]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/nvme-core.c
Merge tag 'mfd-fixes-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[karo-tx-linux.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/list_sort.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <scsi/sg.h>
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45
46 #define NVME_MINORS             (1U << MINORBITS)
47 #define NVME_Q_DEPTH            1024
48 #define NVME_AQ_DEPTH           256
49 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
51 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
52 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
53
54 static unsigned char admin_timeout = 60;
55 module_param(admin_timeout, byte, 0644);
56 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
57
58 unsigned char nvme_io_timeout = 30;
59 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
60 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
61
62 static unsigned char shutdown_timeout = 5;
63 module_param(shutdown_timeout, byte, 0644);
64 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
65
66 static int nvme_major;
67 module_param(nvme_major, int, 0);
68
69 static int nvme_char_major;
70 module_param(nvme_char_major, int, 0);
71
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74
75 static bool use_cmb_sqes = true;
76 module_param(use_cmb_sqes, bool, 0644);
77 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
79 static DEFINE_SPINLOCK(dev_list_lock);
80 static LIST_HEAD(dev_list);
81 static struct task_struct *nvme_thread;
82 static struct workqueue_struct *nvme_workq;
83 static wait_queue_head_t nvme_kthread_wait;
84
85 static struct class *nvme_class;
86
87 static void nvme_reset_failed_dev(struct work_struct *ws);
88 static int nvme_reset(struct nvme_dev *dev);
89 static int nvme_process_cq(struct nvme_queue *nvmeq);
90
91 struct async_cmd_info {
92         struct kthread_work work;
93         struct kthread_worker *worker;
94         struct request *req;
95         u32 result;
96         int status;
97         void *ctx;
98 };
99
100 /*
101  * An NVM Express queue.  Each device has at least two (one for admin
102  * commands and one for I/O commands).
103  */
104 struct nvme_queue {
105         struct device *q_dmadev;
106         struct nvme_dev *dev;
107         char irqname[24];       /* nvme4294967295-65535\0 */
108         spinlock_t q_lock;
109         struct nvme_command *sq_cmds;
110         struct nvme_command __iomem *sq_cmds_io;
111         volatile struct nvme_completion *cqes;
112         struct blk_mq_tags **tags;
113         dma_addr_t sq_dma_addr;
114         dma_addr_t cq_dma_addr;
115         u32 __iomem *q_db;
116         u16 q_depth;
117         s16 cq_vector;
118         u16 sq_head;
119         u16 sq_tail;
120         u16 cq_head;
121         u16 qid;
122         u8 cq_phase;
123         u8 cqe_seen;
124         struct async_cmd_info cmdinfo;
125 };
126
127 /*
128  * Check we didin't inadvertently grow the command struct
129  */
130 static inline void _nvme_check_size(void)
131 {
132         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
134         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
135         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
136         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
137         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
138         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
139         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
140         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
141         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
142         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
143         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
144 }
145
146 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
147                                                 struct nvme_completion *);
148
149 struct nvme_cmd_info {
150         nvme_completion_fn fn;
151         void *ctx;
152         int aborted;
153         struct nvme_queue *nvmeq;
154         struct nvme_iod iod[0];
155 };
156
157 /*
158  * Max size of iod being embedded in the request payload
159  */
160 #define NVME_INT_PAGES          2
161 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
162 #define NVME_INT_MASK           0x01
163
164 /*
165  * Will slightly overestimate the number of pages needed.  This is OK
166  * as it only leads to a small amount of wasted memory for the lifetime of
167  * the I/O.
168  */
169 static int nvme_npages(unsigned size, struct nvme_dev *dev)
170 {
171         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
172         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
173 }
174
175 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
176 {
177         unsigned int ret = sizeof(struct nvme_cmd_info);
178
179         ret += sizeof(struct nvme_iod);
180         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
181         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
182
183         return ret;
184 }
185
186 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
187                                 unsigned int hctx_idx)
188 {
189         struct nvme_dev *dev = data;
190         struct nvme_queue *nvmeq = dev->queues[0];
191
192         WARN_ON(hctx_idx != 0);
193         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
194         WARN_ON(nvmeq->tags);
195
196         hctx->driver_data = nvmeq;
197         nvmeq->tags = &dev->admin_tagset.tags[0];
198         return 0;
199 }
200
201 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
202 {
203         struct nvme_queue *nvmeq = hctx->driver_data;
204
205         nvmeq->tags = NULL;
206 }
207
208 static int nvme_admin_init_request(void *data, struct request *req,
209                                 unsigned int hctx_idx, unsigned int rq_idx,
210                                 unsigned int numa_node)
211 {
212         struct nvme_dev *dev = data;
213         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
214         struct nvme_queue *nvmeq = dev->queues[0];
215
216         BUG_ON(!nvmeq);
217         cmd->nvmeq = nvmeq;
218         return 0;
219 }
220
221 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
222                           unsigned int hctx_idx)
223 {
224         struct nvme_dev *dev = data;
225         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
226
227         if (!nvmeq->tags)
228                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
229
230         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
231         hctx->driver_data = nvmeq;
232         return 0;
233 }
234
235 static int nvme_init_request(void *data, struct request *req,
236                                 unsigned int hctx_idx, unsigned int rq_idx,
237                                 unsigned int numa_node)
238 {
239         struct nvme_dev *dev = data;
240         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
241         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
242
243         BUG_ON(!nvmeq);
244         cmd->nvmeq = nvmeq;
245         return 0;
246 }
247
248 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
249                                 nvme_completion_fn handler)
250 {
251         cmd->fn = handler;
252         cmd->ctx = ctx;
253         cmd->aborted = 0;
254         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
255 }
256
257 static void *iod_get_private(struct nvme_iod *iod)
258 {
259         return (void *) (iod->private & ~0x1UL);
260 }
261
262 /*
263  * If bit 0 is set, the iod is embedded in the request payload.
264  */
265 static bool iod_should_kfree(struct nvme_iod *iod)
266 {
267         return (iod->private & NVME_INT_MASK) == 0;
268 }
269
270 /* Special values must be less than 0x1000 */
271 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
272 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
273 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
274 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
275
276 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
277                                                 struct nvme_completion *cqe)
278 {
279         if (ctx == CMD_CTX_CANCELLED)
280                 return;
281         if (ctx == CMD_CTX_COMPLETED) {
282                 dev_warn(nvmeq->q_dmadev,
283                                 "completed id %d twice on queue %d\n",
284                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
285                 return;
286         }
287         if (ctx == CMD_CTX_INVALID) {
288                 dev_warn(nvmeq->q_dmadev,
289                                 "invalid id %d completed on queue %d\n",
290                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
291                 return;
292         }
293         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
294 }
295
296 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
297 {
298         void *ctx;
299
300         if (fn)
301                 *fn = cmd->fn;
302         ctx = cmd->ctx;
303         cmd->fn = special_completion;
304         cmd->ctx = CMD_CTX_CANCELLED;
305         return ctx;
306 }
307
308 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
309                                                 struct nvme_completion *cqe)
310 {
311         u32 result = le32_to_cpup(&cqe->result);
312         u16 status = le16_to_cpup(&cqe->status) >> 1;
313
314         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
315                 ++nvmeq->dev->event_limit;
316         if (status != NVME_SC_SUCCESS)
317                 return;
318
319         switch (result & 0xff07) {
320         case NVME_AER_NOTICE_NS_CHANGED:
321                 dev_info(nvmeq->q_dmadev, "rescanning\n");
322                 schedule_work(&nvmeq->dev->scan_work);
323         default:
324                 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
325         }
326 }
327
328 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
329                                                 struct nvme_completion *cqe)
330 {
331         struct request *req = ctx;
332
333         u16 status = le16_to_cpup(&cqe->status) >> 1;
334         u32 result = le32_to_cpup(&cqe->result);
335
336         blk_mq_free_request(req);
337
338         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
339         ++nvmeq->dev->abort_limit;
340 }
341
342 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
343                                                 struct nvme_completion *cqe)
344 {
345         struct async_cmd_info *cmdinfo = ctx;
346         cmdinfo->result = le32_to_cpup(&cqe->result);
347         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
348         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
349         blk_mq_free_request(cmdinfo->req);
350 }
351
352 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
353                                   unsigned int tag)
354 {
355         struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
356
357         return blk_mq_rq_to_pdu(req);
358 }
359
360 /*
361  * Called with local interrupts disabled and the q_lock held.  May not sleep.
362  */
363 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
364                                                 nvme_completion_fn *fn)
365 {
366         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
367         void *ctx;
368         if (tag >= nvmeq->q_depth) {
369                 *fn = special_completion;
370                 return CMD_CTX_INVALID;
371         }
372         if (fn)
373                 *fn = cmd->fn;
374         ctx = cmd->ctx;
375         cmd->fn = special_completion;
376         cmd->ctx = CMD_CTX_COMPLETED;
377         return ctx;
378 }
379
380 /**
381  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
382  * @nvmeq: The queue to use
383  * @cmd: The command to send
384  *
385  * Safe to use from interrupt context
386  */
387 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
388                                                 struct nvme_command *cmd)
389 {
390         u16 tail = nvmeq->sq_tail;
391
392         if (nvmeq->sq_cmds_io)
393                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
394         else
395                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
396
397         if (++tail == nvmeq->q_depth)
398                 tail = 0;
399         writel(tail, nvmeq->q_db);
400         nvmeq->sq_tail = tail;
401 }
402
403 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
404 {
405         unsigned long flags;
406         spin_lock_irqsave(&nvmeq->q_lock, flags);
407         __nvme_submit_cmd(nvmeq, cmd);
408         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
409 }
410
411 static __le64 **iod_list(struct nvme_iod *iod)
412 {
413         return ((void *)iod) + iod->offset;
414 }
415
416 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
417                             unsigned nseg, unsigned long private)
418 {
419         iod->private = private;
420         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
421         iod->npages = -1;
422         iod->length = nbytes;
423         iod->nents = 0;
424 }
425
426 static struct nvme_iod *
427 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
428                  unsigned long priv, gfp_t gfp)
429 {
430         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
431                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
432                                 sizeof(struct scatterlist) * nseg, gfp);
433
434         if (iod)
435                 iod_init(iod, bytes, nseg, priv);
436
437         return iod;
438 }
439
440 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
441                                        gfp_t gfp)
442 {
443         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
444                                                 sizeof(struct nvme_dsm_range);
445         struct nvme_iod *iod;
446
447         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
448             size <= NVME_INT_BYTES(dev)) {
449                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
450
451                 iod = cmd->iod;
452                 iod_init(iod, size, rq->nr_phys_segments,
453                                 (unsigned long) rq | NVME_INT_MASK);
454                 return iod;
455         }
456
457         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
458                                 (unsigned long) rq, gfp);
459 }
460
461 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
462 {
463         const int last_prp = dev->page_size / 8 - 1;
464         int i;
465         __le64 **list = iod_list(iod);
466         dma_addr_t prp_dma = iod->first_dma;
467
468         if (iod->npages == 0)
469                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
470         for (i = 0; i < iod->npages; i++) {
471                 __le64 *prp_list = list[i];
472                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
473                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
474                 prp_dma = next_prp_dma;
475         }
476
477         if (iod_should_kfree(iod))
478                 kfree(iod);
479 }
480
481 static int nvme_error_status(u16 status)
482 {
483         switch (status & 0x7ff) {
484         case NVME_SC_SUCCESS:
485                 return 0;
486         case NVME_SC_CAP_EXCEEDED:
487                 return -ENOSPC;
488         default:
489                 return -EIO;
490         }
491 }
492
493 #ifdef CONFIG_BLK_DEV_INTEGRITY
494 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
495 {
496         if (be32_to_cpu(pi->ref_tag) == v)
497                 pi->ref_tag = cpu_to_be32(p);
498 }
499
500 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
501 {
502         if (be32_to_cpu(pi->ref_tag) == p)
503                 pi->ref_tag = cpu_to_be32(v);
504 }
505
506 /**
507  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
508  *
509  * The virtual start sector is the one that was originally submitted by the
510  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
511  * start sector may be different. Remap protection information to match the
512  * physical LBA on writes, and back to the original seed on reads.
513  *
514  * Type 0 and 3 do not have a ref tag, so no remapping required.
