]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/clocksource/tcb_clksrc.c
Merge remote-tracking branch 'omap/for-next'
[karo-tx-linux.git] / drivers / clocksource / tcb_clksrc.c
1 #include <linux/init.h>
2 #include <linux/clocksource.h>
3 #include <linux/clockchips.h>
4 #include <linux/interrupt.h>
5 #include <linux/irq.h>
6
7 #include <linux/clk.h>
8 #include <linux/err.h>
9 #include <linux/ioport.h>
10 #include <linux/io.h>
11 #include <linux/platform_device.h>
12 #include <linux/atmel_tc.h>
13
14
15 /*
16  * We're configured to use a specific TC block, one that's not hooked
17  * up to external hardware, to provide a time solution:
18  *
19  *   - Two channels combine to create a free-running 32 bit counter
20  *     with a base rate of 5+ MHz, packaged as a clocksource (with
21  *     resolution better than 200 nsec).
22  *   - Some chips support 32 bit counter. A single channel is used for
23  *     this 32 bit free-running counter. the second channel is not used.
24  *
25  *   - The third channel may be used to provide a 16-bit clockevent
26  *     source, used in either periodic or oneshot mode.  This runs
27  *     at 32 KiHZ, and can handle delays of up to two seconds.
28  *
29  * A boot clocksource and clockevent source are also currently needed,
30  * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
31  * this code can be used when init_timers() is called, well before most
32  * devices are set up.  (Some low end AT91 parts, which can run uClinux,
33  * have only the timers in one TC block... they currently don't support
34  * the tclib code, because of that initialization issue.)
35  *
36  * REVISIT behavior during system suspend states... we should disable
37  * all clocks and save the power.  Easily done for clockevent devices,
38  * but clocksources won't necessarily get the needed notifications.
39  * For deeper system sleep states, this will be mandatory...
40  */
41
42 static void __iomem *tcaddr;
43
44 static cycle_t tc_get_cycles(struct clocksource *cs)
45 {
46         unsigned long   flags;
47         u32             lower, upper;
48
49         raw_local_irq_save(flags);
50         do {
51                 upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
52                 lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
53         } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
54
55         raw_local_irq_restore(flags);
56         return (upper << 16) | lower;
57 }
58
59 static cycle_t tc_get_cycles32(struct clocksource *cs)
60 {
61         return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
62 }
63
64 static struct clocksource clksrc = {
65         .name           = "tcb_clksrc",
66         .rating         = 200,
67         .read           = tc_get_cycles,
68         .mask           = CLOCKSOURCE_MASK(32),
69         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
70 };
71
72 #ifdef CONFIG_GENERIC_CLOCKEVENTS
73
74 struct tc_clkevt_device {
75         struct clock_event_device       clkevt;
76         struct clk                      *clk;
77         void __iomem                    *regs;
78 };
79
80 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
81 {
82         return container_of(clkevt, struct tc_clkevt_device, clkevt);
83 }
84
85 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
86  * because using one of the divided clocks would usually mean the
87  * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
88  *
89  * A divided clock could be good for high resolution timers, since
90  * 30.5 usec resolution can seem "low".
91  */
92 static u32 timer_clock;
93
94 static int tc_shutdown(struct clock_event_device *d)
95 {
96         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
97         void __iomem            *regs = tcd->regs;
98
99         __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
100         __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
101         clk_disable(tcd->clk);
102
103         return 0;
104 }
105
106 static int tc_set_oneshot(struct clock_event_device *d)
107 {
108         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
109         void __iomem            *regs = tcd->regs;
110
111         if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
112                 tc_shutdown(d);
113
114         clk_enable(tcd->clk);
115
116         /* slow clock, count up to RC, then irq and stop */
117         __raw_writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
118                      ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
119         __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
120
121         /* set_next_event() configures and starts the timer */
122         return 0;
123 }
124
125 static int tc_set_periodic(struct clock_event_device *d)
126 {
127         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
128         void __iomem            *regs = tcd->regs;
129
130         if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
131                 tc_shutdown(d);
132
133         /* By not making the gentime core emulate periodic mode on top
134          * of oneshot, we get lower overhead and improved accuracy.
