]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/crypto/atmel-sha.c
crypto: marvell/cesa - another fix up for of_get_named_gen_pool() rename
[karo-tx-linux.git] / drivers / crypto / atmel-sha.c
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL SHA1/SHA256 HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-sham.c drivers.
14  */
15
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <linux/cryptohash.h>
37 #include <crypto/scatterwalk.h>
38 #include <crypto/algapi.h>
39 #include <crypto/sha.h>
40 #include <crypto/hash.h>
41 #include <crypto/internal/hash.h>
42 #include <linux/platform_data/crypto-atmel.h>
43 #include "atmel-sha-regs.h"
44
45 /* SHA flags */
46 #define SHA_FLAGS_BUSY                  BIT(0)
47 #define SHA_FLAGS_FINAL                 BIT(1)
48 #define SHA_FLAGS_DMA_ACTIVE    BIT(2)
49 #define SHA_FLAGS_OUTPUT_READY  BIT(3)
50 #define SHA_FLAGS_INIT                  BIT(4)
51 #define SHA_FLAGS_CPU                   BIT(5)
52 #define SHA_FLAGS_DMA_READY             BIT(6)
53
54 #define SHA_FLAGS_FINUP         BIT(16)
55 #define SHA_FLAGS_SG            BIT(17)
56 #define SHA_FLAGS_SHA1          BIT(18)
57 #define SHA_FLAGS_SHA224        BIT(19)
58 #define SHA_FLAGS_SHA256        BIT(20)
59 #define SHA_FLAGS_SHA384        BIT(21)
60 #define SHA_FLAGS_SHA512        BIT(22)
61 #define SHA_FLAGS_ERROR         BIT(23)
62 #define SHA_FLAGS_PAD           BIT(24)
63
64 #define SHA_OP_UPDATE   1
65 #define SHA_OP_FINAL    2
66
67 #define SHA_BUFFER_LEN          PAGE_SIZE
68
69 #define ATMEL_SHA_DMA_THRESHOLD         56
70
71 struct atmel_sha_caps {
72         bool    has_dma;
73         bool    has_dualbuff;
74         bool    has_sha224;
75         bool    has_sha_384_512;
76 };
77
78 struct atmel_sha_dev;
79
80 struct atmel_sha_reqctx {
81         struct atmel_sha_dev    *dd;
82         unsigned long   flags;
83         unsigned long   op;
84
85         u8      digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
86         u64     digcnt[2];
87         size_t  bufcnt;
88         size_t  buflen;
89         dma_addr_t      dma_addr;
90
91         /* walk state */
92         struct scatterlist      *sg;
93         unsigned int    offset; /* offset in current sg */
94         unsigned int    total;  /* total request */
95
96         size_t block_size;
97
98         u8      buffer[0] __aligned(sizeof(u32));
99 };
100
101 struct atmel_sha_ctx {
102         struct atmel_sha_dev    *dd;
103
104         unsigned long           flags;
105 };
106
107 #define ATMEL_SHA_QUEUE_LENGTH  50
108
109 struct atmel_sha_dma {
110         struct dma_chan                 *chan;
111         struct dma_slave_config dma_conf;
112 };
113
114 struct atmel_sha_dev {
115         struct list_head        list;
116         unsigned long           phys_base;
117         struct device           *dev;
118         struct clk                      *iclk;
119         int                                     irq;
120         void __iomem            *io_base;
121
122         spinlock_t              lock;
123         int                     err;
124         struct tasklet_struct   done_task;
125
126         unsigned long           flags;
127         struct crypto_queue     queue;
128         struct ahash_request    *req;
129
130         struct atmel_sha_dma    dma_lch_in;
131
132         struct atmel_sha_caps   caps;
133
134         u32     hw_version;
135 };
136
137 struct atmel_sha_drv {
138         struct list_head        dev_list;
139         spinlock_t              lock;
140 };
141
142 static struct atmel_sha_drv atmel_sha = {
143         .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
144         .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
145 };
146
147 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
148 {
149         return readl_relaxed(dd->io_base + offset);
150 }
151
152 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
153                                         u32 offset, u32 value)
154 {
155         writel_relaxed(value, dd->io_base + offset);
156 }
157
158 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
159 {
160         size_t count;
161
162         while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
163                 count = min(ctx->sg->length - ctx->offset, ctx->total);
164                 count = min(count, ctx->buflen - ctx->bufcnt);
165
166                 if (count <= 0) {
167                         /*
168                         * Check if count <= 0 because the buffer is full or
169                         * because the sg length is 0. In the latest case,
170                         * check if there is another sg in the list, a 0 length
171                         * sg doesn't necessarily mean the end of the sg list.
172                         */
173                         if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
174                                 ctx->sg = sg_next(ctx->sg);
175                                 continue;
176                         } else {
177                                 break;
178                         }
179                 }
180
181                 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
182                         ctx->offset, count, 0);
183
184                 ctx->bufcnt += count;
185                 ctx->offset += count;
186                 ctx->total -= count;
187
188                 if (ctx->offset == ctx->sg->length) {
189                         ctx->sg = sg_next(ctx->sg);
190                         if (ctx->sg)
191                                 ctx->offset = 0;
192                         else
193                                 ctx->total = 0;
194                 }
195         }
196
197         return 0;
198 }
199
200 /*
201  * The purpose of this padding is to ensure that the padded message is a
202  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
203  * The bit "1" is appended at the end of the message followed by
204  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
205  * 128 bits block (SHA384/SHA512) equals to the message length in bits
206  * is appended.
