]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/clk/sunxi/clk-sunxi.c
Merge remote-tracking branch 'omap/for-next'
[karo-tx-linux.git] / drivers / clk / sunxi / clk-sunxi.c
1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/clkdev.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/reset-controller.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/log2.h>
26
27 #include "clk-factors.h"
28
29 static DEFINE_SPINLOCK(clk_lock);
30
31 /**
32  * sun6i_a31_ahb1_clk_setup() - Setup function for a31 ahb1 composite clk
33  */
34
35 #define SUN6I_AHB1_MAX_PARENTS          4
36 #define SUN6I_AHB1_MUX_PARENT_PLL6      3
37 #define SUN6I_AHB1_MUX_SHIFT            12
38 /* un-shifted mask is what mux_clk expects */
39 #define SUN6I_AHB1_MUX_MASK             0x3
40 #define SUN6I_AHB1_MUX_GET_PARENT(reg)  ((reg >> SUN6I_AHB1_MUX_SHIFT) & \
41                                          SUN6I_AHB1_MUX_MASK)
42
43 #define SUN6I_AHB1_DIV_SHIFT            4
44 #define SUN6I_AHB1_DIV_MASK             (0x3 << SUN6I_AHB1_DIV_SHIFT)
45 #define SUN6I_AHB1_DIV_GET(reg)         ((reg & SUN6I_AHB1_DIV_MASK) >> \
46                                                 SUN6I_AHB1_DIV_SHIFT)
47 #define SUN6I_AHB1_DIV_SET(reg, div)    ((reg & ~SUN6I_AHB1_DIV_MASK) | \
48                                                 (div << SUN6I_AHB1_DIV_SHIFT))
49 #define SUN6I_AHB1_PLL6_DIV_SHIFT       6
50 #define SUN6I_AHB1_PLL6_DIV_MASK        (0x3 << SUN6I_AHB1_PLL6_DIV_SHIFT)
51 #define SUN6I_AHB1_PLL6_DIV_GET(reg)    ((reg & SUN6I_AHB1_PLL6_DIV_MASK) >> \
52                                                 SUN6I_AHB1_PLL6_DIV_SHIFT)
53 #define SUN6I_AHB1_PLL6_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_PLL6_DIV_MASK) | \
54                                                 (div << SUN6I_AHB1_PLL6_DIV_SHIFT))
55
56 struct sun6i_ahb1_clk {
57         struct clk_hw hw;
58         void __iomem *reg;
59 };
60
61 #define to_sun6i_ahb1_clk(_hw) container_of(_hw, struct sun6i_ahb1_clk, hw)
62
63 static unsigned long sun6i_ahb1_clk_recalc_rate(struct clk_hw *hw,
64                                                 unsigned long parent_rate)
65 {
66         struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
67         unsigned long rate;
68         u32 reg;
69
70         /* Fetch the register value */
71         reg = readl(ahb1->reg);
72
73         /* apply pre-divider first if parent is pll6 */
74         if (SUN6I_AHB1_MUX_GET_PARENT(reg) == SUN6I_AHB1_MUX_PARENT_PLL6)
75                 parent_rate /= SUN6I_AHB1_PLL6_DIV_GET(reg) + 1;
76
77         /* clk divider */
78         rate = parent_rate >> SUN6I_AHB1_DIV_GET(reg);
79
80         return rate;
81 }
82
83 static long sun6i_ahb1_clk_round(unsigned long rate, u8 *divp, u8 *pre_divp,
84                                  u8 parent, unsigned long parent_rate)
85 {
86         u8 div, calcp, calcm = 1;
87
88         /*
89          * clock can only divide, so we will never be able to achieve
90          * frequencies higher than the parent frequency
91          */
92         if (parent_rate && rate > parent_rate)
93                 rate = parent_rate;
94
95         div = DIV_ROUND_UP(parent_rate, rate);
96
97         /* calculate pre-divider if parent is pll6 */
98         if (parent == SUN6I_AHB1_MUX_PARENT_PLL6) {
99                 if (div < 4)
100                         calcp = 0;
101                 else if (div / 2 < 4)
102                         calcp = 1;
103                 else if (div / 4 < 4)
104                         calcp = 2;
105                 else
106                         calcp = 3;
107
108                 calcm = DIV_ROUND_UP(div, 1 << calcp);
109         } else {
110                 calcp = __roundup_pow_of_two(div);
111                 calcp = calcp > 3 ? 3 : calcp;
112         }
113
114         /* we were asked to pass back divider values */
115         if (divp) {
116                 *divp = calcp;
117                 *pre_divp = calcm - 1;
118         }
119
120         return (parent_rate / calcm) >> calcp;
121 }
122
123 static int sun6i_ahb1_clk_determine_rate(struct clk_hw *hw,
124                                          struct clk_rate_request *req)
125 {
126         struct clk_hw *parent, *best_parent = NULL;
127         int i, num_parents;
128         unsigned long parent_rate, best = 0, child_rate, best_child_rate = 0;
129
130         /* find the parent that can help provide the fastest rate <= rate */
131         num_parents = clk_hw_get_num_parents(hw);
132         for (i = 0; i < num_parents; i++) {
133                 parent = clk_hw_get_parent_by_index(hw, i);
134                 if (!parent)
135                         continue;
136                 if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)
137                         parent_rate = clk_hw_round_rate(parent, req->rate);
138                 else
139                         parent_rate = clk_hw_get_rate(parent);
140
141                 child_rate = sun6i_ahb1_clk_round(req->rate, NULL, NULL, i,
142                                                   parent_rate);
143
144                 if (child_rate <= req->rate && child_rate > best_child_rate) {
145                         best_parent = parent;
146                         best = parent_rate;
147                         best_child_rate = child_rate;