515  */
516 static void nvme_dif_remap(struct request *req,
517                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
518 {
519         struct nvme_ns *ns = req->rq_disk->private_data;
520         struct bio_integrity_payload *bip;
521         struct t10_pi_tuple *pi;
522         void *p, *pmap;
523         u32 i, nlb, ts, phys, virt;
524
525         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
526                 return;
527
528         bip = bio_integrity(req->bio);
529         if (!bip)
530                 return;
531
532         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
533
534         p = pmap;
535         virt = bip_get_seed(bip);
536         phys = nvme_block_nr(ns, blk_rq_pos(req));
537         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
538         ts = ns->disk->integrity->tuple_size;
539
540         for (i = 0; i < nlb; i++, virt++, phys++) {
541                 pi = (struct t10_pi_tuple *)p;
542                 dif_swap(phys, virt, pi);
543                 p += ts;
544         }
545         kunmap_atomic(pmap);
546 }
547
548 static int nvme_noop_verify(struct blk_integrity_iter *iter)
549 {
550         return 0;
551 }
552
553 static int nvme_noop_generate(struct blk_integrity_iter *iter)
554 {
555         return 0;
556 }
557
558 struct blk_integrity nvme_meta_noop = {
559         .name                   = "NVME_META_NOOP",
560         .generate_fn            = nvme_noop_generate,
561         .verify_fn              = nvme_noop_verify,
562 };
563
564 static void nvme_init_integrity(struct nvme_ns *ns)
565 {
566         struct blk_integrity integrity;
567
568         switch (ns->pi_type) {
569         case NVME_NS_DPS_PI_TYPE3:
570                 integrity = t10_pi_type3_crc;
571                 break;
572         case NVME_NS_DPS_PI_TYPE1:
573         case NVME_NS_DPS_PI_TYPE2:
574                 integrity = t10_pi_type1_crc;
575                 break;
576         default:
577                 integrity = nvme_meta_noop;
578                 break;
579         }
580         integrity.tuple_size = ns->ms;
581         blk_integrity_register(ns->disk, &integrity);
582         blk_queue_max_integrity_segments(ns->queue, 1);
583 }
584 #else /* CONFIG_BLK_DEV_INTEGRITY */
585 static void nvme_dif_remap(struct request *req,
586                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
587 {
588 }
589 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
590 {
591 }
592 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
593 {
594 }
595 static void nvme_init_integrity(struct nvme_ns *ns)
596 {
597 }
598 #endif
599
600 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
601                                                 struct nvme_completion *cqe)
602 {
603         struct nvme_iod *iod = ctx;
604         struct request *req = iod_get_private(iod);
605         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
606
607         u16 status = le16_to_cpup(&cqe->status) >> 1;
608
609         if (unlikely(status)) {
610                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
611                     && (jiffies - req->start_time) < req->timeout) {
612                         unsigned long flags;
613
614                         blk_mq_requeue_request(req);
615                         spin_lock_irqsave(req->q->queue_lock, flags);
616                         if (!blk_queue_stopped(req->q))
617                                 blk_mq_kick_requeue_list(req->q);
618                         spin_unlock_irqrestore(req->q->queue_lock, flags);
619                         return;
620                 }
621
622                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
623                         if (cmd_rq->ctx == CMD_CTX_CANCELLED)
624                                 status = -EINTR;
625                 } else {
626                         status = nvme_error_status(status);
627                 }
628         }
629
630         if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
631                 u32 result = le32_to_cpup(&cqe->result);
632                 req->special = (void *)(uintptr_t)result;
633         }
634
635         if (cmd_rq->aborted)
636                 dev_warn(nvmeq->dev->dev,
637                         "completing aborted command with status:%04x\n",
638                         status);
639
640         if (iod->nents) {
641                 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
642                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
643                 if (blk_integrity_rq(req)) {
644                         if (!rq_data_dir(req))
645                                 nvme_dif_remap(req, nvme_dif_complete);
646                         dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
647                                 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
648                 }
649         }
650         nvme_free_iod(nvmeq->dev, iod);
651
652         blk_mq_complete_request(req, status);
653 }
654
655 /* length is in bytes.  gfp flags indicates whether we may sleep. */
656 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
657                 int total_len, gfp_t gfp)
658 {
659         struct dma_pool *pool;
660         int length = total_len;
661         struct scatterlist *sg = iod->sg;
662         int dma_len = sg_dma_len(sg);
663         u64 dma_addr = sg_dma_address(sg);
664         u32 page_size = dev->page_size;
665         int offset = dma_addr & (page_size - 1);
666         __le64 *prp_list;
667         __le64 **list = iod_list(iod);
668         dma_addr_t prp_dma;
669         int nprps, i;
670
671         length -= (page_size - offset);
672         if (length <= 0)
673                 return total_len;
674
675         dma_len -= (page_size - offset);
676         if (dma_len) {
677                 dma_addr += (page_size - offset);
678         } else {
679                 sg = sg_next(sg);
680                 dma_addr = sg_dma_address(sg);
681                 dma_len = sg_dma_len(sg);
682         }
683
684         if (length <= page_size) {
685                 iod->first_dma = dma_addr;
686                 return total_len;
687         }
688
689         nprps = DIV_ROUND_UP(length, page_size);
690         if (nprps <= (256 / 8)) {
691                 pool = dev->prp_small_pool;
692                 iod->npages = 0;
693         } else {
694                 pool = dev->prp_page_pool;
695                 iod->npages = 1;
696         }
697
698         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
699         if (!prp_list) {
700                 iod->first_dma = dma_addr;
701                 iod->npages = -1;
702                 return (total_len - length) + page_size;
703         }
704         list[0] = prp_list;
705         iod->first_dma = prp_dma;
706         i = 0;
707         for (;;) {
708                 if (i == page_size >> 3) {
709                         __le64 *old_prp_list = prp_list;
710                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
711                         if (!prp_list)
712                                 return total_len - length;
713                         list[iod->npages++] = prp_list;
714                         prp_list[0] = old_prp_list[i - 1];
715                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
716                         i = 1;
717                 }
718                 prp_list[i++] = cpu_to_le64(dma_addr);
719                 dma_len -= page_size;
720                 dma_addr += page_size;
721                 length -= page_size;
722                 if (length <= 0)
723                         break;
724                 if (dma_len > 0)
725                         continue;
726                 BUG_ON(dma_len < 0);
727                 sg = sg_next(sg);
728                 dma_addr = sg_dma_address(sg);
729                 dma_len = sg_dma_len(sg);
730         }
731
732         return total_len;
733 }
734
735 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
736                 struct nvme_iod *iod)
737 {
738         struct nvme_command cmnd;
739
740         memcpy(&cmnd, req->cmd, sizeof(cmnd));
741         cmnd.rw.command_id = req->tag;
742         if (req->nr_phys_segments) {
743                 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
744                 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
745         }
746
747         __nvme_submit_cmd(nvmeq, &cmnd);
748 }
749
750 /*
751  * We reuse the small pool to allocate the 16-byte range here as it is not
752  * worth having a special pool for these or additional cases to handle freeing
753  * the iod.
754  */
755 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
756                 struct request *req, struct nvme_iod *iod)
757 {
758         struct nvme_dsm_range *range =
759                                 (struct nvme_dsm_range *)iod_list(iod)[0];
760         struct nvme_command cmnd;
761
762         range->cattr = cpu_to_le32(0);
763         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
764         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
765
766         memset(&cmnd, 0, sizeof(cmnd));
767         cmnd.dsm.opcode = nvme_cmd_dsm;
768         cmnd.dsm.command_id = req->tag;
769         cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
770         cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
771         cmnd.dsm.nr = 0;
772         cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
773
774         __nvme_submit_cmd(nvmeq, &cmnd);
775 }
776
777 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
778                                                                 int cmdid)
779 {
780         struct nvme_command cmnd;
781
782         memset(&cmnd, 0, sizeof(cmnd));
783         cmnd.common.opcode = nvme_cmd_flush;
784         cmnd.common.command_id = cmdid;
785         cmnd.common.nsid = cpu_to_le32(ns->ns_id);
786
787         __nvme_submit_cmd(nvmeq, &cmnd);
788 }
789
790 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
791                                                         struct nvme_ns *ns)
792 {
793         struct request *req = iod_get_private(iod);
794         struct nvme_command cmnd;
795         u16 control = 0;
796         u32 dsmgmt = 0;
797
798         if (req->cmd_flags & REQ_FUA)
799                 control |= NVME_RW_FUA;
800         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
801                 control |= NVME_RW_LR;
802
803         if (req->cmd_flags & REQ_RAHEAD)
804                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
805
806         memset(&cmnd, 0, sizeof(cmnd));
807         cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
808         cmnd.rw.command_id = req->tag;
809         cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
810         cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
811         cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
812         cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
813         cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
814
815         if (ns->ms) {
816                 switch (ns->pi_type) {
817                 case NVME_NS_DPS_PI_TYPE3:
818                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
819                         break;
820                 case NVME_NS_DPS_PI_TYPE1:
821                 case NVME_NS_DPS_PI_TYPE2:
822                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
823                                         NVME_RW_PRINFO_PRCHK_REF;
824                         cmnd.rw.reftag = cpu_to_le32(
825                                         nvme_block_nr(ns, blk_rq_pos(req)));
826                         break;
827                 }
828                 if (blk_integrity_rq(req))
829                         cmnd.rw.metadata =
830                                 cpu_to_le64(sg_dma_address(iod->meta_sg));
831                 else
832                         control |= NVME_RW_PRINFO_PRACT;
833         }
834
835         cmnd.rw.control = cpu_to_le16(control);
836         cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
837
838         __nvme_submit_cmd(nvmeq, &cmnd);
839
840         return 0;
841 }
842
843 /*
844  * NOTE: ns is NULL when called on the admin queue.
845  */
846 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
847                          const struct blk_mq_queue_data *bd)
848 {
849         struct nvme_ns *ns = hctx->queue->queuedata;
850         struct nvme_queue *nvmeq = hctx->driver_data;
851         struct nvme_dev *dev = nvmeq->dev;
852         struct request *req = bd->rq;
853         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
854         struct nvme_iod *iod;
855         enum dma_data_direction dma_dir;
856
857         /*
858          * If formated with metadata, require the block layer provide a buffer
859          * unless this namespace is formated such that the metadata can be
860          * stripped/generated by the controller with PRACT=1.
861          */
862         if (ns && ns->ms && !blk_integrity_rq(req)) {
863                 if (!(ns->pi_type && ns->ms == 8) &&
864                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
865                         blk_mq_complete_request(req, -EFAULT);
866                         return BLK_MQ_RQ_QUEUE_OK;
867                 }
868         }
869
870         iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
871         if (!iod)
872                 return BLK_MQ_RQ_QUEUE_BUSY;
873
874         if (req->cmd_flags & REQ_DISCARD) {
875                 void *range;
876                 /*
877                  * We reuse the small pool to allocate the 16-byte range here
878                  * as it is not worth having a special pool for these or
879                  * additional cases to handle freeing the iod.
880                  */
881                 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
882                                                 &iod->first_dma);
883                 if (!range)
884                         goto retry_cmd;
885                 iod_list(iod)[0] = (__le64 *)range;
886                 iod->npages = 0;
887         } else if (req->nr_phys_segments) {
888                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
889
890                 sg_init_table(iod->sg, req->nr_phys_segments);
891                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
892                 if (!iod->nents)
893                         goto error_cmd;
894
895                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
896                         goto retry_cmd;
897
898                 if (blk_rq_bytes(req) !=
899                     nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
900                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
901                         goto retry_cmd;
902                 }
903                 if (blk_integrity_rq(req)) {
904                         if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
905                                 goto error_cmd;
906
907                         sg_init_table(iod->meta_sg, 1);
908                         if (blk_rq_map_integrity_sg(
909                                         req->q, req->bio, iod->meta_sg) != 1)
910                                 goto error_cmd;
911
912                         if (rq_data_dir(req))
913                                 nvme_dif_remap(req, nvme_dif_prep);
914
915                         if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
916                                 goto error_cmd;
917                 }
918         }
919
920         nvme_set_info(cmd, iod, req_completion);
921         spin_lock_irq(&nvmeq->q_lock);
922         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
923                 nvme_submit_priv(nvmeq, req, iod);
924         else if (req->cmd_flags & REQ_DISCARD)
925                 nvme_submit_discard(nvmeq, ns, req, iod);
926         else if (req->cmd_flags & REQ_FLUSH)
927                 nvme_submit_flush(nvmeq, ns, req->tag);
928         else
929                 nvme_submit_iod(nvmeq, iod, ns);
930
931         nvme_process_cq(nvmeq);
932         spin_unlock_irq(&nvmeq->q_lock);
933         return BLK_MQ_RQ_QUEUE_OK;
934
935  error_cmd:
936         nvme_free_iod(dev, iod);
937         return BLK_MQ_RQ_QUEUE_ERROR;
938  retry_cmd:
939         nvme_free_iod(dev, iod);
940         return BLK_MQ_RQ_QUEUE_BUSY;
941 }
942
943 static int nvme_process_cq(struct nvme_queue *nvmeq)
944 {
945         u16 head, phase;
946
947         head = nvmeq->cq_head;
948         phase = nvmeq->cq_phase;
949
950         for (;;) {
951                 void *ctx;
952                 nvme_completion_fn fn;
953                 struct nvme_completion cqe = nvmeq->cqes[head];
954                 if ((le16_to_cpu(cqe.status) & 1) != phase)
955                         break;
956                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
957                 if (++head == nvmeq->q_depth) {
958                         head = 0;
959                         phase = !phase;
960                 }
961                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
962                 fn(nvmeq, ctx, &cqe);
963         }
964
965         /* If the controller ignores the cq head doorbell and continuously
966          * writes to the queue, it is theoretically possible to wrap around
967          * the queue twice and mistakenly return IRQ_NONE.  Linux only
968          * requires that 0.1% of your interrupts are handled, so this isn't
969          * a big problem.