207  *
208  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
209  *  - if message length < 56 bytes then padlen = 56 - message length
210  *  - else padlen = 64 + 56 - message length
211  *
212  * For SHA384/SHA512, padlen is calculated as followed:
213  *  - if message length < 112 bytes then padlen = 112 - message length
214  *  - else padlen = 128 + 112 - message length
215  */
216 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
217 {
218         unsigned int index, padlen;
219         u64 bits[2];
220         u64 size[2];
221
222         size[0] = ctx->digcnt[0];
223         size[1] = ctx->digcnt[1];
224
225         size[0] += ctx->bufcnt;
226         if (size[0] < ctx->bufcnt)
227                 size[1]++;
228
229         size[0] += length;
230         if (size[0]  < length)
231                 size[1]++;
232
233         bits[1] = cpu_to_be64(size[0] << 3);
234         bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
235
236         if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
237                 index = ctx->bufcnt & 0x7f;
238                 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
239                 *(ctx->buffer + ctx->bufcnt) = 0x80;
240                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
241                 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
242                 ctx->bufcnt += padlen + 16;
243                 ctx->flags |= SHA_FLAGS_PAD;
244         } else {
245                 index = ctx->bufcnt & 0x3f;
246                 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
247                 *(ctx->buffer + ctx->bufcnt) = 0x80;
248                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
249                 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
250                 ctx->bufcnt += padlen + 8;
251                 ctx->flags |= SHA_FLAGS_PAD;
252         }
253 }
254
255 static int atmel_sha_init(struct ahash_request *req)
256 {
257         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
258         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
259         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
260         struct atmel_sha_dev *dd = NULL;
261         struct atmel_sha_dev *tmp;
262
263         spin_lock_bh(&atmel_sha.lock);
264         if (!tctx->dd) {
265                 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
266                         dd = tmp;
267                         break;
268                 }
269                 tctx->dd = dd;
270         } else {
271                 dd = tctx->dd;
272         }
273
274         spin_unlock_bh(&atmel_sha.lock);
275
276         ctx->dd = dd;
277
278         ctx->flags = 0;
279
280         dev_dbg(dd->dev, "init: digest size: %d\n",
281                 crypto_ahash_digestsize(tfm));
282
283         switch (crypto_ahash_digestsize(tfm)) {
284         case SHA1_DIGEST_SIZE:
285                 ctx->flags |= SHA_FLAGS_SHA1;
286                 ctx->block_size = SHA1_BLOCK_SIZE;
287                 break;
288         case SHA224_DIGEST_SIZE:
289                 ctx->flags |= SHA_FLAGS_SHA224;
290                 ctx->block_size = SHA224_BLOCK_SIZE;
291                 break;
292         case SHA256_DIGEST_SIZE:
293                 ctx->flags |= SHA_FLAGS_SHA256;
294                 ctx->block_size = SHA256_BLOCK_SIZE;
295                 break;
296         case SHA384_DIGEST_SIZE:
297                 ctx->flags |= SHA_FLAGS_SHA384;
298                 ctx->block_size = SHA384_BLOCK_SIZE;
299                 break;
300         case SHA512_DIGEST_SIZE:
301                 ctx->flags |= SHA_FLAGS_SHA512;
302                 ctx->block_size = SHA512_BLOCK_SIZE;
303                 break;
304         default:
305                 return -EINVAL;
306                 break;
307         }
308
309         ctx->bufcnt = 0;
310         ctx->digcnt[0] = 0;
311         ctx->digcnt[1] = 0;
312         ctx->buflen = SHA_BUFFER_LEN;
313
314         return 0;
315 }
316
317 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
318 {
319         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
320         u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;
321
322         if (likely(dma)) {
323                 if (!dd->caps.has_dma)
324                         atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
325                 valmr = SHA_MR_MODE_PDC;
326                 if (dd->caps.has_dualbuff)
327                         valmr |= SHA_MR_DUALBUFF;
328         } else {
329                 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
330         }
331
332         if (ctx->flags & SHA_FLAGS_SHA1)
333                 valmr |= SHA_MR_ALGO_SHA1;
334         else if (ctx->flags & SHA_FLAGS_SHA224)
335                 valmr |= SHA_MR_ALGO_SHA224;
336         else if (ctx->flags & SHA_FLAGS_SHA256)
337                 valmr |= SHA_MR_ALGO_SHA256;
338         else if (ctx->flags & SHA_FLAGS_SHA384)
339                 valmr |= SHA_MR_ALGO_SHA384;
340         else if (ctx->flags & SHA_FLAGS_SHA512)
341                 valmr |= SHA_MR_ALGO_SHA512;
342
343         /* Setting CR_FIRST only for the first iteration */
344         if (!(ctx->digcnt[0] || ctx->digcnt[1]))
345                 valcr = SHA_CR_FIRST;
346
347         atmel_sha_write(dd, SHA_CR, valcr);
348         atmel_sha_write(dd, SHA_MR, valmr);
349 }
350
351 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
352                               size_t length, int final)
353 {
354         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
355         int count, len32;
356         const u32 *buffer = (const u32 *)buf;
357
358         dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
359                 ctx->digcnt[1], ctx->digcnt[0], length, final);
360
361         atmel_sha_write_ctrl(dd, 0);
362
363         /* should be non-zero before next lines to disable clocks later */
364         ctx->digcnt[0] += length;
365         if (ctx->digcnt[0] < length)
366                 ctx->digcnt[1]++;
367
368         if (final)
369                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
370
371         len32 = DIV_ROUND_UP(length, sizeof(u32));
372
373         dd->flags |= SHA_FLAGS_CPU;
374
375         for (count = 0; count < len32; count++)
376                 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
377
378         return -EINPROGRESS;
379 }
380
381 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
382                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
383 {
384         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
385         int len32;
386
387         dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
388                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
389
390         len32 = DIV_ROUND_UP(length1, sizeof(u32));
391         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
392         atmel_sha_write(dd, SHA_TPR, dma_addr1);