148                 }
149         }
150
151         if (!best_parent)
152                 return -EINVAL;
153
154         req->best_parent_hw = best_parent;
155         req->best_parent_rate = best;
156         req->rate = best_child_rate;
157
158         return 0;
159 }
160
161 static int sun6i_ahb1_clk_set_rate(struct clk_hw *hw, unsigned long rate,
162                                    unsigned long parent_rate)
163 {
164         struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
165         unsigned long flags;
166         u8 div, pre_div, parent;
167         u32 reg;
168
169         spin_lock_irqsave(&clk_lock, flags);
170
171         reg = readl(ahb1->reg);
172
173         /* need to know which parent is used to apply pre-divider */
174         parent = SUN6I_AHB1_MUX_GET_PARENT(reg);
175         sun6i_ahb1_clk_round(rate, &div, &pre_div, parent, parent_rate);
176
177         reg = SUN6I_AHB1_DIV_SET(reg, div);
178         reg = SUN6I_AHB1_PLL6_DIV_SET(reg, pre_div);
179         writel(reg, ahb1->reg);
180
181         spin_unlock_irqrestore(&clk_lock, flags);
182
183         return 0;
184 }
185
186 static const struct clk_ops sun6i_ahb1_clk_ops = {
187         .determine_rate = sun6i_ahb1_clk_determine_rate,
188         .recalc_rate    = sun6i_ahb1_clk_recalc_rate,
189         .set_rate       = sun6i_ahb1_clk_set_rate,
190 };
191
192 static void __init sun6i_ahb1_clk_setup(struct device_node *node)
193 {
194         struct clk *clk;
195         struct sun6i_ahb1_clk *ahb1;
196         struct clk_mux *mux;
197         const char *clk_name = node->name;
198         const char *parents[SUN6I_AHB1_MAX_PARENTS];
199         void __iomem *reg;
200         int i;
201
202         reg = of_io_request_and_map(node, 0, of_node_full_name(node));
203         if (IS_ERR(reg))
204                 return;
205
206         /* we have a mux, we will have >1 parents */
207         i = of_clk_parent_fill(node, parents, SUN6I_AHB1_MAX_PARENTS);
208         of_property_read_string(node, "clock-output-names", &clk_name);
209
210         ahb1 = kzalloc(sizeof(struct sun6i_ahb1_clk), GFP_KERNEL);
211         if (!ahb1)
212                 return;
213
214         mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
215         if (!mux) {
216                 kfree(ahb1);
217                 return;
218         }
219
220         /* set up clock properties */
221         mux->reg = reg;
222         mux->shift = SUN6I_AHB1_MUX_SHIFT;
223         mux->mask = SUN6I_AHB1_MUX_MASK;
224         mux->lock = &clk_lock;
225         ahb1->reg = reg;
226
227         clk = clk_register_composite(NULL, clk_name, parents, i,
228                                      &mux->hw, &clk_mux_ops,
229                                      &ahb1->hw, &sun6i_ahb1_clk_ops,
230                                      NULL, NULL, 0);
231
232         if (!IS_ERR(clk)) {
233                 of_clk_add_provider(node, of_clk_src_simple_get, clk);
234                 clk_register_clkdev(clk, clk_name, NULL);
235         }
236 }
237 CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk", sun6i_ahb1_clk_setup);
238
239 /* Maximum number of parents our clocks have */
240 #define SUNXI_MAX_PARENTS       5
241
242 /**
243  * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
244  * PLL1 rate is calculated as follows
245  * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
246  * parent_rate is always 24Mhz
247  */
248
249 static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
250                                    u8 *n, u8 *k, u8 *m, u8 *p)
251 {
252         u8 div;
253
254         /* Normalize value to a 6M multiple */
255         div = *freq / 6000000;
256         *freq = 6000000 * div;
257
258         /* we were called to round the frequency, we can now return */
259         if (n == NULL)
260                 return;
261
262         /* m is always zero for pll1 */
263         *m = 0;
264
265         /* k is 1 only on these cases */
266         if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
267                 *k = 1;
268         else
269                 *k = 0;
270
271         /* p will be 3 for divs under 10 */
272         if (div < 10)
273                 *p = 3;
274
275         /* p will be 2 for divs between 10 - 20 and odd divs under 32 */
276         else if (div < 20 || (div < 32 && (div & 1)))
277                 *p = 2;
278
279         /* p will be 1 for even divs under 32, divs under 40 and odd pairs
280          * of divs between 40-62 */
281         else if (div < 40 || (div < 64 && (div & 2)))
282                 *p = 1;
283
284         /* any other entries have p = 0 */
285         else
286                 *p = 0;
287
288         /* calculate a suitable n based on k and p */
289         div <<= *p;
290         div /= (*k + 1);
291         *n = div / 4;
292 }
293
294 /**
295  * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
296  * PLL1 rate is calculated as follows
297  * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
298  * parent_rate should always be 24MHz
299  */
300 static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
301                                        u8 *n, u8 *k, u8 *m, u8 *p)
302 {
303         /*
304          * We can operate only on MHz, this will make our life easier
305          * later.
