1746
1747 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1748
1749 static void kvmclock_update_fn(struct work_struct *work)
1750 {
1751         int i;
1752         struct delayed_work *dwork = to_delayed_work(work);
1753         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1754                                            kvmclock_update_work);
1755         struct kvm *kvm = container_of(ka, struct kvm, arch);
1756         struct kvm_vcpu *vcpu;
1757
1758         kvm_for_each_vcpu(i, vcpu, kvm) {
1759                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1760                 kvm_vcpu_kick(vcpu);
1761         }
1762 }
1763
1764 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1765 {
1766         struct kvm *kvm = v->kvm;
1767
1768         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1769         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1770                                         KVMCLOCK_UPDATE_DELAY);
1771 }
1772
1773 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1774
1775 static void kvmclock_sync_fn(struct work_struct *work)
1776 {
1777         struct delayed_work *dwork = to_delayed_work(work);
1778         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1779                                            kvmclock_sync_work);
1780         struct kvm *kvm = container_of(ka, struct kvm, arch);
1781
1782         if (!kvmclock_periodic_sync)
1783                 return;
1784
1785         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1786         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1787                                         KVMCLOCK_SYNC_PERIOD);
1788 }
1789
1790 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1791 {
1792         u64 mcg_cap = vcpu->arch.mcg_cap;
1793         unsigned bank_num = mcg_cap & 0xff;
1794
1795         switch (msr) {
1796         case MSR_IA32_MCG_STATUS:
1797                 vcpu->arch.mcg_status = data;
1798                 break;
1799         case MSR_IA32_MCG_CTL:
1800                 if (!(mcg_cap & MCG_CTL_P))
1801                         return 1;
1802                 if (data != 0 && data != ~(u64)0)
1803                         return -1;
1804                 vcpu->arch.mcg_ctl = data;
1805                 break;
1806         default:
1807                 if (msr >= MSR_IA32_MC0_CTL &&
1808                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1809                         u32 offset = msr - MSR_IA32_MC0_CTL;
1810                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1811                          * some Linux kernels though clear bit 10 in bank 4 to
1812                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1813                          * this to avoid an uncatched #GP in the guest
1814                          */
1815                         if ((offset & 0x3) == 0 &&
1816                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1817                                 return -1;
1818                         vcpu->arch.mce_banks[offset] = data;
1819                         break;
1820                 }
1821                 return 1;
1822         }
1823         return 0;
1824 }
1825
1826 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1827 {
1828         struct kvm *kvm = vcpu->kvm;
1829         int lm = is_long_mode(vcpu);
1830         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1831                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1832         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1833                 : kvm->arch.xen_hvm_config.blob_size_32;
1834         u32 page_num = data & ~PAGE_MASK;
1835         u64 page_addr = data & PAGE_MASK;
1836         u8 *page;
1837         int r;
1838
1839         r = -E2BIG;
1840         if (page_num >= blob_size)
1841                 goto out;
1842         r = -ENOMEM;
1843         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1844         if (IS_ERR(page)) {
1845                 r = PTR_ERR(page);
1846                 goto out;
1847         }
1848         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1849                 goto out_free;
1850         r = 0;
1851 out_free:
1852         kfree(page);
1853 out:
1854         return r;
1855 }
1856
1857 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1858 {
1859         gpa_t gpa = data & ~0x3f;
1860
1861         /* Bits 2:5 are reserved, Should be zero */
1862         if (data & 0x3c)
1863                 return 1;
1864
1865         vcpu->arch.apf.msr_val = data;
1866
1867         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1868                 kvm_clear_async_pf_completion_queue(vcpu);
1869                 kvm_async_pf_hash_reset(vcpu);
1870                 return 0;
1871         }
1872
1873         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1874                                         sizeof(u32)))
1875                 return 1;
1876
1877         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1878         kvm_async_pf_wakeup_all(vcpu);
1879         return 0;
1880 }
1881
1882 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1883 {
1884         vcpu->arch.pv_time_enabled = false;
1885 }
1886
1887 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1888 {
1889         u64 delta;
1890
1891         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1892                 return;
1893
1894         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1895         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1896         vcpu->arch.st.accum_steal = delta;
1897 }
1898
1899 static void record_steal_time(struct kvm_vcpu *vcpu)
1900 {
1901         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1902                 return;
1903
1904         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1905                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1906                 return;
1907
1908         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1909         vcpu->arch.st.steal.version += 2;
1910         vcpu->arch.st.accum_steal = 0;
1911
1912         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1913                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1914 }
1915
1916 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1917 {
1918         bool pr = false;
1919         u32 msr = msr_info->index;
1920         u64 data = msr_info->data;
1921
1922         switch (msr) {
1923         case MSR_AMD64_NB_CFG:
1924         case MSR_IA32_UCODE_REV:
1925         case MSR_IA32_UCODE_WRITE:
1926         case MSR_VM_HSAVE_PA:
1927         case MSR_AMD64_PATCH_LOADER:
1928         case MSR_AMD64_BU_CFG2:
1929                 break;
1930
1931         case MSR_EFER:
1932                 return set_efer(vcpu, data);
1933         case MSR_K7_HWCR:
1934                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1935                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1936                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1937                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
1938                 if (data != 0) {
1939                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1940                                     data);
1941                         return 1;
1942                 }
1943                 break;
1944         case MSR_FAM10H_MMIO_CONF_BASE:
1945                 if (data != 0) {
1946                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1947                                     "0x%llx\n", data);
1948                         return 1;
1949                 }
1950                 break;
1951         case MSR_IA32_DEBUGCTLMSR:
1952                 if (!data) {
1953                         /* We support the non-activated case already */
1954                         break;
1955                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1956                         /* Values other than LBR and BTF are vendor-specific,
1957                            thus reserved and should throw a #GP */
1958                         return 1;
1959                 }
1960                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1961                             __func__, data);
1962                 break;
1963         case 0x200 ... 0x2ff:
1964                 return kvm_mtrr_set_msr(vcpu, msr, data);
1965         case MSR_IA32_APICBASE:
1966                 return kvm_set_apic_base(vcpu, msr_info);
1967         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1968                 return kvm_x2apic_msr_write(vcpu, msr, data);
1969         case MSR_IA32_TSCDEADLINE:
1970                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1971                 break;
1972         case MSR_IA32_TSC_ADJUST:
1973                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1974                         if (!msr_info->host_initiated) {
1975                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1976                                 adjust_tsc_offset_guest(vcpu, adj);
1977                         }
1978                         vcpu->arch.ia32_tsc_adjust_msr = data;
1979                 }
1980                 break;
1981         case MSR_IA32_MISC_ENABLE:
1982                 vcpu->arch.ia32_misc_enable_msr = data;
1983                 break;
1984         case MSR_IA32_SMBASE:
1985                 if (!msr_info->host_initiated)
1986                         return 1;
1987                 vcpu->arch.smbase = data;
1988                 break;
1989         case MSR_KVM_WALL_CLOCK_NEW:
1990         case MSR_KVM_WALL_CLOCK:
1991                 vcpu->kvm->arch.wall_clock = data;
1992                 kvm_write_wall_clock(vcpu->kvm, data);
1993                 break;
1994         case MSR_KVM_SYSTEM_TIME_NEW:
1995         case MSR_KVM_SYSTEM_TIME: {
1996                 u64 gpa_offset;
1997                 struct kvm_arch *ka = &vcpu->kvm->arch;
1998
1999                 kvmclock_reset(vcpu);
2000
2001                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2002                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2003
2004                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2005                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2006                                         &vcpu->requests);
2007
2008                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2009                 }
2010
2011                 vcpu->arch.time = data;
2012                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2013
2014                 /* we verify if the enable bit is set... */
2015                 if (!(data & 1))
2016                         break;
2017
2018                 gpa_offset = data & ~(PAGE_MASK | 1);
2019
2020                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2021                      &vcpu->arch.pv_time, data & ~1ULL,
2022                      sizeof(struct pvclock_vcpu_time_info)))
2023                         vcpu->arch.pv_time_enabled = false;
2024                 else
2025                         vcpu->arch.pv_time_enabled = true;
2026
2027                 break;
2028         }
2029         case MSR_KVM_ASYNC_PF_EN:
2030                 if (kvm_pv_enable_async_pf(vcpu, data))
2031                         return 1;
2032                 break;
2033         case MSR_KVM_STEAL_TIME:
2034
2035                 if (unlikely(!sched_info_on()))
2036                         return 1;
2037
2038                 if (data & KVM_STEAL_RESERVED_MASK)
2039                         return 1;
2040
2041                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2042                                                 data & KVM_STEAL_VALID_BITS,
2043                                                 sizeof(struct kvm_steal_time)))
2044                         return 1;
2045
2046                 vcpu->arch.st.msr_val = data;
2047
2048                 if (!(data & KVM_MSR_ENABLED))
2049                         break;
2050
2051                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2052
2053                 preempt_disable();
2054                 accumulate_steal_time(vcpu);
2055                 preempt_enable();
2056
2057                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2058
2059                 break;
2060         case MSR_KVM_PV_EOI_EN:
2061                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2062                         return 1;
2063                 break;
2064
2065         case MSR_IA32_MCG_CTL:
2066         case MSR_IA32_MCG_STATUS:
2067         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2068                 return set_msr_mce(vcpu, msr, data);
2069
2070         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2071         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2072                 pr = true; /* fall through */
2073         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2074         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2075                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2076                         return kvm_pmu_set_msr(vcpu, msr_info);
2077
2078                 if (pr || data != 0)
2079                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2080                                     "0x%x data 0x%llx\n", msr, data);
2081                 break;
2082         case MSR_K7_CLK_CTL:
2083                 /*
2084                  * Ignore all writes to this no longer documented MSR.
2085                  * Writes are only relevant for old K7 processors,
2086                  * all pre-dating SVM, but a recommended workaround from
2087                  * AMD for these chips. It is possible to specify the
2088                  * affected processor models on the command line, hence
2089                  * the need to ignore the workaround.
2090                  */
2091                 break;
2092         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2093         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2094         case HV_X64_MSR_CRASH_CTL:
2095                 return kvm_hv_set_msr_common(vcpu, msr, data,
2096                                              msr_info->host_initiated);
2097         case MSR_IA32_BBL_CR_CTL3:
2098                 /* Drop writes to this legacy MSR -- see rdmsr
2099                  * counterpart for further detail.
2100                  */
2101                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2102                 break;
2103         case MSR_AMD64_OSVW_ID_LENGTH:
2104                 if (!guest_cpuid_has_osvw(vcpu))
2105                         return 1;
2106                 vcpu->arch.osvw.length = data;
2107                 break;
2108         case MSR_AMD64_OSVW_STATUS:
2109                 if (!guest_cpuid_has_osvw(vcpu))
2110                         return 1;
2111                 vcpu->arch.osvw.status = data;
2112                 break;
2113         default:
2114                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2115                         return xen_hvm_config(vcpu, data);
2116                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2117                         return kvm_pmu_set_msr(vcpu, msr_info);
2118                 if (!ignore_msrs) {
2119                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2120                                     msr, data);
2121                         return 1;
2122                 } else {
2123                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2124                                     msr, data);
2125                         break;
2126                 }
2127         }
2128         return 0;
2129 }
2130 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2131
2132
2133 /*
2134  * Reads an msr value (of 'msr_index') into 'pdata'.
2135  * Returns 0 on success, non-0 otherwise.
2136  * Assumes vcpu_load() was already called.
2137  */
2138 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2139 {
2140         return kvm_x86_ops->get_msr(vcpu, msr);
2141 }
2142 EXPORT_SYMBOL_GPL(kvm_get_msr);
2143
2144 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2145 {
2146         u64 data;
2147         u64 mcg_cap = vcpu->arch.mcg_cap;
2148         unsigned bank_num = mcg_cap & 0xff;
2149
2150         switch (msr) {
2151         case MSR_IA32_P5_MC_ADDR:
2152         case MSR_IA32_P5_MC_TYPE:
2153                 data = 0;
2154                 break;
2155         case MSR_IA32_MCG_CAP:
2156                 data = vcpu->arch.mcg_cap;
2157                 break;
2158         case MSR_IA32_MCG_CTL:
2159                 if (!(mcg_cap & MCG_CTL_P))
2160                         return 1;
2161                 data = vcpu->arch.mcg_ctl;
2162                 break;
2163         case MSR_IA32_MCG_STATUS:
2164                 data = vcpu->arch.mcg_status;
2165                 break;
2166         default:
2167                 if (msr >= MSR_IA32_MC0_CTL &&
2168                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2169                         u32 offset = msr - MSR_IA32_MC0_CTL;
2170                         data = vcpu->arch.mce_banks[offset];
2171                         break;
2172                 }
2173                 return 1;
2174         }
2175         *pdata = data;
2176         return 0;
2177 }
2178
2179 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2180 {
2181         switch (msr_info->index) {
2182         case MSR_IA32_PLATFORM_ID:
2183         case MSR_IA32_EBL_CR_POWERON:
2184         case MSR_IA32_DEBUGCTLMSR:
2185         case MSR_IA32_LASTBRANCHFROMIP:
2186         case MSR_IA32_LASTBRANCHTOIP:
2187         case MSR_IA32_LASTINTFROMIP:
2188         case MSR_IA32_LASTINTTOIP:
2189         case MSR_K8_SYSCFG:
2190         case MSR_K8_TSEG_ADDR:
2191         case MSR_K8_TSEG_MASK:
2192         case MSR_K7_HWCR:
2193         case MSR_VM_HSAVE_PA:
2194         case MSR_K8_INT_PENDING_MSG:
2195         case MSR_AMD64_NB_CFG:
2196         case MSR_FAM10H_MMIO_CONF_BASE:
2197         case MSR_AMD64_BU_CFG2:
2198                 msr_info->data = 0;
2199                 break;
2200         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2201         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2202         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2203         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2204                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2205                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2206                 msr_info->data = 0;
2207                 break;
2208         case MSR_IA32_UCODE_REV:
2209                 msr_info->data = 0x100000000ULL;
2210                 break;
2211         case MSR_MTRRcap:
2212         case 0x200 ... 0x2ff:
2213                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2214         case 0xcd: /* fsb frequency */
2215                 msr_info->data = 3;
2216                 break;
2217                 /*
2218                  * MSR_EBC_FREQUENCY_ID
2219                  * Conservative value valid for even the basic CPU models.
2220                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2221                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2222                  * and 266MHz for model 3, or 4. Set Core Clock
2223                  * Frequency to System Bus Frequency Ratio to 1 (bits
2224                  * 31:24) even though these are only valid for CPU
2225                  * models > 2, however guests may end up dividing or
2226                  * multiplying by zero otherwise.
2227                  */
2228         case MSR_EBC_FREQUENCY_ID:
2229                 msr_info->data = 1 << 24;
2230                 break;
2231         case MSR_IA32_APICBASE:
2232                 msr_info->data = kvm_get_apic_base(vcpu);
2233                 break;
2234         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2235                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2236                 break;
2237         case MSR_IA32_TSCDEADLINE:
2238                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2239                 break;
2240         case MSR_IA32_TSC_ADJUST:
2241                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2242                 break;
2243         case MSR_IA32_MISC_ENABLE:
2244                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2245                 break;
2246         case MSR_IA32_SMBASE:
2247                 if (!msr_info->host_initiated)
2248                         return 1;
2249                 msr_info->data = vcpu->arch.smbase;
2250                 break;
2251         case MSR_IA32_PERF_STATUS:
2252                 /* TSC increment by tick */
2253                 msr_info->data = 1000ULL;
2254                 /* CPU multiplier */
2255                 msr_info->data |= (((uint64_t)4ULL) << 40);
2256                 break;
2257         case MSR_EFER:
2258                 msr_info->data = vcpu->arch.efer;
2259                 break;
2260         case MSR_KVM_WALL_CLOCK:
2261         case MSR_KVM_WALL_CLOCK_NEW:
2262                 msr_info->data = vcpu->kvm->arch.wall_clock;
2263                 break;
2264         case MSR_KVM_SYSTEM_TIME:
2265         case MSR_KVM_SYSTEM_TIME_NEW:
2266                 msr_info->data = vcpu->arch.time;
2267                 break;
2268         case MSR_KVM_ASYNC_PF_EN:
2269                 msr_info->data = vcpu->arch.apf.msr_val;
2270                 break;
2271         case MSR_KVM_STEAL_TIME:
2272                 msr_info->data = vcpu->arch.st.msr_val;
2273                 break;
2274         case MSR_KVM_PV_EOI_EN:
2275                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2276                 break;
2277         case MSR_IA32_P5_MC_ADDR:
2278         case MSR_IA32_P5_MC_TYPE:
2279         case MSR_IA32_MCG_CAP:
2280         case MSR_IA32_MCG_CTL:
2281         case MSR_IA32_MCG_STATUS:
2282         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2283                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2284         case MSR_K7_CLK_CTL:
2285                 /*
2286                  * Provide expected ramp-up count for K7. All other
2287                  * are set to zero, indicating minimum divisors for
2288                  * every field.
2289                  *
2290                  * This prevents guest kernels on AMD host with CPU
2291                  * type 6, model 8 and higher from exploding due to
2292                  * the rdmsr failing.
2293                  */
2294                 msr_info->data = 0x20000000;
2295                 break;
2296         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2297         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2298         case HV_X64_MSR_CRASH_CTL:
2299                 return kvm_hv_get_msr_common(vcpu,
2300                                              msr_info->index, &msr_info->data);
2301                 break;
2302         case MSR_IA32_BBL_CR_CTL3:
2303                 /* This legacy MSR exists but isn't fully documented in current
2304                  * silicon.  It is however accessed by winxp in very narrow
2305                  * scenarios where it sets bit #19, itself documented as
2306                  * a "reserved" bit.  Best effort attempt to source coherent
2307                  * read data here should the balance of the register be
2308                  * interpreted by the guest:
2309                  *
2310                  * L2 cache control register 3: 64GB range, 256KB size,
2311                  * enabled, latency 0x1, configured
2312                  */
2313                 msr_info->data = 0xbe702111;
2314                 break;
2315         case MSR_AMD64_OSVW_ID_LENGTH:
2316                 if (!guest_cpuid_has_osvw(vcpu))
2317                         return 1;
2318                 msr_info->data = vcpu->arch.osvw.length;
2319                 break;
2320         case MSR_AMD64_OSVW_STATUS:
2321                 if (!guest_cpuid_has_osvw(vcpu))
2322                         return 1;
2323                 msr_info->data = vcpu->arch.osvw.status;
2324                 break;
2325         default:
2326                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2327                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2328                 if (!ignore_msrs) {
2329                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2330                         return 1;
2331                 } else {
2332                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2333                         msr_info->data = 0;
2334                 }
2335                 break;
2336         }
2337         return 0;
2338 }
2339 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2340
2341 /*
2342  * Read or write a bunch of msrs. All parameters are kernel addresses.
2343  *
2344  * @return number of msrs set successfully.
2345  */
2346 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2347                     struct kvm_msr_entry *entries,
2348                     int (*do_msr)(struct kvm_vcpu *vcpu,
2349                                   unsigned index, u64 *data))
2350 {
2351         int i, idx;
2352
2353         idx = srcu_read_lock(&vcpu->kvm->srcu);
2354         for (i = 0; i < msrs->nmsrs; ++i)
2355                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2356                         break;
2357         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2358
2359         return i;
2360 }
2361
2362 /*
2363  * Read or write a bunch of msrs. Parameters are user addresses.
2364  *
2365  * @return number of msrs set successfully.
2366  */
2367 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2368                   int (*do_msr)(struct kvm_vcpu *vcpu,
2369                                 unsigned index, u64 *data),
2370                   int writeback)
2371 {
2372         struct kvm_msrs msrs;
2373         struct kvm_msr_entry *entries;
2374         int r, n;
2375         unsigned size;
2376
2377         r = -EFAULT;
2378         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2379                 goto out;
2380
2381         r = -E2BIG;
2382         if (msrs.nmsrs >= MAX_IO_MSRS)
2383                 goto out;
2384
2385         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2386         entries = memdup_user(user_msrs->entries, size);
2387         if (IS_ERR(entries)) {
2388                 r = PTR_ERR(entries);
2389                 goto out;
2390         }
2391
2392         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2393         if (r < 0)
2394                 goto out_free;
2395
2396         r = -EFAULT;
2397         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2398                 goto out_free;
2399
2400         r = n;
2401
2402 out_free:
2403         kfree(entries);
2404 out:
2405         return r;
2406 }
2407
2408 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2409 {
2410         int r;
2411
2412         switch (ext) {
2413         case KVM_CAP_IRQCHIP:
2414         case KVM_CAP_HLT:
2415         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2416         case KVM_CAP_SET_TSS_ADDR:
2417         case KVM_CAP_EXT_CPUID:
2418         case KVM_CAP_EXT_EMUL_CPUID:
2419         case KVM_CAP_CLOCKSOURCE:
2420         case KVM_CAP_PIT:
2421         case KVM_CAP_NOP_IO_DELAY:
2422         case KVM_CAP_MP_STATE:
2423         case KVM_CAP_SYNC_MMU:
2424         case KVM_CAP_USER_NMI:
2425         case KVM_CAP_REINJECT_CONTROL:
2426         case KVM_CAP_IRQ_INJECT_STATUS:
2427         case KVM_CAP_IOEVENTFD:
2428         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2429         case KVM_CAP_PIT2:
2430         case KVM_CAP_PIT_STATE2:
2431         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2432         case KVM_CAP_XEN_HVM:
2433         case KVM_CAP_ADJUST_CLOCK:
2434         case KVM_CAP_VCPU_EVENTS:
2435         case KVM_CAP_HYPERV:
2436         case KVM_CAP_HYPERV_VAPIC:
2437         case KVM_CAP_HYPERV_SPIN:
2438         case KVM_CAP_PCI_SEGMENT:
2439         case KVM_CAP_DEBUGREGS:
2440         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2441         case KVM_CAP_XSAVE:
2442         case KVM_CAP_ASYNC_PF:
2443         case KVM_CAP_GET_TSC_KHZ:
2444         case KVM_CAP_KVMCLOCK_CTRL:
2445         case KVM_CAP_READONLY_MEM:
2446         case KVM_CAP_HYPERV_TIME:
2447         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2448         case KVM_CAP_TSC_DEADLINE_TIMER:
2449         case KVM_CAP_ENABLE_CAP_VM:
2450         case KVM_CAP_DISABLE_QUIRKS:
2451         case KVM_CAP_SET_BOOT_CPU_ID:
2452 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2453         case KVM_CAP_ASSIGN_DEV_IRQ:
2454         case KVM_CAP_PCI_2_3:
2455 #endif
2456                 r = 1;
2457                 break;
2458         case KVM_CAP_X86_SMM:
2459                 /* SMBASE is usually relocated above 1M on modern chipsets,
2460                  * and SMM handlers might indeed rely on 4G segment limits,
2461                  * so do not report SMM to be available if real mode is
2462                  * emulated via vm86 mode.  Still, do not go to great lengths
2463                  * to avoid userspace's usage of the feature, because it is a
2464                  * fringe case that is not enabled except via specific settings
2465                  * of the module parameters.