393         atmel_sha_write(dd, SHA_TCR, len32);
394
395         len32 = DIV_ROUND_UP(length2, sizeof(u32));
396         atmel_sha_write(dd, SHA_TNPR, dma_addr2);
397         atmel_sha_write(dd, SHA_TNCR, len32);
398
399         atmel_sha_write_ctrl(dd, 1);
400
401         /* should be non-zero before next lines to disable clocks later */
402         ctx->digcnt[0] += length1;
403         if (ctx->digcnt[0] < length1)
404                 ctx->digcnt[1]++;
405
406         if (final)
407                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
408
409         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
410
411         /* Start DMA transfer */
412         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
413
414         return -EINPROGRESS;
415 }
416
417 static void atmel_sha_dma_callback(void *data)
418 {
419         struct atmel_sha_dev *dd = data;
420
421         /* dma_lch_in - completed - wait DATRDY */
422         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
423 }
424
425 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
426                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
427 {
428         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
429         struct dma_async_tx_descriptor  *in_desc;
430         struct scatterlist sg[2];
431
432         dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
433                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
434
435         dd->dma_lch_in.dma_conf.src_maxburst = 16;
436         dd->dma_lch_in.dma_conf.dst_maxburst = 16;
437
438         dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
439
440         if (length2) {
441                 sg_init_table(sg, 2);
442                 sg_dma_address(&sg[0]) = dma_addr1;
443                 sg_dma_len(&sg[0]) = length1;
444                 sg_dma_address(&sg[1]) = dma_addr2;
445                 sg_dma_len(&sg[1]) = length2;
446                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
447                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
448         } else {
449                 sg_init_table(sg, 1);
450                 sg_dma_address(&sg[0]) = dma_addr1;
451                 sg_dma_len(&sg[0]) = length1;
452                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
453                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
454         }
455         if (!in_desc)
456                 return -EINVAL;
457
458         in_desc->callback = atmel_sha_dma_callback;
459         in_desc->callback_param = dd;
460
461         atmel_sha_write_ctrl(dd, 1);
462
463         /* should be non-zero before next lines to disable clocks later */
464         ctx->digcnt[0] += length1;
465         if (ctx->digcnt[0] < length1)
466                 ctx->digcnt[1]++;
467
468         if (final)
469                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
470
471         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
472
473         /* Start DMA transfer */
474         dmaengine_submit(in_desc);
475         dma_async_issue_pending(dd->dma_lch_in.chan);
476
477         return -EINPROGRESS;
478 }
479
480 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
481                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
482 {
483         if (dd->caps.has_dma)
484                 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
485                                 dma_addr2, length2, final);
486         else
487                 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
488                                 dma_addr2, length2, final);
489 }
490
491 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
492 {
493         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
494         int bufcnt;
495
496         atmel_sha_append_sg(ctx);
497         atmel_sha_fill_padding(ctx, 0);
498         bufcnt = ctx->bufcnt;
499         ctx->bufcnt = 0;
500
501         return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
502 }
503
504 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
505                                         struct atmel_sha_reqctx *ctx,
506                                         size_t length, int final)
507 {
508         ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
509                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
510         if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
511                 dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
512                                 ctx->block_size);
513                 return -EINVAL;
514         }
515
516         ctx->flags &= ~SHA_FLAGS_SG;
517
518         /* next call does not fail... so no unmap in the case of error */
519         return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
520 }
521
522 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
523 {
524         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
525         unsigned int final;
526         size_t count;
527
528         atmel_sha_append_sg(ctx);
529
530         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
531
532         dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
533                  ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
534
535         if (final)
536                 atmel_sha_fill_padding(ctx, 0);
537
538         if (final || (ctx->bufcnt == ctx->buflen)) {
539                 count = ctx->bufcnt;
540                 ctx->bufcnt = 0;
541                 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
542         }
543
544         return 0;
545 }
546
547 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
548 {
549         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
550         unsigned int length, final, tail;
551         struct scatterlist *sg;
552         unsigned int count;
553
554         if (!ctx->total)
555                 return 0;
556
557         if (ctx->bufcnt || ctx->offset)
558                 return atmel_sha_update_dma_slow(dd);
559
560         dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
561                 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
562
563         sg = ctx->sg;
564
565         if (!IS_ALIGNED(sg->offset, sizeof(u32)))
566                 return atmel_sha_update_dma_slow(dd);
567
568         if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
569                 /* size is not ctx->block_size aligned */
570                 return atmel_sha_update_dma_slow(dd);
571
572         length = min(ctx->total, sg->length);
573
574         if (sg_is_last(sg)) {
575                 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
576                         /* not last sg must be ctx->block_size aligned */
577                         tail = length & (ctx->block_size - 1);
578                         length -= tail;
579                 }
580         }
581
582         ctx->total -= length;
583         ctx->offset = length; /* offset where to start slow */