306          */
307         u32 freq_mhz = *freq / 1000000;
308         u32 parent_freq_mhz = parent_rate / 1000000;
309
310         /*
311          * Round down the frequency to the closest multiple of either
312          * 6 or 16
313          */
314         u32 round_freq_6 = round_down(freq_mhz, 6);
315         u32 round_freq_16 = round_down(freq_mhz, 16);
316
317         if (round_freq_6 > round_freq_16)
318                 freq_mhz = round_freq_6;
319         else
320                 freq_mhz = round_freq_16;
321
322         *freq = freq_mhz * 1000000;
323
324         /*
325          * If the factors pointer are null, we were just called to
326          * round down the frequency.
327          * Exit.
328          */
329         if (n == NULL)
330                 return;
331
332         /* If the frequency is a multiple of 32 MHz, k is always 3 */
333         if (!(freq_mhz % 32))
334                 *k = 3;
335         /* If the frequency is a multiple of 9 MHz, k is always 2 */
336         else if (!(freq_mhz % 9))
337                 *k = 2;
338         /* If the frequency is a multiple of 8 MHz, k is always 1 */
339         else if (!(freq_mhz % 8))
340                 *k = 1;
341         /* Otherwise, we don't use the k factor */
342         else
343                 *k = 0;
344
345         /*
346          * If the frequency is a multiple of 2 but not a multiple of
347          * 3, m is 3. This is the first time we use 6 here, yet we
348          * will use it on several other places.
349          * We use this number because it's the lowest frequency we can
350          * generate (with n = 0, k = 0, m = 3), so every other frequency
351          * somehow relates to this frequency.
352          */
353         if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
354                 *m = 2;
355         /*
356          * If the frequency is a multiple of 6MHz, but the factor is
357          * odd, m will be 3
358          */
359         else if ((freq_mhz / 6) & 1)
360                 *m = 3;
361         /* Otherwise, we end up with m = 1 */
362         else
363                 *m = 1;
364
365         /* Calculate n thanks to the above factors we already got */
366         *n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
367
368         /*
369          * If n end up being outbound, and that we can still decrease
370          * m, do it.