2466                  */
2467                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2468                 break;
2469         case KVM_CAP_COALESCED_MMIO:
2470                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2471                 break;
2472         case KVM_CAP_VAPIC:
2473                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2474                 break;
2475         case KVM_CAP_NR_VCPUS:
2476                 r = KVM_SOFT_MAX_VCPUS;
2477                 break;
2478         case KVM_CAP_MAX_VCPUS:
2479                 r = KVM_MAX_VCPUS;
2480                 break;
2481         case KVM_CAP_NR_MEMSLOTS:
2482                 r = KVM_USER_MEM_SLOTS;
2483                 break;
2484         case KVM_CAP_PV_MMU:    /* obsolete */
2485                 r = 0;
2486                 break;
2487 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2488         case KVM_CAP_IOMMU:
2489                 r = iommu_present(&pci_bus_type);
2490                 break;
2491 #endif
2492         case KVM_CAP_MCE:
2493                 r = KVM_MAX_MCE_BANKS;
2494                 break;
2495         case KVM_CAP_XCRS:
2496                 r = cpu_has_xsave;
2497                 break;
2498         case KVM_CAP_TSC_CONTROL:
2499                 r = kvm_has_tsc_control;
2500                 break;
2501         default:
2502                 r = 0;
2503                 break;
2504         }
2505         return r;
2506
2507 }
2508
2509 long kvm_arch_dev_ioctl(struct file *filp,
2510                         unsigned int ioctl, unsigned long arg)
2511 {
2512         void __user *argp = (void __user *)arg;
2513         long r;
2514
2515         switch (ioctl) {
2516         case KVM_GET_MSR_INDEX_LIST: {
2517                 struct kvm_msr_list __user *user_msr_list = argp;
2518                 struct kvm_msr_list msr_list;
2519                 unsigned n;
2520
2521                 r = -EFAULT;
2522                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2523                         goto out;
2524                 n = msr_list.nmsrs;
2525                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2526                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2527                         goto out;
2528                 r = -E2BIG;
2529                 if (n < msr_list.nmsrs)
2530                         goto out;
2531                 r = -EFAULT;
2532                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2533                                  num_msrs_to_save * sizeof(u32)))
2534                         goto out;
2535                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2536                                  &emulated_msrs,
2537                                  num_emulated_msrs * sizeof(u32)))
2538                         goto out;
2539                 r = 0;
2540                 break;
2541         }
2542         case KVM_GET_SUPPORTED_CPUID:
2543         case KVM_GET_EMULATED_CPUID: {
2544                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2545                 struct kvm_cpuid2 cpuid;
2546
2547                 r = -EFAULT;
2548                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2549                         goto out;
2550
2551                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2552                                             ioctl);
2553                 if (r)
2554                         goto out;
2555
2556                 r = -EFAULT;
2557                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2558                         goto out;
2559                 r = 0;
2560                 break;
2561         }
2562         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2563                 u64 mce_cap;
2564
2565                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2566                 r = -EFAULT;
2567                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2568                         goto out;
2569                 r = 0;
2570                 break;
2571         }
2572         default:
2573                 r = -EINVAL;
2574         }
2575 out:
2576         return r;
2577 }
2578
2579 static void wbinvd_ipi(void *garbage)
2580 {
2581         wbinvd();
2582 }
2583
2584 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2585 {
2586         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2587 }
2588
2589 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2590 {
2591         /* Address WBINVD may be executed by guest */
2592         if (need_emulate_wbinvd(vcpu)) {
2593                 if (kvm_x86_ops->has_wbinvd_exit())
2594                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2595                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2596                         smp_call_function_single(vcpu->cpu,
2597                                         wbinvd_ipi, NULL, 1);
2598         }
2599
2600         kvm_x86_ops->vcpu_load(vcpu, cpu);
2601
2602         /* Apply any externally detected TSC adjustments (due to suspend) */
2603         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2604                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2605                 vcpu->arch.tsc_offset_adjustment = 0;
2606                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2607         }
2608
2609         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2610                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2611                                 rdtsc() - vcpu->arch.last_host_tsc;
2612                 if (tsc_delta < 0)
2613                         mark_tsc_unstable("KVM discovered backwards TSC");
2614                 if (check_tsc_unstable()) {
2615                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2616                                                 vcpu->arch.last_guest_tsc);
2617                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2618                         vcpu->arch.tsc_catchup = 1;
2619                 }
2620                 /*
2621                  * On a host with synchronized TSC, there is no need to update
2622                  * kvmclock on vcpu->cpu migration
2623                  */
2624                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2625                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2626                 if (vcpu->cpu != cpu)
2627                         kvm_migrate_timers(vcpu);
2628                 vcpu->cpu = cpu;
2629         }
2630
2631         accumulate_steal_time(vcpu);
2632         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2633 }
2634
2635 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2636 {
2637         kvm_x86_ops->vcpu_put(vcpu);
2638         kvm_put_guest_fpu(vcpu);
2639         vcpu->arch.last_host_tsc = rdtsc();
2640 }
2641
2642 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2643                                     struct kvm_lapic_state *s)
2644 {
2645         kvm_x86_ops->sync_pir_to_irr(vcpu);
2646         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2647
2648         return 0;
2649 }
2650
2651 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2652                                     struct kvm_lapic_state *s)
2653 {
2654         kvm_apic_post_state_restore(vcpu, s);
2655         update_cr8_intercept(vcpu);
2656
2657         return 0;
2658 }
2659
2660 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2661                                     struct kvm_interrupt *irq)
2662 {
2663         if (irq->irq >= KVM_NR_INTERRUPTS)
2664                 return -EINVAL;
2665         if (irqchip_in_kernel(vcpu->kvm))
2666                 return -ENXIO;
2667
2668         kvm_queue_interrupt(vcpu, irq->irq, false);
2669         kvm_make_request(KVM_REQ_EVENT, vcpu);
2670
2671         return 0;
2672 }
2673
2674 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2675 {
2676         kvm_inject_nmi(vcpu);
2677
2678         return 0;
2679 }
2680
2681 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2682 {
2683         kvm_make_request(KVM_REQ_SMI, vcpu);
2684
2685         return 0;
2686 }
2687
2688 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2689                                            struct kvm_tpr_access_ctl *tac)
2690 {
2691         if (tac->flags)
2692                 return -EINVAL;
2693         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2694         return 0;
2695 }
2696
2697 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2698                                         u64 mcg_cap)
2699 {
2700         int r;
2701         unsigned bank_num = mcg_cap & 0xff, bank;
2702
2703         r = -EINVAL;
2704         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2705                 goto out;
2706         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2707                 goto out;
2708         r = 0;
2709         vcpu->arch.mcg_cap = mcg_cap;
2710         /* Init IA32_MCG_CTL to all 1s */
2711         if (mcg_cap & MCG_CTL_P)
2712                 vcpu->arch.mcg_ctl = ~(u64)0;
2713         /* Init IA32_MCi_CTL to all 1s */
2714         for (bank = 0; bank < bank_num; bank++)
2715                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2716 out:
2717         return r;
2718 }
2719
2720 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2721                                       struct kvm_x86_mce *mce)
2722 {
2723         u64 mcg_cap = vcpu->arch.mcg_cap;
2724         unsigned bank_num = mcg_cap & 0xff;
2725         u64 *banks = vcpu->arch.mce_banks;
2726
2727         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2728                 return -EINVAL;
2729         /*
2730          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2731          * reporting is disabled
2732          */
2733         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2734             vcpu->arch.mcg_ctl != ~(u64)0)
2735                 return 0;
2736         banks += 4 * mce->bank;
2737         /*
2738          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2739          * reporting is disabled for the bank
2740          */
2741         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2742                 return 0;
2743         if (mce->status & MCI_STATUS_UC) {
2744                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2745                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2746                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2747                         return 0;
2748                 }
2749                 if (banks[1] & MCI_STATUS_VAL)
2750                         mce->status |= MCI_STATUS_OVER;
2751                 banks[2] = mce->addr;
2752                 banks[3] = mce->misc;
2753                 vcpu->arch.mcg_status = mce->mcg_status;
2754                 banks[1] = mce->status;
2755                 kvm_queue_exception(vcpu, MC_VECTOR);
2756         } else if (!(banks[1] & MCI_STATUS_VAL)
2757                    || !(banks[1] & MCI_STATUS_UC)) {
2758                 if (banks[1] & MCI_STATUS_VAL)
2759                         mce->status |= MCI_STATUS_OVER;
2760                 banks[2] = mce->addr;
2761                 banks[3] = mce->misc;
2762                 banks[1] = mce->status;
2763         } else
2764                 banks[1] |= MCI_STATUS_OVER;
2765         return 0;
2766 }
2767
2768 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2769                                                struct kvm_vcpu_events *events)
2770 {
2771         process_nmi(vcpu);
2772         events->exception.injected =
2773                 vcpu->arch.exception.pending &&
2774                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2775         events->exception.nr = vcpu->arch.exception.nr;
2776         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2777         events->exception.pad = 0;
2778         events->exception.error_code = vcpu->arch.exception.error_code;
2779
2780         events->interrupt.injected =
2781                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2782         events->interrupt.nr = vcpu->arch.interrupt.nr;
2783         events->interrupt.soft = 0;
2784         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2785
2786         events->nmi.injected = vcpu->arch.nmi_injected;
2787         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2788         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2789         events->nmi.pad = 0;
2790
2791         events->sipi_vector = 0; /* never valid when reporting to user space */
2792
2793         events->smi.smm = is_smm(vcpu);
2794         events->smi.pending = vcpu->arch.smi_pending;
2795         events->smi.smm_inside_nmi =
2796                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2797         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2798
2799         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2800                          | KVM_VCPUEVENT_VALID_SHADOW
2801                          | KVM_VCPUEVENT_VALID_SMM);
2802         memset(&events->reserved, 0, sizeof(events->reserved));
2803 }
2804
2805 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2806                                               struct kvm_vcpu_events *events)
2807 {
2808         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2809                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2810                               | KVM_VCPUEVENT_VALID_SHADOW
2811                               | KVM_VCPUEVENT_VALID_SMM))
2812                 return -EINVAL;
2813
2814         process_nmi(vcpu);
2815         vcpu->arch.exception.pending = events->exception.injected;
2816         vcpu->arch.exception.nr = events->exception.nr;
2817         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2818         vcpu->arch.exception.error_code = events->exception.error_code;
2819
2820         vcpu->arch.interrupt.pending = events->interrupt.injected;
2821         vcpu->arch.interrupt.nr = events->interrupt.nr;
2822         vcpu->arch.interrupt.soft = events->interrupt.soft;
2823         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2824                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2825                                                   events->interrupt.shadow);
2826
2827         vcpu->arch.nmi_injected = events->nmi.injected;
2828         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2829                 vcpu->arch.nmi_pending = events->nmi.pending;
2830         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2831
2832         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2833             kvm_vcpu_has_lapic(vcpu))
2834                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2835
2836         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2837                 if (events->smi.smm)
2838                         vcpu->arch.hflags |= HF_SMM_MASK;
2839                 else
2840                         vcpu->arch.hflags &= ~HF_SMM_MASK;
2841                 vcpu->arch.smi_pending = events->smi.pending;
2842                 if (events->smi.smm_inside_nmi)
2843                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2844                 else
2845                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2846                 if (kvm_vcpu_has_lapic(vcpu)) {
2847                         if (events->smi.latched_init)
2848                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2849                         else
2850                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2851                 }
2852         }
2853
2854         kvm_make_request(KVM_REQ_EVENT, vcpu);
2855
2856         return 0;
2857 }
2858
2859 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2860                                              struct kvm_debugregs *dbgregs)
2861 {
2862         unsigned long val;
2863
2864         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2865         kvm_get_dr(vcpu, 6, &val);
2866         dbgregs->dr6 = val;
2867         dbgregs->dr7 = vcpu->arch.dr7;
2868         dbgregs->flags = 0;
2869         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2870 }
2871
2872 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2873                                             struct kvm_debugregs *dbgregs)
2874 {
2875         if (dbgregs->flags)
2876                 return -EINVAL;
2877
2878         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2879         kvm_update_dr0123(vcpu);
2880         vcpu->arch.dr6 = dbgregs->dr6;
2881         kvm_update_dr6(vcpu);
2882         vcpu->arch.dr7 = dbgregs->dr7;
2883         kvm_update_dr7(vcpu);
2884
2885         return 0;
2886 }
2887
2888 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
2889
2890 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
2891 {
2892         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2893         u64 xstate_bv = xsave->header.xfeatures;
2894         u64 valid;
2895
2896         /*
2897          * Copy legacy XSAVE area, to avoid complications with CPUID
2898          * leaves 0 and 1 in the loop below.
2899          */
2900         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
2901
2902         /* Set XSTATE_BV */
2903         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
2904
2905         /*
2906          * Copy each region from the possibly compacted offset to the
2907          * non-compacted offset.
2908          */
2909         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
2910         while (valid) {
2911                 u64 feature = valid & -valid;
2912                 int index = fls64(feature) - 1;
2913                 void *src = get_xsave_addr(xsave, feature);
2914
2915                 if (src) {
2916                         u32 size, offset, ecx, edx;
2917                         cpuid_count(XSTATE_CPUID, index,
2918                                     &size, &offset, &ecx, &edx);
2919                         memcpy(dest + offset, src, size);
2920                 }
2921
2922                 valid -= feature;
2923         }
2924 }
2925
2926 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
2927 {
2928         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2929         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
2930         u64 valid;
2931
2932         /*
2933          * Copy legacy XSAVE area, to avoid complications with CPUID
2934          * leaves 0 and 1 in the loop below.
2935          */
2936         memcpy(xsave, src, XSAVE_HDR_OFFSET);
2937
2938         /* Set XSTATE_BV and possibly XCOMP_BV.  */
2939         xsave->header.xfeatures = xstate_bv;
2940         if (cpu_has_xsaves)
2941                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
2942
2943         /*
2944          * Copy each region from the non-compacted offset to the
2945          * possibly compacted offset.
2946          */
2947         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
2948         while (valid) {
2949                 u64 feature = valid & -valid;
2950                 int index = fls64(feature) - 1;
2951                 void *dest = get_xsave_addr(xsave, feature);
2952
2953                 if (dest) {
2954                         u32 size, offset, ecx, edx;
2955                         cpuid_count(XSTATE_CPUID, index,
2956                                     &size, &offset, &ecx, &edx);
2957                         memcpy(dest, src + offset, size);
2958                 }
2959
2960                 valid -= feature;
2961         }
2962 }
2963
2964 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2965                                          struct kvm_xsave *guest_xsave)
2966 {
2967         if (cpu_has_xsave) {
2968                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
2969                 fill_xsave((u8 *) guest_xsave->region, vcpu);
2970         } else {
2971                 memcpy(guest_xsave->region,
2972                         &vcpu->arch.guest_fpu.state.fxsave,
2973                         sizeof(struct fxregs_state));
2974                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2975                         XFEATURE_MASK_FPSSE;
2976         }
2977 }
2978
2979 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2980                                         struct kvm_xsave *guest_xsave)
2981 {
2982         u64 xstate_bv =
2983                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2984
2985         if (cpu_has_xsave) {
2986                 /*
2987                  * Here we allow setting states that are not present in
2988                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
2989                  * with old userspace.
2990                  */
2991                 if (xstate_bv & ~kvm_supported_xcr0())
2992                         return -EINVAL;
2993                 load_xsave(vcpu, (u8 *)guest_xsave->region);
2994         } else {
2995                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
2996                         return -EINVAL;
2997                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
2998                         guest_xsave->region, sizeof(struct fxregs_state));
2999         }
3000         return 0;
3001 }
3002
3003 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3004                                         struct kvm_xcrs *guest_xcrs)
3005 {
3006         if (!cpu_has_xsave) {
3007                 guest_xcrs->nr_xcrs = 0;
3008                 return;
3009         }
3010
3011         guest_xcrs->nr_xcrs = 1;
3012         guest_xcrs->flags = 0;
3013         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3014         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3015 }
3016
3017 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3018                                        struct kvm_xcrs *guest_xcrs)
3019 {
3020         int i, r = 0;
3021
3022         if (!cpu_has_xsave)
3023                 return -EINVAL;
3024
3025         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3026                 return -EINVAL;
3027
3028         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3029                 /* Only support XCR0 currently */
3030                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3031                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3032                                 guest_xcrs->xcrs[i].value);
3033                         break;
3034                 }
3035         if (r)
3036                 r = -EINVAL;
3037         return r;
3038 }
3039
3040 /*
3041  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3042  * stopped by the hypervisor.  This function will be called from the host only.
3043  * EINVAL is returned when the host attempts to set the flag for a guest that
3044  * does not support pv clocks.