970          */
971         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
972                 return 0;
973
974         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
975         nvmeq->cq_head = head;
976         nvmeq->cq_phase = phase;
977
978         nvmeq->cqe_seen = 1;
979         return 1;
980 }
981
982 static irqreturn_t nvme_irq(int irq, void *data)
983 {
984         irqreturn_t result;
985         struct nvme_queue *nvmeq = data;
986         spin_lock(&nvmeq->q_lock);
987         nvme_process_cq(nvmeq);
988         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
989         nvmeq->cqe_seen = 0;
990         spin_unlock(&nvmeq->q_lock);
991         return result;
992 }
993
994 static irqreturn_t nvme_irq_check(int irq, void *data)
995 {
996         struct nvme_queue *nvmeq = data;
997         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
998         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
999                 return IRQ_NONE;
1000         return IRQ_WAKE_THREAD;
1001 }
1002
1003 /*
1004  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1005  * if the result is positive, it's an NVM Express status code
1006  */
1007 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1008                 void *buffer, void __user *ubuffer, unsigned bufflen,
1009                 u32 *result, unsigned timeout)
1010 {
1011         bool write = cmd->common.opcode & 1;
1012         struct bio *bio = NULL;
1013         struct request *req;
1014         int ret;
1015
1016         req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1017         if (IS_ERR(req))
1018                 return PTR_ERR(req);
1019
1020         req->cmd_type = REQ_TYPE_DRV_PRIV;
1021         req->cmd_flags |= REQ_FAILFAST_DRIVER;
1022         req->__data_len = 0;
1023         req->__sector = (sector_t) -1;
1024         req->bio = req->biotail = NULL;
1025
1026         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1027
1028         req->cmd = (unsigned char *)cmd;
1029         req->cmd_len = sizeof(struct nvme_command);
1030         req->special = (void *)0;
1031
1032         if (buffer && bufflen) {
1033                 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1034                 if (ret)
1035                         goto out;
1036         } else if (ubuffer && bufflen) {
1037                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1038                 if (ret)
1039                         goto out;
1040                 bio = req->bio;
1041         }
1042
1043         blk_execute_rq(req->q, NULL, req, 0);
1044         if (bio)
1045                 blk_rq_unmap_user(bio);
1046         if (result)
1047                 *result = (u32)(uintptr_t)req->special;
1048         ret = req->errors;
1049  out:
1050         blk_mq_free_request(req);
1051         return ret;
1052 }
1053
1054 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1055                 void *buffer, unsigned bufflen)
1056 {
1057         return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1058 }
1059
1060 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1061 {
1062         struct nvme_queue *nvmeq = dev->queues[0];
1063         struct nvme_command c;
1064         struct nvme_cmd_info *cmd_info;
1065         struct request *req;
1066
1067         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1068         if (IS_ERR(req))
1069                 return PTR_ERR(req);
1070
1071         req->cmd_flags |= REQ_NO_TIMEOUT;
1072         cmd_info = blk_mq_rq_to_pdu(req);
1073         nvme_set_info(cmd_info, NULL, async_req_completion);
1074
1075         memset(&c, 0, sizeof(c));
1076         c.common.opcode = nvme_admin_async_event;
1077         c.common.command_id = req->tag;
1078
1079         blk_mq_free_request(req);
1080         __nvme_submit_cmd(nvmeq, &c);
1081         return 0;
1082 }
1083
1084 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1085                         struct nvme_command *cmd,
1086                         struct async_cmd_info *cmdinfo, unsigned timeout)
1087 {
1088         struct nvme_queue *nvmeq = dev->queues[0];
1089         struct request *req;
1090         struct nvme_cmd_info *cmd_rq;
1091
1092         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1093         if (IS_ERR(req))
1094                 return PTR_ERR(req);
1095
1096         req->timeout = timeout;
1097         cmd_rq = blk_mq_rq_to_pdu(req);
1098         cmdinfo->req = req;
1099         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1100         cmdinfo->status = -EINTR;
1101
1102         cmd->common.command_id = req->tag;
1103
1104         nvme_submit_cmd(nvmeq, cmd);
1105         return 0;
1106 }
1107
1108 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1109 {
1110         struct nvme_command c;
1111
1112         memset(&c, 0, sizeof(c));
1113         c.delete_queue.opcode = opcode;
1114         c.delete_queue.qid = cpu_to_le16(id);
1115
1116         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1117 }
1118
1119 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1120                                                 struct nvme_queue *nvmeq)
1121 {
1122         struct nvme_command c;
1123         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1124
1125         /*
1126          * Note: we (ab)use the fact the the prp fields survive if no data
1127          * is attached to the request.
1128          */
1129         memset(&c, 0, sizeof(c));
1130         c.create_cq.opcode = nvme_admin_create_cq;
1131         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1132         c.create_cq.cqid = cpu_to_le16(qid);
1133         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1134         c.create_cq.cq_flags = cpu_to_le16(flags);
1135         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1136
1137         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1138 }
1139
1140 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1141                                                 struct nvme_queue *nvmeq)
1142 {
1143         struct nvme_command c;
1144         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1145
1146         /*
1147          * Note: we (ab)use the fact the the prp fields survive if no data
1148          * is attached to the request.
1149          */
1150         memset(&c, 0, sizeof(c));
1151         c.create_sq.opcode = nvme_admin_create_sq;
1152         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1153         c.create_sq.sqid = cpu_to_le16(qid);
1154         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1155         c.create_sq.sq_flags = cpu_to_le16(flags);
1156         c.create_sq.cqid = cpu_to_le16(qid);
1157
1158         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1159 }
1160
1161 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1162 {
1163         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1164 }
1165
1166 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1167 {
1168         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1169 }
1170
1171 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1172 {
1173         struct nvme_command c = { };
1174         int error;
1175
1176         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1177         c.identify.opcode = nvme_admin_identify;
1178         c.identify.cns = cpu_to_le32(1);
1179
1180         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1181         if (!*id)
1182                 return -ENOMEM;
1183
1184         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1185                         sizeof(struct nvme_id_ctrl));
1186         if (error)
1187                 kfree(*id);
1188         return error;
1189 }
1190
1191 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1192                 struct nvme_id_ns **id)
1193 {
1194         struct nvme_command c = { };
1195         int error;
1196
1197         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1198         c.identify.opcode = nvme_admin_identify,
1199         c.identify.nsid = cpu_to_le32(nsid),
1200
1201         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1202         if (!*id)
1203                 return -ENOMEM;
1204
1205         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1206                         sizeof(struct nvme_id_ns));
1207         if (error)
1208                 kfree(*id);
1209         return error;
1210 }
1211
1212 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1213                                         dma_addr_t dma_addr, u32 *result)
1214 {
1215         struct nvme_command c;
1216
1217         memset(&c, 0, sizeof(c));
1218         c.features.opcode = nvme_admin_get_features;
1219         c.features.nsid = cpu_to_le32(nsid);
1220         c.features.prp1 = cpu_to_le64(dma_addr);
1221         c.features.fid = cpu_to_le32(fid);
1222
1223         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1224                         result, 0);
1225 }
1226
1227 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1228                                         dma_addr_t dma_addr, u32 *result)
1229 {
1230         struct nvme_command c;
1231
1232         memset(&c, 0, sizeof(c));
1233         c.features.opcode = nvme_admin_set_features;
1234         c.features.prp1 = cpu_to_le64(dma_addr);
1235         c.features.fid = cpu_to_le32(fid);
1236         c.features.dword11 = cpu_to_le32(dword11);
1237
1238         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1239                         result, 0);
1240 }
1241
1242 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1243 {
1244         struct nvme_command c = { };
1245         int error;
1246
1247         c.common.opcode = nvme_admin_get_log_page,
1248         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1249         c.common.cdw10[0] = cpu_to_le32(
1250                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1251                          NVME_LOG_SMART),
1252
1253         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1254         if (!*log)
1255                 return -ENOMEM;
1256
1257         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1258                         sizeof(struct nvme_smart_log));
1259         if (error)
1260                 kfree(*log);
1261         return error;
1262 }
1263
1264 /**
1265  * nvme_abort_req - Attempt aborting a request
1266  *
1267  * Schedule controller reset if the command was already aborted once before and
1268  * still hasn't been returned to the driver, or if this is the admin queue.
1269  */
1270 static void nvme_abort_req(struct request *req)
1271 {
1272         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1273         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1274         struct nvme_dev *dev = nvmeq->dev;
1275         struct request *abort_req;
1276         struct nvme_cmd_info *abort_cmd;
1277         struct nvme_command cmd;
1278
1279         if (!nvmeq->qid || cmd_rq->aborted) {
1280                 unsigned long flags;
1281
1282                 spin_lock_irqsave(&dev_list_lock, flags);
1283                 if (work_busy(&dev->reset_work))
1284                         goto out;
1285                 list_del_init(&dev->node);
1286                 dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
1287                                                         req->tag, nvmeq->qid);
1288                 dev->reset_workfn = nvme_reset_failed_dev;
1289                 queue_work(nvme_workq, &dev->reset_work);
1290  out:
1291                 spin_unlock_irqrestore(&dev_list_lock, flags);
1292                 return;
1293         }
1294
1295         if (!dev->abort_limit)
1296                 return;
1297
1298         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1299                                                                         false);
1300         if (IS_ERR(abort_req))
1301                 return;
1302
1303         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1304         nvme_set_info(abort_cmd, abort_req, abort_completion);
1305
1306         memset(&cmd, 0, sizeof(cmd));
1307         cmd.abort.opcode = nvme_admin_abort_cmd;
1308         cmd.abort.cid = req->tag;
1309         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1310         cmd.abort.command_id = abort_req->tag;
1311
1312         --dev->abort_limit;
1313         cmd_rq->aborted = 1;
1314
1315         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1316                                                         nvmeq->qid);
1317         nvme_submit_cmd(dev->queues[0], &cmd);
1318 }
1319
1320 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1321 {
1322         struct nvme_queue *nvmeq = data;
1323         void *ctx;
1324         nvme_completion_fn fn;
1325         struct nvme_cmd_info *cmd;
1326         struct nvme_completion cqe;
1327
1328         if (!blk_mq_request_started(req))
1329                 return;
1330
1331         cmd = blk_mq_rq_to_pdu(req);
1332
1333         if (cmd->ctx == CMD_CTX_CANCELLED)
1334                 return;
1335
1336         if (blk_queue_dying(req->q))
1337                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1338         else
1339                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1340
1341
1342         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1343                                                 req->tag, nvmeq->qid);
1344         ctx = cancel_cmd_info(cmd, &fn);
1345         fn(nvmeq, ctx, &cqe);
1346 }
1347
1348 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1349 {
1350         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1351         struct nvme_queue *nvmeq = cmd->nvmeq;
1352
1353         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1354                                                         nvmeq->qid);
1355         spin_lock_irq(&nvmeq->q_lock);
1356         nvme_abort_req(req);
1357         spin_unlock_irq(&nvmeq->q_lock);
1358
1359         /*
1360          * The aborted req will be completed on receiving the abort req.