371          */
372         if ((*n + 1) > 31 && (*m + 1) > 1) {
373                 *n = (*n + 1) / 2 - 1;
374                 *m = (*m + 1) / 2 - 1;
375         }
376 }
377
378 /**
379  * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
380  * PLL1 rate is calculated as follows
381  * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
382  * parent_rate is always 24Mhz
383  */
384
385 static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate,
386                                    u8 *n, u8 *k, u8 *m, u8 *p)
387 {
388         u8 div;
389
390         /* Normalize value to a 6M multiple */
391         div = *freq / 6000000;
392         *freq = 6000000 * div;
393
394         /* we were called to round the frequency, we can now return */
395         if (n == NULL)
396                 return;
397
398         /* m is always zero for pll1 */
399         *m = 0;
400
401         /* k is 1 only on these cases */
402         if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
403                 *k = 1;
404         else
405                 *k = 0;
406
407         /* p will be 2 for divs under 20 and odd divs under 32 */
408         if (div < 20 || (div < 32 && (div & 1)))
409                 *p = 2;
410
411         /* p will be 1 for even divs under 32, divs under 40 and odd pairs
412          * of divs between 40-62 */
413         else if (div < 40 || (div < 64 && (div & 2)))
414                 *p = 1;
415
416         /* any other entries have p = 0 */
417         else
418                 *p = 0;
419
420         /* calculate a suitable n based on k and p */
421         div <<= *p;
422         div /= (*k + 1);
423         *n = div / 4 - 1;
424 }
425
426 /**
427  * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
428  * PLL5 rate is calculated as follows
429  * rate = parent_rate * n * (k + 1)
430  * parent_rate is always 24Mhz
431  */
432
433 static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
434                                    u8 *n, u8 *k, u8 *m, u8 *p)
435 {
436         u8 div;
437
438         /* Normalize value to a parent_rate multiple (24M) */
439         div = *freq / parent_rate;
440         *freq = parent_rate * div;
441
442         /* we were called to round the frequency, we can now return */
443         if (n == NULL)
444                 return;
445
446         if (div < 31)
447                 *k = 0;
448         else if (div / 2 < 31)
449                 *k = 1;
450         else if (div / 3 < 31)
451                 *k = 2;
452         else
453                 *k = 3;
454
455         *n = DIV_ROUND_UP(div, (*k+1));
456 }
457
458 /**
459  * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
460  * PLL6x2 rate is calculated as follows
461  * rate = parent_rate * (n + 1) * (k + 1)
462  * parent_rate is always 24Mhz
463  */
464
465 static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
466                                        u8 *n, u8 *k, u8 *m, u8 *p)
467 {
468         u8 div;
469
470         /* Normalize value to a parent_rate multiple (24M) */
471         div = *freq / parent_rate;
472         *freq = parent_rate * div;
473
474         /* we were called to round the frequency, we can now return */
475         if (n == NULL)
476                 return;
477
478         *k = div / 32;
479         if (*k > 3)
480                 *k = 3;
481
482         *n = DIV_ROUND_UP(div, (*k+1)) - 1;
483 }
484
485 /**
486  * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
487  * AHB rate is calculated as follows
488  * rate = parent_rate >> p
489  */
490
491 static void sun5i_a13_get_ahb_factors(u32 *freq, u32 parent_rate,
492                                        u8 *n, u8 *k, u8 *m, u8 *p)
493 {
494         u32 div;
495
496         /* divide only */
497         if (parent_rate < *freq)
498                 *freq = parent_rate;
499
500         /*
501          * user manual says valid speed is 8k ~ 276M, but tests show it
502          * can work at speeds up to 300M, just after reparenting to pll6
503          */
504         if (*freq < 8000)
505                 *freq = 8000;
506         if (*freq > 300000000)
507                 *freq = 300000000;
508
509         div = order_base_2(DIV_ROUND_UP(parent_rate, *freq));
510
511         /* p = 0 ~ 3 */
512         if (div > 3)
513                 div = 3;
514
515         *freq = parent_rate >> div;
516
517         /* we were called to round the frequency, we can now return */
518         if (p == NULL)
519                 return;
520
521         *p = div;
522 }
523
524 /**
525  * sun4i_get_apb1_factors() - calculates m, p factors for APB1
526  * APB1 rate is calculated as follows
527  * rate = (parent_rate >> p) / (m + 1);
528  */
529
530 static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
531                                    u8 *n, u8 *k, u8 *m, u8 *p)
532 {
533         u8 calcm, calcp;
534
535         if (parent_rate < *freq)
536                 *freq = parent_rate;
537
538         parent_rate = DIV_ROUND_UP(parent_rate, *freq);
539
540         /* Invalid rate! */
541         if (parent_rate > 32)
542                 return;
543
544         if (parent_rate <= 4)
545                 calcp = 0;
546         else if (parent_rate <= 8)
547                 calcp = 1;
548         else if (parent_rate <= 16)
549                 calcp = 2;
550         else