3045  */
3046 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3047 {
3048         if (!vcpu->arch.pv_time_enabled)
3049                 return -EINVAL;
3050         vcpu->arch.pvclock_set_guest_stopped_request = true;
3051         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3052         return 0;
3053 }
3054
3055 long kvm_arch_vcpu_ioctl(struct file *filp,
3056                          unsigned int ioctl, unsigned long arg)
3057 {
3058         struct kvm_vcpu *vcpu = filp->private_data;
3059         void __user *argp = (void __user *)arg;
3060         int r;
3061         union {
3062                 struct kvm_lapic_state *lapic;
3063                 struct kvm_xsave *xsave;
3064                 struct kvm_xcrs *xcrs;
3065                 void *buffer;
3066         } u;
3067
3068         u.buffer = NULL;
3069         switch (ioctl) {
3070         case KVM_GET_LAPIC: {
3071                 r = -EINVAL;
3072                 if (!vcpu->arch.apic)
3073                         goto out;
3074                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3075
3076                 r = -ENOMEM;
3077                 if (!u.lapic)
3078                         goto out;
3079                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3080                 if (r)
3081                         goto out;
3082                 r = -EFAULT;
3083                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3084                         goto out;
3085                 r = 0;
3086                 break;
3087         }
3088         case KVM_SET_LAPIC: {
3089                 r = -EINVAL;
3090                 if (!vcpu->arch.apic)
3091                         goto out;
3092                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3093                 if (IS_ERR(u.lapic))
3094                         return PTR_ERR(u.lapic);
3095
3096                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3097                 break;
3098         }
3099         case KVM_INTERRUPT: {
3100                 struct kvm_interrupt irq;
3101
3102                 r = -EFAULT;
3103                 if (copy_from_user(&irq, argp, sizeof irq))
3104                         goto out;
3105                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3106                 break;
3107         }
3108         case KVM_NMI: {
3109                 r = kvm_vcpu_ioctl_nmi(vcpu);
3110                 break;
3111         }
3112         case KVM_SMI: {
3113                 r = kvm_vcpu_ioctl_smi(vcpu);
3114                 break;
3115         }
3116         case KVM_SET_CPUID: {
3117                 struct kvm_cpuid __user *cpuid_arg = argp;
3118                 struct kvm_cpuid cpuid;
3119
3120                 r = -EFAULT;
3121                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3122                         goto out;
3123                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3124                 break;
3125         }
3126         case KVM_SET_CPUID2: {
3127                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3128                 struct kvm_cpuid2 cpuid;
3129
3130                 r = -EFAULT;
3131                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3132                         goto out;
3133                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3134                                               cpuid_arg->entries);
3135                 break;
3136         }
3137         case KVM_GET_CPUID2: {
3138                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3139                 struct kvm_cpuid2 cpuid;
3140
3141                 r = -EFAULT;
3142                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3143                         goto out;
3144                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3145                                               cpuid_arg->entries);
3146                 if (r)
3147                         goto out;
3148                 r = -EFAULT;
3149                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3150                         goto out;
3151                 r = 0;
3152                 break;
3153         }
3154         case KVM_GET_MSRS:
3155                 r = msr_io(vcpu, argp, do_get_msr, 1);
3156                 break;
3157         case KVM_SET_MSRS:
3158                 r = msr_io(vcpu, argp, do_set_msr, 0);
3159                 break;
3160         case KVM_TPR_ACCESS_REPORTING: {
3161                 struct kvm_tpr_access_ctl tac;
3162
3163                 r = -EFAULT;
3164                 if (copy_from_user(&tac, argp, sizeof tac))
3165                         goto out;
3166                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3167                 if (r)
3168                         goto out;
3169                 r = -EFAULT;
3170                 if (copy_to_user(argp, &tac, sizeof tac))
3171                         goto out;
3172                 r = 0;
3173                 break;
3174         };
3175         case KVM_SET_VAPIC_ADDR: {
3176                 struct kvm_vapic_addr va;
3177
3178                 r = -EINVAL;
3179                 if (!irqchip_in_kernel(vcpu->kvm))
3180                         goto out;
3181                 r = -EFAULT;
3182                 if (copy_from_user(&va, argp, sizeof va))
3183                         goto out;
3184                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3185                 break;
3186         }
3187         case KVM_X86_SETUP_MCE: {
3188                 u64 mcg_cap;
3189
3190                 r = -EFAULT;
3191                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3192                         goto out;
3193                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3194                 break;
3195         }
3196         case KVM_X86_SET_MCE: {
3197                 struct kvm_x86_mce mce;
3198
3199                 r = -EFAULT;
3200                 if (copy_from_user(&mce, argp, sizeof mce))
3201                         goto out;
3202                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3203                 break;
3204         }
3205         case KVM_GET_VCPU_EVENTS: {
3206                 struct kvm_vcpu_events events;
3207
3208                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3209
3210                 r = -EFAULT;
3211                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3212                         break;
3213                 r = 0;
3214                 break;
3215         }
3216         case KVM_SET_VCPU_EVENTS: {
3217                 struct kvm_vcpu_events events;
3218
3219                 r = -EFAULT;
3220                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3221                         break;
3222
3223                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3224                 break;
3225         }
3226         case KVM_GET_DEBUGREGS: {
3227                 struct kvm_debugregs dbgregs;
3228
3229                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3230
3231                 r = -EFAULT;
3232                 if (copy_to_user(argp, &dbgregs,
3233                                  sizeof(struct kvm_debugregs)))
3234                         break;
3235                 r = 0;
3236                 break;
3237         }
3238         case KVM_SET_DEBUGREGS: {
3239                 struct kvm_debugregs dbgregs;
3240
3241                 r = -EFAULT;
3242                 if (copy_from_user(&dbgregs, argp,
3243                                    sizeof(struct kvm_debugregs)))
3244                         break;
3245
3246                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3247                 break;
3248         }
3249         case KVM_GET_XSAVE: {
3250                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3251                 r = -ENOMEM;
3252                 if (!u.xsave)
3253                         break;
3254
3255                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3256
3257                 r = -EFAULT;
3258                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3259                         break;
3260                 r = 0;
3261                 break;
3262         }
3263         case KVM_SET_XSAVE: {
3264                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3265                 if (IS_ERR(u.xsave))
3266                         return PTR_ERR(u.xsave);
3267
3268                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3269                 break;
3270         }
3271         case KVM_GET_XCRS: {
3272                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3273                 r = -ENOMEM;
3274                 if (!u.xcrs)
3275                         break;
3276
3277                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3278
3279                 r = -EFAULT;
3280                 if (copy_to_user(argp, u.xcrs,
3281                                  sizeof(struct kvm_xcrs)))
3282                         break;
3283                 r = 0;
3284                 break;
3285         }
3286         case KVM_SET_XCRS: {
3287                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3288                 if (IS_ERR(u.xcrs))
3289                         return PTR_ERR(u.xcrs);
3290
3291                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3292                 break;
3293         }
3294         case KVM_SET_TSC_KHZ: {
3295                 u32 user_tsc_khz;
3296
3297                 r = -EINVAL;
3298                 user_tsc_khz = (u32)arg;
3299
3300                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3301                         goto out;
3302
3303                 if (user_tsc_khz == 0)
3304                         user_tsc_khz = tsc_khz;
3305
3306                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3307
3308                 r = 0;
3309                 goto out;
3310         }
3311         case KVM_GET_TSC_KHZ: {
3312                 r = vcpu->arch.virtual_tsc_khz;
3313                 goto out;
3314         }
3315         case KVM_KVMCLOCK_CTRL: {
3316                 r = kvm_set_guest_paused(vcpu);
3317                 goto out;
3318         }
3319         default:
3320                 r = -EINVAL;
3321         }
3322 out:
3323         kfree(u.buffer);
3324         return r;
3325 }
3326
3327 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3328 {
3329         return VM_FAULT_SIGBUS;
3330 }
3331
3332 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3333 {
3334         int ret;
3335
3336         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3337                 return -EINVAL;
3338         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3339         return ret;
3340 }
3341
3342 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3343                                               u64 ident_addr)
3344 {
3345         kvm->arch.ept_identity_map_addr = ident_addr;
3346         return 0;
3347 }
3348
3349 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3350                                           u32 kvm_nr_mmu_pages)
3351 {
3352         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3353                 return -EINVAL;
3354
3355         mutex_lock(&kvm->slots_lock);
3356
3357         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3358         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3359
3360         mutex_unlock(&kvm->slots_lock);
3361         return 0;
3362 }
3363
3364 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3365 {
3366         return kvm->arch.n_max_mmu_pages;
3367 }
3368
3369 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3370 {
3371         int r;
3372
3373         r = 0;
3374         switch (chip->chip_id) {
3375         case KVM_IRQCHIP_PIC_MASTER:
3376                 memcpy(&chip->chip.pic,
3377                         &pic_irqchip(kvm)->pics[0],
3378                         sizeof(struct kvm_pic_state));
3379                 break;
3380         case KVM_IRQCHIP_PIC_SLAVE:
3381                 memcpy(&chip->chip.pic,
3382                         &pic_irqchip(kvm)->pics[1],
3383                         sizeof(struct kvm_pic_state));
3384                 break;
3385         case KVM_IRQCHIP_IOAPIC:
3386                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3387                 break;
3388         default:
3389                 r = -EINVAL;
3390                 break;
3391         }
3392         return r;
3393 }
3394
3395 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3396 {
3397         int r;
3398
3399         r = 0;
3400         switch (chip->chip_id) {
3401         case KVM_IRQCHIP_PIC_MASTER:
3402                 spin_lock(&pic_irqchip(kvm)->lock);
3403                 memcpy(&pic_irqchip(kvm)->pics[0],
3404                         &chip->chip.pic,
3405                         sizeof(struct kvm_pic_state));
3406                 spin_unlock(&pic_irqchip(kvm)->lock);
3407                 break;
3408         case KVM_IRQCHIP_PIC_SLAVE:
3409                 spin_lock(&pic_irqchip(kvm)->lock);
3410                 memcpy(&pic_irqchip(kvm)->pics[1],
3411                         &chip->chip.pic,
3412                         sizeof(struct kvm_pic_state));
3413                 spin_unlock(&pic_irqchip(kvm)->lock);
3414                 break;
3415         case KVM_IRQCHIP_IOAPIC:
3416                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3417                 break;
3418         default:
3419                 r = -EINVAL;
3420                 break;
3421         }
3422         kvm_pic_update_irq(pic_irqchip(kvm));
3423         return r;
3424 }
3425
3426 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3427 {
3428         int r = 0;
3429
3430         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3431         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3432         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3433         return r;
3434 }
3435
3436 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3437 {
3438         int r = 0;
3439
3440         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3441         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3442         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3443         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3444         return r;
3445 }
3446
3447 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3448 {
3449         int r = 0;
3450
3451         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3452         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3453                 sizeof(ps->channels));
3454         ps->flags = kvm->arch.vpit->pit_state.flags;
3455         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3456         memset(&ps->reserved, 0, sizeof(ps->reserved));
3457         return r;
3458 }
3459
3460 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3461 {
3462         int r = 0, start = 0;
3463         u32 prev_legacy, cur_legacy;
3464         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3465         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3466         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3467         if (!prev_legacy && cur_legacy)
3468                 start = 1;
3469         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3470                sizeof(kvm->arch.vpit->pit_state.channels));
3471         kvm->arch.vpit->pit_state.flags = ps->flags;
3472         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3473         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3474         return r;
3475 }
3476
3477 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3478                                  struct kvm_reinject_control *control)
3479 {
3480         if (!kvm->arch.vpit)
3481                 return -ENXIO;
3482         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3483         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3484         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3485         return 0;
3486 }
3487
3488 /**
3489  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3490  * @kvm: kvm instance
3491  * @log: slot id and address to which we copy the log
3492  *
3493  * Steps 1-4 below provide general overview of dirty page logging. See
3494  * kvm_get_dirty_log_protect() function description for additional details.
3495  *
3496  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3497  * always flush the TLB (step 4) even if previous step failed  and the dirty
3498  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3499  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3500  * writes will be marked dirty for next log read.
3501  *
3502  *   1. Take a snapshot of the bit and clear it if needed.
3503  *   2. Write protect the corresponding page.
3504  *   3. Copy the snapshot to the userspace.
3505  *   4. Flush TLB's if needed.
3506  */
3507 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3508 {
3509         bool is_dirty = false;
3510         int r;
3511
3512         mutex_lock(&kvm->slots_lock);
3513
3514         /*
3515          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3516          */
3517         if (kvm_x86_ops->flush_log_dirty)
3518                 kvm_x86_ops->flush_log_dirty(kvm);
3519
3520         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3521
3522         /*
3523          * All the TLBs can be flushed out of mmu lock, see the comments in
3524          * kvm_mmu_slot_remove_write_access().
3525          */
3526         lockdep_assert_held(&kvm->slots_lock);
3527         if (is_dirty)
3528                 kvm_flush_remote_tlbs(kvm);
3529
3530         mutex_unlock(&kvm->slots_lock);
3531         return r;
3532 }
3533
3534 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3535                         bool line_status)
3536 {
3537         if (!irqchip_in_kernel(kvm))
3538                 return -ENXIO;
3539
3540         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3541                                         irq_event->irq, irq_event->level,
3542                                         line_status);
3543         return 0;
3544 }
3545
3546 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3547                                    struct kvm_enable_cap *cap)
3548 {
3549         int r;
3550
3551         if (cap->flags)
3552                 return -EINVAL;
3553
3554         switch (cap->cap) {
3555         case KVM_CAP_DISABLE_QUIRKS:
3556                 kvm->arch.disabled_quirks = cap->args[0];
3557                 r = 0;
3558                 break;
3559         default:
3560                 r = -EINVAL;
3561                 break;
3562         }
3563         return r;
3564 }
3565
3566 long kvm_arch_vm_ioctl(struct file *filp,
3567                        unsigned int ioctl, unsigned long arg)
3568 {
3569         struct kvm *kvm = filp->private_data;
3570         void __user *argp = (void __user *)arg;
3571         int r = -ENOTTY;
3572         /*
3573          * This union makes it completely explicit to gcc-3.x
3574          * that these two variables' stack usage should be
3575          * combined, not added together.
3576          */
3577         union {
3578                 struct kvm_pit_state ps;
3579                 struct kvm_pit_state2 ps2;
3580                 struct kvm_pit_config pit_config;
3581         } u;
3582
3583         switch (ioctl) {
3584         case KVM_SET_TSS_ADDR:
3585                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3586                 break;
3587         case KVM_SET_IDENTITY_MAP_ADDR: {
3588                 u64 ident_addr;
3589
3590                 r = -EFAULT;
3591                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3592                         goto out;
3593                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3594                 break;
3595         }
3596         case KVM_SET_NR_MMU_PAGES:
3597                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3598                 break;
3599         case KVM_GET_NR_MMU_PAGES:
3600                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3601                 break;
3602         case KVM_CREATE_IRQCHIP: {
3603                 struct kvm_pic *vpic;
3604
3605                 mutex_lock(&kvm->lock);
3606                 r = -EEXIST;
3607                 if (kvm->arch.vpic)
3608                         goto create_irqchip_unlock;
3609                 r = -EINVAL;
3610                 if (atomic_read(&kvm->online_vcpus))
3611                         goto create_irqchip_unlock;
3612                 r = -ENOMEM;
3613                 vpic = kvm_create_pic(kvm);
3614                 if (vpic) {
3615                         r = kvm_ioapic_init(kvm);
3616                         if (r) {
3617                                 mutex_lock(&kvm->slots_lock);
3618                                 kvm_destroy_pic(vpic);
3619                                 mutex_unlock(&kvm->slots_lock);
3620                                 goto create_irqchip_unlock;
3621                         }
3622                 } else
3623                         goto create_irqchip_unlock;
3624                 r = kvm_setup_default_irq_routing(kvm);
3625                 if (r) {
3626                         mutex_lock(&kvm->slots_lock);
3627                         mutex_lock(&kvm->irq_lock);
3628                         kvm_ioapic_destroy(kvm);
3629                         kvm_destroy_pic(vpic);
3630                         mutex_unlock(&kvm->irq_lock);
3631                         mutex_unlock(&kvm->slots_lock);
3632                         goto create_irqchip_unlock;
3633                 }
3634                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3635                 smp_wmb();
3636                 kvm->arch.vpic = vpic;
3637         create_irqchip_unlock:
3638                 mutex_unlock(&kvm->lock);
3639                 break;
3640         }
3641         case KVM_CREATE_PIT:
3642                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3643                 goto create_pit;
3644         case KVM_CREATE_PIT2:
3645                 r = -EFAULT;
3646                 if (copy_from_user(&u.pit_config, argp,
3647                                    sizeof(struct kvm_pit_config)))
3648                         goto out;
3649         create_pit:
3650                 mutex_lock(&kvm->slots_lock);
3651                 r = -EEXIST;
3652                 if (kvm->arch.vpit)
3653                         goto create_pit_unlock;
3654                 r = -ENOMEM;
3655                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3656                 if (kvm->arch.vpit)
3657                         r = 0;
3658         create_pit_unlock:
3659                 mutex_unlock(&kvm->slots_lock);
3660                 break;
3661         case KVM_GET_IRQCHIP: {
3662                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3663                 struct kvm_irqchip *chip;
3664
3665                 chip = memdup_user(argp, sizeof(*chip));
3666                 if (IS_ERR(chip)) {
3667                         r = PTR_ERR(chip);
3668                         goto out;
3669                 }
3670
3671                 r = -ENXIO;
3672                 if (!irqchip_in_kernel(kvm))
3673                         goto get_irqchip_out;
3674                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3675                 if (r)
3676                         goto get_irqchip_out;
3677                 r = -EFAULT;
3678                 if (copy_to_user(argp, chip, sizeof *chip))
3679                         goto get_irqchip_out;
3680                 r = 0;
3681         get_irqchip_out:
3682                 kfree(chip);
3683                 break;
3684         }
3685         case KVM_SET_IRQCHIP: {
3686                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3687                 struct kvm_irqchip *chip;
3688
3689                 chip = memdup_user(argp, sizeof(*chip));
3690                 if (IS_ERR(chip)) {
3691                         r = PTR_ERR(chip);
3692                         goto out;
3693                 }
3694
3695                 r = -ENXIO;
3696                 if (!irqchip_in_kernel(kvm))
3697                         goto set_irqchip_out;
3698                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3699                 if (r)
3700                         goto set_irqchip_out;
3701                 r = 0;
3702         set_irqchip_out:
3703                 kfree(chip);
3704                 break;
3705         }
3706         case KVM_GET_PIT: {
3707                 r = -EFAULT;
3708                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3709                         goto out;
3710                 r = -ENXIO;
3711                 if (!kvm->arch.vpit)
3712                         goto out;
3713                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3714                 if (r)
3715                         goto out;
3716                 r = -EFAULT;
3717                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3718                         goto out;
3719                 r = 0;
3720                 break;
3721         }
3722         case KVM_SET_PIT: {
3723                 r = -EFAULT;
3724                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3725                         goto out;
3726                 r = -ENXIO;
3727                 if (!kvm->arch.vpit)
3728                         goto out;
3729                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3730                 break;
3731         }
3732         case KVM_GET_PIT2: {
3733                 r = -ENXIO;
3734                 if (!kvm->arch.vpit)
3735                         goto out;
3736                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3737                 if (r)
3738                         goto out;
3739                 r = -EFAULT;
3740                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3741                         goto out;
3742                 r = 0;
3743                 break;
3744         }
3745         case KVM_SET_PIT2: {
3746                 r = -EFAULT;
3747                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3748                         goto out;
3749                 r = -ENXIO;
3750                 if (!kvm->arch.vpit)
3751                         goto out;
3752                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3753                 break;
3754         }
3755         case KVM_REINJECT_CONTROL: {
3756                 struct kvm_reinject_control control;
3757                 r =  -EFAULT;
3758                 if (copy_from_user(&control, argp, sizeof(control)))
3759                         goto out;
3760                 r = kvm_vm_ioctl_reinject(kvm, &control);
3761                 break;
3762         }
3763         case KVM_SET_BOOT_CPU_ID:
3764                 r = 0;
3765                 mutex_lock(&kvm->lock);
3766                 if (atomic_read(&kvm->online_vcpus) != 0)
3767                         r = -EBUSY;
3768                 else
3769                         kvm->arch.bsp_vcpu_id = arg;
3770                 mutex_unlock(&kvm->lock);
3771                 break;
3772         case KVM_XEN_HVM_CONFIG: {
3773                 r = -EFAULT;
3774                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3775                                    sizeof(struct kvm_xen_hvm_config)))
3776                         goto out;
3777                 r = -EINVAL;
3778                 if (kvm->arch.xen_hvm_config.flags)
3779                         goto out;
3780                 r = 0;
3781                 break;
3782         }
3783         case KVM_SET_CLOCK: {
3784                 struct kvm_clock_data user_ns;
3785                 u64 now_ns;
3786                 s64 delta;
3787
3788                 r = -EFAULT;
3789                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3790                         goto out;
3791
3792                 r = -EINVAL;
3793                 if (user_ns.flags)
3794                         goto out;
3795
3796                 r = 0;
3797                 local_irq_disable();
3798                 now_ns = get_kernel_ns();
3799                 delta = user_ns.clock - now_ns;
3800                 local_irq_enable();
3801                 kvm->arch.kvmclock_offset = delta;
3802                 kvm_gen_update_masterclock(kvm);
3803                 break;
3804         }
3805         case KVM_GET_CLOCK: {
3806                 struct kvm_clock_data user_ns;
3807                 u64 now_ns;
3808
3809                 local_irq_disable();
3810                 now_ns = get_kernel_ns();
3811                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3812                 local_irq_enable();
3813                 user_ns.flags = 0;
3814                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3815
3816                 r = -EFAULT;
3817                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3818                         goto out;
3819                 r = 0;
3820                 break;
3821         }
3822         case KVM_ENABLE_CAP: {
3823                 struct kvm_enable_cap cap;
3824
3825                 r = -EFAULT;
3826                 if (copy_from_user(&cap, argp, sizeof(cap)))
3827                         goto out;
3828                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3829                 break;
3830         }
3831         default:
3832                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3833         }
3834 out:
3835         return r;
3836 }
3837
3838 static void kvm_init_msr_list(void)
3839 {
3840         u32 dummy[2];
3841         unsigned i, j;
3842
3843         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
3844                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3845                         continue;
3846
3847                 /*
3848                  * Even MSRs that are valid in the host may not be exposed
3849                  * to the guests in some cases.  We could work around this
3850                  * in VMX with the generic MSR save/load machinery, but it
3851                  * is not really worthwhile since it will really only
3852                  * happen with nested virtualization.