1361          * We enable the timer again. If hit twice, it'll cause a device reset,
1362          * as the device then is in a faulty state.
1363          */
1364         return BLK_EH_RESET_TIMER;
1365 }
1366
1367 static void nvme_free_queue(struct nvme_queue *nvmeq)
1368 {
1369         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1370                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1371         if (nvmeq->sq_cmds)
1372                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1373                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1374         kfree(nvmeq);
1375 }
1376
1377 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1378 {
1379         int i;
1380
1381         for (i = dev->queue_count - 1; i >= lowest; i--) {
1382                 struct nvme_queue *nvmeq = dev->queues[i];
1383                 dev->queue_count--;
1384                 dev->queues[i] = NULL;
1385                 nvme_free_queue(nvmeq);
1386         }
1387 }
1388
1389 /**
1390  * nvme_suspend_queue - put queue into suspended state
1391  * @nvmeq - queue to suspend
1392  */
1393 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1394 {
1395         int vector;
1396
1397         spin_lock_irq(&nvmeq->q_lock);
1398         if (nvmeq->cq_vector == -1) {
1399                 spin_unlock_irq(&nvmeq->q_lock);
1400                 return 1;
1401         }
1402         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1403         nvmeq->dev->online_queues--;
1404         nvmeq->cq_vector = -1;
1405         spin_unlock_irq(&nvmeq->q_lock);
1406
1407         if (!nvmeq->qid && nvmeq->dev->admin_q)
1408                 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1409
1410         irq_set_affinity_hint(vector, NULL);
1411         free_irq(vector, nvmeq);
1412
1413         return 0;
1414 }
1415
1416 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1417 {
1418         spin_lock_irq(&nvmeq->q_lock);
1419         if (nvmeq->tags && *nvmeq->tags)
1420                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1421         spin_unlock_irq(&nvmeq->q_lock);
1422 }
1423
1424 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1425 {
1426         struct nvme_queue *nvmeq = dev->queues[qid];
1427
1428         if (!nvmeq)
1429                 return;
1430         if (nvme_suspend_queue(nvmeq))
1431                 return;
1432
1433         /* Don't tell the adapter to delete the admin queue.
1434          * Don't tell a removed adapter to delete IO queues. */
1435         if (qid && readl(&dev->bar->csts) != -1) {
1436                 adapter_delete_sq(dev, qid);
1437                 adapter_delete_cq(dev, qid);
1438         }
1439
1440         spin_lock_irq(&nvmeq->q_lock);
1441         nvme_process_cq(nvmeq);
1442         spin_unlock_irq(&nvmeq->q_lock);
1443 }
1444
1445 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1446                                 int entry_size)
1447 {
1448         int q_depth = dev->q_depth;
1449         unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1450
1451         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1452                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1453                 mem_per_q = round_down(mem_per_q, dev->page_size);
1454                 q_depth = div_u64(mem_per_q, entry_size);
1455
1456                 /*
1457                  * Ensure the reduced q_depth is above some threshold where it
1458                  * would be better to map queues in system memory with the
1459                  * original depth
1460                  */
1461                 if (q_depth < 64)
1462                         return -ENOMEM;
1463         }
1464
1465         return q_depth;
1466 }
1467
1468 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1469                                 int qid, int depth)
1470 {
1471         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1472                 unsigned offset = (qid - 1) *
1473                                         roundup(SQ_SIZE(depth), dev->page_size);
1474                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1475                 nvmeq->sq_cmds_io = dev->cmb + offset;
1476         } else {
1477                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1478                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1479                 if (!nvmeq->sq_cmds)
1480                         return -ENOMEM;
1481         }
1482
1483         return 0;
1484 }
1485
1486 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1487                                                         int depth)
1488 {
1489         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1490         if (!nvmeq)
1491                 return NULL;
1492
1493         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1494                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1495         if (!nvmeq->cqes)
1496                 goto free_nvmeq;
1497
1498         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1499                 goto free_cqdma;
1500
1501         nvmeq->q_dmadev = dev->dev;
1502         nvmeq->dev = dev;
1503         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1504                         dev->instance, qid);
1505         spin_lock_init(&nvmeq->q_lock);
1506         nvmeq->cq_head = 0;
1507         nvmeq->cq_phase = 1;
1508         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1509         nvmeq->q_depth = depth;
1510         nvmeq->qid = qid;
1511         nvmeq->cq_vector = -1;
1512         dev->queues[qid] = nvmeq;
1513
1514         /* make sure queue descriptor is set before queue count, for kthread */
1515         mb();
1516         dev->queue_count++;
1517
1518         return nvmeq;
1519
1520  free_cqdma:
1521         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1522                                                         nvmeq->cq_dma_addr);
1523  free_nvmeq:
1524         kfree(nvmeq);
1525         return NULL;
1526 }
1527
1528 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1529                                                         const char *name)
1530 {
1531         if (use_threaded_interrupts)
1532                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1533                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1534                                         name, nvmeq);
1535         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1536                                 IRQF_SHARED, name, nvmeq);
1537 }
1538
1539 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1540 {
1541         struct nvme_dev *dev = nvmeq->dev;
1542
1543         spin_lock_irq(&nvmeq->q_lock);
1544         nvmeq->sq_tail = 0;
1545         nvmeq->cq_head = 0;
1546         nvmeq->cq_phase = 1;
1547         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1548         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1549         dev->online_queues++;
1550         spin_unlock_irq(&nvmeq->q_lock);
1551 }
1552
1553 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1554 {
1555         struct nvme_dev *dev = nvmeq->dev;
1556         int result;
1557
1558         nvmeq->cq_vector = qid - 1;
1559         result = adapter_alloc_cq(dev, qid, nvmeq);
1560         if (result < 0)
1561                 return result;
1562
1563         result = adapter_alloc_sq(dev, qid, nvmeq);
1564         if (result < 0)
1565                 goto release_cq;
1566
1567         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1568         if (result < 0)
1569                 goto release_sq;
1570
1571         nvme_init_queue(nvmeq, qid);
1572         return result;
1573
1574  release_sq:
1575         adapter_delete_sq(dev, qid);
1576  release_cq:
1577         adapter_delete_cq(dev, qid);
1578         return result;
1579 }
1580
1581 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1582 {
1583         unsigned long timeout;
1584         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1585
1586         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1587
1588         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1589                 msleep(100);
1590                 if (fatal_signal_pending(current))
1591                         return -EINTR;
1592                 if (time_after(jiffies, timeout)) {
1593                         dev_err(dev->dev,
1594                                 "Device not ready; aborting %s\n", enabled ?
1595                                                 "initialisation" : "reset");
1596                         return -ENODEV;
1597                 }
1598         }
1599
1600         return 0;
1601 }
1602
1603 /*
1604  * If the device has been passed off to us in an enabled state, just clear
1605  * the enabled bit.  The spec says we should set the 'shutdown notification
1606  * bits', but doing so may cause the device to complete commands to the
1607  * admin queue ... and we don't know what memory that might be pointing at!
1608  */
1609 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1610 {
1611         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1612         dev->ctrl_config &= ~NVME_CC_ENABLE;
1613         writel(dev->ctrl_config, &dev->bar->cc);
1614
1615         return nvme_wait_ready(dev, cap, false);
1616 }
1617
1618 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1619 {
1620         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1621         dev->ctrl_config |= NVME_CC_ENABLE;
1622         writel(dev->ctrl_config, &dev->bar->cc);
1623
1624         return nvme_wait_ready(dev, cap, true);
1625 }
1626
1627 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1628 {
1629         unsigned long timeout;
1630
1631         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1632         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1633
1634         writel(dev->ctrl_config, &dev->bar->cc);
1635
1636         timeout = SHUTDOWN_TIMEOUT + jiffies;
1637         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1638                                                         NVME_CSTS_SHST_CMPLT) {
1639                 msleep(100);
1640                 if (fatal_signal_pending(current))
1641                         return -EINTR;
1642                 if (time_after(jiffies, timeout)) {
1643                         dev_err(dev->dev,
1644                                 "Device shutdown incomplete; abort shutdown\n");
1645                         return -ENODEV;
1646                 }
1647         }
1648
1649         return 0;
1650 }
1651
1652 static struct blk_mq_ops nvme_mq_admin_ops = {
1653         .queue_rq       = nvme_queue_rq,
1654         .map_queue      = blk_mq_map_queue,
1655         .init_hctx      = nvme_admin_init_hctx,
1656         .exit_hctx      = nvme_admin_exit_hctx,
1657         .init_request   = nvme_admin_init_request,
1658         .timeout        = nvme_timeout,
1659 };
1660
1661 static struct blk_mq_ops nvme_mq_ops = {
1662         .queue_rq       = nvme_queue_rq,
1663         .map_queue      = blk_mq_map_queue,
1664         .init_hctx      = nvme_init_hctx,
1665         .init_request   = nvme_init_request,
1666         .timeout        = nvme_timeout,
1667 };
1668
1669 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1670 {
1671         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1672                 blk_cleanup_queue(dev->admin_q);
1673                 blk_mq_free_tag_set(&dev->admin_tagset);
1674         }
1675 }
1676
1677 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1678 {
1679         if (!dev->admin_q) {
1680                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1681                 dev->admin_tagset.nr_hw_queues = 1;
1682                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1683                 dev->admin_tagset.reserved_tags = 1;
1684                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1685                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1686                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1687                 dev->admin_tagset.driver_data = dev;
1688
1689                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1690                         return -ENOMEM;
1691
1692                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1693                 if (IS_ERR(dev->admin_q)) {
1694                         blk_mq_free_tag_set(&dev->admin_tagset);
1695                         return -ENOMEM;
1696                 }
1697                 if (!blk_get_queue(dev->admin_q)) {
1698                         nvme_dev_remove_admin(dev);
1699                         dev->admin_q = NULL;
1700                         return -ENODEV;
1701                 }
1702         } else
1703                 blk_mq_unfreeze_queue(dev->admin_q);
1704
1705         return 0;
1706 }
1707
1708 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1709 {
1710         int result;
1711         u32 aqa;
1712         u64 cap = readq(&dev->bar->cap);
1713         struct nvme_queue *nvmeq;
1714         unsigned page_shift = PAGE_SHIFT;
1715         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1716         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1717
1718         if (page_shift < dev_page_min) {
1719                 dev_err(dev->dev,
1720                                 "Minimum device page size (%u) too large for "
1721                                 "host (%u)\n", 1 << dev_page_min,
1722                                 1 << page_shift);
1723                 return -ENODEV;
1724         }
1725         if (page_shift > dev_page_max) {
1726                 dev_info(dev->dev,
1727                                 "Device maximum page size (%u) smaller than "
1728                                 "host (%u); enabling work-around\n",
1729                                 1 << dev_page_max, 1 << page_shift);
1730                 page_shift = dev_page_max;
1731         }
1732
1733         dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
1734                                                 NVME_CAP_NSSRC(cap) : 0;
1735
1736         if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
1737                 writel(NVME_CSTS_NSSRO, &dev->bar->csts);
1738
1739         result = nvme_disable_ctrl(dev, cap);
1740         if (result < 0)
1741                 return result;
1742
1743         nvmeq = dev->queues[0];
1744         if (!nvmeq) {
1745                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1746                 if (!nvmeq)
1747                         return -ENOMEM;
1748         }
1749
1750         aqa = nvmeq->q_depth - 1;
1751         aqa |= aqa << 16;
1752
1753         dev->page_size = 1 << page_shift;
1754
1755         dev->ctrl_config = NVME_CC_CSS_NVM;
1756         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1757         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1758         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1759
1760         writel(aqa, &dev->bar->aqa);
1761         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1762         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1763
1764         result = nvme_enable_ctrl(dev, cap);
1765         if (result)
1766                 goto free_nvmeq;
1767
1768         nvmeq->cq_vector = 0;