551                 calcp = 3;
552
553         calcm = (parent_rate >> calcp) - 1;
554
555         *freq = (parent_rate >> calcp) / (calcm + 1);
556
557         /* we were called to round the frequency, we can now return */
558         if (n == NULL)
559                 return;
560
561         *m = calcm;
562         *p = calcp;
563 }
564
565
566
567
568 /**
569  * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
570  * CLK_OUT rate is calculated as follows
571  * rate = (parent_rate >> p) / (m + 1);
572  */
573
574 static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
575                                       u8 *n, u8 *k, u8 *m, u8 *p)
576 {
577         u8 div, calcm, calcp;
578
579         /* These clocks can only divide, so we will never be able to achieve
580          * frequencies higher than the parent frequency */
581         if (*freq > parent_rate)
582                 *freq = parent_rate;
583
584         div = DIV_ROUND_UP(parent_rate, *freq);
585
586         if (div < 32)
587                 calcp = 0;
588         else if (div / 2 < 32)
589                 calcp = 1;
590         else if (div / 4 < 32)
591                 calcp = 2;
592         else
593                 calcp = 3;
594
595         calcm = DIV_ROUND_UP(div, 1 << calcp);
596
597         *freq = (parent_rate >> calcp) / calcm;
598
599         /* we were called to round the frequency, we can now return */
600         if (n == NULL)
601                 return;
602
603         *m = calcm - 1;
604         *p = calcp;
605 }
606
607 /**
608  * sunxi_factors_clk_setup() - Setup function for factor clocks
609  */
610
611 static struct clk_factors_config sun4i_pll1_config = {
612         .nshift = 8,
613         .nwidth = 5,
614         .kshift = 4,
615         .kwidth = 2,
616         .mshift = 0,
617         .mwidth = 2,
618         .pshift = 16,
619         .pwidth = 2,
620 };
621
622 static struct clk_factors_config sun6i_a31_pll1_config = {
623         .nshift = 8,
624         .nwidth = 5,
625         .kshift = 4,
626         .kwidth = 2,
627         .mshift = 0,
628         .mwidth = 2,
629         .n_start = 1,
630 };
631
632 static struct clk_factors_config sun8i_a23_pll1_config = {
633         .nshift = 8,
634         .nwidth = 5,
635         .kshift = 4,
636         .kwidth = 2,
637         .mshift = 0,
638         .mwidth = 2,
639         .pshift = 16,
640         .pwidth = 2,
641         .n_start = 1,
642 };
643
644 static struct clk_factors_config sun4i_pll5_config = {
645         .nshift = 8,
646         .nwidth = 5,
647         .kshift = 4,
648         .kwidth = 2,
649 };
650
651 static struct clk_factors_config sun6i_a31_pll6_config = {
652         .nshift = 8,
653         .nwidth = 5,
654         .kshift = 4,
655         .kwidth = 2,
656         .n_start = 1,
657 };
658
659 static struct clk_factors_config sun5i_a13_ahb_config = {
660         .pshift = 4,
661         .pwidth = 2,
662 };
663
664 static struct clk_factors_config sun4i_apb1_config = {
665         .mshift = 0,
666         .mwidth = 5,
667         .pshift = 16,
668         .pwidth = 2,
669 };
670
671 /* user manual says "n" but it's really "p" */
672 static struct clk_factors_config sun7i_a20_out_config = {
673         .mshift = 8,
674         .mwidth = 5,
675         .pshift = 20,
676         .pwidth = 2,
677 };
678
679 static const struct factors_data sun4i_pll1_data __initconst = {
680         .enable = 31,
681         .table = &sun4i_pll1_config,
682         .getter = sun4i_get_pll1_factors,
683 };
684
685 static const struct factors_data sun6i_a31_pll1_data __initconst = {
686         .enable = 31,
687         .table = &sun6i_a31_pll1_config,
688         .getter = sun6i_a31_get_pll1_factors,
689 };
690
691 static const struct factors_data sun8i_a23_pll1_data __initconst = {
692         .enable = 31,
693         .table = &sun8i_a23_pll1_config,
694         .getter = sun8i_a23_get_pll1_factors,
695 };
696
697 static const struct factors_data sun7i_a20_pll4_data __initconst = {
698         .enable = 31,
699         .table = &sun4i_pll5_config,
700         .getter = sun4i_get_pll5_factors,
701 };
702
703 static const struct factors_data sun4i_pll5_data __initconst = {
704         .enable = 31,
705         .table = &sun4i_pll5_config,
706         .getter = sun4i_get_pll5_factors,
707         .name = "pll5",
708 };
709
710 static const struct factors_data sun4i_pll6_data __initconst = {
711         .enable = 31,
712         .table = &sun4i_pll5_config,
713         .getter = sun4i_get_pll5_factors,
714         .name = "pll6",
715 };
716
717 static const struct factors_data sun6i_a31_pll6_data __initconst = {
718         .enable = 31,
719         .table = &sun6i_a31_pll6_config,
720         .getter = sun6i_a31_get_pll6_factors,
721         .name = "pll6x2",
722 };
723
724 static const struct factors_data sun5i_a13_ahb_data __initconst = {
725         .mux = 6,
726         .muxmask = BIT(1) | BIT(0),
727         .table = &sun5i_a13_ahb_config,
728         .getter = sun5i_a13_get_ahb_factors,
729 };
730
731 static const struct factors_data sun4i_apb1_data __initconst = {
732         .mux = 24,
733         .muxmask = BIT(1) | BIT(0),
734         .table = &sun4i_apb1_config,
735         .getter = sun4i_get_apb1_factors,
736 };
737
738 static const struct factors_data sun7i_a20_out_data __initconst = {