3853                  */
3854                 switch (msrs_to_save[i]) {
3855                 case MSR_IA32_BNDCFGS:
3856                         if (!kvm_x86_ops->mpx_supported())
3857                                 continue;
3858                         break;
3859                 default:
3860                         break;
3861                 }
3862
3863                 if (j < i)
3864                         msrs_to_save[j] = msrs_to_save[i];
3865                 j++;
3866         }
3867         num_msrs_to_save = j;
3868
3869         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
3870                 switch (emulated_msrs[i]) {
3871                 case MSR_IA32_SMBASE:
3872                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
3873                                 continue;
3874                         break;
3875                 default:
3876                         break;
3877                 }
3878
3879                 if (j < i)
3880                         emulated_msrs[j] = emulated_msrs[i];
3881                 j++;
3882         }
3883         num_emulated_msrs = j;
3884 }
3885
3886 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3887                            const void *v)
3888 {
3889         int handled = 0;
3890         int n;
3891
3892         do {
3893                 n = min(len, 8);
3894                 if (!(vcpu->arch.apic &&
3895                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
3896                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
3897                         break;
3898                 handled += n;
3899                 addr += n;
3900                 len -= n;
3901                 v += n;
3902         } while (len);
3903
3904         return handled;
3905 }
3906
3907 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3908 {
3909         int handled = 0;
3910         int n;
3911
3912         do {
3913                 n = min(len, 8);
3914                 if (!(vcpu->arch.apic &&
3915                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
3916                                          addr, n, v))
3917                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
3918                         break;
3919                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3920                 handled += n;
3921                 addr += n;
3922                 len -= n;
3923                 v += n;
3924         } while (len);
3925
3926         return handled;
3927 }
3928
3929 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3930                         struct kvm_segment *var, int seg)
3931 {
3932         kvm_x86_ops->set_segment(vcpu, var, seg);
3933 }
3934
3935 void kvm_get_segment(struct kvm_vcpu *vcpu,
3936                      struct kvm_segment *var, int seg)
3937 {
3938         kvm_x86_ops->get_segment(vcpu, var, seg);
3939 }
3940
3941 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
3942                            struct x86_exception *exception)
3943 {
3944         gpa_t t_gpa;
3945
3946         BUG_ON(!mmu_is_nested(vcpu));
3947
3948         /* NPT walks are always user-walks */
3949         access |= PFERR_USER_MASK;
3950         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
3951
3952         return t_gpa;
3953 }
3954
3955 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3956                               struct x86_exception *exception)
3957 {
3958         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3959         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3960 }
3961
3962  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3963                                 struct x86_exception *exception)
3964 {
3965         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3966         access |= PFERR_FETCH_MASK;
3967         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3968 }
3969
3970 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3971                                struct x86_exception *exception)
3972 {
3973         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3974         access |= PFERR_WRITE_MASK;
3975         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3976 }
3977
3978 /* uses this to access any guest's mapped memory without checking CPL */
3979 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3980                                 struct x86_exception *exception)
3981 {
3982         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3983 }
3984
3985 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3986                                       struct kvm_vcpu *vcpu, u32 access,
3987                                       struct x86_exception *exception)
3988 {
3989         void *data = val;
3990         int r = X86EMUL_CONTINUE;
3991
3992         while (bytes) {
3993                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3994                                                             exception);
3995                 unsigned offset = addr & (PAGE_SIZE-1);
3996                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3997                 int ret;
3998
3999                 if (gpa == UNMAPPED_GVA)
4000                         return X86EMUL_PROPAGATE_FAULT;
4001                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4002                                                offset, toread);
4003                 if (ret < 0) {
4004                         r = X86EMUL_IO_NEEDED;
4005                         goto out;
4006                 }
4007
4008                 bytes -= toread;
4009                 data += toread;
4010                 addr += toread;
4011         }
4012 out:
4013         return r;
4014 }
4015
4016 /* used for instruction fetching */
4017 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4018                                 gva_t addr, void *val, unsigned int bytes,
4019                                 struct x86_exception *exception)
4020 {
4021         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4022         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4023         unsigned offset;
4024         int ret;
4025
4026         /* Inline kvm_read_guest_virt_helper for speed.  */
4027         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4028                                                     exception);
4029         if (unlikely(gpa == UNMAPPED_GVA))
4030                 return X86EMUL_PROPAGATE_FAULT;
4031
4032         offset = addr & (PAGE_SIZE-1);
4033         if (WARN_ON(offset + bytes > PAGE_SIZE))
4034                 bytes = (unsigned)PAGE_SIZE - offset;
4035         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4036                                        offset, bytes);
4037         if (unlikely(ret < 0))
4038                 return X86EMUL_IO_NEEDED;
4039
4040         return X86EMUL_CONTINUE;
4041 }
4042
4043 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4044                                gva_t addr, void *val, unsigned int bytes,
4045                                struct x86_exception *exception)
4046 {
4047         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4048         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4049
4050         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4051                                           exception);
4052 }
4053 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4054
4055 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4056                                       gva_t addr, void *val, unsigned int bytes,
4057                                       struct x86_exception *exception)
4058 {
4059         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4060         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4061 }
4062
4063 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4064                                        gva_t addr, void *val,
4065                                        unsigned int bytes,
4066                                        struct x86_exception *exception)
4067 {
4068         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4069         void *data = val;
4070         int r = X86EMUL_CONTINUE;
4071
4072         while (bytes) {
4073                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4074                                                              PFERR_WRITE_MASK,
4075                                                              exception);
4076                 unsigned offset = addr & (PAGE_SIZE-1);
4077                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4078                 int ret;
4079
4080                 if (gpa == UNMAPPED_GVA)
4081                         return X86EMUL_PROPAGATE_FAULT;
4082                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4083                 if (ret < 0) {
4084                         r = X86EMUL_IO_NEEDED;
4085                         goto out;
4086                 }
4087
4088                 bytes -= towrite;
4089                 data += towrite;
4090                 addr += towrite;
4091         }
4092 out:
4093         return r;
4094 }
4095 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4096
4097 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4098                                 gpa_t *gpa, struct x86_exception *exception,
4099                                 bool write)
4100 {
4101         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4102                 | (write ? PFERR_WRITE_MASK : 0);
4103
4104         if (vcpu_match_mmio_gva(vcpu, gva)
4105             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4106                                  vcpu->arch.access, access)) {
4107                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4108                                         (gva & (PAGE_SIZE - 1));
4109                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4110                 return 1;
4111         }
4112
4113         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4114
4115         if (*gpa == UNMAPPED_GVA)
4116                 return -1;
4117
4118         /* For APIC access vmexit */
4119         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4120                 return 1;
4121
4122         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4123                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4124                 return 1;
4125         }
4126
4127         return 0;
4128 }
4129
4130 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4131                         const void *val, int bytes)
4132 {
4133         int ret;
4134
4135         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4136         if (ret < 0)
4137                 return 0;
4138         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4139         return 1;
4140 }
4141
4142 struct read_write_emulator_ops {
4143         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4144                                   int bytes);
4145         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4146                                   void *val, int bytes);
4147         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4148                                int bytes, void *val);
4149         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4150                                     void *val, int bytes);
4151         bool write;
4152 };
4153
4154 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4155 {
4156         if (vcpu->mmio_read_completed) {
4157                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4158                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4159                 vcpu->mmio_read_completed = 0;
4160                 return 1;
4161         }
4162
4163         return 0;
4164 }
4165
4166 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4167                         void *val, int bytes)
4168 {
4169         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4170 }
4171
4172 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4173                          void *val, int bytes)
4174 {
4175         return emulator_write_phys(vcpu, gpa, val, bytes);
4176 }
4177
4178 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4179 {
4180         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4181         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4182 }
4183
4184 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4185                           void *val, int bytes)
4186 {
4187         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4188         return X86EMUL_IO_NEEDED;
4189 }
4190
4191 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4192                            void *val, int bytes)
4193 {
4194         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4195
4196         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4197         return X86EMUL_CONTINUE;
4198 }
4199
4200 static const struct read_write_emulator_ops read_emultor = {
4201         .read_write_prepare = read_prepare,
4202         .read_write_emulate = read_emulate,
4203         .read_write_mmio = vcpu_mmio_read,
4204         .read_write_exit_mmio = read_exit_mmio,
4205 };
4206
4207 static const struct read_write_emulator_ops write_emultor = {
4208         .read_write_emulate = write_emulate,
4209         .read_write_mmio = write_mmio,
4210         .read_write_exit_mmio = write_exit_mmio,
4211         .write = true,
4212 };
4213
4214 static int emulator_read_write_onepage(unsigned long addr, void *val,
4215                                        unsigned int bytes,
4216                                        struct x86_exception *exception,
4217                                        struct kvm_vcpu *vcpu,
4218                                        const struct read_write_emulator_ops *ops)
4219 {
4220         gpa_t gpa;
4221         int handled, ret;
4222         bool write = ops->write;
4223         struct kvm_mmio_fragment *frag;
4224
4225         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4226
4227         if (ret < 0)
4228                 return X86EMUL_PROPAGATE_FAULT;
4229
4230         /* For APIC access vmexit */
4231         if (ret)
4232                 goto mmio;
4233
4234         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4235                 return X86EMUL_CONTINUE;
4236
4237 mmio:
4238         /*
4239          * Is this MMIO handled locally?
4240          */
4241         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4242         if (handled == bytes)
4243                 return X86EMUL_CONTINUE;
4244
4245         gpa += handled;
4246         bytes -= handled;
4247         val += handled;
4248
4249         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4250         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4251         frag->gpa = gpa;
4252         frag->data = val;
4253         frag->len = bytes;
4254         return X86EMUL_CONTINUE;
4255 }
4256
4257 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4258                         unsigned long addr,
4259                         void *val, unsigned int bytes,
4260                         struct x86_exception *exception,
4261                         const struct read_write_emulator_ops *ops)
4262 {
4263         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4264         gpa_t gpa;
4265         int rc;
4266
4267         if (ops->read_write_prepare &&
4268                   ops->read_write_prepare(vcpu, val, bytes))
4269                 return X86EMUL_CONTINUE;
4270
4271         vcpu->mmio_nr_fragments = 0;
4272
4273         /* Crossing a page boundary? */
4274         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4275                 int now;
4276
4277                 now = -addr & ~PAGE_MASK;
4278                 rc = emulator_read_write_onepage(addr, val, now, exception,
4279                                                  vcpu, ops);
4280
4281                 if (rc != X86EMUL_CONTINUE)
4282                         return rc;
4283                 addr += now;
4284                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4285                         addr = (u32)addr;
4286                 val += now;
4287                 bytes -= now;
4288         }
4289
4290         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4291                                          vcpu, ops);
4292         if (rc != X86EMUL_CONTINUE)
4293                 return rc;
4294
4295         if (!vcpu->mmio_nr_fragments)
4296                 return rc;
4297
4298         gpa = vcpu->mmio_fragments[0].gpa;
4299
4300         vcpu->mmio_needed = 1;
4301         vcpu->mmio_cur_fragment = 0;
4302
4303         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4304         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4305         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4306         vcpu->run->mmio.phys_addr = gpa;
4307
4308         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4309 }
4310
4311 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4312                                   unsigned long addr,
4313                                   void *val,
4314                                   unsigned int bytes,
4315                                   struct x86_exception *exception)
4316 {
4317         return emulator_read_write(ctxt, addr, val, bytes,
4318                                    exception, &read_emultor);
4319 }
4320
4321 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4322                             unsigned long addr,
4323                             const void *val,
4324                             unsigned int bytes,
4325                             struct x86_exception *exception)
4326 {
4327         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4328                                    exception, &write_emultor);
4329 }
4330
4331 #define CMPXCHG_TYPE(t, ptr, old, new) \
4332         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4333
4334 #ifdef CONFIG_X86_64
4335 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4336 #else
4337 #  define CMPXCHG64(ptr, old, new) \
4338         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4339 #endif
4340
4341 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4342                                      unsigned long addr,
4343                                      const void *old,
4344                                      const void *new,
4345                                      unsigned int bytes,
4346                                      struct x86_exception *exception)
4347 {
4348         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4349         gpa_t gpa;
4350         struct page *page;
4351         char *kaddr;
4352         bool exchanged;
4353
4354         /* guests cmpxchg8b have to be emulated atomically */
4355         if (bytes > 8 || (bytes & (bytes - 1)))
4356                 goto emul_write;
4357
4358         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4359
4360         if (gpa == UNMAPPED_GVA ||
4361             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4362                 goto emul_write;
4363
4364         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4365                 goto emul_write;
4366
4367         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4368         if (is_error_page(page))
4369                 goto emul_write;
4370
4371         kaddr = kmap_atomic(page);
4372         kaddr += offset_in_page(gpa);
4373         switch (bytes) {
4374         case 1:
4375                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4376                 break;
4377         case 2:
4378                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4379                 break;
4380         case 4:
4381                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4382                 break;
4383         case 8:
4384                 exchanged = CMPXCHG64(kaddr, old, new);
4385                 break;
4386         default:
4387                 BUG();
4388         }
4389         kunmap_atomic(kaddr);
4390         kvm_release_page_dirty(page);
4391
4392         if (!exchanged)
4393                 return X86EMUL_CMPXCHG_FAILED;
4394
4395         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4396         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4397
4398         return X86EMUL_CONTINUE;
4399
4400 emul_write:
4401         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4402
4403         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4404 }
4405
4406 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4407 {
4408         /* TODO: String I/O for in kernel device */
4409         int r;
4410
4411         if (vcpu->arch.pio.in)
4412                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4413                                     vcpu->arch.pio.size, pd);
4414         else
4415                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4416                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4417                                      pd);
4418         return r;
4419 }
4420
4421 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4422                                unsigned short port, void *val,
4423                                unsigned int count, bool in)
4424 {
4425         vcpu->arch.pio.port = port;
4426         vcpu->arch.pio.in = in;
4427         vcpu->arch.pio.count  = count;
4428         vcpu->arch.pio.size = size;
4429
4430         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4431                 vcpu->arch.pio.count = 0;
4432                 return 1;
4433         }
4434
4435         vcpu->run->exit_reason = KVM_EXIT_IO;
4436         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4437         vcpu->run->io.size = size;
4438         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4439         vcpu->run->io.count = count;
4440         vcpu->run->io.port = port;
4441
4442         return 0;
4443 }
4444
4445 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4446                                     int size, unsigned short port, void *val,
4447                                     unsigned int count)
4448 {
4449         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4450         int ret;
4451
4452         if (vcpu->arch.pio.count)
4453                 goto data_avail;
4454
4455         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4456         if (ret) {
4457 data_avail:
4458                 memcpy(val, vcpu->arch.pio_data, size * count);
4459                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4460                 vcpu->arch.pio.count = 0;
4461                 return 1;
4462         }
4463
4464         return 0;
4465 }
4466
4467 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4468                                      int size, unsigned short port,
4469                                      const void *val, unsigned int count)
4470 {
4471         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4472
4473         memcpy(vcpu->arch.pio_data, val, size * count);
4474         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4475         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4476 }
4477
4478 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4479 {
4480         return kvm_x86_ops->get_segment_base(vcpu, seg);
4481 }
4482
4483 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4484 {
4485         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4486 }
4487
4488 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4489 {
4490         if (!need_emulate_wbinvd(vcpu))
4491                 return X86EMUL_CONTINUE;
4492
4493         if (kvm_x86_ops->has_wbinvd_exit()) {
4494                 int cpu = get_cpu();
4495
4496                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4497                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4498                                 wbinvd_ipi, NULL, 1);
4499                 put_cpu();
4500                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4501         } else
4502                 wbinvd();
4503         return X86EMUL_CONTINUE;
4504 }
4505
4506 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4507 {
4508         kvm_x86_ops->skip_emulated_instruction(vcpu);
4509         return kvm_emulate_wbinvd_noskip(vcpu);
4510 }
4511 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4512
4513
4514
4515 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4516 {
4517         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4518 }
4519
4520 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4521                            unsigned long *dest)
4522 {
4523         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4524 }
4525
4526 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4527                            unsigned long value)
4528 {
4529
4530         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4531 }
4532
4533 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4534 {
4535         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4536 }
4537
4538 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4539 {
4540         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4541         unsigned long value;
4542
4543         switch (cr) {
4544         case 0:
4545                 value = kvm_read_cr0(vcpu);
4546                 break;
4547         case 2:
4548                 value = vcpu->arch.cr2;
4549                 break;
4550         case 3:
4551                 value = kvm_read_cr3(vcpu);
4552                 break;
4553         case 4:
4554                 value = kvm_read_cr4(vcpu);
4555                 break;
4556         case 8:
4557                 value = kvm_get_cr8(vcpu);
4558                 break;
4559         default:
4560                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4561                 return 0;
4562         }
4563
4564         return value;
4565 }
4566
4567 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4568 {
4569         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4570         int res = 0;
4571
4572         switch (cr) {
4573         case 0:
4574                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4575                 break;
4576         case 2:
4577                 vcpu->arch.cr2 = val;
4578                 break;
4579         case 3:
4580                 res = kvm_set_cr3(vcpu, val);
4581                 break;
4582         case 4:
4583                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4584                 break;
4585         case 8:
4586                 res = kvm_set_cr8(vcpu, val);
4587                 break;
4588         default:
4589                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4590                 res = -1;
4591         }
4592
4593         return res;
4594 }
4595
4596 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4597 {
4598         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4599 }
4600
4601 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4602 {
4603         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4604 }
4605
4606 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4607 {
4608         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4609 }
4610
4611 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4612 {
4613         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4614 }
4615
4616 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4617 {
4618         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4619 }
4620
4621 static unsigned long emulator_get_cached_segment_base(
4622         struct x86_emulate_ctxt *ctxt, int seg)
4623 {
4624         return get_segment_base(emul_to_vcpu(ctxt), seg);
4625 }
4626
4627 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4628                                  struct desc_struct *desc, u32 *base3,
4629                                  int seg)
4630 {
4631         struct kvm_segment var;
4632
4633         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4634         *selector = var.selector;
4635
4636         if (var.unusable) {
4637                 memset(desc, 0, sizeof(*desc));
4638                 return false;
4639         }
4640
4641         if (var.g)
4642                 var.limit >>= 12;
4643         set_desc_limit(desc, var.limit);
4644         set_desc_base(desc, (unsigned long)var.base);
4645 #ifdef CONFIG_X86_64
4646         if (base3)
4647                 *base3 = var.base >> 32;
4648 #endif
4649         desc->type = var.type;
4650         desc->s = var.s;
4651         desc->dpl = var.dpl;
4652         desc->p = var.present;
4653         desc->avl = var.avl;
4654         desc->l = var.l;
4655         desc->d = var.db;
4656         desc->g = var.g;
4657
4658         return true;
4659 }
4660
4661 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4662                                  struct desc_struct *desc, u32 base3,
4663                                  int seg)
4664 {
4665         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4666         struct kvm_segment var;
4667
4668         var.selector = selector;
4669         var.base = get_desc_base(desc);
4670 #ifdef CONFIG_X86_64
4671         var.base |= ((u64)base3) << 32;
4672 #endif
4673         var.limit = get_desc_limit(desc);
4674         if (desc->g)
4675                 var.limit = (var.limit << 12) | 0xfff;
4676         var.type = desc->type;
4677         var.dpl = desc->dpl;
4678         var.db = desc->d;
4679         var.s = desc->s;
4680         var.l = desc->l;
4681         var.g = desc->g;
4682         var.avl = desc->avl;
4683         var.present = desc->p;
4684         var.unusable = !var.present;
4685         var.padding = 0;
4686
4687         kvm_set_segment(vcpu, &var, seg);
4688         return;
4689 }
4690
4691 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4692                             u32 msr_index, u64 *pdata)
4693 {
4694         struct msr_data msr;
4695         int r;
4696
4697         msr.index = msr_index;
4698         msr.host_initiated = false;
4699         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4700         if (r)
4701                 return r;
4702
4703         *pdata = msr.data;
4704         return 0;
4705 }
4706
4707 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4708                             u32 msr_index, u64 data)
4709 {
4710         struct msr_data msr;
4711
4712         msr.data = data;
4713         msr.index = msr_index;
4714         msr.host_initiated = false;
4715         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4716 }
4717
4718 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4719 {
4720         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4721
4722         return vcpu->arch.smbase;
4723 }
4724
4725 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4726 {
4727         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4728
4729         vcpu->arch.smbase = smbase;
4730 }
4731
4732 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4733                               u32 pmc)
4734 {
4735         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4736 }
4737
4738 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4739                              u32 pmc, u64 *pdata)
4740 {
4741         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4742 }
4743
4744 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4745 {
4746         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4747 }
4748
4749 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4750 {
4751         preempt_disable();
4752         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4753         /*
4754          * CR0.TS may reference the host fpu state, not the guest fpu state,
4755          * so it may be clear at this point.
4756          */
4757         clts();
4758 }
4759
4760 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4761 {
4762         preempt_enable();
4763 }
4764
4765 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4766                               struct x86_instruction_info *info,
4767                               enum x86_intercept_stage stage)
4768 {
4769         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4770 }
4771
4772 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4773                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4774 {
4775         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4776 }
4777
4778 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4779 {
4780         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4781 }
4782
4783 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4784 {
4785         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4786 }
4787
4788 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4789 {
4790         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4791 }
4792
4793 static const struct x86_emulate_ops emulate_ops = {
4794         .read_gpr            = emulator_read_gpr,
4795         .write_gpr           = emulator_write_gpr,
4796         .read_std            = kvm_read_guest_virt_system,
4797         .write_std           = kvm_write_guest_virt_system,
4798         .fetch               = kvm_fetch_guest_virt,
4799         .read_emulated       = emulator_read_emulated,
4800         .write_emulated      = emulator_write_emulated,
4801         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4802         .invlpg              = emulator_invlpg,
4803         .pio_in_emulated     = emulator_pio_in_emulated,
4804         .pio_out_emulated    = emulator_pio_out_emulated,
4805         .get_segment         = emulator_get_segment,
4806         .set_segment         = emulator_set_segment,
4807         .get_cached_segment_base = emulator_get_cached_segment_base,
4808         .get_gdt             = emulator_get_gdt,
4809         .get_idt             = emulator_get_idt,
4810         .set_gdt             = emulator_set_gdt,
4811         .set_idt             = emulator_set_idt,
4812         .get_cr              = emulator_get_cr,
4813         .set_cr              = emulator_set_cr,
4814         .cpl                 = emulator_get_cpl,
4815         .get_dr              = emulator_get_dr,
4816         .set_dr              = emulator_set_dr,
4817         .get_smbase          = emulator_get_smbase,
4818         .set_smbase          = emulator_set_smbase,
4819         .set_msr             = emulator_set_msr,
4820         .get_msr             = emulator_get_msr,
4821         .check_pmc           = emulator_check_pmc,
4822         .read_pmc            = emulator_read_pmc,
4823         .halt                = emulator_halt,
4824         .wbinvd              = emulator_wbinvd,
4825         .fix_hypercall       = emulator_fix_hypercall,
4826         .get_fpu             = emulator_get_fpu,
4827         .put_fpu             = emulator_put_fpu,
4828         .intercept           = emulator_intercept,
4829         .get_cpuid           = emulator_get_cpuid,
4830         .set_nmi_mask        = emulator_set_nmi_mask,
4831 };
4832
4833 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4834 {
4835         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4836         /*
4837          * an sti; sti; sequence only disable interrupts for the first
4838          * instruction. So, if the last instruction, be it emulated or
4839          * not, left the system with the INT_STI flag enabled, it
4840          * means that the last instruction is an sti. We should not
4841          * leave the flag on in this case. The same goes for mov ss
4842          */
4843         if (int_shadow & mask)
4844                 mask = 0;
4845         if (unlikely(int_shadow || mask)) {
4846                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4847                 if (!mask)
4848                         kvm_make_request(KVM_REQ_EVENT, vcpu);
4849         }
4850 }
4851
4852 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
4853 {
4854         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4855         if (ctxt->exception.vector == PF_VECTOR)
4856                 return kvm_propagate_fault(vcpu, &ctxt->exception);
4857
4858         if (ctxt->exception.error_code_valid)
4859                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4860                                       ctxt->exception.error_code);
4861         else
4862                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4863         return false;
4864 }
4865
4866 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4867 {
4868         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4869         int cs_db, cs_l;
4870
4871         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4872
4873         ctxt->eflags = kvm_get_rflags(vcpu);
4874         ctxt->eip = kvm_rip_read(vcpu);
4875         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4876                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4877                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
4878                      cs_db                              ? X86EMUL_MODE_PROT32 :
4879                                                           X86EMUL_MODE_PROT16;
4880         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
4881         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
4882         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
4883         ctxt->emul_flags = vcpu->arch.hflags;
4884
4885         init_decode_cache(ctxt);
4886         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4887 }
4888
4889 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4890 {
4891         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4892         int ret;
4893
4894         init_emulate_ctxt(vcpu);
4895
4896         ctxt->op_bytes = 2;
4897         ctxt->ad_bytes = 2;
4898         ctxt->_eip = ctxt->eip + inc_eip;
4899         ret = emulate_int_real(ctxt, irq);
4900
4901         if (ret != X86EMUL_CONTINUE)
4902                 return EMULATE_FAIL;
4903
4904         ctxt->eip = ctxt->_eip;
4905         kvm_rip_write(vcpu, ctxt->eip);
4906         kvm_set_rflags(vcpu, ctxt->eflags);
4907
4908         if (irq == NMI_VECTOR)
4909                 vcpu->arch.nmi_pending = 0;
4910         else
4911                 vcpu->arch.interrupt.pending = false;
4912
4913         return EMULATE_DONE;
4914 }
4915 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4916
4917 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4918 {
4919         int r = EMULATE_DONE;
4920
4921         ++vcpu->stat.insn_emulation_fail;
4922         trace_kvm_emulate_insn_failed(vcpu);
4923         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
4924                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4925                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4926                 vcpu->run->internal.ndata = 0;
4927                 r = EMULATE_FAIL;
4928         }
4929         kvm_queue_exception(vcpu, UD_VECTOR);
4930
4931         return r;
4932 }
4933
4934 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4935                                   bool write_fault_to_shadow_pgtable,
4936                                   int emulation_type)
4937 {
4938         gpa_t gpa = cr2;
4939         pfn_t pfn;
4940
4941         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4942                 return false;
4943
4944         if (!vcpu->arch.mmu.direct_map) {
4945                 /*
4946                  * Write permission should be allowed since only
4947                  * write access need to be emulated.