135          */
136         clk_enable(tcd->clk);
137
138         /* slow clock, count up to RC, then irq and restart */
139         __raw_writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
140                      regs + ATMEL_TC_REG(2, CMR));
141         __raw_writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
142
143         /* Enable clock and interrupts on RC compare */
144         __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
145
146         /* go go gadget! */
147         __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
148                      ATMEL_TC_REG(2, CCR));
149         return 0;
150 }
151
152 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
153 {
154         __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
155
156         /* go go gadget! */
157         __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
158                         tcaddr + ATMEL_TC_REG(2, CCR));
159         return 0;
160 }
161
162 static struct tc_clkevt_device clkevt = {
163         .clkevt = {
164                 .name                   = "tc_clkevt",
165                 .features               = CLOCK_EVT_FEAT_PERIODIC |
166                                           CLOCK_EVT_FEAT_ONESHOT,
167                 /* Should be lower than at91rm9200's system timer */
168                 .rating                 = 125,
169                 .set_next_event         = tc_next_event,
170                 .set_state_shutdown     = tc_shutdown,
171                 .set_state_periodic     = tc_set_periodic,
172                 .set_state_oneshot      = tc_set_oneshot,
173         },
174 };
175
176 static irqreturn_t ch2_irq(int irq, void *handle)
177 {
178         struct tc_clkevt_device *dev = handle;
179         unsigned int            sr;
180
181         sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
182         if (sr & ATMEL_TC_CPCS) {
183                 dev->clkevt.event_handler(&dev->clkevt);
184                 return IRQ_HANDLED;
185         }
186
187         return IRQ_NONE;
188 }
189
190 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
191 {
192         int ret;
193         struct clk *t2_clk = tc->clk[2];
194         int irq = tc->irq[2];
195
196         ret = clk_prepare_enable(tc->slow_clk);
197         if (ret)
198                 return ret;
199
200         /* try to enable t2 clk to avoid future errors in mode change */
201         ret = clk_prepare_enable(t2_clk);
202         if (ret) {
203                 clk_disable_unprepare(tc->slow_clk);
204                 return ret;
205         }
206
207         clk_disable(t2_clk);
208
209         clkevt.regs = tc->regs;
210         clkevt.clk = t2_clk;
211
212         timer_clock = clk32k_divisor_idx;
213
214         clkevt.clkevt.cpumask = cpumask_of(0);
215
216         ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
217         if (ret) {
218                 clk_unprepare(t2_clk);
219                 clk_disable_unprepare(tc->slow_clk);
220                 return ret;
221         }
222
223         clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
224
225         return ret;
226 }
227
228 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
229
230 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
231 {
232         /* NOTHING */
233         return 0;
234 }
235
236 #endif
237
238 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
239 {
240         /* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
241         __raw_writel(mck_divisor_idx                    /* likely divide-by-8 */
242                         | ATMEL_TC_WAVE
243                         | ATMEL_TC_WAVESEL_UP           /* free-run */
244                         | ATMEL_TC_ACPA_SET             /* TIOA0 rises at 0 */
245                         | ATMEL_TC_ACPC_CLEAR,          /* (duty cycle 50%) */
246                         tcaddr + ATMEL_TC_REG(0, CMR));
247         __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
248         __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
249         __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));      /* no irqs */
250         __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
251
252         /* channel 1:  waveform mode, input TIOA0 */
253         __raw_writel(ATMEL_TC_XC1                       /* input: TIOA0 */
254                         | ATMEL_TC_WAVE
255                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
256                         tcaddr + ATMEL_TC_REG(1, CMR));
257         __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));      /* no irqs */
258         __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
259
260         /* chain channel 0 to channel 1*/
261         __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
262         /* then reset all the timers */
263         __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
264 }
265
266 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
267 {
268         /* channel 0:  waveform mode, input mclk/8 */
269         __raw_writel(mck_divisor_idx                    /* likely divide-by-8 */
270                         | ATMEL_TC_WAVE
271                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
272                         tcaddr + ATMEL_TC_REG(0, CMR));
273         __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));      /* no irqs */
274         __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
275
276         /* then reset all the timers */
277         __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
278 }
279
280 static int __init tcb_clksrc_init(void)
281 {
282         static char bootinfo[] __initdata
283                 = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
284
285         struct platform_device *pdev;
286         struct atmel_tc *tc;
287         struct clk *t0_clk;
288         u32 rate, divided_rate = 0;
289         int best_divisor_idx = -1;
290         int clk32k_divisor_idx = -1;
291         int i;
292         int ret;
293
294         tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK);
295         if (!tc) {
296                 pr_debug("can't alloc TC for clocksource\n");
297                 return -ENODEV;
298         }
299         tcaddr = tc->regs;
300         pdev = tc->pdev;
301
302         t0_clk = tc->clk[0];
303         ret = clk_prepare_enable(t0_clk);
304         if (ret) {
305                 pr_debug("can't enable T0 clk\n");
306                 goto err_free_tc;
307         }
308
309         /* How fast will we be counting?  Pick something over 5 MHz.  */
310         rate = (u32) clk_get_rate(t0_clk);
311         for (i = 0; i < 5; i++) {
312                 unsigned divisor = atmel_tc_divisors[i];
313                 unsigned tmp;
314
315                 /* remember 32 KiHz clock for later */
316                 if (!divisor) {
317                         clk32k_divisor_idx = i;
318                         continue;
319                 }
320
321                 tmp = rate / divisor;
322                 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
323                 if (best_divisor_idx > 0) {
324                         if (tmp < 5 * 1000 * 1000)
325                                 continue;
326                 }
327                 divided_rate = tmp;
328                 best_divisor_idx = i;
329         }
330
331
332         printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
333                         divided_rate / 1000000,
334                         ((divided_rate + 500000) % 1000000) / 1000);
335
336         if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
337                 /* use apropriate function to read 32 bit counter */
338                 clksrc.read = tc_get_cycles32;
339                 /* setup ony channel 0 */
340                 tcb_setup_single_chan(tc, best_divisor_idx);
341         } else {
342                 /* tclib will give us three clocks no matter what the
343                  * underlying platform supports.
344                  */
345                 ret = clk_prepare_enable(tc->clk[1]);
346                 if (ret) {
347                         pr_debug("can't enable T1 clk\n");
348                         goto err_disable_t0;
349                 }
350                 /* setup both channel 0 & 1 */
351                 tcb_setup_dual_chan(tc, best_divisor_idx);
352         }
353
354         /* and away we go! */
355         ret = clocksource_register_hz(&clksrc, divided_rate);
356         if (ret)
357                 goto err_disable_t1;
358
359         /* channel 2:  periodic and oneshot timer support */
360         ret = setup_clkevents(tc, clk32k_divisor_idx);
361         if (ret)
362                 goto err_unregister_clksrc;
363
364         return 0;
365
366 err_unregister_clksrc:
367         clocksource_unregister(&clksrc);
368
369 err_disable_t1:
370         if (!tc->tcb_config || tc->tcb_config->counter_width != 32)
371                 clk_disable_unprepare(tc->clk[1]);
372
373 err_disable_t0:
374         clk_disable_unprepare(t0_clk);
375
376 err_free_tc:
377         atmel_tc_free(tc);
378         return ret;
379 }
380 arch_initcall(tcb_clksrc_init);