739         .enable = 31,
740         .mux = 24,
741         .muxmask = BIT(1) | BIT(0),
742         .table = &sun7i_a20_out_config,
743         .getter = sun7i_a20_get_out_factors,
744 };
745
746 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
747                                                    const struct factors_data *data)
748 {
749         void __iomem *reg;
750
751         reg = of_iomap(node, 0);
752         if (!reg) {
753                 pr_err("Could not get registers for factors-clk: %s\n",
754                        node->name);
755                 return NULL;
756         }
757
758         return sunxi_factors_register(node, data, &clk_lock, reg);
759 }
760
761
762
763 /**
764  * sunxi_mux_clk_setup() - Setup function for muxes
765  */
766
767 #define SUNXI_MUX_GATE_WIDTH    2
768
769 struct mux_data {
770         u8 shift;
771 };
772
773 static const struct mux_data sun4i_cpu_mux_data __initconst = {
774         .shift = 16,
775 };
776
777 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
778         .shift = 12,
779 };
780
781 static void __init sunxi_mux_clk_setup(struct device_node *node,
782                                        struct mux_data *data)
783 {
784         struct clk *clk;
785         const char *clk_name = node->name;
786         const char *parents[SUNXI_MAX_PARENTS];
787         void __iomem *reg;
788         int i;
789
790         reg = of_iomap(node, 0);
791
792         i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
793         of_property_read_string(node, "clock-output-names", &clk_name);
794
795         clk = clk_register_mux(NULL, clk_name, parents, i,
796                                CLK_SET_RATE_PARENT, reg,
797                                data->shift, SUNXI_MUX_GATE_WIDTH,
798                                0, &clk_lock);
799
800         if (clk) {
801                 of_clk_add_provider(node, of_clk_src_simple_get, clk);
802                 clk_register_clkdev(clk, clk_name, NULL);
803         }
804 }
805
806
807
808 /**
809  * sunxi_divider_clk_setup() - Setup function for simple divider clocks
810  */
811
812 struct div_data {
813         u8      shift;
814         u8      pow;
815         u8      width;
816         const struct clk_div_table *table;
817 };
818
819 static const struct div_data sun4i_axi_data __initconst = {
820         .shift  = 0,
821         .pow    = 0,
822         .width  = 2,
823 };
824
825 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
826         { .val = 0, .div = 1 },
827         { .val = 1, .div = 2 },
828         { .val = 2, .div = 3 },
829         { .val = 3, .div = 4 },
830         { .val = 4, .div = 4 },
831         { .val = 5, .div = 4 },
832         { .val = 6, .div = 4 },
833         { .val = 7, .div = 4 },
834         { } /* sentinel */
835 };
836
837 static const struct div_data sun8i_a23_axi_data __initconst = {
838         .width  = 3,
839         .table  = sun8i_a23_axi_table,
840 };
841
842 static const struct div_data sun4i_ahb_data __initconst = {
843         .shift  = 4,
844         .pow    = 1,
845         .width  = 2,
846 };
847
848 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
849         { .val = 0, .div = 2 },
850         { .val = 1, .div = 2 },
851         { .val = 2, .div = 4 },
852         { .val = 3, .div = 8 },
853         { } /* sentinel */
854 };
855
856 static const struct div_data sun4i_apb0_data __initconst = {
857         .shift  = 8,
858         .pow    = 1,
859         .width  = 2,
860         .table  = sun4i_apb0_table,
861 };
862
863 static void __init sunxi_divider_clk_setup(struct device_node *node,
864                                            struct div_data *data)
865 {
866         struct clk *clk;
867         const char *clk_name = node->name;
868         const char *clk_parent;
869         void __iomem *reg;
870
871         reg = of_iomap(node, 0);
872
873         clk_parent = of_clk_get_parent_name(node, 0);
874
875         of_property_read_string(node, "clock-output-names", &clk_name);
876
877         clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
878                                          reg, data->shift, data->width,
879                                          data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
880                                          data->table, &clk_lock);
881         if (clk) {
882                 of_clk_add_provider(node, of_clk_src_simple_get, clk);
883                 clk_register_clkdev(clk, clk_name, NULL);
884         }
885 }
886
887
888
889 /**
890  * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
891  */
892
893 #define SUNXI_GATES_MAX_SIZE    64
894
895 struct gates_data {
896         DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
897 };
898
899 /**
900  * sunxi_divs_clk_setup() helper data
901  */
902
903 #define SUNXI_DIVS_MAX_QTY      4
904 #define SUNXI_DIVISOR_WIDTH     2
905
906 struct divs_data {
907         const struct factors_data *factors; /* data for the factor clock */
908         int ndivs; /* number of outputs */
909         /*
910          * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
911          * self or base factor clock refers to the output from the pll
912          * itself. The remaining refer to fixed or configurable divider
913          * outputs.