584
585         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
586
587         /* Add padding */
588         if (final) {
589                 tail = length & (ctx->block_size - 1);
590                 length -= tail;
591                 ctx->total += tail;
592                 ctx->offset = length; /* offset where to start slow */
593
594                 sg = ctx->sg;
595                 atmel_sha_append_sg(ctx);
596
597                 atmel_sha_fill_padding(ctx, length);
598
599                 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
600                         ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
601                 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
602                         dev_err(dd->dev, "dma %u bytes error\n",
603                                 ctx->buflen + ctx->block_size);
604                         return -EINVAL;
605                 }
606
607                 if (length == 0) {
608                         ctx->flags &= ~SHA_FLAGS_SG;
609                         count = ctx->bufcnt;
610                         ctx->bufcnt = 0;
611                         return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
612                                         0, final);
613                 } else {
614                         ctx->sg = sg;
615                         if (!dma_map_sg(dd->dev, ctx->sg, 1,
616                                 DMA_TO_DEVICE)) {
617                                         dev_err(dd->dev, "dma_map_sg  error\n");
618                                         return -EINVAL;
619                         }
620
621                         ctx->flags |= SHA_FLAGS_SG;
622
623                         count = ctx->bufcnt;
624                         ctx->bufcnt = 0;
625                         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
626                                         length, ctx->dma_addr, count, final);
627                 }
628         }
629
630         if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
631                 dev_err(dd->dev, "dma_map_sg  error\n");
632                 return -EINVAL;
633         }
634
635         ctx->flags |= SHA_FLAGS_SG;
636
637         /* next call does not fail... so no unmap in the case of error */
638         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
639                                                                 0, final);
640 }
641
642 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
643 {
644         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
645
646         if (ctx->flags & SHA_FLAGS_SG) {
647                 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
648                 if (ctx->sg->length == ctx->offset) {
649                         ctx->sg = sg_next(ctx->sg);
650                         if (ctx->sg)
651                                 ctx->offset = 0;
652                 }
653                 if (ctx->flags & SHA_FLAGS_PAD) {
654                         dma_unmap_single(dd->dev, ctx->dma_addr,
655                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
656                 }
657         } else {
658                 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
659                                                 ctx->block_size, DMA_TO_DEVICE);
660         }
661
662         return 0;
663 }
664
665 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
666 {
667         struct ahash_request *req = dd->req;
668         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
669         int err;
670
671         dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
672                 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
673
674         if (ctx->flags & SHA_FLAGS_CPU)
675                 err = atmel_sha_update_cpu(dd);
676         else
677                 err = atmel_sha_update_dma_start(dd);
678
679         /* wait for dma completion before can take more data */
680         dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
681                         err, ctx->digcnt[1], ctx->digcnt[0]);
682
683         return err;
684 }
685
686 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
687 {
688         struct ahash_request *req = dd->req;
689         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
690         int err = 0;
691         int count;
692
693         if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
694                 atmel_sha_fill_padding(ctx, 0);
695                 count = ctx->bufcnt;
696                 ctx->bufcnt = 0;
697                 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
698         }
699         /* faster to handle last block with cpu */
700         else {
701                 atmel_sha_fill_padding(ctx, 0);
702                 count = ctx->bufcnt;
703                 ctx->bufcnt = 0;
704                 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
705         }
706
707         dev_dbg(dd->dev, "final_req: err: %d\n", err);
708
709         return err;
710 }
711
712 static void atmel_sha_copy_hash(struct ahash_request *req)
713 {
714         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
715         u32 *hash = (u32 *)ctx->digest;
716         int i;
717
718         if (ctx->flags & SHA_FLAGS_SHA1)
719                 for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
720                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
721         else if (ctx->flags & SHA_FLAGS_SHA224)
722                 for (i = 0; i < SHA224_DIGEST_SIZE / sizeof(u32); i++)
723                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
724         else if (ctx->flags & SHA_FLAGS_SHA256)
725                 for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
726                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
727         else if (ctx->flags & SHA_FLAGS_SHA384)
728                 for (i = 0; i < SHA384_DIGEST_SIZE / sizeof(u32); i++)
729                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
730         else
731                 for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(u32); i++)
732                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
733 }
734
735 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
736 {
737         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
738
739         if (!req->result)
740                 return;
741
742         if (ctx->flags & SHA_FLAGS_SHA1)
743                 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
744         else if (ctx->flags & SHA_FLAGS_SHA224)
745                 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
746         else if (ctx->flags & SHA_FLAGS_SHA256)
747                 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
748         else if (ctx->flags & SHA_FLAGS_SHA384)
749                 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
750         else