1769         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1770         if (result) {
1771                 nvmeq->cq_vector = -1;
1772                 goto free_nvmeq;
1773         }
1774
1775         return result;
1776
1777  free_nvmeq:
1778         nvme_free_queues(dev, 0);
1779         return result;
1780 }
1781
1782 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1783 {
1784         struct nvme_dev *dev = ns->dev;
1785         struct nvme_user_io io;
1786         struct nvme_command c;
1787         unsigned length, meta_len;
1788         int status, write;
1789         dma_addr_t meta_dma = 0;
1790         void *meta = NULL;
1791         void __user *metadata;
1792
1793         if (copy_from_user(&io, uio, sizeof(io)))
1794                 return -EFAULT;
1795
1796         switch (io.opcode) {
1797         case nvme_cmd_write:
1798         case nvme_cmd_read:
1799         case nvme_cmd_compare:
1800                 break;
1801         default:
1802                 return -EINVAL;
1803         }
1804
1805         length = (io.nblocks + 1) << ns->lba_shift;
1806         meta_len = (io.nblocks + 1) * ns->ms;
1807         metadata = (void __user *)(unsigned long)io.metadata;
1808         write = io.opcode & 1;
1809
1810         if (ns->ext) {
1811                 length += meta_len;
1812                 meta_len = 0;
1813         }
1814         if (meta_len) {
1815                 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1816                         return -EINVAL;
1817
1818                 meta = dma_alloc_coherent(dev->dev, meta_len,
1819                                                 &meta_dma, GFP_KERNEL);
1820
1821                 if (!meta) {
1822                         status = -ENOMEM;
1823                         goto unmap;
1824                 }
1825                 if (write) {
1826                         if (copy_from_user(meta, metadata, meta_len)) {
1827                                 status = -EFAULT;
1828                                 goto unmap;
1829                         }
1830                 }
1831         }
1832
1833         memset(&c, 0, sizeof(c));
1834         c.rw.opcode = io.opcode;
1835         c.rw.flags = io.flags;
1836         c.rw.nsid = cpu_to_le32(ns->ns_id);
1837         c.rw.slba = cpu_to_le64(io.slba);
1838         c.rw.length = cpu_to_le16(io.nblocks);
1839         c.rw.control = cpu_to_le16(io.control);
1840         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1841         c.rw.reftag = cpu_to_le32(io.reftag);
1842         c.rw.apptag = cpu_to_le16(io.apptag);
1843         c.rw.appmask = cpu_to_le16(io.appmask);
1844         c.rw.metadata = cpu_to_le64(meta_dma);
1845
1846         status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1847                         (void __user *)io.addr, length, NULL, 0);
1848  unmap:
1849         if (meta) {
1850                 if (status == NVME_SC_SUCCESS && !write) {
1851                         if (copy_to_user(metadata, meta, meta_len))
1852                                 status = -EFAULT;
1853                 }
1854                 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1855         }
1856         return status;
1857 }
1858
1859 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1860                         struct nvme_passthru_cmd __user *ucmd)
1861 {
1862         struct nvme_passthru_cmd cmd;
1863         struct nvme_command c;
1864         unsigned timeout = 0;
1865         int status;
1866
1867         if (!capable(CAP_SYS_ADMIN))
1868                 return -EACCES;
1869         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1870                 return -EFAULT;
1871
1872         memset(&c, 0, sizeof(c));
1873         c.common.opcode = cmd.opcode;
1874         c.common.flags = cmd.flags;
1875         c.common.nsid = cpu_to_le32(cmd.nsid);
1876         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1877         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1878         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1879         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1880         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1881         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1882         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1883         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1884
1885         if (cmd.timeout_ms)
1886                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1887
1888         status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1889                         NULL, (void __user *)cmd.addr, cmd.data_len,
1890                         &cmd.result, timeout);
1891         if (status >= 0) {
1892                 if (put_user(cmd.result, &ucmd->result))
1893                         return -EFAULT;
1894         }
1895
1896         return status;
1897 }
1898
1899 static int nvme_subsys_reset(struct nvme_dev *dev)
1900 {
1901         if (!dev->subsystem)
1902                 return -ENOTTY;
1903
1904         writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
1905         return 0;
1906 }
1907
1908 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1909                                                         unsigned long arg)
1910 {
1911         struct nvme_ns *ns = bdev->bd_disk->private_data;
1912
1913         switch (cmd) {
1914         case NVME_IOCTL_ID:
1915                 force_successful_syscall_return();
1916                 return ns->ns_id;
1917         case NVME_IOCTL_ADMIN_CMD:
1918                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1919         case NVME_IOCTL_IO_CMD:
1920                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1921         case NVME_IOCTL_SUBMIT_IO:
1922                 return nvme_submit_io(ns, (void __user *)arg);
1923         case SG_GET_VERSION_NUM:
1924                 return nvme_sg_get_version_num((void __user *)arg);
1925         case SG_IO:
1926                 return nvme_sg_io(ns, (void __user *)arg);
1927         default:
1928                 return -ENOTTY;
1929         }
1930 }
1931
1932 #ifdef CONFIG_COMPAT
1933 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1934                                         unsigned int cmd, unsigned long arg)
1935 {
1936         switch (cmd) {
1937         case SG_IO:
1938                 return -ENOIOCTLCMD;
1939         }
1940         return nvme_ioctl(bdev, mode, cmd, arg);
1941 }
1942 #else
1943 #define nvme_compat_ioctl       NULL
1944 #endif
1945
1946 static int nvme_open(struct block_device *bdev, fmode_t mode)
1947 {
1948         int ret = 0;
1949         struct nvme_ns *ns;
1950
1951         spin_lock(&dev_list_lock);
1952         ns = bdev->bd_disk->private_data;
1953         if (!ns)
1954                 ret = -ENXIO;
1955         else if (!kref_get_unless_zero(&ns->dev->kref))
1956                 ret = -ENXIO;
1957         spin_unlock(&dev_list_lock);
1958
1959         return ret;
1960 }
1961
1962 static void nvme_free_dev(struct kref *kref);
1963
1964 static void nvme_release(struct gendisk *disk, fmode_t mode)
1965 {
1966         struct nvme_ns *ns = disk->private_data;
1967         struct nvme_dev *dev = ns->dev;
1968
1969         kref_put(&dev->kref, nvme_free_dev);
1970 }
1971
1972 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1973 {
1974         /* some standard values */
1975         geo->heads = 1 << 6;
1976         geo->sectors = 1 << 5;
1977         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1978         return 0;
1979 }
1980
1981 static void nvme_config_discard(struct nvme_ns *ns)
1982 {
1983         u32 logical_block_size = queue_logical_block_size(ns->queue);
1984         ns->queue->limits.discard_zeroes_data = 0;
1985         ns->queue->limits.discard_alignment = logical_block_size;
1986         ns->queue->limits.discard_granularity = logical_block_size;
1987         blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
1988         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1989 }
1990
1991 static int nvme_revalidate_disk(struct gendisk *disk)
1992 {
1993         struct nvme_ns *ns = disk->private_data;
1994         struct nvme_dev *dev = ns->dev;
1995         struct nvme_id_ns *id;
1996         u8 lbaf, pi_type;
1997         u16 old_ms;
1998         unsigned short bs;
1999
2000         if (nvme_identify_ns(dev, ns->ns_id, &id)) {
2001                 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
2002                                                 dev->instance, ns->ns_id);
2003                 return -ENODEV;
2004         }
2005         if (id->ncap == 0) {
2006                 kfree(id);
2007                 return -ENODEV;
2008         }
2009
2010         old_ms = ns->ms;
2011         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2012         ns->lba_shift = id->lbaf[lbaf].ds;
2013         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2014         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2015
2016         /*
2017          * If identify namespace failed, use default 512 byte block size so
2018          * block layer can use before failing read/write for 0 capacity.
2019          */
2020         if (ns->lba_shift == 0)
2021                 ns->lba_shift = 9;
2022         bs = 1 << ns->lba_shift;
2023
2024         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2025         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2026                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
2027
2028         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2029                                 ns->ms != old_ms ||
2030                                 bs != queue_logical_block_size(disk->queue) ||
2031                                 (ns->ms && ns->ext)))
2032                 blk_integrity_unregister(disk);
2033
2034         ns->pi_type = pi_type;
2035         blk_queue_logical_block_size(ns->queue, bs);
2036
2037         if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2038                                                                 !ns->ext)
2039                 nvme_init_integrity(ns);
2040
2041         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
2042                 set_capacity(disk, 0);
2043         else
2044                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2045
2046         if (dev->oncs & NVME_CTRL_ONCS_DSM)
2047                 nvme_config_discard(ns);
2048
2049         kfree(id);
2050         return 0;
2051 }
2052
2053 static const struct block_device_operations nvme_fops = {
2054         .owner          = THIS_MODULE,
2055         .ioctl          = nvme_ioctl,
2056         .compat_ioctl   = nvme_compat_ioctl,
2057         .open           = nvme_open,
2058         .release        = nvme_release,
2059         .getgeo         = nvme_getgeo,
2060         .revalidate_disk= nvme_revalidate_disk,
2061 };
2062
2063 static int nvme_kthread(void *data)
2064 {
2065         struct nvme_dev *dev, *next;
2066
2067         while (!kthread_should_stop()) {
2068                 set_current_state(TASK_INTERRUPTIBLE);
2069                 spin_lock(&dev_list_lock);
2070                 list_for_each_entry_safe(dev, next, &dev_list, node) {
2071                         int i;
2072                         u32 csts = readl(&dev->bar->csts);
2073
2074                         if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2075                                                         csts & NVME_CSTS_CFS) {
2076                                 if (work_busy(&dev->reset_work))
2077                                         continue;
2078                                 list_del_init(&dev->node);
2079                                 dev_warn(dev->dev,
2080                                         "Failed status: %x, reset controller\n",
2081                                         readl(&dev->bar->csts));
2082                                 dev->reset_workfn = nvme_reset_failed_dev;
2083                                 queue_work(nvme_workq, &dev->reset_work);
2084                                 continue;
2085                         }
2086                         for (i = 0; i < dev->queue_count; i++) {
2087                                 struct nvme_queue *nvmeq = dev->queues[i];
2088                                 if (!nvmeq)
2089                                         continue;
2090                                 spin_lock_irq(&nvmeq->q_lock);
2091                                 nvme_process_cq(nvmeq);
2092
2093                                 while ((i == 0) && (dev->event_limit > 0)) {
2094                                         if (nvme_submit_async_admin_req(dev))
2095                                                 break;
2096                                         dev->event_limit--;
2097                                 }
2098                                 spin_unlock_irq(&nvmeq->q_lock);
2099                         }
2100                 }
2101                 spin_unlock(&dev_list_lock);
2102                 schedule_timeout(round_jiffies_relative(HZ));
2103         }
2104         return 0;
2105 }
2106
2107 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2108 {
2109         struct nvme_ns *ns;
2110         struct gendisk *disk;
2111         int node = dev_to_node(dev->dev);
2112
2113         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2114         if (!ns)
2115                 return;
2116
2117         ns->queue = blk_mq_init_queue(&dev->tagset);
2118         if (IS_ERR(ns->queue))
2119                 goto out_free_ns;
2120         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2121         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2122         ns->dev = dev;
2123         ns->queue->queuedata = ns;
2124
2125         disk = alloc_disk_node(0, node);
2126         if (!disk)
2127                 goto out_free_queue;
2128
2129         ns->ns_id = nsid;
2130         ns->disk = disk;
2131         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2132         list_add_tail(&ns->list, &dev->namespaces);
2133
2134         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2135         if (dev->max_hw_sectors) {
2136                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2137                 blk_queue_max_segments(ns->queue,
2138                         ((dev->max_hw_sectors << 9) / dev->page_size) + 1);
2139         }
2140         if (dev->stripe_size)
2141                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2142         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2143                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2144         blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
2145
2146         disk->major = nvme_major;
2147         disk->first_minor = 0;
2148         disk->fops = &nvme_fops;
2149         disk->private_data = ns;
2150         disk->queue = ns->queue;
2151         disk->driverfs_dev = dev->device;
2152         disk->flags = GENHD_FL_EXT_DEVT;
2153         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2154
2155         /*
2156          * Initialize capacity to 0 until we establish the namespace format and
2157          * setup integrity extentions if necessary. The revalidate_disk after
2158          * add_disk allows the driver to register with integrity if the format
2159          * requires it.