914          */
915         struct {
916                 u8 self; /* is it the base factor clock? (only one) */
917                 u8 fixed; /* is it a fixed divisor? if not... */
918                 struct clk_div_table *table; /* is it a table based divisor? */
919                 u8 shift; /* otherwise it's a normal divisor with this shift */
920                 u8 pow;   /* is it power-of-two based? */
921                 u8 gate;  /* is it independently gateable? */
922         } div[SUNXI_DIVS_MAX_QTY];
923 };
924
925 static struct clk_div_table pll6_sata_tbl[] = {
926         { .val = 0, .div = 6, },
927         { .val = 1, .div = 12, },
928         { .val = 2, .div = 18, },
929         { .val = 3, .div = 24, },
930         { } /* sentinel */
931 };
932
933 static const struct divs_data pll5_divs_data __initconst = {
934         .factors = &sun4i_pll5_data,
935         .ndivs = 2,
936         .div = {
937                 { .shift = 0, .pow = 0, }, /* M, DDR */
938                 { .shift = 16, .pow = 1, }, /* P, other */
939                 /* No output for the base factor clock */
940         }
941 };
942
943 static const struct divs_data pll6_divs_data __initconst = {
944         .factors = &sun4i_pll6_data,
945         .ndivs = 4,
946         .div = {
947                 { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
948                 { .fixed = 2 }, /* P, other */
949                 { .self = 1 }, /* base factor clock, 2x */
950                 { .fixed = 4 }, /* pll6 / 4, used as ahb input */
951         }
952 };
953
954 static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
955         .factors = &sun6i_a31_pll6_data,
956         .ndivs = 2,
957         .div = {
958                 { .fixed = 2 }, /* normal output */
959                 { .self = 1 }, /* base factor clock, 2x */
960         }
961 };
962
963 /**
964  * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
965  *
966  * These clocks look something like this
967  *            ________________________
968  *           |         ___divisor 1---|----> to consumer
969  * parent >--|  pll___/___divisor 2---|----> to consumer
970  *           |        \_______________|____> to consumer
971  *           |________________________|
972  */
973
974 static void __init sunxi_divs_clk_setup(struct device_node *node,
975                                         struct divs_data *data)
976 {
977         struct clk_onecell_data *clk_data;
978         const char *parent;
979         const char *clk_name;
980         struct clk **clks, *pclk;
981         struct clk_hw *gate_hw, *rate_hw;
982         const struct clk_ops *rate_ops;
983         struct clk_gate *gate = NULL;
984         struct clk_fixed_factor *fix_factor;
985         struct clk_divider *divider;
986         void __iomem *reg;
987         int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
988         int flags, clkflags;
989
990         /* if number of children known, use it */
991         if (data->ndivs)
992                 ndivs = data->ndivs;
993
994         /* Set up factor clock that we will be dividing */
995         pclk = sunxi_factors_clk_setup(node, data->factors);
996         parent = __clk_get_name(pclk);
997
998         reg = of_iomap(node, 0);
999
1000         clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1001         if (!clk_data)
1002                 return;
1003
1004         clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1005         if (!clks)
1006                 goto free_clkdata;
1007
1008         clk_data->clks = clks;
1009
1010         /* It's not a good idea to have automatic reparenting changing
1011          * our RAM clock! */
1012         clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1013
1014         for (i = 0; i < ndivs; i++) {
1015                 if (of_property_read_string_index(node, "clock-output-names",
1016                                                   i, &clk_name) != 0)
1017                         break;
1018
1019                 /* If this is the base factor clock, only update clks */
1020                 if (data->div[i].self) {
1021                         clk_data->clks[i] = pclk;
1022                         continue;
1023                 }
1024
1025                 gate_hw = NULL;
1026                 rate_hw = NULL;
1027                 rate_ops = NULL;
1028
1029                 /* If this leaf clock can be gated, create a gate */
1030                 if (data->div[i].gate) {
1031                         gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1032                         if (!gate)
1033                                 goto free_clks;
1034
1035                         gate->reg = reg;
1036                         gate->bit_idx = data->div[i].gate;
1037                         gate->lock = &clk_lock;
1038
1039                         gate_hw = &gate->hw;
1040                 }
1041
1042                 /* Leaves can be fixed or configurable divisors */
1043                 if (data->div[i].fixed) {
1044                         fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1045                         if (!fix_factor)
1046                                 goto free_gate;
1047
1048                         fix_factor->mult = 1;
1049                         fix_factor->div = data->div[i].fixed;
1050
1051                         rate_hw = &fix_factor->hw;
1052                         rate_ops = &clk_fixed_factor_ops;
1053                 } else {
1054                         divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1055                         if (!divider)
1056                                 goto free_gate;
1057
1058                         flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1059
1060                         divider->reg = reg;
1061                         divider->shift = data->div[i].shift;
1062                         divider->width = SUNXI_DIVISOR_WIDTH;
1063                         divider->flags = flags;
1064                         divider->lock = &clk_lock;