751                 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
752 }
753
754 static int atmel_sha_finish(struct ahash_request *req)
755 {
756         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
757         struct atmel_sha_dev *dd = ctx->dd;
758         int err = 0;
759
760         if (ctx->digcnt[0] || ctx->digcnt[1])
761                 atmel_sha_copy_ready_hash(req);
762
763         dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
764                 ctx->digcnt[0], ctx->bufcnt);
765
766         return err;
767 }
768
769 static void atmel_sha_finish_req(struct ahash_request *req, int err)
770 {
771         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
772         struct atmel_sha_dev *dd = ctx->dd;
773
774         if (!err) {
775                 atmel_sha_copy_hash(req);
776                 if (SHA_FLAGS_FINAL & dd->flags)
777                         err = atmel_sha_finish(req);
778         } else {
779                 ctx->flags |= SHA_FLAGS_ERROR;
780         }
781
782         /* atomic operation is not needed here */
783         dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
784                         SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
785
786         clk_disable_unprepare(dd->iclk);
787
788         if (req->base.complete)
789                 req->base.complete(&req->base, err);
790
791         /* handle new request */
792         tasklet_schedule(&dd->done_task);
793 }
794
795 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
796 {
797         clk_prepare_enable(dd->iclk);
798
799         if (!(SHA_FLAGS_INIT & dd->flags)) {
800                 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
801                 dd->flags |= SHA_FLAGS_INIT;
802                 dd->err = 0;
803         }
804
805         return 0;
806 }
807
808 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
809 {
810         return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
811 }
812
813 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
814 {
815         atmel_sha_hw_init(dd);
816
817         dd->hw_version = atmel_sha_get_version(dd);
818
819         dev_info(dd->dev,
820                         "version: 0x%x\n", dd->hw_version);
821
822         clk_disable_unprepare(dd->iclk);
823 }
824
825 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
826                                   struct ahash_request *req)
827 {
828         struct crypto_async_request *async_req, *backlog;
829         struct atmel_sha_reqctx *ctx;
830         unsigned long flags;
831         int err = 0, ret = 0;
832
833         spin_lock_irqsave(&dd->lock, flags);
834         if (req)
835                 ret = ahash_enqueue_request(&dd->queue, req);
836
837         if (SHA_FLAGS_BUSY & dd->flags) {
838                 spin_unlock_irqrestore(&dd->lock, flags);
839                 return ret;
840         }
841
842         backlog = crypto_get_backlog(&dd->queue);
843         async_req = crypto_dequeue_request(&dd->queue);
844         if (async_req)
845                 dd->flags |= SHA_FLAGS_BUSY;
846
847         spin_unlock_irqrestore(&dd->lock, flags);
848
849         if (!async_req)
850                 return ret;
851
852         if (backlog)
853                 backlog->complete(backlog, -EINPROGRESS);
854
855         req = ahash_request_cast(async_req);
856         dd->req = req;
857         ctx = ahash_request_ctx(req);
858
859         dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
860                                                 ctx->op, req->nbytes);
861
862         err = atmel_sha_hw_init(dd);
863
864         if (err)
865                 goto err1;
866
867         if (ctx->op == SHA_OP_UPDATE) {
868                 err = atmel_sha_update_req(dd);
869                 if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
870                         /* no final() after finup() */
871                         err = atmel_sha_final_req(dd);
872         } else if (ctx->op == SHA_OP_FINAL) {
873                 err = atmel_sha_final_req(dd);
874         }
875
876 err1:
877         if (err != -EINPROGRESS)
878                 /* done_task will not finish it, so do it here */
879                 atmel_sha_finish_req(req, err);
880
881         dev_dbg(dd->dev, "exit, err: %d\n", err);
882
883         return ret;
884 }
885
886 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
887 {
888         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
889         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
890         struct atmel_sha_dev *dd = tctx->dd;
891
892         ctx->op = op;
893
894         return atmel_sha_handle_queue(dd, req);
895 }
896
897 static int atmel_sha_update(struct ahash_request *req)
898 {
899         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
900
901         if (!req->nbytes)
902                 return 0;
903
904         ctx->total = req->nbytes;
905         ctx->sg = req->src;
906         ctx->offset = 0;
907
908         if (ctx->flags & SHA_FLAGS_FINUP) {
909                 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
910                         /* faster to use CPU for short transfers */
911                         ctx->flags |= SHA_FLAGS_CPU;
912         } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
913                 atmel_sha_append_sg(ctx);
914                 return 0;
915         }
916         return atmel_sha_enqueue(req, SHA_OP_UPDATE);
917 }
918
919 static int atmel_sha_final(struct ahash_request *req)
920 {
921         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
922         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
923         struct atmel_sha_dev *dd = tctx->dd;
924
925         int err = 0;
926
927         ctx->flags |= SHA_FLAGS_FINUP;
928
929         if (ctx->flags & SHA_FLAGS_ERROR)
930                 return 0; /* uncompleted hash is not needed */
931
932         if (ctx->bufcnt) {
933                 return atmel_sha_enqueue(req, SHA_OP_FINAL);
934         } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
935                 err = atmel_sha_hw_init(dd);
936                 if (err)
937                         goto err1;
938
939                 dd->flags |= SHA_FLAGS_BUSY;
940                 err = atmel_sha_final_req(dd);
941         } else {
942                 /* copy ready hash (+ finalize hmac) */
943                 return atmel_sha_finish(req);
944         }
945
946 err1:
947         if (err != -EINPROGRESS)
948                 /* done_task will not finish it, so do it here */
949                 atmel_sha_finish_req(req, err);
950
951         return err;
952 }
953
954 static int atmel_sha_finup(struct ahash_request *req)
955 {
956         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
957         int err1, err2;
958
959         ctx->flags |= SHA_FLAGS_FINUP;
960
961         err1 = atmel_sha_update(req);
962         if (err1 == -EINPROGRESS || err1 == -EBUSY)
963                 return err1;
964
965         /*