4948                  */
4949                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4950
4951                 /*
4952                  * If the mapping is invalid in guest, let cpu retry
4953                  * it to generate fault.
4954                  */
4955                 if (gpa == UNMAPPED_GVA)
4956                         return true;
4957         }
4958
4959         /*
4960          * Do not retry the unhandleable instruction if it faults on the
4961          * readonly host memory, otherwise it will goto a infinite loop:
4962          * retry instruction -> write #PF -> emulation fail -> retry
4963          * instruction -> ...
4964          */
4965         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4966
4967         /*
4968          * If the instruction failed on the error pfn, it can not be fixed,
4969          * report the error to userspace.
4970          */
4971         if (is_error_noslot_pfn(pfn))
4972                 return false;
4973
4974         kvm_release_pfn_clean(pfn);
4975
4976         /* The instructions are well-emulated on direct mmu. */
4977         if (vcpu->arch.mmu.direct_map) {
4978                 unsigned int indirect_shadow_pages;
4979
4980                 spin_lock(&vcpu->kvm->mmu_lock);
4981                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4982                 spin_unlock(&vcpu->kvm->mmu_lock);
4983
4984                 if (indirect_shadow_pages)
4985                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4986
4987                 return true;
4988         }
4989
4990         /*
4991          * if emulation was due to access to shadowed page table
4992          * and it failed try to unshadow page and re-enter the
4993          * guest to let CPU execute the instruction.
4994          */
4995         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4996
4997         /*
4998          * If the access faults on its page table, it can not
4999          * be fixed by unprotecting shadow page and it should
5000          * be reported to userspace.
5001          */
5002         return !write_fault_to_shadow_pgtable;
5003 }
5004
5005 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5006                               unsigned long cr2,  int emulation_type)
5007 {
5008         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5009         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5010
5011         last_retry_eip = vcpu->arch.last_retry_eip;
5012         last_retry_addr = vcpu->arch.last_retry_addr;
5013
5014         /*
5015          * If the emulation is caused by #PF and it is non-page_table
5016          * writing instruction, it means the VM-EXIT is caused by shadow
5017          * page protected, we can zap the shadow page and retry this
5018          * instruction directly.
5019          *
5020          * Note: if the guest uses a non-page-table modifying instruction
5021          * on the PDE that points to the instruction, then we will unmap
5022          * the instruction and go to an infinite loop. So, we cache the
5023          * last retried eip and the last fault address, if we meet the eip
5024          * and the address again, we can break out of the potential infinite
5025          * loop.
5026          */
5027         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5028
5029         if (!(emulation_type & EMULTYPE_RETRY))
5030                 return false;
5031
5032         if (x86_page_table_writing_insn(ctxt))
5033                 return false;
5034
5035         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5036                 return false;
5037
5038         vcpu->arch.last_retry_eip = ctxt->eip;
5039         vcpu->arch.last_retry_addr = cr2;
5040
5041         if (!vcpu->arch.mmu.direct_map)
5042                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5043
5044         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5045
5046         return true;
5047 }
5048
5049 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5050 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5051
5052 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5053 {
5054         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5055                 /* This is a good place to trace that we are exiting SMM.  */
5056                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5057
5058                 if (unlikely(vcpu->arch.smi_pending)) {
5059                         kvm_make_request(KVM_REQ_SMI, vcpu);
5060                         vcpu->arch.smi_pending = 0;
5061                 } else {
5062                         /* Process a latched INIT, if any.  */
5063                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5064                 }
5065         }
5066
5067         kvm_mmu_reset_context(vcpu);
5068 }
5069
5070 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5071 {
5072         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5073
5074         vcpu->arch.hflags = emul_flags;
5075
5076         if (changed & HF_SMM_MASK)
5077                 kvm_smm_changed(vcpu);
5078 }
5079
5080 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5081                                 unsigned long *db)
5082 {
5083         u32 dr6 = 0;
5084         int i;
5085         u32 enable, rwlen;
5086
5087         enable = dr7;
5088         rwlen = dr7 >> 16;
5089         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5090                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5091                         dr6 |= (1 << i);
5092         return dr6;
5093 }
5094
5095 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5096 {
5097         struct kvm_run *kvm_run = vcpu->run;
5098
5099         /*
5100          * rflags is the old, "raw" value of the flags.  The new value has
5101          * not been saved yet.
5102          *
5103          * This is correct even for TF set by the guest, because "the
5104          * processor will not generate this exception after the instruction
5105          * that sets the TF flag".
5106          */
5107         if (unlikely(rflags & X86_EFLAGS_TF)) {
5108                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5109                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5110                                                   DR6_RTM;
5111                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5112                         kvm_run->debug.arch.exception = DB_VECTOR;
5113                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5114                         *r = EMULATE_USER_EXIT;
5115                 } else {
5116                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5117                         /*
5118                          * "Certain debug exceptions may clear bit 0-3.  The
5119                          * remaining contents of the DR6 register are never
5120                          * cleared by the processor".
5121                          */
5122                         vcpu->arch.dr6 &= ~15;
5123                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5124                         kvm_queue_exception(vcpu, DB_VECTOR);
5125                 }
5126         }
5127 }
5128
5129 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5130 {
5131         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5132             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5133                 struct kvm_run *kvm_run = vcpu->run;
5134                 unsigned long eip = kvm_get_linear_rip(vcpu);
5135                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5136                                            vcpu->arch.guest_debug_dr7,
5137                                            vcpu->arch.eff_db);
5138
5139                 if (dr6 != 0) {
5140                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5141                         kvm_run->debug.arch.pc = eip;
5142                         kvm_run->debug.arch.exception = DB_VECTOR;
5143                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5144                         *r = EMULATE_USER_EXIT;
5145                         return true;
5146                 }
5147         }
5148
5149         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5150             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5151                 unsigned long eip = kvm_get_linear_rip(vcpu);
5152                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5153                                            vcpu->arch.dr7,
5154                                            vcpu->arch.db);
5155
5156                 if (dr6 != 0) {
5157                         vcpu->arch.dr6 &= ~15;
5158                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5159                         kvm_queue_exception(vcpu, DB_VECTOR);
5160                         *r = EMULATE_DONE;
5161                         return true;
5162                 }
5163         }
5164
5165         return false;
5166 }
5167
5168 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5169                             unsigned long cr2,
5170                             int emulation_type,
5171                             void *insn,
5172                             int insn_len)
5173 {
5174         int r;
5175         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5176         bool writeback = true;
5177         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5178
5179         /*
5180          * Clear write_fault_to_shadow_pgtable here to ensure it is
5181          * never reused.
5182          */
5183         vcpu->arch.write_fault_to_shadow_pgtable = false;
5184         kvm_clear_exception_queue(vcpu);
5185
5186         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5187                 init_emulate_ctxt(vcpu);
5188
5189                 /*
5190                  * We will reenter on the same instruction since
5191                  * we do not set complete_userspace_io.  This does not
5192                  * handle watchpoints yet, those would be handled in
5193                  * the emulate_ops.
5194                  */
5195                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5196                         return r;
5197
5198                 ctxt->interruptibility = 0;
5199                 ctxt->have_exception = false;
5200                 ctxt->exception.vector = -1;
5201                 ctxt->perm_ok = false;
5202
5203                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5204
5205                 r = x86_decode_insn(ctxt, insn, insn_len);
5206
5207                 trace_kvm_emulate_insn_start(vcpu);
5208                 ++vcpu->stat.insn_emulation;
5209                 if (r != EMULATION_OK)  {
5210                         if (emulation_type & EMULTYPE_TRAP_UD)
5211                                 return EMULATE_FAIL;
5212                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5213                                                 emulation_type))
5214                                 return EMULATE_DONE;
5215                         if (emulation_type & EMULTYPE_SKIP)
5216                                 return EMULATE_FAIL;
5217                         return handle_emulation_failure(vcpu);
5218                 }
5219         }
5220
5221         if (emulation_type & EMULTYPE_SKIP) {
5222                 kvm_rip_write(vcpu, ctxt->_eip);
5223                 if (ctxt->eflags & X86_EFLAGS_RF)
5224                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5225                 return EMULATE_DONE;
5226         }
5227
5228         if (retry_instruction(ctxt, cr2, emulation_type))
5229                 return EMULATE_DONE;
5230
5231         /* this is needed for vmware backdoor interface to work since it
5232            changes registers values  during IO operation */
5233         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5234                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5235                 emulator_invalidate_register_cache(ctxt);
5236         }
5237
5238 restart:
5239         r = x86_emulate_insn(ctxt);
5240
5241         if (r == EMULATION_INTERCEPTED)
5242                 return EMULATE_DONE;
5243
5244         if (r == EMULATION_FAILED) {
5245                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5246                                         emulation_type))
5247                         return EMULATE_DONE;
5248
5249                 return handle_emulation_failure(vcpu);
5250         }
5251
5252         if (ctxt->have_exception) {
5253                 r = EMULATE_DONE;
5254                 if (inject_emulated_exception(vcpu))
5255                         return r;
5256         } else if (vcpu->arch.pio.count) {
5257                 if (!vcpu->arch.pio.in) {
5258                         /* FIXME: return into emulator if single-stepping.  */
5259                         vcpu->arch.pio.count = 0;
5260                 } else {
5261                         writeback = false;
5262                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5263                 }
5264                 r = EMULATE_USER_EXIT;
5265         } else if (vcpu->mmio_needed) {
5266                 if (!vcpu->mmio_is_write)
5267                         writeback = false;
5268                 r = EMULATE_USER_EXIT;
5269                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5270         } else if (r == EMULATION_RESTART)
5271                 goto restart;
5272         else
5273                 r = EMULATE_DONE;
5274
5275         if (writeback) {
5276                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5277                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5278                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5279                 if (vcpu->arch.hflags != ctxt->emul_flags)
5280                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5281                 kvm_rip_write(vcpu, ctxt->eip);
5282                 if (r == EMULATE_DONE)
5283                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5284                 if (!ctxt->have_exception ||
5285                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5286                         __kvm_set_rflags(vcpu, ctxt->eflags);
5287
5288                 /*
5289                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5290                  * do nothing, and it will be requested again as soon as
5291                  * the shadow expires.  But we still need to check here,
5292                  * because POPF has no interrupt shadow.
5293                  */
5294                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5295                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5296         } else
5297                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5298
5299         return r;
5300 }
5301 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5302
5303 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5304 {
5305         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5306         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5307                                             size, port, &val, 1);
5308         /* do not return to emulator after return from userspace */
5309         vcpu->arch.pio.count = 0;
5310         return ret;
5311 }
5312 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5313
5314 static void tsc_bad(void *info)
5315 {
5316         __this_cpu_write(cpu_tsc_khz, 0);
5317 }
5318
5319 static void tsc_khz_changed(void *data)
5320 {
5321         struct cpufreq_freqs *freq = data;
5322         unsigned long khz = 0;
5323
5324         if (data)
5325                 khz = freq->new;
5326         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5327                 khz = cpufreq_quick_get(raw_smp_processor_id());
5328         if (!khz)
5329                 khz = tsc_khz;
5330         __this_cpu_write(cpu_tsc_khz, khz);
5331 }
5332
5333 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5334                                      void *data)
5335 {
5336         struct cpufreq_freqs *freq = data;
5337         struct kvm *kvm;
5338         struct kvm_vcpu *vcpu;
5339         int i, send_ipi = 0;
5340
5341         /*
5342          * We allow guests to temporarily run on slowing clocks,
5343          * provided we notify them after, or to run on accelerating
5344          * clocks, provided we notify them before.  Thus time never
5345          * goes backwards.
5346          *
5347          * However, we have a problem.  We can't atomically update
5348          * the frequency of a given CPU from this function; it is
5349          * merely a notifier, which can be called from any CPU.
5350          * Changing the TSC frequency at arbitrary points in time
5351          * requires a recomputation of local variables related to
5352          * the TSC for each VCPU.  We must flag these local variables
5353          * to be updated and be sure the update takes place with the
5354          * new frequency before any guests proceed.
5355          *
5356          * Unfortunately, the combination of hotplug CPU and frequency
5357          * change creates an intractable locking scenario; the order
5358          * of when these callouts happen is undefined with respect to
5359          * CPU hotplug, and they can race with each other.  As such,
5360          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5361          * undefined; you can actually have a CPU frequency change take
5362          * place in between the computation of X and the setting of the
5363          * variable.  To protect against this problem, all updates of
5364          * the per_cpu tsc_khz variable are done in an interrupt
5365          * protected IPI, and all callers wishing to update the value
5366          * must wait for a synchronous IPI to complete (which is trivial
5367          * if the caller is on the CPU already).  This establishes the
5368          * necessary total order on variable updates.
5369          *
5370          * Note that because a guest time update may take place
5371          * anytime after the setting of the VCPU's request bit, the
5372          * correct TSC value must be set before the request.  However,
5373          * to ensure the update actually makes it to any guest which
5374          * starts running in hardware virtualization between the set
5375          * and the acquisition of the spinlock, we must also ping the
5376          * CPU after setting the request bit.
5377          *
5378          */
5379
5380         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5381                 return 0;
5382         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5383                 return 0;
5384
5385         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5386
5387         spin_lock(&kvm_lock);
5388         list_for_each_entry(kvm, &vm_list, vm_list) {
5389                 kvm_for_each_vcpu(i, vcpu, kvm) {
5390                         if (vcpu->cpu != freq->cpu)
5391                                 continue;
5392                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5393                         if (vcpu->cpu != smp_processor_id())
5394                                 send_ipi = 1;
5395                 }
5396         }
5397         spin_unlock(&kvm_lock);
5398
5399         if (freq->old < freq->new && send_ipi) {
5400                 /*
5401                  * We upscale the frequency.  Must make the guest
5402                  * doesn't see old kvmclock values while running with
5403                  * the new frequency, otherwise we risk the guest sees
5404                  * time go backwards.
5405                  *
5406                  * In case we update the frequency for another cpu
5407                  * (which might be in guest context) send an interrupt
5408                  * to kick the cpu out of guest context.  Next time
5409                  * guest context is entered kvmclock will be updated,
5410                  * so the guest will not see stale values.
5411                  */
5412                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5413         }
5414         return 0;
5415 }
5416
5417 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5418         .notifier_call  = kvmclock_cpufreq_notifier
5419 };
5420
5421 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5422                                         unsigned long action, void *hcpu)
5423 {
5424         unsigned int cpu = (unsigned long)hcpu;
5425
5426         switch (action) {
5427                 case CPU_ONLINE:
5428                 case CPU_DOWN_FAILED:
5429                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5430                         break;
5431                 case CPU_DOWN_PREPARE:
5432                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5433                         break;
5434         }
5435         return NOTIFY_OK;
5436 }
5437
5438 static struct notifier_block kvmclock_cpu_notifier_block = {
5439         .notifier_call  = kvmclock_cpu_notifier,
5440         .priority = -INT_MAX
5441 };
5442
5443 static void kvm_timer_init(void)
5444 {
5445         int cpu;
5446
5447         max_tsc_khz = tsc_khz;
5448
5449         cpu_notifier_register_begin();
5450         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5451 #ifdef CONFIG_CPU_FREQ
5452                 struct cpufreq_policy policy;
5453                 memset(&policy, 0, sizeof(policy));
5454                 cpu = get_cpu();
5455                 cpufreq_get_policy(&policy, cpu);
5456                 if (policy.cpuinfo.max_freq)
5457                         max_tsc_khz = policy.cpuinfo.max_freq;
5458                 put_cpu();
5459 #endif
5460                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5461                                           CPUFREQ_TRANSITION_NOTIFIER);
5462         }
5463         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5464         for_each_online_cpu(cpu)
5465                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5466
5467         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5468         cpu_notifier_register_done();
5469
5470 }
5471
5472 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5473
5474 int kvm_is_in_guest(void)
5475 {
5476         return __this_cpu_read(current_vcpu) != NULL;
5477 }
5478
5479 static int kvm_is_user_mode(void)
5480 {
5481         int user_mode = 3;
5482
5483         if (__this_cpu_read(current_vcpu))
5484                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5485
5486         return user_mode != 0;
5487 }
5488
5489 static unsigned long kvm_get_guest_ip(void)
5490 {
5491         unsigned long ip = 0;
5492
5493         if (__this_cpu_read(current_vcpu))
5494                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5495
5496         return ip;
5497 }
5498
5499 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5500         .is_in_guest            = kvm_is_in_guest,
5501         .is_user_mode           = kvm_is_user_mode,
5502         .get_guest_ip           = kvm_get_guest_ip,
5503 };
5504
5505 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5506 {
5507         __this_cpu_write(current_vcpu, vcpu);
5508 }
5509 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5510
5511 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5512 {
5513         __this_cpu_write(current_vcpu, NULL);
5514 }
5515 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5516
5517 static void kvm_set_mmio_spte_mask(void)
5518 {
5519         u64 mask;
5520         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5521
5522         /*
5523          * Set the reserved bits and the present bit of an paging-structure
5524          * entry to generate page fault with PFER.RSV = 1.
5525          */
5526          /* Mask the reserved physical address bits. */
5527         mask = rsvd_bits(maxphyaddr, 51);
5528
5529         /* Bit 62 is always reserved for 32bit host. */
5530         mask |= 0x3ull << 62;
5531
5532         /* Set the present bit. */
5533         mask |= 1ull;
5534
5535 #ifdef CONFIG_X86_64
5536         /*
5537          * If reserved bit is not supported, clear the present bit to disable
5538          * mmio page fault.
5539          */
5540         if (maxphyaddr == 52)
5541                 mask &= ~1ull;
5542 #endif
5543
5544         kvm_mmu_set_mmio_spte_mask(mask);
5545 }
5546
5547 #ifdef CONFIG_X86_64
5548 static void pvclock_gtod_update_fn(struct work_struct *work)
5549 {
5550         struct kvm *kvm;
5551
5552         struct kvm_vcpu *vcpu;
5553         int i;
5554
5555         spin_lock(&kvm_lock);
5556         list_for_each_entry(kvm, &vm_list, vm_list)
5557                 kvm_for_each_vcpu(i, vcpu, kvm)
5558                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5559         atomic_set(&kvm_guest_has_master_clock, 0);
5560         spin_unlock(&kvm_lock);
5561 }
5562
5563 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5564
5565 /*
5566  * Notification about pvclock gtod data update.
5567  */
5568 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5569                                void *priv)
5570 {
5571         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5572         struct timekeeper *tk = priv;
5573
5574         update_pvclock_gtod(tk);
5575
5576         /* disable master clock if host does not trust, or does not
5577          * use, TSC clocksource
5578          */
5579         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5580             atomic_read(&kvm_guest_has_master_clock) != 0)
5581                 queue_work(system_long_wq, &pvclock_gtod_work);
5582
5583         return 0;
5584 }
5585
5586 static struct notifier_block pvclock_gtod_notifier = {
5587         .notifier_call = pvclock_gtod_notify,
5588 };
5589 #endif
5590
5591 int kvm_arch_init(void *opaque)
5592 {
5593         int r;
5594         struct kvm_x86_ops *ops = opaque;
5595
5596         if (kvm_x86_ops) {
5597                 printk(KERN_ERR "kvm: already loaded the other module\n");
5598                 r = -EEXIST;
5599                 goto out;
5600         }
5601
5602         if (!ops->cpu_has_kvm_support()) {
5603                 printk(KERN_ERR "kvm: no hardware support\n");
5604                 r = -EOPNOTSUPP;
5605                 goto out;
5606         }
5607         if (ops->disabled_by_bios()) {
5608                 printk(KERN_ERR "kvm: disabled by bios\n");
5609                 r = -EOPNOTSUPP;
5610                 goto out;
5611         }
5612
5613         r = -ENOMEM;
5614         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5615         if (!shared_msrs) {
5616                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5617                 goto out;
5618         }
5619
5620         r = kvm_mmu_module_init();
5621         if (r)
5622                 goto out_free_percpu;
5623
5624         kvm_set_mmio_spte_mask();
5625
5626         kvm_x86_ops = ops;
5627
5628         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5629                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5630
5631         kvm_timer_init();
5632
5633         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5634
5635         if (cpu_has_xsave)
5636                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5637
5638         kvm_lapic_init();
5639 #ifdef CONFIG_X86_64
5640         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5641 #endif
5642
5643         return 0;
5644
5645 out_free_percpu:
5646         free_percpu(shared_msrs);
5647 out:
5648         return r;
5649 }
5650
5651 void kvm_arch_exit(void)
5652 {
5653         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5654
5655         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5656                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5657                                             CPUFREQ_TRANSITION_NOTIFIER);
5658         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5659 #ifdef CONFIG_X86_64
5660         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5661 #endif
5662         kvm_x86_ops = NULL;
5663         kvm_mmu_module_exit();
5664         free_percpu(shared_msrs);
5665 }
5666
5667 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5668 {
5669         ++vcpu->stat.halt_exits;
5670         if (irqchip_in_kernel(vcpu->kvm)) {
5671                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5672                 return 1;
5673         } else {
5674                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5675                 return 0;
5676         }
5677 }
5678 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5679
5680 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5681 {
5682         kvm_x86_ops->skip_emulated_instruction(vcpu);
5683         return kvm_vcpu_halt(vcpu);
5684 }
5685 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5686
5687 /*
5688  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5689  *
5690  * @apicid - apicid of vcpu to be kicked.