2160          */
2161         set_capacity(disk, 0);
2162         if (nvme_revalidate_disk(ns->disk))
2163                 goto out_free_disk;
2164
2165         add_disk(ns->disk);
2166         if (ns->ms) {
2167                 struct block_device *bd = bdget_disk(ns->disk, 0);
2168                 if (!bd)
2169                         return;
2170                 if (blkdev_get(bd, FMODE_READ, NULL)) {
2171                         bdput(bd);
2172                         return;
2173                 }
2174                 blkdev_reread_part(bd);
2175                 blkdev_put(bd, FMODE_READ);
2176         }
2177         return;
2178  out_free_disk:
2179         kfree(disk);
2180         list_del(&ns->list);
2181  out_free_queue:
2182         blk_cleanup_queue(ns->queue);
2183  out_free_ns:
2184         kfree(ns);
2185 }
2186
2187 static void nvme_create_io_queues(struct nvme_dev *dev)
2188 {
2189         unsigned i;
2190
2191         for (i = dev->queue_count; i <= dev->max_qid; i++)
2192                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2193                         break;
2194
2195         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2196                 if (nvme_create_queue(dev->queues[i], i))
2197                         break;
2198 }
2199
2200 static int set_queue_count(struct nvme_dev *dev, int count)
2201 {
2202         int status;
2203         u32 result;
2204         u32 q_count = (count - 1) | ((count - 1) << 16);
2205
2206         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2207                                                                 &result);
2208         if (status < 0)
2209                 return status;
2210         if (status > 0) {
2211                 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2212                 return 0;
2213         }
2214         return min(result & 0xffff, result >> 16) + 1;
2215 }
2216
2217 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2218 {
2219         u64 szu, size, offset;
2220         u32 cmbloc;
2221         resource_size_t bar_size;
2222         struct pci_dev *pdev = to_pci_dev(dev->dev);
2223         void __iomem *cmb;
2224         dma_addr_t dma_addr;
2225
2226         if (!use_cmb_sqes)
2227                 return NULL;
2228
2229         dev->cmbsz = readl(&dev->bar->cmbsz);
2230         if (!(NVME_CMB_SZ(dev->cmbsz)))
2231                 return NULL;
2232
2233         cmbloc = readl(&dev->bar->cmbloc);
2234
2235         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2236         size = szu * NVME_CMB_SZ(dev->cmbsz);
2237         offset = szu * NVME_CMB_OFST(cmbloc);
2238         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2239
2240         if (offset > bar_size)
2241                 return NULL;
2242
2243         /*
2244          * Controllers may support a CMB size larger than their BAR,
2245          * for example, due to being behind a bridge. Reduce the CMB to
2246          * the reported size of the BAR
2247          */
2248         if (size > bar_size - offset)
2249                 size = bar_size - offset;
2250
2251         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2252         cmb = ioremap_wc(dma_addr, size);
2253         if (!cmb)
2254                 return NULL;
2255
2256         dev->cmb_dma_addr = dma_addr;
2257         dev->cmb_size = size;
2258         return cmb;
2259 }
2260
2261 static inline void nvme_release_cmb(struct nvme_dev *dev)
2262 {
2263         if (dev->cmb) {
2264                 iounmap(dev->cmb);
2265                 dev->cmb = NULL;
2266         }
2267 }
2268
2269 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2270 {
2271         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2272 }
2273
2274 static int nvme_setup_io_queues(struct nvme_dev *dev)
2275 {
2276         struct nvme_queue *adminq = dev->queues[0];
2277         struct pci_dev *pdev = to_pci_dev(dev->dev);
2278         int result, i, vecs, nr_io_queues, size;
2279
2280         nr_io_queues = num_possible_cpus();
2281         result = set_queue_count(dev, nr_io_queues);
2282         if (result <= 0)
2283                 return result;
2284         if (result < nr_io_queues)
2285                 nr_io_queues = result;
2286
2287         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2288                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2289                                 sizeof(struct nvme_command));
2290                 if (result > 0)
2291                         dev->q_depth = result;
2292                 else
2293                         nvme_release_cmb(dev);
2294         }
2295
2296         size = db_bar_size(dev, nr_io_queues);
2297         if (size > 8192) {
2298                 iounmap(dev->bar);
2299                 do {
2300                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2301                         if (dev->bar)
2302                                 break;
2303                         if (!--nr_io_queues)
2304                                 return -ENOMEM;
2305                         size = db_bar_size(dev, nr_io_queues);
2306                 } while (1);
2307                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2308                 adminq->q_db = dev->dbs;
2309         }
2310
2311         /* Deregister the admin queue's interrupt */
2312         free_irq(dev->entry[0].vector, adminq);
2313
2314         /*
2315          * If we enable msix early due to not intx, disable it again before
2316          * setting up the full range we need.
2317          */
2318         if (!pdev->irq)
2319                 pci_disable_msix(pdev);
2320
2321         for (i = 0; i < nr_io_queues; i++)
2322                 dev->entry[i].entry = i;
2323         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2324         if (vecs < 0) {
2325                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2326                 if (vecs < 0) {
2327                         vecs = 1;
2328                 } else {
2329                         for (i = 0; i < vecs; i++)
2330                                 dev->entry[i].vector = i + pdev->irq;
2331                 }
2332         }
2333
2334         /*
2335          * Should investigate if there's a performance win from allocating
2336          * more queues than interrupt vectors; it might allow the submission
2337          * path to scale better, even if the receive path is limited by the
2338          * number of interrupts.
2339          */
2340         nr_io_queues = vecs;
2341         dev->max_qid = nr_io_queues;
2342
2343         result = queue_request_irq(dev, adminq, adminq->irqname);
2344         if (result) {
2345                 adminq->cq_vector = -1;
2346                 goto free_queues;
2347         }
2348
2349         /* Free previously allocated queues that are no longer usable */
2350         nvme_free_queues(dev, nr_io_queues + 1);
2351         nvme_create_io_queues(dev);
2352
2353         return 0;
2354
2355  free_queues:
2356         nvme_free_queues(dev, 1);
2357         return result;
2358 }
2359
2360 static void nvme_free_namespace(struct nvme_ns *ns)
2361 {
2362         list_del(&ns->list);
2363
2364         spin_lock(&dev_list_lock);
2365         ns->disk->private_data = NULL;
2366         spin_unlock(&dev_list_lock);
2367
2368         put_disk(ns->disk);
2369         kfree(ns);
2370 }
2371
2372 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2373 {
2374         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2375         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2376
2377         return nsa->ns_id - nsb->ns_id;
2378 }
2379
2380 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2381 {
2382         struct nvme_ns *ns;
2383
2384         list_for_each_entry(ns, &dev->namespaces, list) {
2385                 if (ns->ns_id == nsid)
2386                         return ns;
2387                 if (ns->ns_id > nsid)
2388                         break;
2389         }
2390         return NULL;
2391 }
2392
2393 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2394 {
2395         return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2396                                                         dev->online_queues < 2);
2397 }
2398
2399 static void nvme_ns_remove(struct nvme_ns *ns)
2400 {
2401         bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2402
2403         if (kill)
2404                 blk_set_queue_dying(ns->queue);
2405         if (ns->disk->flags & GENHD_FL_UP) {
2406                 if (blk_get_integrity(ns->disk))
2407                         blk_integrity_unregister(ns->disk);
2408                 del_gendisk(ns->disk);
2409         }
2410         if (kill || !blk_queue_dying(ns->queue)) {
2411                 blk_mq_abort_requeue_list(ns->queue);
2412                 blk_cleanup_queue(ns->queue);
2413         }
2414 }
2415
2416 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2417 {
2418         struct nvme_ns *ns, *next;
2419         unsigned i;
2420
2421         for (i = 1; i <= nn; i++) {
2422                 ns = nvme_find_ns(dev, i);
2423                 if (ns) {
2424                         if (revalidate_disk(ns->disk)) {
2425                                 nvme_ns_remove(ns);
2426                                 nvme_free_namespace(ns);
2427                         }
2428                 } else
2429                         nvme_alloc_ns(dev, i);
2430         }
2431         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2432                 if (ns->ns_id > nn) {
2433                         nvme_ns_remove(ns);
2434                         nvme_free_namespace(ns);
2435                 }
2436         }
2437         list_sort(NULL, &dev->namespaces, ns_cmp);
2438 }
2439
2440 static void nvme_set_irq_hints(struct nvme_dev *dev)
2441 {
2442         struct nvme_queue *nvmeq;
2443         int i;
2444
2445         for (i = 0; i < dev->online_queues; i++) {
2446                 nvmeq = dev->queues[i];
2447
2448                 if (!nvmeq->tags || !(*nvmeq->tags))
2449                         continue;
2450
2451                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2452                                         blk_mq_tags_cpumask(*nvmeq->tags));
2453         }
2454 }
2455
2456 static void nvme_dev_scan(struct work_struct *work)
2457 {
2458         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2459         struct nvme_id_ctrl *ctrl;
2460
2461         if (!dev->tagset.tags)
2462                 return;
2463         if (nvme_identify_ctrl(dev, &ctrl))
2464                 return;
2465         nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2466         kfree(ctrl);
2467         nvme_set_irq_hints(dev);
2468 }
2469
2470 /*
2471  * Return: error value if an error occurred setting up the queues or calling
2472  * Identify Device.  0 if these succeeded, even if adding some of the
2473  * namespaces failed.  At the moment, these failures are silent.  TBD which
2474  * failures should be reported.
2475  */
2476 static int nvme_dev_add(struct nvme_dev *dev)
2477 {
2478         struct pci_dev *pdev = to_pci_dev(dev->dev);
2479         int res;
2480         struct nvme_id_ctrl *ctrl;
2481         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2482
2483         res = nvme_identify_ctrl(dev, &ctrl);
2484         if (res) {
2485                 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2486                 return -EIO;
2487         }
2488
2489         dev->oncs = le16_to_cpup(&ctrl->oncs);
2490         dev->abort_limit = ctrl->acl + 1;
2491         dev->vwc = ctrl->vwc;
2492         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2493         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2494         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2495         if (ctrl->mdts)
2496                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2497         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2498                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2499                 unsigned int max_hw_sectors;
2500
2501                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2502                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2503                 if (dev->max_hw_sectors) {
2504                         dev->max_hw_sectors = min(max_hw_sectors,
2505                                                         dev->max_hw_sectors);
2506                 } else
2507                         dev->max_hw_sectors = max_hw_sectors;
2508         }
2509         kfree(ctrl);
2510
2511         if (!dev->tagset.tags) {
2512                 dev->tagset.ops = &nvme_mq_ops;
2513                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2514                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2515                 dev->tagset.numa_node = dev_to_node(dev->dev);
2516                 dev->tagset.queue_depth =
2517                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2518                 dev->tagset.cmd_size = nvme_cmd_size(dev);
2519                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2520                 dev->tagset.driver_data = dev;
2521
2522                 if (blk_mq_alloc_tag_set(&dev->tagset))
2523                         return 0;
2524         }
2525         schedule_work(&dev->scan_work);
2526         return 0;
2527 }
2528
2529 static int nvme_dev_map(struct nvme_dev *dev)
2530 {
2531         u64 cap;
2532         int bars, result = -ENOMEM;
2533         struct pci_dev *pdev = to_pci_dev(dev->dev);
2534
2535         if (pci_enable_device_mem(pdev))
2536                 return result;
2537
2538         dev->entry[0].vector = pdev->irq;
2539         pci_set_master(pdev);
2540         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2541         if (!bars)
2542                 goto disable_pci;
2543
2544         if (pci_request_selected_regions(pdev, bars, "nvme"))
2545                 goto disable_pci;
2546
2547         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2548             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2549                 goto disable;
2550
2551         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2552         if (!dev->bar)
2553                 goto disable;
2554
2555         if (readl(&dev->bar->csts) == -1) {
2556                 result = -ENODEV;
2557                 goto unmap;
2558         }
2559
2560         /*
2561          * Some devices don't advertse INTx interrupts, pre-enable a single
2562          * MSIX vec for setup. We'll adjust this later.