966          * final() has to be always called to cleanup resources
967          * even if udpate() failed, except EINPROGRESS
968          */
969         err2 = atmel_sha_final(req);
970
971         return err1 ?: err2;
972 }
973
974 static int atmel_sha_digest(struct ahash_request *req)
975 {
976         return atmel_sha_init(req) ?: atmel_sha_finup(req);
977 }
978
979 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
980 {
981         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
982                                  sizeof(struct atmel_sha_reqctx) +
983                                  SHA_BUFFER_LEN + SHA512_BLOCK_SIZE);
984
985         return 0;
986 }
987
988 static struct ahash_alg sha_1_256_algs[] = {
989 {
990         .init           = atmel_sha_init,
991         .update         = atmel_sha_update,
992         .final          = atmel_sha_final,
993         .finup          = atmel_sha_finup,
994         .digest         = atmel_sha_digest,
995         .halg = {
996                 .digestsize     = SHA1_DIGEST_SIZE,
997                 .base   = {
998                         .cra_name               = "sha1",
999                         .cra_driver_name        = "atmel-sha1",
1000                         .cra_priority           = 100,
1001                         .cra_flags              = CRYPTO_ALG_ASYNC,
1002                         .cra_blocksize          = SHA1_BLOCK_SIZE,
1003                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1004                         .cra_alignmask          = 0,
1005                         .cra_module             = THIS_MODULE,
1006                         .cra_init               = atmel_sha_cra_init,
1007                 }
1008         }
1009 },
1010 {
1011         .init           = atmel_sha_init,
1012         .update         = atmel_sha_update,
1013         .final          = atmel_sha_final,
1014         .finup          = atmel_sha_finup,
1015         .digest         = atmel_sha_digest,
1016         .halg = {
1017                 .digestsize     = SHA256_DIGEST_SIZE,
1018                 .base   = {
1019                         .cra_name               = "sha256",
1020                         .cra_driver_name        = "atmel-sha256",
1021                         .cra_priority           = 100,
1022                         .cra_flags              = CRYPTO_ALG_ASYNC,
1023                         .cra_blocksize          = SHA256_BLOCK_SIZE,
1024                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1025                         .cra_alignmask          = 0,
1026                         .cra_module             = THIS_MODULE,
1027                         .cra_init               = atmel_sha_cra_init,
1028                 }
1029         }
1030 },
1031 };
1032
1033 static struct ahash_alg sha_224_alg = {
1034         .init           = atmel_sha_init,
1035         .update         = atmel_sha_update,
1036         .final          = atmel_sha_final,
1037         .finup          = atmel_sha_finup,
1038         .digest         = atmel_sha_digest,
1039         .halg = {
1040                 .digestsize     = SHA224_DIGEST_SIZE,
1041                 .base   = {
1042                         .cra_name               = "sha224",
1043                         .cra_driver_name        = "atmel-sha224",
1044                         .cra_priority           = 100,
1045                         .cra_flags              = CRYPTO_ALG_ASYNC,
1046                         .cra_blocksize          = SHA224_BLOCK_SIZE,
1047                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1048                         .cra_alignmask          = 0,
1049                         .cra_module             = THIS_MODULE,
1050                         .cra_init               = atmel_sha_cra_init,
1051                 }
1052         }
1053 };
1054
1055 static struct ahash_alg sha_384_512_algs[] = {
1056 {
1057         .init           = atmel_sha_init,
1058         .update         = atmel_sha_update,
1059         .final          = atmel_sha_final,
1060         .finup          = atmel_sha_finup,
1061         .digest         = atmel_sha_digest,
1062         .halg = {
1063                 .digestsize     = SHA384_DIGEST_SIZE,
1064                 .base   = {
1065                         .cra_name               = "sha384",
1066                         .cra_driver_name        = "atmel-sha384",
1067                         .cra_priority           = 100,
1068                         .cra_flags              = CRYPTO_ALG_ASYNC,
1069                         .cra_blocksize          = SHA384_BLOCK_SIZE,
1070                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1071                         .cra_alignmask          = 0x3,
1072                         .cra_module             = THIS_MODULE,
1073                         .cra_init               = atmel_sha_cra_init,
1074                 }
1075         }
1076 },
1077 {
1078         .init           = atmel_sha_init,
1079         .update         = atmel_sha_update,
1080         .final          = atmel_sha_final,
1081         .finup          = atmel_sha_finup,
1082         .digest         = atmel_sha_digest,
1083         .halg = {
1084                 .digestsize     = SHA512_DIGEST_SIZE,
1085                 .base   = {
1086                         .cra_name               = "sha512",
1087                         .cra_driver_name        = "atmel-sha512",
1088                         .cra_priority           = 100,
1089                         .cra_flags              = CRYPTO_ALG_ASYNC,
1090                         .cra_blocksize          = SHA512_BLOCK_SIZE,
1091                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1092                         .cra_alignmask          = 0x3,
1093                         .cra_module             = THIS_MODULE,
1094                         .cra_init               = atmel_sha_cra_init,
1095                 }
1096         }
1097 },
1098 };
1099
1100 static void atmel_sha_done_task(unsigned long data)
1101 {
1102         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1103         int err = 0;
1104
1105         if (!(SHA_FLAGS_BUSY & dd->flags)) {
1106                 atmel_sha_handle_queue(dd, NULL);
1107                 return;
1108         }
1109
1110         if (SHA_FLAGS_CPU & dd->flags) {
1111                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1112                         dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1113                         goto finish;
1114                 }
1115         } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1116                 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1117                         dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1118                         atmel_sha_update_dma_stop(dd);
1119                         if (dd->err) {
1120                                 err = dd->err;
1121                                 goto finish;