5691  */
5692 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5693 {
5694         struct kvm_lapic_irq lapic_irq;
5695
5696         lapic_irq.shorthand = 0;
5697         lapic_irq.dest_mode = 0;
5698         lapic_irq.dest_id = apicid;
5699         lapic_irq.msi_redir_hint = false;
5700
5701         lapic_irq.delivery_mode = APIC_DM_REMRD;
5702         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5703 }
5704
5705 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5706 {
5707         unsigned long nr, a0, a1, a2, a3, ret;
5708         int op_64_bit, r = 1;
5709
5710         kvm_x86_ops->skip_emulated_instruction(vcpu);
5711
5712         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5713                 return kvm_hv_hypercall(vcpu);
5714
5715         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5716         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5717         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5718         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5719         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5720
5721         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5722
5723         op_64_bit = is_64_bit_mode(vcpu);
5724         if (!op_64_bit) {
5725                 nr &= 0xFFFFFFFF;
5726                 a0 &= 0xFFFFFFFF;
5727                 a1 &= 0xFFFFFFFF;
5728                 a2 &= 0xFFFFFFFF;
5729                 a3 &= 0xFFFFFFFF;
5730         }
5731
5732         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5733                 ret = -KVM_EPERM;
5734                 goto out;
5735         }
5736
5737         switch (nr) {
5738         case KVM_HC_VAPIC_POLL_IRQ:
5739                 ret = 0;
5740                 break;
5741         case KVM_HC_KICK_CPU:
5742                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5743                 ret = 0;
5744                 break;
5745         default:
5746                 ret = -KVM_ENOSYS;
5747                 break;
5748         }
5749 out:
5750         if (!op_64_bit)
5751                 ret = (u32)ret;
5752         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5753         ++vcpu->stat.hypercalls;
5754         return r;
5755 }
5756 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5757
5758 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5759 {
5760         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5761         char instruction[3];
5762         unsigned long rip = kvm_rip_read(vcpu);
5763
5764         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5765
5766         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5767 }
5768
5769 /*
5770  * Check if userspace requested an interrupt window, and that the
5771  * interrupt window is open.
5772  *
5773  * No need to exit to userspace if we already have an interrupt queued.
5774  */
5775 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5776 {
5777         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5778                 vcpu->run->request_interrupt_window &&
5779                 kvm_arch_interrupt_allowed(vcpu));
5780 }
5781
5782 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5783 {
5784         struct kvm_run *kvm_run = vcpu->run;
5785
5786         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5787         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5788         kvm_run->cr8 = kvm_get_cr8(vcpu);
5789         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5790         if (irqchip_in_kernel(vcpu->kvm))
5791                 kvm_run->ready_for_interrupt_injection = 1;
5792         else
5793                 kvm_run->ready_for_interrupt_injection =
5794                         kvm_arch_interrupt_allowed(vcpu) &&
5795                         !kvm_cpu_has_interrupt(vcpu) &&
5796                         !kvm_event_needs_reinjection(vcpu);
5797 }
5798
5799 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5800 {
5801         int max_irr, tpr;
5802
5803         if (!kvm_x86_ops->update_cr8_intercept)
5804                 return;
5805
5806         if (!vcpu->arch.apic)
5807                 return;
5808
5809         if (!vcpu->arch.apic->vapic_addr)
5810                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5811         else
5812                 max_irr = -1;
5813
5814         if (max_irr != -1)
5815                 max_irr >>= 4;
5816
5817         tpr = kvm_lapic_get_cr8(vcpu);
5818
5819         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5820 }
5821
5822 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5823 {
5824         int r;
5825
5826         /* try to reinject previous events if any */
5827         if (vcpu->arch.exception.pending) {
5828                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5829                                         vcpu->arch.exception.has_error_code,
5830                                         vcpu->arch.exception.error_code);
5831
5832                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5833                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5834                                              X86_EFLAGS_RF);
5835
5836                 if (vcpu->arch.exception.nr == DB_VECTOR &&
5837                     (vcpu->arch.dr7 & DR7_GD)) {
5838                         vcpu->arch.dr7 &= ~DR7_GD;
5839                         kvm_update_dr7(vcpu);
5840                 }
5841
5842                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5843                                           vcpu->arch.exception.has_error_code,
5844                                           vcpu->arch.exception.error_code,
5845                                           vcpu->arch.exception.reinject);
5846                 return 0;
5847         }
5848
5849         if (vcpu->arch.nmi_injected) {
5850                 kvm_x86_ops->set_nmi(vcpu);
5851                 return 0;
5852         }
5853
5854         if (vcpu->arch.interrupt.pending) {
5855                 kvm_x86_ops->set_irq(vcpu);
5856                 return 0;
5857         }
5858
5859         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5860                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5861                 if (r != 0)
5862                         return r;
5863         }
5864
5865         /* try to inject new event if pending */
5866         if (vcpu->arch.nmi_pending) {
5867                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5868                         --vcpu->arch.nmi_pending;
5869                         vcpu->arch.nmi_injected = true;
5870                         kvm_x86_ops->set_nmi(vcpu);
5871                 }
5872         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5873                 /*
5874                  * Because interrupts can be injected asynchronously, we are
5875                  * calling check_nested_events again here to avoid a race condition.
5876                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
5877                  * proposal and current concerns.  Perhaps we should be setting
5878                  * KVM_REQ_EVENT only on certain events and not unconditionally?
5879                  */
5880                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5881                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5882                         if (r != 0)
5883                                 return r;
5884                 }
5885                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5886                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5887                                             false);
5888                         kvm_x86_ops->set_irq(vcpu);
5889                 }
5890         }
5891         return 0;
5892 }
5893
5894 static void process_nmi(struct kvm_vcpu *vcpu)
5895 {
5896         unsigned limit = 2;
5897
5898         /*
5899          * x86 is limited to one NMI running, and one NMI pending after it.
5900          * If an NMI is already in progress, limit further NMIs to just one.
5901          * Otherwise, allow two (and we'll inject the first one immediately).
5902          */
5903         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5904                 limit = 1;
5905
5906         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5907         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5908         kvm_make_request(KVM_REQ_EVENT, vcpu);
5909 }
5910
5911 #define put_smstate(type, buf, offset, val)                       \
5912         *(type *)((buf) + (offset) - 0x7e00) = val
5913
5914 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
5915 {
5916         u32 flags = 0;
5917         flags |= seg->g       << 23;
5918         flags |= seg->db      << 22;
5919         flags |= seg->l       << 21;
5920         flags |= seg->avl     << 20;
5921         flags |= seg->present << 15;
5922         flags |= seg->dpl     << 13;
5923         flags |= seg->s       << 12;
5924         flags |= seg->type    << 8;
5925         return flags;
5926 }
5927
5928 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
5929 {
5930         struct kvm_segment seg;
5931         int offset;
5932
5933         kvm_get_segment(vcpu, &seg, n);
5934         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
5935
5936         if (n < 3)
5937                 offset = 0x7f84 + n * 12;
5938         else
5939                 offset = 0x7f2c + (n - 3) * 12;
5940
5941         put_smstate(u32, buf, offset + 8, seg.base);
5942         put_smstate(u32, buf, offset + 4, seg.limit);
5943         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
5944 }
5945
5946 #ifdef CONFIG_X86_64
5947 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
5948 {
5949         struct kvm_segment seg;
5950         int offset;
5951         u16 flags;
5952
5953         kvm_get_segment(vcpu, &seg, n);
5954         offset = 0x7e00 + n * 16;
5955
5956         flags = process_smi_get_segment_flags(&seg) >> 8;
5957         put_smstate(u16, buf, offset, seg.selector);
5958         put_smstate(u16, buf, offset + 2, flags);
5959         put_smstate(u32, buf, offset + 4, seg.limit);
5960         put_smstate(u64, buf, offset + 8, seg.base);
5961 }
5962 #endif
5963
5964 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
5965 {
5966         struct desc_ptr dt;
5967         struct kvm_segment seg;
5968         unsigned long val;
5969         int i;
5970
5971         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
5972         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
5973         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
5974         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
5975
5976         for (i = 0; i < 8; i++)
5977                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
5978
5979         kvm_get_dr(vcpu, 6, &val);
5980         put_smstate(u32, buf, 0x7fcc, (u32)val);
5981         kvm_get_dr(vcpu, 7, &val);
5982         put_smstate(u32, buf, 0x7fc8, (u32)val);
5983
5984         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
5985         put_smstate(u32, buf, 0x7fc4, seg.selector);
5986         put_smstate(u32, buf, 0x7f64, seg.base);
5987         put_smstate(u32, buf, 0x7f60, seg.limit);
5988         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
5989
5990         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
5991         put_smstate(u32, buf, 0x7fc0, seg.selector);
5992         put_smstate(u32, buf, 0x7f80, seg.base);
5993         put_smstate(u32, buf, 0x7f7c, seg.limit);
5994         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
5995
5996         kvm_x86_ops->get_gdt(vcpu, &dt);
5997         put_smstate(u32, buf, 0x7f74, dt.address);
5998         put_smstate(u32, buf, 0x7f70, dt.size);
5999
6000         kvm_x86_ops->get_idt(vcpu, &dt);
6001         put_smstate(u32, buf, 0x7f58, dt.address);
6002         put_smstate(u32, buf, 0x7f54, dt.size);
6003
6004         for (i = 0; i < 6; i++)
6005                 process_smi_save_seg_32(vcpu, buf, i);
6006
6007         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6008
6009         /* revision id */
6010         put_smstate(u32, buf, 0x7efc, 0x00020000);
6011         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6012 }
6013
6014 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6015 {
6016 #ifdef CONFIG_X86_64
6017         struct desc_ptr dt;
6018         struct kvm_segment seg;
6019         unsigned long val;
6020         int i;
6021
6022         for (i = 0; i < 16; i++)
6023                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6024
6025         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6026         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6027
6028         kvm_get_dr(vcpu, 6, &val);
6029         put_smstate(u64, buf, 0x7f68, val);
6030         kvm_get_dr(vcpu, 7, &val);
6031         put_smstate(u64, buf, 0x7f60, val);
6032
6033         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6034         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6035         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6036
6037         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6038
6039         /* revision id */
6040         put_smstate(u32, buf, 0x7efc, 0x00020064);
6041
6042         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6043
6044         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6045         put_smstate(u16, buf, 0x7e90, seg.selector);
6046         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6047         put_smstate(u32, buf, 0x7e94, seg.limit);
6048         put_smstate(u64, buf, 0x7e98, seg.base);
6049
6050         kvm_x86_ops->get_idt(vcpu, &dt);
6051         put_smstate(u32, buf, 0x7e84, dt.size);
6052         put_smstate(u64, buf, 0x7e88, dt.address);
6053
6054         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6055         put_smstate(u16, buf, 0x7e70, seg.selector);
6056         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6057         put_smstate(u32, buf, 0x7e74, seg.limit);
6058         put_smstate(u64, buf, 0x7e78, seg.base);
6059
6060         kvm_x86_ops->get_gdt(vcpu, &dt);
6061         put_smstate(u32, buf, 0x7e64, dt.size);
6062         put_smstate(u64, buf, 0x7e68, dt.address);
6063
6064         for (i = 0; i < 6; i++)
6065                 process_smi_save_seg_64(vcpu, buf, i);
6066 #else
6067         WARN_ON_ONCE(1);
6068 #endif
6069 }
6070
6071 static void process_smi(struct kvm_vcpu *vcpu)
6072 {
6073         struct kvm_segment cs, ds;
6074         struct desc_ptr dt;
6075         char buf[512];
6076         u32 cr0;
6077
6078         if (is_smm(vcpu)) {
6079                 vcpu->arch.smi_pending = true;
6080                 return;
6081         }
6082
6083         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6084         vcpu->arch.hflags |= HF_SMM_MASK;
6085         memset(buf, 0, 512);
6086         if (guest_cpuid_has_longmode(vcpu))
6087                 process_smi_save_state_64(vcpu, buf);
6088         else
6089                 process_smi_save_state_32(vcpu, buf);
6090
6091         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6092
6093         if (kvm_x86_ops->get_nmi_mask(vcpu))
6094                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6095         else
6096                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6097
6098         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6099         kvm_rip_write(vcpu, 0x8000);
6100
6101         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6102         kvm_x86_ops->set_cr0(vcpu, cr0);
6103         vcpu->arch.cr0 = cr0;
6104
6105         kvm_x86_ops->set_cr4(vcpu, 0);
6106
6107         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6108         dt.address = dt.size = 0;
6109         kvm_x86_ops->set_idt(vcpu, &dt);
6110
6111         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6112
6113         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6114         cs.base = vcpu->arch.smbase;
6115
6116         ds.selector = 0;
6117         ds.base = 0;
6118
6119         cs.limit    = ds.limit = 0xffffffff;
6120         cs.type     = ds.type = 0x3;
6121         cs.dpl      = ds.dpl = 0;
6122         cs.db       = ds.db = 0;
6123         cs.s        = ds.s = 1;
6124         cs.l        = ds.l = 0;
6125         cs.g        = ds.g = 1;
6126         cs.avl      = ds.avl = 0;
6127         cs.present  = ds.present = 1;
6128         cs.unusable = ds.unusable = 0;
6129         cs.padding  = ds.padding = 0;
6130
6131         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6132         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6133         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6134         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6135         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6136         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6137
6138         if (guest_cpuid_has_longmode(vcpu))
6139                 kvm_x86_ops->set_efer(vcpu, 0);
6140
6141         kvm_update_cpuid(vcpu);
6142         kvm_mmu_reset_context(vcpu);
6143 }
6144
6145 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6146 {
6147         u64 eoi_exit_bitmap[4];
6148         u32 tmr[8];
6149
6150         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6151                 return;
6152
6153         memset(eoi_exit_bitmap, 0, 32);
6154         memset(tmr, 0, 32);
6155
6156         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6157         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6158         kvm_apic_update_tmr(vcpu, tmr);
6159 }
6160
6161 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6162 {
6163         ++vcpu->stat.tlb_flush;
6164         kvm_x86_ops->tlb_flush(vcpu);
6165 }
6166
6167 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6168 {
6169         struct page *page = NULL;
6170
6171         if (!irqchip_in_kernel(vcpu->kvm))
6172                 return;
6173
6174         if (!kvm_x86_ops->set_apic_access_page_addr)
6175                 return;
6176
6177         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6178         if (is_error_page(page))
6179                 return;
6180         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6181
6182         /*
6183          * Do not pin apic access page in memory, the MMU notifier
6184          * will call us again if it is migrated or swapped out.
6185          */
6186         put_page(page);
6187 }
6188 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6189
6190 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6191                                            unsigned long address)
6192 {
6193         /*
6194          * The physical address of apic access page is stored in the VMCS.
6195          * Update it when it becomes invalid.
6196          */
6197         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6198                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6199 }
6200
6201 /*
6202  * Returns 1 to let vcpu_run() continue the guest execution loop without
6203  * exiting to the userspace.  Otherwise, the value will be returned to the
6204  * userspace.
6205  */
6206 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6207 {
6208         int r;
6209         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6210                 vcpu->run->request_interrupt_window;
6211         bool req_immediate_exit = false;
6212
6213         if (vcpu->requests) {
6214                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6215                         kvm_mmu_unload(vcpu);
6216                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6217                         __kvm_migrate_timers(vcpu);
6218                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6219                         kvm_gen_update_masterclock(vcpu->kvm);
6220                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6221                         kvm_gen_kvmclock_update(vcpu);
6222                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6223                         r = kvm_guest_time_update(vcpu);
6224                         if (unlikely(r))
6225                                 goto out;
6226                 }
6227                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6228                         kvm_mmu_sync_roots(vcpu);
6229                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6230                         kvm_vcpu_flush_tlb(vcpu);
6231                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6232                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6233                         r = 0;
6234                         goto out;
6235                 }
6236                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6237                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6238                         r = 0;
6239                         goto out;
6240                 }
6241                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6242                         vcpu->fpu_active = 0;
6243                         kvm_x86_ops->fpu_deactivate(vcpu);
6244                 }
6245                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6246                         /* Page is swapped out. Do synthetic halt */
6247                         vcpu->arch.apf.halted = true;
6248                         r = 1;
6249                         goto out;
6250                 }
6251                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6252                         record_steal_time(vcpu);
6253                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6254                         process_smi(vcpu);
6255                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6256                         process_nmi(vcpu);
6257                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6258                         kvm_pmu_handle_event(vcpu);
6259                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6260                         kvm_pmu_deliver_pmi(vcpu);
6261                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6262                         vcpu_scan_ioapic(vcpu);
6263                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6264                         kvm_vcpu_reload_apic_access_page(vcpu);
6265                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6266                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6267                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6268                         r = 0;
6269                         goto out;
6270                 }
6271         }
6272
6273         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6274                 kvm_apic_accept_events(vcpu);
6275                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6276                         r = 1;
6277                         goto out;
6278                 }
6279
6280                 if (inject_pending_event(vcpu, req_int_win) != 0)
6281                         req_immediate_exit = true;
6282                 /* enable NMI/IRQ window open exits if needed */
6283                 else if (vcpu->arch.nmi_pending)
6284                         kvm_x86_ops->enable_nmi_window(vcpu);
6285                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6286                         kvm_x86_ops->enable_irq_window(vcpu);
6287
6288                 if (kvm_lapic_enabled(vcpu)) {
6289                         /*
6290                          * Update architecture specific hints for APIC
6291                          * virtual interrupt delivery.
6292                          */
6293                         if (kvm_x86_ops->hwapic_irr_update)
6294                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6295                                         kvm_lapic_find_highest_irr(vcpu));
6296                         update_cr8_intercept(vcpu);
6297                         kvm_lapic_sync_to_vapic(vcpu);
6298                 }
6299         }
6300
6301         r = kvm_mmu_reload(vcpu);
6302         if (unlikely(r)) {
6303                 goto cancel_injection;
6304         }
6305
6306         preempt_disable();
6307
6308         kvm_x86_ops->prepare_guest_switch(vcpu);
6309         if (vcpu->fpu_active)
6310                 kvm_load_guest_fpu(vcpu);
6311         kvm_load_guest_xcr0(vcpu);
6312
6313         vcpu->mode = IN_GUEST_MODE;
6314
6315         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6316
6317         /* We should set ->mode before check ->requests,
6318          * see the comment in make_all_cpus_request.
6319          */
6320         smp_mb__after_srcu_read_unlock();
6321
6322         local_irq_disable();
6323
6324         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6325             || need_resched() || signal_pending(current)) {
6326                 vcpu->mode = OUTSIDE_GUEST_MODE;
6327                 smp_wmb();
6328                 local_irq_enable();
6329                 preempt_enable();
6330                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6331                 r = 1;
6332                 goto cancel_injection;
6333         }
6334
6335         if (req_immediate_exit)
6336                 smp_send_reschedule(vcpu->cpu);
6337
6338         __kvm_guest_enter();
6339
6340         if (unlikely(vcpu->arch.switch_db_regs)) {
6341                 set_debugreg(0, 7);
6342                 set_debugreg(vcpu->arch.eff_db[0], 0);
6343                 set_debugreg(vcpu->arch.eff_db[1], 1);
6344                 set_debugreg(vcpu->arch.eff_db[2], 2);
6345                 set_debugreg(vcpu->arch.eff_db[3], 3);
6346                 set_debugreg(vcpu->arch.dr6, 6);
6347                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6348         }
6349
6350         trace_kvm_entry(vcpu->vcpu_id);
6351         wait_lapic_expire(vcpu);
6352         kvm_x86_ops->run(vcpu);
6353
6354         /*
6355          * Do this here before restoring debug registers on the host.  And
6356          * since we do this before handling the vmexit, a DR access vmexit
6357          * can (a) read the correct value of the debug registers, (b) set
6358          * KVM_DEBUGREG_WONT_EXIT again.
6359          */
6360         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6361                 int i;
6362
6363                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6364                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6365                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6366                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6367         }
6368
6369         /*
6370          * If the guest has used debug registers, at least dr7
6371          * will be disabled while returning to the host.
6372          * If we don't have active breakpoints in the host, we don't
6373          * care about the messed up debug address registers. But if
6374          * we have some of them active, restore the old state.
6375          */
6376         if (hw_breakpoint_active())
6377                 hw_breakpoint_restore();
6378
6379         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6380                                                            rdtsc());
6381
6382         vcpu->mode = OUTSIDE_GUEST_MODE;
6383         smp_wmb();
6384
6385         /* Interrupt is enabled by handle_external_intr() */
6386         kvm_x86_ops->handle_external_intr(vcpu);
6387
6388         ++vcpu->stat.exits;
6389
6390         /*
6391          * We must have an instruction between local_irq_enable() and
6392          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6393          * the interrupt shadow.  The stat.exits increment will do nicely.