2563          */
2564         if (!pdev->irq) {
2565                 result = pci_enable_msix(pdev, dev->entry, 1);
2566                 if (result < 0)
2567                         goto unmap;
2568         }
2569
2570         cap = readq(&dev->bar->cap);
2571         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2572         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2573         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2574         if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
2575                 dev->cmb = nvme_map_cmb(dev);
2576
2577         return 0;
2578
2579  unmap:
2580         iounmap(dev->bar);
2581         dev->bar = NULL;
2582  disable:
2583         pci_release_regions(pdev);
2584  disable_pci:
2585         pci_disable_device(pdev);
2586         return result;
2587 }
2588
2589 static void nvme_dev_unmap(struct nvme_dev *dev)
2590 {
2591         struct pci_dev *pdev = to_pci_dev(dev->dev);
2592
2593         if (pdev->msi_enabled)
2594                 pci_disable_msi(pdev);
2595         else if (pdev->msix_enabled)
2596                 pci_disable_msix(pdev);
2597
2598         if (dev->bar) {
2599                 iounmap(dev->bar);
2600                 dev->bar = NULL;
2601                 pci_release_regions(pdev);
2602         }
2603
2604         if (pci_is_enabled(pdev))
2605                 pci_disable_device(pdev);
2606 }
2607
2608 struct nvme_delq_ctx {
2609         struct task_struct *waiter;
2610         struct kthread_worker *worker;
2611         atomic_t refcount;
2612 };
2613
2614 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2615 {
2616         dq->waiter = current;
2617         mb();
2618
2619         for (;;) {
2620                 set_current_state(TASK_KILLABLE);
2621                 if (!atomic_read(&dq->refcount))
2622                         break;
2623                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2624                                         fatal_signal_pending(current)) {
2625                         /*
2626                          * Disable the controller first since we can't trust it
2627                          * at this point, but leave the admin queue enabled
2628                          * until all queue deletion requests are flushed.
2629                          * FIXME: This may take a while if there are more h/w
2630                          * queues than admin tags.
2631                          */
2632                         set_current_state(TASK_RUNNING);
2633                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2634                         nvme_clear_queue(dev->queues[0]);
2635                         flush_kthread_worker(dq->worker);
2636                         nvme_disable_queue(dev, 0);
2637                         return;
2638                 }
2639         }
2640         set_current_state(TASK_RUNNING);
2641 }
2642
2643 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2644 {
2645         atomic_dec(&dq->refcount);
2646         if (dq->waiter)
2647                 wake_up_process(dq->waiter);
2648 }
2649
2650 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2651 {
2652         atomic_inc(&dq->refcount);
2653         return dq;
2654 }
2655
2656 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2657 {
2658         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2659         nvme_put_dq(dq);
2660 }
2661
2662 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2663                                                 kthread_work_func_t fn)
2664 {
2665         struct nvme_command c;
2666
2667         memset(&c, 0, sizeof(c));
2668         c.delete_queue.opcode = opcode;
2669         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2670
2671         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2672         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2673                                                                 ADMIN_TIMEOUT);
2674 }
2675
2676 static void nvme_del_cq_work_handler(struct kthread_work *work)
2677 {
2678         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2679                                                         cmdinfo.work);
2680         nvme_del_queue_end(nvmeq);
2681 }
2682
2683 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2684 {
2685         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2686                                                 nvme_del_cq_work_handler);
2687 }
2688
2689 static void nvme_del_sq_work_handler(struct kthread_work *work)
2690 {
2691         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2692                                                         cmdinfo.work);
2693         int status = nvmeq->cmdinfo.status;
2694
2695         if (!status)
2696                 status = nvme_delete_cq(nvmeq);
2697         if (status)
2698                 nvme_del_queue_end(nvmeq);
2699 }
2700
2701 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2702 {
2703         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2704                                                 nvme_del_sq_work_handler);
2705 }
2706
2707 static void nvme_del_queue_start(struct kthread_work *work)
2708 {
2709         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2710                                                         cmdinfo.work);
2711         if (nvme_delete_sq(nvmeq))
2712                 nvme_del_queue_end(nvmeq);
2713 }
2714
2715 static void nvme_disable_io_queues(struct nvme_dev *dev)
2716 {
2717         int i;
2718         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2719         struct nvme_delq_ctx dq;
2720         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2721                                         &worker, "nvme%d", dev->instance);
2722
2723         if (IS_ERR(kworker_task)) {
2724                 dev_err(dev->dev,
2725                         "Failed to create queue del task\n");
2726                 for (i = dev->queue_count - 1; i > 0; i--)
2727                         nvme_disable_queue(dev, i);
2728                 return;
2729         }
2730
2731         dq.waiter = NULL;
2732         atomic_set(&dq.refcount, 0);
2733         dq.worker = &worker;
2734         for (i = dev->queue_count - 1; i > 0; i--) {
2735                 struct nvme_queue *nvmeq = dev->queues[i];
2736
2737                 if (nvme_suspend_queue(nvmeq))
2738                         continue;
2739                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2740                 nvmeq->cmdinfo.worker = dq.worker;
2741                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2742                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2743         }
2744         nvme_wait_dq(&dq, dev);
2745         kthread_stop(kworker_task);
2746 }
2747
2748 /*
2749 * Remove the node from the device list and check
2750 * for whether or not we need to stop the nvme_thread.
2751 */
2752 static void nvme_dev_list_remove(struct nvme_dev *dev)
2753 {
2754         struct task_struct *tmp = NULL;
2755
2756         spin_lock(&dev_list_lock);
2757         list_del_init(&dev->node);
2758         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2759                 tmp = nvme_thread;
2760                 nvme_thread = NULL;
2761         }
2762         spin_unlock(&dev_list_lock);
2763
2764         if (tmp)
2765                 kthread_stop(tmp);
2766 }
2767
2768 static void nvme_freeze_queues(struct nvme_dev *dev)
2769 {
2770         struct nvme_ns *ns;
2771
2772         list_for_each_entry(ns, &dev->namespaces, list) {
2773                 blk_mq_freeze_queue_start(ns->queue);
2774
2775                 spin_lock_irq(ns->queue->queue_lock);
2776                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2777                 spin_unlock_irq(ns->queue->queue_lock);
2778
2779                 blk_mq_cancel_requeue_work(ns->queue);
2780                 blk_mq_stop_hw_queues(ns->queue);
2781         }
2782 }
2783
2784 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2785 {
2786         struct nvme_ns *ns;
2787
2788         list_for_each_entry(ns, &dev->namespaces, list) {
2789                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2790                 blk_mq_unfreeze_queue(ns->queue);
2791                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2792                 blk_mq_kick_requeue_list(ns->queue);
2793         }
2794 }
2795
2796 static void nvme_dev_shutdown(struct nvme_dev *dev)
2797 {
2798         int i;
2799         u32 csts = -1;
2800
2801         nvme_dev_list_remove(dev);
2802
2803         if (dev->bar) {
2804                 nvme_freeze_queues(dev);
2805                 csts = readl(&dev->bar->csts);
2806         }
2807         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2808                 for (i = dev->queue_count - 1; i >= 0; i--) {
2809                         struct nvme_queue *nvmeq = dev->queues[i];
2810                         nvme_suspend_queue(nvmeq);
2811                 }
2812         } else {
2813                 nvme_disable_io_queues(dev);
2814                 nvme_shutdown_ctrl(dev);
2815                 nvme_disable_queue(dev, 0);
2816         }
2817         nvme_dev_unmap(dev);
2818
2819         for (i = dev->queue_count - 1; i >= 0; i--)
2820                 nvme_clear_queue(dev->queues[i]);
2821 }
2822
2823 static void nvme_dev_remove(struct nvme_dev *dev)
2824 {
2825         struct nvme_ns *ns;
2826
2827         list_for_each_entry(ns, &dev->namespaces, list)
2828                 nvme_ns_remove(ns);
2829 }
2830
2831 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2832 {
2833         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2834                                                 PAGE_SIZE, PAGE_SIZE, 0);
2835         if (!dev->prp_page_pool)
2836                 return -ENOMEM;
2837
2838         /* Optimisation for I/Os between 4k and 128k */
2839         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2840                                                 256, 256, 0);
2841         if (!dev->prp_small_pool) {
2842                 dma_pool_destroy(dev->prp_page_pool);
2843                 return -ENOMEM;
2844         }
2845         return 0;
2846 }
2847
2848 static void nvme_release_prp_pools(struct nvme_dev *dev)
2849 {
2850         dma_pool_destroy(dev->prp_page_pool);
2851         dma_pool_destroy(dev->prp_small_pool);
2852 }
2853
2854 static DEFINE_IDA(nvme_instance_ida);
2855
2856 static int nvme_set_instance(struct nvme_dev *dev)
2857 {
2858         int instance, error;
2859
2860         do {
2861                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2862                         return -ENODEV;
2863
2864                 spin_lock(&dev_list_lock);
2865                 error = ida_get_new(&nvme_instance_ida, &instance);
2866                 spin_unlock(&dev_list_lock);
2867         } while (error == -EAGAIN);
2868
2869         if (error)
2870                 return -ENODEV;
2871
2872         dev->instance = instance;
2873         return 0;
2874 }
2875
2876 static void nvme_release_instance(struct nvme_dev *dev)
2877 {
2878         spin_lock(&dev_list_lock);
2879         ida_remove(&nvme_instance_ida, dev->instance);
2880         spin_unlock(&dev_list_lock);
2881 }
2882
2883 static void nvme_free_namespaces(struct nvme_dev *dev)
2884 {
2885         struct nvme_ns *ns, *next;
2886
2887         list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2888                 nvme_free_namespace(ns);
2889 }
2890
2891 static void nvme_free_dev(struct kref *kref)
2892 {
2893         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2894
2895         put_device(dev->dev);
2896         put_device(dev->device);
2897         nvme_free_namespaces(dev);
2898         nvme_release_instance(dev);
2899         if (dev->tagset.tags)
2900                 blk_mq_free_tag_set(&dev->tagset);
2901         if (dev->admin_q)
2902                 blk_put_queue(dev->admin_q);
2903         kfree(dev->queues);
2904         kfree(dev->entry);
2905         kfree(dev);
2906 }
2907
2908 static int nvme_dev_open(struct inode *inode, struct file *f)
2909 {
2910         struct nvme_dev *dev;
2911         int instance = iminor(inode);
2912         int ret = -ENODEV;
2913
2914         spin_lock(&dev_list_lock);
2915         list_for_each_entry(dev, &dev_list, node) {
2916                 if (dev->instance == instance) {
2917                         if (!dev->admin_q) {
2918                                 ret = -EWOULDBLOCK;
2919                                 break;
2920                         }
2921                         if (!kref_get_unless_zero(&dev->kref))
2922                                 break;
2923                         f->private_data = dev;
2924                         ret = 0;
2925                         break;
2926                 }
2927         }
2928         spin_unlock(&dev_list_lock);
2929
2930         return ret;
2931 }
2932
2933 static int nvme_dev_release(struct inode *inode, struct file *f)
2934 {
2935         struct nvme_dev *dev = f->private_data;
2936         kref_put(&dev->kref, nvme_free_dev);
2937         return 0;
2938 }
2939
2940 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2941 {
2942         struct nvme_dev *dev = f->private_data;
2943         struct nvme_ns *ns;
2944
2945         switch (cmd) {
2946         case NVME_IOCTL_ADMIN_CMD:
2947                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2948         case NVME_IOCTL_IO_CMD:
2949                 if (list_empty(&dev->namespaces))
2950                         return -ENOTTY;
2951                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2952                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2953         case NVME_IOCTL_RESET:
2954                 dev_warn(dev->dev, "resetting controller\n");
2955                 return nvme_reset(dev);
2956         case NVME_IOCTL_SUBSYS_RESET:
2957                 return nvme_subsys_reset(dev);
2958         default:
2959                 return -ENOTTY;
2960         }
2961 }
2962
2963 static const struct file_operations nvme_dev_fops = {
2964         .owner          = THIS_MODULE,
2965         .open           = nvme_dev_open,
2966         .release        = nvme_dev_release,
2967         .unlocked_ioctl = nvme_dev_ioctl,