1122                         }
1123                 }
1124                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1125                         /* hash or semi-hash ready */
1126                         dd->flags &= ~(SHA_FLAGS_DMA_READY |
1127                                                 SHA_FLAGS_OUTPUT_READY);
1128                         err = atmel_sha_update_dma_start(dd);
1129                         if (err != -EINPROGRESS)
1130                                 goto finish;
1131                 }
1132         }
1133         return;
1134
1135 finish:
1136         /* finish curent request */
1137         atmel_sha_finish_req(dd->req, err);
1138 }
1139
1140 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1141 {
1142         struct atmel_sha_dev *sha_dd = dev_id;
1143         u32 reg;
1144
1145         reg = atmel_sha_read(sha_dd, SHA_ISR);
1146         if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1147                 atmel_sha_write(sha_dd, SHA_IDR, reg);
1148                 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1149                         sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1150                         if (!(SHA_FLAGS_CPU & sha_dd->flags))
1151                                 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1152                         tasklet_schedule(&sha_dd->done_task);
1153                 } else {
1154                         dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1155                 }
1156                 return IRQ_HANDLED;
1157         }
1158
1159         return IRQ_NONE;
1160 }
1161
1162 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
1163 {
1164         int i;
1165
1166         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
1167                 crypto_unregister_ahash(&sha_1_256_algs[i]);
1168
1169         if (dd->caps.has_sha224)
1170                 crypto_unregister_ahash(&sha_224_alg);
1171
1172         if (dd->caps.has_sha_384_512) {
1173                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
1174                         crypto_unregister_ahash(&sha_384_512_algs[i]);
1175         }
1176 }
1177
1178 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
1179 {
1180         int err, i, j;
1181
1182         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
1183                 err = crypto_register_ahash(&sha_1_256_algs[i]);
1184                 if (err)
1185                         goto err_sha_1_256_algs;
1186         }
1187
1188         if (dd->caps.has_sha224) {
1189                 err = crypto_register_ahash(&sha_224_alg);
1190                 if (err)
1191                         goto err_sha_224_algs;
1192         }
1193
1194         if (dd->caps.has_sha_384_512) {
1195                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
1196                         err = crypto_register_ahash(&sha_384_512_algs[i]);
1197                         if (err)
1198                                 goto err_sha_384_512_algs;
1199                 }
1200         }
1201
1202         return 0;
1203
1204 err_sha_384_512_algs:
1205         for (j = 0; j < i; j++)
1206                 crypto_unregister_ahash(&sha_384_512_algs[j]);
1207         crypto_unregister_ahash(&sha_224_alg);
1208 err_sha_224_algs:
1209         i = ARRAY_SIZE(sha_1_256_algs);
1210 err_sha_1_256_algs:
1211         for (j = 0; j < i; j++)
1212                 crypto_unregister_ahash(&sha_1_256_algs[j]);
1213
1214         return err;
1215 }
1216
1217 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
1218 {
1219         struct at_dma_slave     *sl = slave;
1220
1221         if (sl && sl->dma_dev == chan->device->dev) {
1222                 chan->private = sl;
1223                 return true;
1224         } else {
1225                 return false;
1226         }
1227 }
1228
1229 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
1230                                 struct crypto_platform_data *pdata)
1231 {
1232         int err = -ENOMEM;
1233         dma_cap_mask_t mask_in;
1234
1235         /* Try to grab DMA channel */
1236         dma_cap_zero(mask_in);
1237         dma_cap_set(DMA_SLAVE, mask_in);
1238
1239         dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
1240                         atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
1241         if (!dd->dma_lch_in.chan) {
1242                 dev_warn(dd->dev, "no DMA channel available\n");
1243                 return err;
1244         }
1245
1246         dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
1247         dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
1248                 SHA_REG_DIN(0);
1249         dd->dma_lch_in.dma_conf.src_maxburst = 1;
1250         dd->dma_lch_in.dma_conf.src_addr_width =
1251                 DMA_SLAVE_BUSWIDTH_4_BYTES;
1252         dd->dma_lch_in.dma_conf.dst_maxburst = 1;
1253         dd->dma_lch_in.dma_conf.dst_addr_width =
1254                 DMA_SLAVE_BUSWIDTH_4_BYTES;
1255         dd->dma_lch_in.dma_conf.device_fc = false;
1256
1257         return 0;
1258 }
1259
1260 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
1261 {
1262         dma_release_channel(dd->dma_lch_in.chan);
1263 }
1264
1265 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
1266 {
1267
1268         dd->caps.has_dma = 0;
1269         dd->caps.has_dualbuff = 0;
1270         dd->caps.has_sha224 = 0;
1271         dd->caps.has_sha_384_512 = 0;
1272
1273         /* keep only major version number */
1274         switch (dd->hw_version & 0xff0) {
1275         case 0x420:
1276                 dd->caps.has_dma = 1;
1277                 dd->caps.has_dualbuff = 1;
1278                 dd->caps.has_sha224 = 1;
1279                 dd->caps.has_sha_384_512 = 1;
1280                 break;
1281         case 0x410:
1282                 dd->caps.has_dma = 1;
1283                 dd->caps.has_dualbuff = 1;
1284                 dd->caps.has_sha224 = 1;
1285                 dd->caps.has_sha_384_512 = 1;
1286                 break;
1287         case 0x400:
1288                 dd->caps.has_dma = 1;
1289                 dd->caps.has_dualbuff = 1;
1290                 dd->caps.has_sha224 = 1;
1291                 break;
1292         case 0x320:
1293                 break;
1294         default:
1295                 dev_warn(dd->dev,
1296                                 "Unmanaged sha version, set minimum capabilities\n");
1297                 break;
1298         }
1299 }
1300
1301 #if defined(CONFIG_OF)
1302 static const struct of_device_id atmel_sha_dt_ids[] = {
1303         { .compatible = "atmel,at91sam9g46-sha" },
1304         { /* sentinel */ }
1305 };
1306
1307 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
1308
1309 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
1310 {
1311         struct device_node *np = pdev->dev.of_node;
1312         struct crypto_platform_data *pdata;
1313
1314         if (!np) {
1315                 dev_err(&pdev->dev, "device node not found\n");