6394          * But we need to prevent reordering, hence this barrier():
6395          */
6396         barrier();
6397
6398         kvm_guest_exit();
6399
6400         preempt_enable();
6401
6402         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6403
6404         /*
6405          * Profile KVM exit RIPs:
6406          */
6407         if (unlikely(prof_on == KVM_PROFILING)) {
6408                 unsigned long rip = kvm_rip_read(vcpu);
6409                 profile_hit(KVM_PROFILING, (void *)rip);
6410         }
6411
6412         if (unlikely(vcpu->arch.tsc_always_catchup))
6413                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6414
6415         if (vcpu->arch.apic_attention)
6416                 kvm_lapic_sync_from_vapic(vcpu);
6417
6418         r = kvm_x86_ops->handle_exit(vcpu);
6419         return r;
6420
6421 cancel_injection:
6422         kvm_x86_ops->cancel_injection(vcpu);
6423         if (unlikely(vcpu->arch.apic_attention))
6424                 kvm_lapic_sync_from_vapic(vcpu);
6425 out:
6426         return r;
6427 }
6428
6429 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6430 {
6431         if (!kvm_arch_vcpu_runnable(vcpu)) {
6432                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6433                 kvm_vcpu_block(vcpu);
6434                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6435                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6436                         return 1;
6437         }
6438
6439         kvm_apic_accept_events(vcpu);
6440         switch(vcpu->arch.mp_state) {
6441         case KVM_MP_STATE_HALTED:
6442                 vcpu->arch.pv.pv_unhalted = false;
6443                 vcpu->arch.mp_state =
6444                         KVM_MP_STATE_RUNNABLE;
6445         case KVM_MP_STATE_RUNNABLE:
6446                 vcpu->arch.apf.halted = false;
6447                 break;
6448         case KVM_MP_STATE_INIT_RECEIVED:
6449                 break;
6450         default:
6451                 return -EINTR;
6452                 break;
6453         }
6454         return 1;
6455 }
6456
6457 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6458 {
6459         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6460                 !vcpu->arch.apf.halted);
6461 }
6462
6463 static int vcpu_run(struct kvm_vcpu *vcpu)
6464 {
6465         int r;
6466         struct kvm *kvm = vcpu->kvm;
6467
6468         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6469
6470         for (;;) {
6471                 if (kvm_vcpu_running(vcpu))
6472                         r = vcpu_enter_guest(vcpu);
6473                 else
6474                         r = vcpu_block(kvm, vcpu);
6475                 if (r <= 0)
6476                         break;
6477
6478                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6479                 if (kvm_cpu_has_pending_timer(vcpu))
6480                         kvm_inject_pending_timer_irqs(vcpu);
6481
6482                 if (dm_request_for_irq_injection(vcpu)) {
6483                         r = -EINTR;
6484                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6485                         ++vcpu->stat.request_irq_exits;
6486                         break;
6487                 }
6488
6489                 kvm_check_async_pf_completion(vcpu);
6490
6491                 if (signal_pending(current)) {
6492                         r = -EINTR;
6493                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6494                         ++vcpu->stat.signal_exits;
6495                         break;
6496                 }
6497                 if (need_resched()) {
6498                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6499                         cond_resched();
6500                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6501                 }
6502         }
6503
6504         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6505
6506         return r;
6507 }
6508
6509 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6510 {
6511         int r;
6512         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6513         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6514         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6515         if (r != EMULATE_DONE)
6516                 return 0;
6517         return 1;
6518 }
6519
6520 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6521 {
6522         BUG_ON(!vcpu->arch.pio.count);
6523
6524         return complete_emulated_io(vcpu);
6525 }
6526
6527 /*
6528  * Implements the following, as a state machine:
6529  *
6530  * read:
6531  *   for each fragment
6532  *     for each mmio piece in the fragment
6533  *       write gpa, len
6534  *       exit
6535  *       copy data
6536  *   execute insn
6537  *
6538  * write:
6539  *   for each fragment
6540  *     for each mmio piece in the fragment
6541  *       write gpa, len
6542  *       copy data
6543  *       exit
6544  */
6545 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6546 {
6547         struct kvm_run *run = vcpu->run;
6548         struct kvm_mmio_fragment *frag;
6549         unsigned len;
6550
6551         BUG_ON(!vcpu->mmio_needed);
6552
6553         /* Complete previous fragment */
6554         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6555         len = min(8u, frag->len);
6556         if (!vcpu->mmio_is_write)
6557                 memcpy(frag->data, run->mmio.data, len);
6558
6559         if (frag->len <= 8) {
6560                 /* Switch to the next fragment. */
6561                 frag++;
6562                 vcpu->mmio_cur_fragment++;
6563         } else {
6564                 /* Go forward to the next mmio piece. */
6565                 frag->data += len;
6566                 frag->gpa += len;
6567                 frag->len -= len;
6568         }
6569
6570         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6571                 vcpu->mmio_needed = 0;
6572
6573                 /* FIXME: return into emulator if single-stepping.  */
6574                 if (vcpu->mmio_is_write)
6575                         return 1;
6576                 vcpu->mmio_read_completed = 1;
6577                 return complete_emulated_io(vcpu);
6578         }
6579
6580         run->exit_reason = KVM_EXIT_MMIO;
6581         run->mmio.phys_addr = frag->gpa;
6582         if (vcpu->mmio_is_write)
6583                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6584         run->mmio.len = min(8u, frag->len);
6585         run->mmio.is_write = vcpu->mmio_is_write;
6586         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6587         return 0;
6588 }
6589
6590
6591 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6592 {
6593         struct fpu *fpu = &current->thread.fpu;
6594         int r;
6595         sigset_t sigsaved;
6596
6597         fpu__activate_curr(fpu);
6598
6599         if (vcpu->sigset_active)
6600                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6601
6602         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6603                 kvm_vcpu_block(vcpu);
6604                 kvm_apic_accept_events(vcpu);
6605                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6606                 r = -EAGAIN;
6607                 goto out;
6608         }
6609
6610         /* re-sync apic's tpr */
6611         if (!irqchip_in_kernel(vcpu->kvm)) {
6612                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6613                         r = -EINVAL;
6614                         goto out;
6615                 }
6616         }
6617
6618         if (unlikely(vcpu->arch.complete_userspace_io)) {
6619                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6620                 vcpu->arch.complete_userspace_io = NULL;
6621                 r = cui(vcpu);
6622                 if (r <= 0)
6623                         goto out;
6624         } else
6625                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6626
6627         r = vcpu_run(vcpu);
6628
6629 out:
6630         post_kvm_run_save(vcpu);
6631         if (vcpu->sigset_active)
6632                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6633
6634         return r;
6635 }
6636
6637 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6638 {
6639         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6640                 /*
6641                  * We are here if userspace calls get_regs() in the middle of
6642                  * instruction emulation. Registers state needs to be copied
6643                  * back from emulation context to vcpu. Userspace shouldn't do
6644                  * that usually, but some bad designed PV devices (vmware
6645                  * backdoor interface) need this to work
6646                  */
6647                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6648                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6649         }
6650         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6651         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6652         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6653         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6654         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6655         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6656         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6657         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6658 #ifdef CONFIG_X86_64
6659         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6660         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6661         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6662         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6663         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6664         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6665         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6666         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6667 #endif
6668
6669         regs->rip = kvm_rip_read(vcpu);
6670         regs->rflags = kvm_get_rflags(vcpu);
6671
6672         return 0;
6673 }
6674
6675 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6676 {
6677         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6678         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6679
6680         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6681         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6682         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6683         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6684         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6685         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6686         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6687         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6688 #ifdef CONFIG_X86_64
6689         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6690         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6691         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6692         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6693         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6694         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6695         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6696         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6697 #endif
6698
6699         kvm_rip_write(vcpu, regs->rip);
6700         kvm_set_rflags(vcpu, regs->rflags);
6701
6702         vcpu->arch.exception.pending = false;
6703
6704         kvm_make_request(KVM_REQ_EVENT, vcpu);
6705
6706         return 0;
6707 }
6708
6709 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6710 {
6711         struct kvm_segment cs;
6712
6713         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6714         *db = cs.db;
6715         *l = cs.l;
6716 }
6717 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6718
6719 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6720                                   struct kvm_sregs *sregs)
6721 {
6722         struct desc_ptr dt;
6723
6724         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6725         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6726         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6727         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6728         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6729         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6730
6731         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6732         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6733
6734         kvm_x86_ops->get_idt(vcpu, &dt);
6735         sregs->idt.limit = dt.size;
6736         sregs->idt.base = dt.address;
6737         kvm_x86_ops->get_gdt(vcpu, &dt);
6738         sregs->gdt.limit = dt.size;
6739         sregs->gdt.base = dt.address;
6740
6741         sregs->cr0 = kvm_read_cr0(vcpu);
6742         sregs->cr2 = vcpu->arch.cr2;
6743         sregs->cr3 = kvm_read_cr3(vcpu);
6744         sregs->cr4 = kvm_read_cr4(vcpu);
6745         sregs->cr8 = kvm_get_cr8(vcpu);
6746         sregs->efer = vcpu->arch.efer;
6747         sregs->apic_base = kvm_get_apic_base(vcpu);
6748
6749         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6750
6751         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6752                 set_bit(vcpu->arch.interrupt.nr,
6753                         (unsigned long *)sregs->interrupt_bitmap);
6754
6755         return 0;
6756 }
6757
6758 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6759                                     struct kvm_mp_state *mp_state)
6760 {
6761         kvm_apic_accept_events(vcpu);
6762         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6763                                         vcpu->arch.pv.pv_unhalted)
6764                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6765         else
6766                 mp_state->mp_state = vcpu->arch.mp_state;
6767
6768         return 0;
6769 }
6770
6771 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6772                                     struct kvm_mp_state *mp_state)
6773 {
6774         if (!kvm_vcpu_has_lapic(vcpu) &&
6775             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6776                 return -EINVAL;
6777
6778         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6779                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6780                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6781         } else
6782                 vcpu->arch.mp_state = mp_state->mp_state;
6783         kvm_make_request(KVM_REQ_EVENT, vcpu);
6784         return 0;
6785 }
6786
6787 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6788                     int reason, bool has_error_code, u32 error_code)
6789 {
6790         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6791         int ret;
6792
6793         init_emulate_ctxt(vcpu);
6794
6795         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6796                                    has_error_code, error_code);
6797
6798         if (ret)
6799                 return EMULATE_FAIL;
6800
6801         kvm_rip_write(vcpu, ctxt->eip);
6802         kvm_set_rflags(vcpu, ctxt->eflags);
6803         kvm_make_request(KVM_REQ_EVENT, vcpu);
6804         return EMULATE_DONE;
6805 }
6806 EXPORT_SYMBOL_GPL(kvm_task_switch);
6807
6808 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6809                                   struct kvm_sregs *sregs)
6810 {
6811         struct msr_data apic_base_msr;
6812         int mmu_reset_needed = 0;
6813         int pending_vec, max_bits, idx;
6814         struct desc_ptr dt;
6815
6816         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6817                 return -EINVAL;
6818
6819         dt.size = sregs->idt.limit;
6820         dt.address = sregs->idt.base;
6821         kvm_x86_ops->set_idt(vcpu, &dt);
6822         dt.size = sregs->gdt.limit;
6823         dt.address = sregs->gdt.base;
6824         kvm_x86_ops->set_gdt(vcpu, &dt);
6825
6826         vcpu->arch.cr2 = sregs->cr2;
6827         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6828         vcpu->arch.cr3 = sregs->cr3;
6829         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6830
6831         kvm_set_cr8(vcpu, sregs->cr8);
6832
6833         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6834         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6835         apic_base_msr.data = sregs->apic_base;
6836         apic_base_msr.host_initiated = true;
6837         kvm_set_apic_base(vcpu, &apic_base_msr);
6838
6839         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6840         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6841         vcpu->arch.cr0 = sregs->cr0;
6842
6843         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6844         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6845         if (sregs->cr4 & X86_CR4_OSXSAVE)
6846                 kvm_update_cpuid(vcpu);
6847
6848         idx = srcu_read_lock(&vcpu->kvm->srcu);
6849         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6850                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6851                 mmu_reset_needed = 1;
6852         }
6853         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6854
6855         if (mmu_reset_needed)
6856                 kvm_mmu_reset_context(vcpu);
6857
6858         max_bits = KVM_NR_INTERRUPTS;
6859         pending_vec = find_first_bit(
6860                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6861         if (pending_vec < max_bits) {
6862                 kvm_queue_interrupt(vcpu, pending_vec, false);
6863                 pr_debug("Set back pending irq %d\n", pending_vec);
6864         }
6865
6866         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6867         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6868         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6869         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6870         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6871         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6872
6873         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6874         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6875
6876         update_cr8_intercept(vcpu);
6877
6878         /* Older userspace won't unhalt the vcpu on reset. */
6879         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6880             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6881             !is_protmode(vcpu))
6882                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6883
6884         kvm_make_request(KVM_REQ_EVENT, vcpu);
6885
6886         return 0;
6887 }
6888
6889 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6890                                         struct kvm_guest_debug *dbg)
6891 {
6892         unsigned long rflags;
6893         int i, r;
6894
6895         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6896                 r = -EBUSY;
6897                 if (vcpu->arch.exception.pending)
6898                         goto out;
6899                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6900                         kvm_queue_exception(vcpu, DB_VECTOR);
6901                 else
6902                         kvm_queue_exception(vcpu, BP_VECTOR);
6903         }
6904
6905         /*
6906          * Read rflags as long as potentially injected trace flags are still
6907          * filtered out.
6908          */
6909         rflags = kvm_get_rflags(vcpu);
6910
6911         vcpu->guest_debug = dbg->control;
6912         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6913                 vcpu->guest_debug = 0;
6914
6915         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6916                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6917                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6918                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6919         } else {
6920                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6921                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6922         }
6923         kvm_update_dr7(vcpu);
6924
6925         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6926                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6927                         get_segment_base(vcpu, VCPU_SREG_CS);
6928
6929         /*
6930          * Trigger an rflags update that will inject or remove the trace
6931          * flags.
6932          */
6933         kvm_set_rflags(vcpu, rflags);
6934
6935         kvm_x86_ops->update_db_bp_intercept(vcpu);
6936
6937         r = 0;
6938
6939 out:
6940
6941         return r;
6942 }
6943
6944 /*
6945  * Translate a guest virtual address to a guest physical address.
6946  */
6947 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6948                                     struct kvm_translation *tr)
6949 {
6950         unsigned long vaddr = tr->linear_address;
6951         gpa_t gpa;
6952         int idx;
6953
6954         idx = srcu_read_lock(&vcpu->kvm->srcu);
6955         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6956         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6957         tr->physical_address = gpa;
6958         tr->valid = gpa != UNMAPPED_GVA;
6959         tr->writeable = 1;
6960         tr->usermode = 0;
6961
6962         return 0;
6963 }
6964
6965 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6966 {
6967         struct fxregs_state *fxsave =
6968                         &vcpu->arch.guest_fpu.state.fxsave;
6969
6970         memcpy(fpu->fpr, fxsave->st_space, 128);
6971         fpu->fcw = fxsave->cwd;
6972         fpu->fsw = fxsave->swd;
6973         fpu->ftwx = fxsave->twd;
6974         fpu->last_opcode = fxsave->fop;
6975         fpu->last_ip = fxsave->rip;
6976         fpu->last_dp = fxsave->rdp;
6977         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6978
6979         return 0;
6980 }
6981
6982 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6983 {
6984         struct fxregs_state *fxsave =
6985                         &vcpu->arch.guest_fpu.state.fxsave;
6986
6987         memcpy(fxsave->st_space, fpu->fpr, 128);
6988         fxsave->cwd = fpu->fcw;
6989         fxsave->swd = fpu->fsw;
6990         fxsave->twd = fpu->ftwx;
6991         fxsave->fop = fpu->last_opcode;
6992         fxsave->rip = fpu->last_ip;
6993         fxsave->rdp = fpu->last_dp;
6994         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6995
6996         return 0;
6997 }
6998
6999 static void fx_init(struct kvm_vcpu *vcpu)
7000 {
7001         fpstate_init(&vcpu->arch.guest_fpu.state);
7002         if (cpu_has_xsaves)
7003                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7004                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7005
7006         /*
7007          * Ensure guest xcr0 is valid for loading
7008          */
7009         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7010
7011         vcpu->arch.cr0 |= X86_CR0_ET;
7012 }
7013
7014 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7015 {
7016         if (vcpu->guest_fpu_loaded)
7017                 return;
7018
7019         /*
7020          * Restore all possible states in the guest,
7021          * and assume host would use all available bits.
7022          * Guest xcr0 would be loaded later.
7023          */
7024         kvm_put_guest_xcr0(vcpu);
7025         vcpu->guest_fpu_loaded = 1;
7026         __kernel_fpu_begin();
7027         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7028         trace_kvm_fpu(1);
7029 }
7030
7031 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7032 {
7033         kvm_put_guest_xcr0(vcpu);
7034
7035         if (!vcpu->guest_fpu_loaded) {
7036                 vcpu->fpu_counter = 0;
7037                 return;
7038         }
7039
7040         vcpu->guest_fpu_loaded = 0;
7041         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7042         __kernel_fpu_end();
7043         ++vcpu->stat.fpu_reload;
7044         /*
7045          * If using eager FPU mode, or if the guest is a frequent user
7046          * of the FPU, just leave the FPU active for next time.
7047          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7048          * the FPU in bursts will revert to loading it on demand.
7049          */
7050         if (!vcpu->arch.eager_fpu) {
7051                 if (++vcpu->fpu_counter < 5)
7052                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7053         }
7054         trace_kvm_fpu(0);
7055 }
7056
7057 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7058 {
7059         kvmclock_reset(vcpu);
7060
7061         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7062         kvm_x86_ops->vcpu_free(vcpu);
7063 }
7064
7065 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7066                                                 unsigned int id)
7067 {
7068         struct kvm_vcpu *vcpu;
7069
7070         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7071                 printk_once(KERN_WARNING
7072                 "kvm: SMP vm created on host with unstable TSC; "
7073                 "guest TSC will not be reliable\n");
7074
7075         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7076
7077         return vcpu;
7078 }
7079
7080 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7081 {
7082         int r;
7083
7084         kvm_vcpu_mtrr_init(vcpu);
7085         r = vcpu_load(vcpu);
7086         if (r)
7087                 return r;
7088         kvm_vcpu_reset(vcpu, false);
7089         kvm_mmu_setup(vcpu);
7090         vcpu_put(vcpu);
7091         return r;
7092 }
7093
7094 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7095 {
7096         struct msr_data msr;
7097         struct kvm *kvm = vcpu->kvm;
7098
7099         if (vcpu_load(vcpu))
7100                 return;
7101         msr.data = 0x0;
7102         msr.index = MSR_IA32_TSC;
7103         msr.host_initiated = true;
7104         kvm_write_tsc(vcpu, &msr);
7105         vcpu_put(vcpu);
7106
7107         if (!kvmclock_periodic_sync)
7108                 return;
7109
7110         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7111                                         KVMCLOCK_SYNC_PERIOD);
7112 }
7113
7114 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7115 {
7116         int r;
7117         vcpu->arch.apf.msr_val = 0;
7118
7119         r = vcpu_load(vcpu);
7120         BUG_ON(r);
7121         kvm_mmu_unload(vcpu);
7122         vcpu_put(vcpu);
7123
7124         kvm_x86_ops->vcpu_free(vcpu);
7125 }
7126
7127 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7128 {
7129         vcpu->arch.hflags = 0;
7130
7131         atomic_set(&vcpu->arch.nmi_queued, 0);
7132         vcpu->arch.nmi_pending = 0;
7133         vcpu->arch.nmi_injected = false;
7134         kvm_clear_interrupt_queue(vcpu);
7135         kvm_clear_exception_queue(vcpu);
7136
7137         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7138         kvm_update_dr0123(vcpu);
7139         vcpu->arch.dr6 = DR6_INIT;
7140         kvm_update_dr6(vcpu);
7141         vcpu->arch.dr7 = DR7_FIXED_1;
7142         kvm_update_dr7(vcpu);
7143
7144         vcpu->arch.cr2 = 0;
7145
7146         kvm_make_request(KVM_REQ_EVENT, vcpu);
7147         vcpu->arch.apf.msr_val = 0;
7148         vcpu->arch.st.msr_val = 0;
7149
7150         kvmclock_reset(vcpu);
7151
7152         kvm_clear_async_pf_completion_queue(vcpu);
7153         kvm_async_pf_hash_reset(vcpu);
7154         vcpu->arch.apf.halted = false;
7155
7156         if (!init_event) {
7157                 kvm_pmu_reset(vcpu);
7158                 vcpu->arch.smbase = 0x30000;
7159         }
7160
7161         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7162         vcpu->arch.regs_avail = ~0;
7163         vcpu->arch.regs_dirty = ~0;
7164
7165         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7166 }
7167
7168 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7169 {
7170         struct kvm_segment cs;
7171
7172         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7173         cs.selector = vector << 8;
7174         cs.base = vector << 12;
7175         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7176         kvm_rip_write(vcpu, 0);
7177 }
7178
7179 int kvm_arch_hardware_enable(void)
7180 {
7181         struct kvm *kvm;
7182         struct kvm_vcpu *vcpu;
7183         int i;
7184         int ret;
7185         u64 local_tsc;
7186         u64 max_tsc = 0;
7187         bool stable, backwards_tsc = false;
7188
7189         kvm_shared_msr_cpu_online();
7190         ret = kvm_x86_ops->hardware_enable();
7191         if (ret != 0)
7192                 return ret;
7193
7194         local_tsc = rdtsc();
7195         stable = !check_tsc_unstable();
7196         list_for_each_entry(kvm, &vm_list, vm_list) {
7197                 kvm_for_each_vcpu(i, vcpu, kvm) {
7198                         if (!stable && vcpu->cpu == smp_processor_id())
7199                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7200                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7201                                 backwards_tsc = true;
7202                                 if (vcpu->arch.last_host_tsc > max_tsc)
7203                                         max_tsc = vcpu->arch.last_host_tsc;
7204                         }
7205                 }
7206         }
7207
7208         /*
7209          * Sometimes, even reliable TSCs go backwards.  This happens on
7210          * platforms that reset TSC during suspend or hibernate actions, but
7211          * maintain synchronization.  We must compensate.  Fortunately, we can
7212          * detect that condition here, which happens early in CPU bringup,
7213          * before any KVM threads can be running.  Unfortunately, we can't
7214          * bring the TSCs fully up to date with real time, as we aren't yet far
7215          * enough into CPU bringup that we know how much real time has actually
7216          * elapsed; our helper function, get_kernel_ns() will be using boot
7217          * variables that haven't been updated yet.