1065                         divider->table = data->div[i].table;
1066
1067                         rate_hw = &divider->hw;
1068                         rate_ops = &clk_divider_ops;
1069                 }
1070
1071                 /* Wrap the (potential) gate and the divisor on a composite
1072                  * clock to unify them */
1073                 clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1074                                                  NULL, NULL,
1075                                                  rate_hw, rate_ops,
1076                                                  gate_hw, &clk_gate_ops,
1077                                                  clkflags);
1078
1079                 WARN_ON(IS_ERR(clk_data->clks[i]));
1080                 clk_register_clkdev(clks[i], clk_name, NULL);
1081         }
1082
1083         /* Adjust to the real max */
1084         clk_data->clk_num = i;
1085
1086         of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1087
1088         return;
1089
1090 free_gate:
1091         kfree(gate);
1092 free_clks:
1093         kfree(clks);
1094 free_clkdata:
1095         kfree(clk_data);
1096 }
1097
1098
1099
1100 /* Matches for factors clocks */
1101 static const struct of_device_id clk_factors_match[] __initconst = {
1102         {.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1103         {.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1104         {.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,},
1105         {.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1106         {.compatible = "allwinner,sun5i-a13-ahb-clk", .data = &sun5i_a13_ahb_data,},
1107         {.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1108         {.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1109         {}
1110 };
1111
1112 /* Matches for divider clocks */
1113 static const struct of_device_id clk_div_match[] __initconst = {
1114         {.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1115         {.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,},
1116         {.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1117         {.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1118         {}
1119 };
1120
1121 /* Matches for divided outputs */
1122 static const struct of_device_id clk_divs_match[] __initconst = {
1123         {.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1124         {.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1125         {.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_divs_data,},
1126         {}
1127 };
1128
1129 /* Matches for mux clocks */
1130 static const struct of_device_id clk_mux_match[] __initconst = {
1131         {.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1132         {.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1133         {}
1134 };
1135
1136
1137 static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1138                                               void *function)
1139 {
1140         struct device_node *np;
1141         const struct div_data *data;
1142         const struct of_device_id *match;
1143         void (*setup_function)(struct device_node *, const void *) = function;
1144
1145         for_each_matching_node_and_match(np, clk_match, &match) {
1146                 data = match->data;
1147                 setup_function(np, data);
1148         }
1149 }
1150
1151 static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
1152 {
1153         unsigned int i;
1154
1155         /* Register divided output clocks */
1156         of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1157
1158         /* Register factor clocks */
1159         of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1160
1161         /* Register divider clocks */
1162         of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1163
1164         /* Register mux clocks */
1165         of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1166
1167         /* Protect the clocks that needs to stay on */
1168         for (i = 0; i < nclocks; i++) {
1169                 struct clk *clk = clk_get(NULL, clocks[i]);
1170
1171                 if (!IS_ERR(clk))
1172                         clk_prepare_enable(clk);
1173         }
1174 }
1175
1176 static const char *sun4i_a10_critical_clocks[] __initdata = {
1177         "pll5_ddr",
1178 };
1179
1180 static void __init sun4i_a10_init_clocks(struct device_node *node)
1181 {
1182         sunxi_init_clocks(sun4i_a10_critical_clocks,
1183                           ARRAY_SIZE(sun4i_a10_critical_clocks));
1184 }
1185 CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
1186
1187 static const char *sun5i_critical_clocks[] __initdata = {
1188         "cpu",
1189         "pll5_ddr",
1190 };
1191
1192 static void __init sun5i_init_clocks(struct device_node *node)
1193 {
1194         sunxi_init_clocks(sun5i_critical_clocks,
1195                           ARRAY_SIZE(sun5i_critical_clocks));
1196 }
1197 CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
1198 CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
1199 CLK_OF_DECLARE(sun5i_r8_clk_init, "allwinner,sun5i-r8", sun5i_init_clocks);
1200 CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
1201
1202 static const char *sun6i_critical_clocks[] __initdata = {
1203         "cpu",
1204 };
1205
1206 static void __init sun6i_init_clocks(struct device_node *node)
1207 {
1208         sunxi_init_clocks(sun6i_critical_clocks,
1209                           ARRAY_SIZE(sun6i_critical_clocks));
1210 }
1211 CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);
1212 CLK_OF_DECLARE(sun6i_a31s_clk_init, "allwinner,sun6i-a31s", sun6i_init_clocks);
1213 CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks);
1214 CLK_OF_DECLARE(sun8i_a33_clk_init, "allwinner,sun8i-a33", sun6i_init_clocks);
1215
1216 static void __init sun9i_init_clocks(struct device_node *node)
1217 {
1218         sunxi_init_clocks(NULL, 0);
1219 }
1220 CLK_OF_DECLARE(sun9i_a80_clk_init, "allwinner,sun9i-a80", sun9i_init_clocks);