2968         .compat_ioctl   = nvme_dev_ioctl,
2969 };
2970
2971 static int nvme_dev_start(struct nvme_dev *dev)
2972 {
2973         int result;
2974         bool start_thread = false;
2975
2976         result = nvme_dev_map(dev);
2977         if (result)
2978                 return result;
2979
2980         result = nvme_configure_admin_queue(dev);
2981         if (result)
2982                 goto unmap;
2983
2984         spin_lock(&dev_list_lock);
2985         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2986                 start_thread = true;
2987                 nvme_thread = NULL;
2988         }
2989         list_add(&dev->node, &dev_list);
2990         spin_unlock(&dev_list_lock);
2991
2992         if (start_thread) {
2993                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2994                 wake_up_all(&nvme_kthread_wait);
2995         } else
2996                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2997
2998         if (IS_ERR_OR_NULL(nvme_thread)) {
2999                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
3000                 goto disable;
3001         }
3002
3003         nvme_init_queue(dev->queues[0], 0);
3004         result = nvme_alloc_admin_tags(dev);
3005         if (result)
3006                 goto disable;
3007
3008         result = nvme_setup_io_queues(dev);
3009         if (result)
3010                 goto free_tags;
3011
3012         dev->event_limit = 1;
3013         return result;
3014
3015  free_tags:
3016         nvme_dev_remove_admin(dev);
3017         blk_put_queue(dev->admin_q);
3018         dev->admin_q = NULL;
3019         dev->queues[0]->tags = NULL;
3020  disable:
3021         nvme_disable_queue(dev, 0);
3022         nvme_dev_list_remove(dev);
3023  unmap:
3024         nvme_dev_unmap(dev);
3025         return result;
3026 }
3027
3028 static int nvme_remove_dead_ctrl(void *arg)
3029 {
3030         struct nvme_dev *dev = (struct nvme_dev *)arg;
3031         struct pci_dev *pdev = to_pci_dev(dev->dev);
3032
3033         if (pci_get_drvdata(pdev))
3034                 pci_stop_and_remove_bus_device_locked(pdev);
3035         kref_put(&dev->kref, nvme_free_dev);
3036         return 0;
3037 }
3038
3039 static void nvme_remove_disks(struct work_struct *ws)
3040 {
3041         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3042
3043         nvme_free_queues(dev, 1);
3044         nvme_dev_remove(dev);
3045 }
3046
3047 static int nvme_dev_resume(struct nvme_dev *dev)
3048 {
3049         int ret;
3050
3051         ret = nvme_dev_start(dev);
3052         if (ret)
3053                 return ret;
3054         if (dev->online_queues < 2) {
3055                 spin_lock(&dev_list_lock);
3056                 dev->reset_workfn = nvme_remove_disks;
3057                 queue_work(nvme_workq, &dev->reset_work);
3058                 spin_unlock(&dev_list_lock);
3059         } else {
3060                 nvme_unfreeze_queues(dev);
3061                 nvme_dev_add(dev);
3062         }
3063         return 0;
3064 }
3065
3066 static void nvme_dead_ctrl(struct nvme_dev *dev)
3067 {
3068         dev_warn(dev->dev, "Device failed to resume\n");
3069         kref_get(&dev->kref);
3070         if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3071                                                 dev->instance))) {
3072                 dev_err(dev->dev,
3073                         "Failed to start controller remove task\n");
3074                 kref_put(&dev->kref, nvme_free_dev);
3075         }
3076 }
3077
3078 static void nvme_dev_reset(struct nvme_dev *dev)
3079 {
3080         bool in_probe = work_busy(&dev->probe_work);
3081
3082         nvme_dev_shutdown(dev);
3083
3084         /* Synchronize with device probe so that work will see failure status
3085          * and exit gracefully without trying to schedule another reset */
3086         flush_work(&dev->probe_work);
3087
3088         /* Fail this device if reset occured during probe to avoid
3089          * infinite initialization loops. */
3090         if (in_probe) {
3091                 nvme_dead_ctrl(dev);
3092                 return;
3093         }
3094         /* Schedule device resume asynchronously so the reset work is available
3095          * to cleanup errors that may occur during reinitialization */
3096         schedule_work(&dev->probe_work);
3097 }
3098
3099 static void nvme_reset_failed_dev(struct work_struct *ws)
3100 {
3101         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3102         nvme_dev_reset(dev);
3103 }
3104
3105 static void nvme_reset_workfn(struct work_struct *work)
3106 {
3107         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
3108         dev->reset_workfn(work);
3109 }
3110
3111 static int nvme_reset(struct nvme_dev *dev)
3112 {
3113         int ret = -EBUSY;
3114
3115         if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3116                 return -ENODEV;
3117
3118         spin_lock(&dev_list_lock);
3119         if (!work_pending(&dev->reset_work)) {
3120                 dev->reset_workfn = nvme_reset_failed_dev;
3121                 queue_work(nvme_workq, &dev->reset_work);
3122                 ret = 0;
3123         }
3124         spin_unlock(&dev_list_lock);
3125
3126         if (!ret) {
3127                 flush_work(&dev->reset_work);
3128                 flush_work(&dev->probe_work);
3129                 return 0;
3130         }
3131
3132         return ret;
3133 }
3134
3135 static ssize_t nvme_sysfs_reset(struct device *dev,
3136                                 struct device_attribute *attr, const char *buf,
3137                                 size_t count)
3138 {
3139         struct nvme_dev *ndev = dev_get_drvdata(dev);
3140         int ret;
3141
3142         ret = nvme_reset(ndev);
3143         if (ret < 0)
3144                 return ret;
3145
3146         return count;
3147 }
3148 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3149
3150 static void nvme_async_probe(struct work_struct *work);
3151 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3152 {
3153         int node, result = -ENOMEM;
3154         struct nvme_dev *dev;
3155
3156         node = dev_to_node(&pdev->dev);
3157         if (node == NUMA_NO_NODE)
3158                 set_dev_node(&pdev->dev, 0);
3159
3160         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3161         if (!dev)
3162                 return -ENOMEM;
3163         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3164                                                         GFP_KERNEL, node);
3165         if (!dev->entry)
3166                 goto free;
3167         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3168                                                         GFP_KERNEL, node);
3169         if (!dev->queues)
3170                 goto free;
3171
3172         INIT_LIST_HEAD(&dev->namespaces);
3173         dev->reset_workfn = nvme_reset_failed_dev;
3174         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
3175         dev->dev = get_device(&pdev->dev);
3176         pci_set_drvdata(pdev, dev);
3177         result = nvme_set_instance(dev);
3178         if (result)
3179                 goto put_pci;
3180
3181         result = nvme_setup_prp_pools(dev);
3182         if (result)
3183                 goto release;
3184
3185         kref_init(&dev->kref);
3186         dev->device = device_create(nvme_class, &pdev->dev,
3187                                 MKDEV(nvme_char_major, dev->instance),
3188                                 dev, "nvme%d", dev->instance);
3189         if (IS_ERR(dev->device)) {
3190                 result = PTR_ERR(dev->device);
3191                 goto release_pools;
3192         }
3193         get_device(dev->device);
3194         dev_set_drvdata(dev->device, dev);
3195
3196         result = device_create_file(dev->device, &dev_attr_reset_controller);
3197         if (result)
3198                 goto put_dev;
3199
3200         INIT_LIST_HEAD(&dev->node);
3201         INIT_WORK(&dev->scan_work, nvme_dev_scan);
3202         INIT_WORK(&dev->probe_work, nvme_async_probe);
3203         schedule_work(&dev->probe_work);
3204         return 0;
3205
3206  put_dev:
3207         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3208         put_device(dev->device);
3209  release_pools:
3210         nvme_release_prp_pools(dev);
3211  release:
3212         nvme_release_instance(dev);
3213  put_pci:
3214         put_device(dev->dev);
3215  free:
3216         kfree(dev->queues);
3217         kfree(dev->entry);
3218         kfree(dev);
3219         return result;
3220 }
3221
3222 static void nvme_async_probe(struct work_struct *work)
3223 {
3224         struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3225
3226         if (nvme_dev_resume(dev) && !work_busy(&dev->reset_work))
3227                 nvme_dead_ctrl(dev);
3228 }
3229
3230 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3231 {
3232         struct nvme_dev *dev = pci_get_drvdata(pdev);
3233
3234         if (prepare)
3235                 nvme_dev_shutdown(dev);
3236         else
3237                 nvme_dev_resume(dev);
3238 }
3239
3240 static void nvme_shutdown(struct pci_dev *pdev)
3241 {
3242         struct nvme_dev *dev = pci_get_drvdata(pdev);
3243         nvme_dev_shutdown(dev);
3244 }
3245
3246 static void nvme_remove(struct pci_dev *pdev)
3247 {
3248         struct nvme_dev *dev = pci_get_drvdata(pdev);
3249
3250         spin_lock(&dev_list_lock);
3251         list_del_init(&dev->node);
3252         spin_unlock(&dev_list_lock);
3253
3254         pci_set_drvdata(pdev, NULL);
3255         flush_work(&dev->probe_work);
3256         flush_work(&dev->reset_work);
3257         flush_work(&dev->scan_work);
3258         device_remove_file(dev->device, &dev_attr_reset_controller);
3259         nvme_dev_remove(dev);
3260         nvme_dev_shutdown(dev);
3261         nvme_dev_remove_admin(dev);
3262         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3263         nvme_free_queues(dev, 0);
3264         nvme_release_cmb(dev);
3265         nvme_release_prp_pools(dev);
3266         kref_put(&dev->kref, nvme_free_dev);
3267 }
3268
3269 /* These functions are yet to be implemented */
3270 #define nvme_error_detected NULL
3271 #define nvme_dump_registers NULL
3272 #define nvme_link_reset NULL
3273 #define nvme_slot_reset NULL
3274 #define nvme_error_resume NULL
3275
3276 #ifdef CONFIG_PM_SLEEP
3277 static int nvme_suspend(struct device *dev)
3278 {
3279         struct pci_dev *pdev = to_pci_dev(dev);
3280         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3281
3282         nvme_dev_shutdown(ndev);
3283         return 0;
3284 }
3285
3286 static int nvme_resume(struct device *dev)
3287 {
3288         struct pci_dev *pdev = to_pci_dev(dev);
3289         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3290
3291         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3292                 ndev->reset_workfn = nvme_reset_failed_dev;
3293                 queue_work(nvme_workq, &ndev->reset_work);
3294         }
3295         return 0;
3296 }
3297 #endif
3298
3299 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3300
3301 static const struct pci_error_handlers nvme_err_handler = {
3302         .error_detected = nvme_error_detected,
3303         .mmio_enabled   = nvme_dump_registers,
3304         .link_reset     = nvme_link_reset,
3305         .slot_reset     = nvme_slot_reset,
3306         .resume         = nvme_error_resume,
3307         .reset_notify   = nvme_reset_notify,
3308 };
3309
3310 /* Move to pci_ids.h later */
3311 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3312
3313 static const struct pci_device_id nvme_id_table[] = {
3314         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3315         { 0, }
3316 };
3317 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3318
3319 static struct pci_driver nvme_driver = {
3320         .name           = "nvme",
3321         .id_table       = nvme_id_table,
3322         .probe          = nvme_probe,
3323         .remove         = nvme_remove,
3324         .shutdown       = nvme_shutdown,
3325         .driver         = {
3326                 .pm     = &nvme_dev_pm_ops,
3327         },
3328         .err_handler    = &nvme_err_handler,
3329 };
3330
3331 static int __init nvme_init(void)
3332 {
3333         int result;
3334
3335         init_waitqueue_head(&nvme_kthread_wait);
3336
3337         nvme_workq = create_singlethread_workqueue("nvme");
3338         if (!nvme_workq)
3339                 return -ENOMEM;
3340
3341         result = register_blkdev(nvme_major, "nvme");
3342         if (result < 0)
3343                 goto kill_workq;
3344         else if (result > 0)
3345                 nvme_major = result;
3346
3347         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3348                                                         &nvme_dev_fops);
3349         if (result < 0)
3350                 goto unregister_blkdev;
3351         else if (result > 0)
3352                 nvme_char_major = result;
3353
3354         nvme_class = class_create(THIS_MODULE, "nvme");
3355         if (IS_ERR(nvme_class)) {
3356                 result = PTR_ERR(nvme_class);
3357                 goto unregister_chrdev;
3358         }
3359
3360         result = pci_register_driver(&nvme_driver);
3361         if (result)
3362                 goto destroy_class;
3363         return 0;
3364
3365  destroy_class:
3366         class_destroy(nvme_class);
3367  unregister_chrdev:
3368         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3369  unregister_blkdev:
3370         unregister_blkdev(nvme_major, "nvme");
3371  kill_workq:
3372         destroy_workqueue(nvme_workq);
3373         return result;
3374 }
3375
3376 static void __exit nvme_exit(void)
3377 {
3378         pci_unregister_driver(&nvme_driver);
3379         unregister_blkdev(nvme_major, "nvme");
3380         destroy_workqueue(nvme_workq);
3381         class_destroy(nvme_class);
3382         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3383         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3384         _nvme_check_size();
3385 }
3386
3387 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3388 MODULE_LICENSE("GPL");
3389 MODULE_VERSION("1.0");
3390 module_init(nvme_init);
3391 module_exit(nvme_exit);