7218          *
7219          * So we simply find the maximum observed TSC above, then record the
7220          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7221          * the adjustment will be applied.  Note that we accumulate
7222          * adjustments, in case multiple suspend cycles happen before some VCPU
7223          * gets a chance to run again.  In the event that no KVM threads get a
7224          * chance to run, we will miss the entire elapsed period, as we'll have
7225          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7226          * loose cycle time.  This isn't too big a deal, since the loss will be
7227          * uniform across all VCPUs (not to mention the scenario is extremely
7228          * unlikely). It is possible that a second hibernate recovery happens
7229          * much faster than a first, causing the observed TSC here to be
7230          * smaller; this would require additional padding adjustment, which is
7231          * why we set last_host_tsc to the local tsc observed here.
7232          *
7233          * N.B. - this code below runs only on platforms with reliable TSC,
7234          * as that is the only way backwards_tsc is set above.  Also note
7235          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7236          * have the same delta_cyc adjustment applied if backwards_tsc
7237          * is detected.  Note further, this adjustment is only done once,
7238          * as we reset last_host_tsc on all VCPUs to stop this from being
7239          * called multiple times (one for each physical CPU bringup).
7240          *
7241          * Platforms with unreliable TSCs don't have to deal with this, they
7242          * will be compensated by the logic in vcpu_load, which sets the TSC to
7243          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7244          * guarantee that they stay in perfect synchronization.
7245          */
7246         if (backwards_tsc) {
7247                 u64 delta_cyc = max_tsc - local_tsc;
7248                 backwards_tsc_observed = true;
7249                 list_for_each_entry(kvm, &vm_list, vm_list) {
7250                         kvm_for_each_vcpu(i, vcpu, kvm) {
7251                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7252                                 vcpu->arch.last_host_tsc = local_tsc;
7253                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7254                         }
7255
7256                         /*
7257                          * We have to disable TSC offset matching.. if you were
7258                          * booting a VM while issuing an S4 host suspend....
7259                          * you may have some problem.  Solving this issue is
7260                          * left as an exercise to the reader.
7261                          */
7262                         kvm->arch.last_tsc_nsec = 0;
7263                         kvm->arch.last_tsc_write = 0;
7264                 }
7265
7266         }
7267         return 0;
7268 }
7269
7270 void kvm_arch_hardware_disable(void)
7271 {
7272         kvm_x86_ops->hardware_disable();
7273         drop_user_return_notifiers();
7274 }
7275
7276 int kvm_arch_hardware_setup(void)
7277 {
7278         int r;
7279
7280         r = kvm_x86_ops->hardware_setup();
7281         if (r != 0)
7282                 return r;
7283
7284         kvm_init_msr_list();
7285         return 0;
7286 }
7287
7288 void kvm_arch_hardware_unsetup(void)
7289 {
7290         kvm_x86_ops->hardware_unsetup();
7291 }
7292
7293 void kvm_arch_check_processor_compat(void *rtn)
7294 {
7295         kvm_x86_ops->check_processor_compatibility(rtn);
7296 }
7297
7298 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7299 {
7300         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7301 }
7302 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7303
7304 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7305 {
7306         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7307 }
7308
7309 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7310 {
7311         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7312 }
7313
7314 struct static_key kvm_no_apic_vcpu __read_mostly;
7315
7316 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7317 {
7318         struct page *page;
7319         struct kvm *kvm;
7320         int r;
7321
7322         BUG_ON(vcpu->kvm == NULL);
7323         kvm = vcpu->kvm;
7324
7325         vcpu->arch.pv.pv_unhalted = false;
7326         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7327         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7328                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7329         else
7330                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7331
7332         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7333         if (!page) {
7334                 r = -ENOMEM;
7335                 goto fail;
7336         }
7337         vcpu->arch.pio_data = page_address(page);
7338
7339         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7340
7341         r = kvm_mmu_create(vcpu);
7342         if (r < 0)
7343                 goto fail_free_pio_data;
7344
7345         if (irqchip_in_kernel(kvm)) {
7346                 r = kvm_create_lapic(vcpu);
7347                 if (r < 0)
7348                         goto fail_mmu_destroy;
7349         } else
7350                 static_key_slow_inc(&kvm_no_apic_vcpu);
7351
7352         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7353                                        GFP_KERNEL);
7354         if (!vcpu->arch.mce_banks) {
7355                 r = -ENOMEM;
7356                 goto fail_free_lapic;
7357         }
7358         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7359
7360         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7361                 r = -ENOMEM;
7362                 goto fail_free_mce_banks;
7363         }
7364
7365         fx_init(vcpu);
7366
7367         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7368         vcpu->arch.pv_time_enabled = false;
7369
7370         vcpu->arch.guest_supported_xcr0 = 0;
7371         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7372
7373         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7374
7375         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7376
7377         kvm_async_pf_hash_reset(vcpu);
7378         kvm_pmu_init(vcpu);
7379
7380         return 0;
7381
7382 fail_free_mce_banks:
7383         kfree(vcpu->arch.mce_banks);
7384 fail_free_lapic:
7385         kvm_free_lapic(vcpu);
7386 fail_mmu_destroy:
7387         kvm_mmu_destroy(vcpu);
7388 fail_free_pio_data:
7389         free_page((unsigned long)vcpu->arch.pio_data);
7390 fail:
7391         return r;
7392 }
7393
7394 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7395 {
7396         int idx;
7397
7398         kvm_pmu_destroy(vcpu);
7399         kfree(vcpu->arch.mce_banks);
7400         kvm_free_lapic(vcpu);
7401         idx = srcu_read_lock(&vcpu->kvm->srcu);
7402         kvm_mmu_destroy(vcpu);
7403         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7404         free_page((unsigned long)vcpu->arch.pio_data);
7405         if (!irqchip_in_kernel(vcpu->kvm))
7406                 static_key_slow_dec(&kvm_no_apic_vcpu);
7407 }
7408
7409 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7410 {
7411         kvm_x86_ops->sched_in(vcpu, cpu);
7412 }
7413
7414 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7415 {
7416         if (type)
7417                 return -EINVAL;
7418
7419         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7420         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7421         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7422         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7423         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7424
7425         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7426         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7427         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7428         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7429                 &kvm->arch.irq_sources_bitmap);
7430
7431         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7432         mutex_init(&kvm->arch.apic_map_lock);
7433         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7434
7435         pvclock_update_vm_gtod_copy(kvm);
7436
7437         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7438         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7439
7440         return 0;
7441 }
7442
7443 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7444 {
7445         int r;
7446         r = vcpu_load(vcpu);
7447         BUG_ON(r);
7448         kvm_mmu_unload(vcpu);
7449         vcpu_put(vcpu);
7450 }
7451
7452 static void kvm_free_vcpus(struct kvm *kvm)
7453 {
7454         unsigned int i;
7455         struct kvm_vcpu *vcpu;
7456
7457         /*
7458          * Unpin any mmu pages first.
7459          */
7460         kvm_for_each_vcpu(i, vcpu, kvm) {
7461                 kvm_clear_async_pf_completion_queue(vcpu);
7462                 kvm_unload_vcpu_mmu(vcpu);
7463         }
7464         kvm_for_each_vcpu(i, vcpu, kvm)
7465                 kvm_arch_vcpu_free(vcpu);
7466
7467         mutex_lock(&kvm->lock);
7468         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7469                 kvm->vcpus[i] = NULL;
7470
7471         atomic_set(&kvm->online_vcpus, 0);
7472         mutex_unlock(&kvm->lock);
7473 }
7474
7475 void kvm_arch_sync_events(struct kvm *kvm)
7476 {
7477         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7478         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7479         kvm_free_all_assigned_devices(kvm);
7480         kvm_free_pit(kvm);
7481 }
7482
7483 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7484 {
7485         int i, r;
7486         unsigned long hva;
7487         struct kvm_memslots *slots = kvm_memslots(kvm);
7488         struct kvm_memory_slot *slot, old;
7489
7490         /* Called with kvm->slots_lock held.  */
7491         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7492                 return -EINVAL;
7493
7494         slot = id_to_memslot(slots, id);
7495         if (size) {
7496                 if (WARN_ON(slot->npages))
7497                         return -EEXIST;
7498
7499                 /*
7500                  * MAP_SHARED to prevent internal slot pages from being moved
7501                  * by fork()/COW.
7502                  */
7503                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7504                               MAP_SHARED | MAP_ANONYMOUS, 0);
7505                 if (IS_ERR((void *)hva))
7506                         return PTR_ERR((void *)hva);
7507         } else {
7508                 if (!slot->npages)
7509                         return 0;
7510
7511                 hva = 0;
7512         }
7513
7514         old = *slot;
7515         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7516                 struct kvm_userspace_memory_region m;
7517
7518                 m.slot = id | (i << 16);
7519                 m.flags = 0;
7520                 m.guest_phys_addr = gpa;
7521                 m.userspace_addr = hva;
7522                 m.memory_size = size;
7523                 r = __kvm_set_memory_region(kvm, &m);
7524                 if (r < 0)
7525                         return r;
7526         }
7527
7528         if (!size) {
7529                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7530                 WARN_ON(r < 0);
7531         }
7532
7533         return 0;
7534 }
7535 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7536
7537 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7538 {
7539         int r;
7540
7541         mutex_lock(&kvm->slots_lock);
7542         r = __x86_set_memory_region(kvm, id, gpa, size);
7543         mutex_unlock(&kvm->slots_lock);
7544
7545         return r;
7546 }
7547 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7548
7549 void kvm_arch_destroy_vm(struct kvm *kvm)
7550 {
7551         if (current->mm == kvm->mm) {
7552                 /*
7553                  * Free memory regions allocated on behalf of userspace,
7554                  * unless the the memory map has changed due to process exit
7555                  * or fd copying.
7556                  */
7557                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7558                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7559                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7560         }
7561         kvm_iommu_unmap_guest(kvm);
7562         kfree(kvm->arch.vpic);
7563         kfree(kvm->arch.vioapic);
7564         kvm_free_vcpus(kvm);
7565         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7566 }
7567
7568 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7569                            struct kvm_memory_slot *dont)
7570 {
7571         int i;
7572
7573         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7574                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7575                         kvfree(free->arch.rmap[i]);
7576                         free->arch.rmap[i] = NULL;
7577                 }
7578                 if (i == 0)
7579                         continue;
7580
7581                 if (!dont || free->arch.lpage_info[i - 1] !=
7582                              dont->arch.lpage_info[i - 1]) {
7583                         kvfree(free->arch.lpage_info[i - 1]);
7584                         free->arch.lpage_info[i - 1] = NULL;
7585                 }
7586         }
7587 }
7588
7589 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7590                             unsigned long npages)
7591 {
7592         int i;
7593
7594         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7595                 unsigned long ugfn;
7596                 int lpages;
7597                 int level = i + 1;
7598
7599                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7600                                       slot->base_gfn, level) + 1;
7601
7602                 slot->arch.rmap[i] =
7603                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7604                 if (!slot->arch.rmap[i])
7605                         goto out_free;
7606                 if (i == 0)
7607                         continue;
7608
7609                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7610                                         sizeof(*slot->arch.lpage_info[i - 1]));
7611                 if (!slot->arch.lpage_info[i - 1])
7612                         goto out_free;
7613
7614                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7615                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7616                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7617                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7618                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7619                 /*
7620                  * If the gfn and userspace address are not aligned wrt each
7621                  * other, or if explicitly asked to, disable large page
7622                  * support for this slot
7623                  */
7624                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7625                     !kvm_largepages_enabled()) {
7626                         unsigned long j;
7627
7628                         for (j = 0; j < lpages; ++j)
7629                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7630                 }
7631         }
7632
7633         return 0;
7634
7635 out_free:
7636         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7637                 kvfree(slot->arch.rmap[i]);
7638                 slot->arch.rmap[i] = NULL;
7639                 if (i == 0)
7640                         continue;
7641
7642                 kvfree(slot->arch.lpage_info[i - 1]);
7643                 slot->arch.lpage_info[i - 1] = NULL;
7644         }
7645         return -ENOMEM;
7646 }
7647
7648 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7649 {
7650         /*
7651          * memslots->generation has been incremented.
7652          * mmio generation may have reached its maximum value.
7653          */
7654         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7655 }
7656
7657 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7658                                 struct kvm_memory_slot *memslot,
7659                                 const struct kvm_userspace_memory_region *mem,
7660                                 enum kvm_mr_change change)
7661 {
7662         return 0;
7663 }
7664
7665 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7666                                      struct kvm_memory_slot *new)
7667 {
7668         /* Still write protect RO slot */
7669         if (new->flags & KVM_MEM_READONLY) {
7670                 kvm_mmu_slot_remove_write_access(kvm, new);
7671                 return;
7672         }
7673
7674         /*
7675          * Call kvm_x86_ops dirty logging hooks when they are valid.
7676          *
7677          * kvm_x86_ops->slot_disable_log_dirty is called when:
7678          *
7679          *  - KVM_MR_CREATE with dirty logging is disabled
7680          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7681          *
7682          * The reason is, in case of PML, we need to set D-bit for any slots
7683          * with dirty logging disabled in order to eliminate unnecessary GPA
7684          * logging in PML buffer (and potential PML buffer full VMEXT). This
7685          * guarantees leaving PML enabled during guest's lifetime won't have
7686          * any additonal overhead from PML when guest is running with dirty
7687          * logging disabled for memory slots.
7688          *
7689          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7690          * to dirty logging mode.
7691          *
7692          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7693          *
7694          * In case of write protect:
7695          *
7696          * Write protect all pages for dirty logging.
7697          *
7698          * All the sptes including the large sptes which point to this
7699          * slot are set to readonly. We can not create any new large
7700          * spte on this slot until the end of the logging.
7701          *
7702          * See the comments in fast_page_fault().
7703          */
7704         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7705                 if (kvm_x86_ops->slot_enable_log_dirty)
7706                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7707                 else
7708                         kvm_mmu_slot_remove_write_access(kvm, new);
7709         } else {
7710                 if (kvm_x86_ops->slot_disable_log_dirty)
7711                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7712         }
7713 }
7714
7715 void kvm_arch_commit_memory_region(struct kvm *kvm,
7716                                 const struct kvm_userspace_memory_region *mem,
7717                                 const struct kvm_memory_slot *old,
7718                                 const struct kvm_memory_slot *new,
7719                                 enum kvm_mr_change change)
7720 {
7721         int nr_mmu_pages = 0;
7722
7723         if (!kvm->arch.n_requested_mmu_pages)
7724                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7725
7726         if (nr_mmu_pages)
7727                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7728
7729         /*
7730          * Dirty logging tracks sptes in 4k granularity, meaning that large
7731          * sptes have to be split.  If live migration is successful, the guest
7732          * in the source machine will be destroyed and large sptes will be
7733          * created in the destination. However, if the guest continues to run
7734          * in the source machine (for example if live migration fails), small
7735          * sptes will remain around and cause bad performance.
7736          *
7737          * Scan sptes if dirty logging has been stopped, dropping those
7738          * which can be collapsed into a single large-page spte.  Later
7739          * page faults will create the large-page sptes.
7740          */
7741         if ((change != KVM_MR_DELETE) &&
7742                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7743                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7744                 kvm_mmu_zap_collapsible_sptes(kvm, new);
7745
7746         /*
7747          * Set up write protection and/or dirty logging for the new slot.
7748          *
7749          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7750          * been zapped so no dirty logging staff is needed for old slot. For
7751          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7752          * new and it's also covered when dealing with the new slot.
7753          *
7754          * FIXME: const-ify all uses of struct kvm_memory_slot.
7755          */
7756         if (change != KVM_MR_DELETE)
7757                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7758 }
7759
7760 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7761 {
7762         kvm_mmu_invalidate_zap_all_pages(kvm);
7763 }
7764
7765 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7766                                    struct kvm_memory_slot *slot)
7767 {
7768         kvm_mmu_invalidate_zap_all_pages(kvm);
7769 }
7770
7771 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
7772 {
7773         if (!list_empty_careful(&vcpu->async_pf.done))
7774                 return true;
7775
7776         if (kvm_apic_has_events(vcpu))
7777                 return true;
7778
7779         if (vcpu->arch.pv.pv_unhalted)
7780                 return true;
7781
7782         if (atomic_read(&vcpu->arch.nmi_queued))
7783                 return true;
7784
7785         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
7786                 return true;
7787
7788         if (kvm_arch_interrupt_allowed(vcpu) &&
7789             kvm_cpu_has_interrupt(vcpu))
7790                 return true;
7791
7792         return false;
7793 }
7794
7795 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7796 {
7797         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7798                 kvm_x86_ops->check_nested_events(vcpu, false);
7799
7800         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
7801 }
7802
7803 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7804 {
7805         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7806 }
7807
7808 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7809 {
7810         return kvm_x86_ops->interrupt_allowed(vcpu);
7811 }
7812
7813 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7814 {
7815         if (is_64_bit_mode(vcpu))
7816                 return kvm_rip_read(vcpu);
7817         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7818                      kvm_rip_read(vcpu));
7819 }
7820 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7821
7822 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7823 {
7824         return kvm_get_linear_rip(vcpu) == linear_rip;
7825 }
7826 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7827
7828 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7829 {
7830         unsigned long rflags;
7831
7832         rflags = kvm_x86_ops->get_rflags(vcpu);
7833         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7834                 rflags &= ~X86_EFLAGS_TF;
7835         return rflags;
7836 }
7837 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7838
7839 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7840 {
7841         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7842             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7843                 rflags |= X86_EFLAGS_TF;
7844         kvm_x86_ops->set_rflags(vcpu, rflags);
7845 }
7846
7847 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7848 {
7849         __kvm_set_rflags(vcpu, rflags);
7850         kvm_make_request(KVM_REQ_EVENT, vcpu);
7851 }
7852 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7853
7854 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7855 {
7856         int r;
7857
7858         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7859               work->wakeup_all)
7860                 return;
7861
7862         r = kvm_mmu_reload(vcpu);
7863         if (unlikely(r))
7864                 return;
7865
7866         if (!vcpu->arch.mmu.direct_map &&
7867               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7868                 return;
7869
7870         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7871 }
7872
7873 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7874 {
7875         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7876 }
7877
7878 static inline u32 kvm_async_pf_next_probe(u32 key)
7879 {
7880         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7881 }
7882
7883 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7884 {
7885         u32 key = kvm_async_pf_hash_fn(gfn);
7886
7887         while (vcpu->arch.apf.gfns[key] != ~0)
7888                 key = kvm_async_pf_next_probe(key);
7889
7890         vcpu->arch.apf.gfns[key] = gfn;
7891 }
7892
7893 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7894 {
7895         int i;
7896         u32 key = kvm_async_pf_hash_fn(gfn);
7897
7898         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7899                      (vcpu->arch.apf.gfns[key] != gfn &&
7900                       vcpu->arch.apf.gfns[key] != ~0); i++)
7901                 key = kvm_async_pf_next_probe(key);
7902
7903         return key;
7904 }
7905
7906 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7907 {
7908         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7909 }
7910
7911 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7912 {
7913         u32 i, j, k;
7914
7915         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7916         while (true) {
7917                 vcpu->arch.apf.gfns[i] = ~0;
7918                 do {
7919                         j = kvm_async_pf_next_probe(j);
7920                         if (vcpu->arch.apf.gfns[j] == ~0)
7921                                 return;
7922                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7923                         /*
7924                          * k lies cyclically in ]i,j]
7925                          * |    i.k.j |
7926                          * |....j i.k.| or  |.k..j i...|
7927                          */
7928                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7929                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7930                 i = j;
7931         }
7932 }
7933
7934 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7935 {
7936
7937         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7938                                       sizeof(val));
7939 }
7940
7941 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7942                                      struct kvm_async_pf *work)
7943 {
7944         struct x86_exception fault;
7945
7946         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7947         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7948
7949         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7950             (vcpu->arch.apf.send_user_only &&
7951              kvm_x86_ops->get_cpl(vcpu) == 0))
7952                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7953         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7954                 fault.vector = PF_VECTOR;
7955                 fault.error_code_valid = true;
7956                 fault.error_code = 0;
7957                 fault.nested_page_fault = false;
7958                 fault.address = work->arch.token;
7959                 kvm_inject_page_fault(vcpu, &fault);
7960         }
7961 }
7962
7963 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7964                                  struct kvm_async_pf *work)
7965 {
7966         struct x86_exception fault;
7967
7968         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7969         if (work->wakeup_all)
7970                 work->arch.token = ~0; /* broadcast wakeup */
7971         else
7972                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7973
7974         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7975             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7976                 fault.vector = PF_VECTOR;
7977                 fault.error_code_valid = true;
7978                 fault.error_code = 0;
7979                 fault.nested_page_fault = false;
7980                 fault.address = work->arch.token;
7981                 kvm_inject_page_fault(vcpu, &fault);
7982         }
7983         vcpu->arch.apf.halted = false;
7984         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7985 }
7986
7987 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7988 {
7989         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7990                 return true;
7991         else
7992                 return !kvm_event_needs_reinjection(vcpu) &&
7993                         kvm_x86_ops->interrupt_allowed(vcpu);
7994 }
7995
7996 void kvm_arch_start_assignment(struct kvm *kvm)
7997 {
7998         atomic_inc(&kvm->arch.assigned_device_count);
7999 }
8000 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8001
8002 void kvm_arch_end_assignment(struct kvm *kvm)
8003 {
8004         atomic_dec(&kvm->arch.assigned_device_count);
8005 }
8006 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8007
8008 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8009 {
8010         return atomic_read(&kvm->arch.assigned_device_count);
8011 }
8012 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8013
8014 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8015 {
8016         atomic_inc(&kvm->arch.noncoherent_dma_count);
8017 }
8018 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8019
8020 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8021 {
8022         atomic_dec(&kvm->arch.noncoherent_dma_count);
8023 }
8024 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8025
8026 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8027 {
8028         return atomic_read(&kvm->arch.noncoherent_dma_count);
8029 }
8030 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8031
8032 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8033 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8034 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8035 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8036 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8037 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8038 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8039 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8040 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8041 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8042 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8043 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8044 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8045 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8046 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);