1316                 return ERR_PTR(-EINVAL);
1317         }
1318
1319         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1320         if (!pdata) {
1321                 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
1322                 return ERR_PTR(-ENOMEM);
1323         }
1324
1325         pdata->dma_slave = devm_kzalloc(&pdev->dev,
1326                                         sizeof(*(pdata->dma_slave)),
1327                                         GFP_KERNEL);
1328         if (!pdata->dma_slave) {
1329                 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
1330                 return ERR_PTR(-ENOMEM);
1331         }
1332
1333         return pdata;
1334 }
1335 #else /* CONFIG_OF */
1336 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
1337 {
1338         return ERR_PTR(-EINVAL);
1339 }
1340 #endif
1341
1342 static int atmel_sha_probe(struct platform_device *pdev)
1343 {
1344         struct atmel_sha_dev *sha_dd;
1345         struct crypto_platform_data     *pdata;
1346         struct device *dev = &pdev->dev;
1347         struct resource *sha_res;
1348         unsigned long sha_phys_size;
1349         int err;
1350
1351         sha_dd = devm_kzalloc(&pdev->dev, sizeof(struct atmel_sha_dev),
1352                                 GFP_KERNEL);
1353         if (sha_dd == NULL) {
1354                 dev_err(dev, "unable to alloc data struct.\n");
1355                 err = -ENOMEM;
1356                 goto sha_dd_err;
1357         }
1358
1359         sha_dd->dev = dev;
1360
1361         platform_set_drvdata(pdev, sha_dd);
1362
1363         INIT_LIST_HEAD(&sha_dd->list);
1364         spin_lock_init(&sha_dd->lock);
1365
1366         tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
1367                                         (unsigned long)sha_dd);
1368
1369         crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
1370
1371         sha_dd->irq = -1;
1372
1373         /* Get the base address */
1374         sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1375         if (!sha_res) {
1376                 dev_err(dev, "no MEM resource info\n");
1377                 err = -ENODEV;
1378                 goto res_err;
1379         }
1380         sha_dd->phys_base = sha_res->start;
1381         sha_phys_size = resource_size(sha_res);
1382
1383         /* Get the IRQ */
1384         sha_dd->irq = platform_get_irq(pdev,  0);
1385         if (sha_dd->irq < 0) {
1386                 dev_err(dev, "no IRQ resource info\n");
1387                 err = sha_dd->irq;
1388                 goto res_err;
1389         }
1390
1391         err = request_irq(sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha",
1392                                                 sha_dd);
1393         if (err) {
1394                 dev_err(dev, "unable to request sha irq.\n");
1395                 goto res_err;
1396         }
1397
1398         /* Initializing the clock */
1399         sha_dd->iclk = clk_get(&pdev->dev, "sha_clk");
1400         if (IS_ERR(sha_dd->iclk)) {
1401                 dev_err(dev, "clock initialization failed.\n");
1402                 err = PTR_ERR(sha_dd->iclk);
1403                 goto clk_err;
1404         }
1405
1406         sha_dd->io_base = ioremap(sha_dd->phys_base, sha_phys_size);
1407         if (!sha_dd->io_base) {
1408                 dev_err(dev, "can't ioremap\n");
1409                 err = -ENOMEM;
1410                 goto sha_io_err;
1411         }
1412
1413         atmel_sha_hw_version_init(sha_dd);
1414
1415         atmel_sha_get_cap(sha_dd);
1416
1417         if (sha_dd->caps.has_dma) {
1418                 pdata = pdev->dev.platform_data;
1419                 if (!pdata) {
1420                         pdata = atmel_sha_of_init(pdev);
1421                         if (IS_ERR(pdata)) {
1422                                 dev_err(&pdev->dev, "platform data not available\n");
1423                                 err = PTR_ERR(pdata);
1424                                 goto err_pdata;
1425                         }
1426                 }
1427                 if (!pdata->dma_slave) {
1428                         err = -ENXIO;
1429                         goto err_pdata;
1430                 }
1431                 err = atmel_sha_dma_init(sha_dd, pdata);
1432                 if (err)
1433                         goto err_sha_dma;
1434
1435                 dev_info(dev, "using %s for DMA transfers\n",
1436                                 dma_chan_name(sha_dd->dma_lch_in.chan));
1437         }
1438
1439         spin_lock(&atmel_sha.lock);
1440         list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
1441         spin_unlock(&atmel_sha.lock);
1442
1443         err = atmel_sha_register_algs(sha_dd);
1444         if (err)
1445                 goto err_algs;
1446
1447         dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
1448                         sha_dd->caps.has_sha224 ? "/SHA224" : "",
1449                         sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
1450
1451         return 0;
1452
1453 err_algs:
1454         spin_lock(&atmel_sha.lock);
1455         list_del(&sha_dd->list);
1456         spin_unlock(&atmel_sha.lock);
1457         if (sha_dd->caps.has_dma)
1458                 atmel_sha_dma_cleanup(sha_dd);
1459 err_sha_dma:
1460 err_pdata:
1461         iounmap(sha_dd->io_base);
1462 sha_io_err:
1463         clk_put(sha_dd->iclk);
1464 clk_err:
1465         free_irq(sha_dd->irq, sha_dd);
1466 res_err:
1467         tasklet_kill(&sha_dd->done_task);
1468 sha_dd_err:
1469         dev_err(dev, "initialization failed.\n");
1470
1471         return err;
1472 }
1473
1474 static int atmel_sha_remove(struct platform_device *pdev)
1475 {
1476         static struct atmel_sha_dev *sha_dd;
1477
1478         sha_dd = platform_get_drvdata(pdev);
1479         if (!sha_dd)
1480                 return -ENODEV;
1481         spin_lock(&atmel_sha.lock);
1482         list_del(&sha_dd->list);
1483         spin_unlock(&atmel_sha.lock);
1484
1485         atmel_sha_unregister_algs(sha_dd);
1486
1487         tasklet_kill(&sha_dd->done_task);
1488
1489         if (sha_dd->caps.has_dma)
1490                 atmel_sha_dma_cleanup(sha_dd);
1491
1492         iounmap(sha_dd->io_base);
1493
1494         clk_put(sha_dd->iclk);
1495
1496         if (sha_dd->irq >= 0)
1497                 free_irq(sha_dd->irq, sha_dd);
1498
1499         return 0;
1500 }
1501
1502 static struct platform_driver atmel_sha_driver = {
1503         .probe          = atmel_sha_probe,
1504         .remove         = atmel_sha_remove,
1505         .driver         = {
1506                 .name   = "atmel_sha",
1507                 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
1508         },
1509 };
1510
1511 module_platform_driver(atmel_sha_driver);
1512
1513 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
1514 MODULE_LICENSE("GPL v2");
1515 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");