]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/crypto/hifn_795x.c
Merge remote-tracking branch 'omap/for-next'
[karo-tx-linux.git] / drivers / crypto / hifn_795x.c
1 /*
2  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/mm.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/crypto.h>
33 #include <linux/hw_random.h>
34 #include <linux/ktime.h>
35
36 #include <crypto/algapi.h>
37 #include <crypto/des.h>
38
39 //#define HIFN_DEBUG
40
41 #ifdef HIFN_DEBUG
42 #define dprintk(f, a...)        printk(f, ##a)
43 #else
44 #define dprintk(f, a...)        do {} while (0)
45 #endif
46
47 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
48 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
49 MODULE_PARM_DESC(hifn_pll_ref,
50                  "PLL reference clock (pci[freq] or ext[freq], default ext)");
51
52 static atomic_t hifn_dev_number;
53
54 #define ACRYPTO_OP_DECRYPT      0
55 #define ACRYPTO_OP_ENCRYPT      1
56 #define ACRYPTO_OP_HMAC         2
57 #define ACRYPTO_OP_RNG          3
58
59 #define ACRYPTO_MODE_ECB                0
60 #define ACRYPTO_MODE_CBC                1
61 #define ACRYPTO_MODE_CFB                2
62 #define ACRYPTO_MODE_OFB                3
63
64 #define ACRYPTO_TYPE_AES_128    0
65 #define ACRYPTO_TYPE_AES_192    1
66 #define ACRYPTO_TYPE_AES_256    2
67 #define ACRYPTO_TYPE_3DES       3
68 #define ACRYPTO_TYPE_DES        4
69
70 #define PCI_VENDOR_ID_HIFN              0x13A3
71 #define PCI_DEVICE_ID_HIFN_7955         0x0020
72 #define PCI_DEVICE_ID_HIFN_7956         0x001d
73
74 /* I/O region sizes */
75
76 #define HIFN_BAR0_SIZE                  0x1000
77 #define HIFN_BAR1_SIZE                  0x2000
78 #define HIFN_BAR2_SIZE                  0x8000
79
80 /* DMA registres */
81
82 #define HIFN_DMA_CRA                    0x0C    /* DMA Command Ring Address */
83 #define HIFN_DMA_SDRA                   0x1C    /* DMA Source Data Ring Address */
84 #define HIFN_DMA_RRA                    0x2C    /* DMA Result Ring Address */
85 #define HIFN_DMA_DDRA                   0x3C    /* DMA Destination Data Ring Address */
86 #define HIFN_DMA_STCTL                  0x40    /* DMA Status and Control */
87 #define HIFN_DMA_INTREN                 0x44    /* DMA Interrupt Enable */
88 #define HIFN_DMA_CFG1                   0x48    /* DMA Configuration #1 */
89 #define HIFN_DMA_CFG2                   0x6C    /* DMA Configuration #2 */
90 #define HIFN_CHIP_ID                    0x98    /* Chip ID */
91
92 /*
93  * Processing Unit Registers (offset from BASEREG0)
94  */
95 #define HIFN_0_PUDATA           0x00    /* Processing Unit Data */
96 #define HIFN_0_PUCTRL           0x04    /* Processing Unit Control */
97 #define HIFN_0_PUISR            0x08    /* Processing Unit Interrupt Status */
98 #define HIFN_0_PUCNFG           0x0c    /* Processing Unit Configuration */
99 #define HIFN_0_PUIER            0x10    /* Processing Unit Interrupt Enable */
100 #define HIFN_0_PUSTAT           0x14    /* Processing Unit Status/Chip ID */
101 #define HIFN_0_FIFOSTAT         0x18    /* FIFO Status */
102 #define HIFN_0_FIFOCNFG         0x1c    /* FIFO Configuration */
103 #define HIFN_0_SPACESIZE        0x20    /* Register space size */
104
105 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
106 #define HIFN_PUCTRL_CLRSRCFIFO  0x0010  /* clear source fifo */
107 #define HIFN_PUCTRL_STOP        0x0008  /* stop pu */
108 #define HIFN_PUCTRL_LOCKRAM     0x0004  /* lock ram */
109 #define HIFN_PUCTRL_DMAENA      0x0002  /* enable dma */
110 #define HIFN_PUCTRL_RESET       0x0001  /* Reset processing unit */
111
112 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
113 #define HIFN_PUISR_CMDINVAL     0x8000  /* Invalid command interrupt */
114 #define HIFN_PUISR_DATAERR      0x4000  /* Data error interrupt */
115 #define HIFN_PUISR_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
116 #define HIFN_PUISR_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
117 #define HIFN_PUISR_DSTOVER      0x0200  /* Destination overrun interrupt */
118 #define HIFN_PUISR_SRCCMD       0x0080  /* Source command interrupt */
119 #define HIFN_PUISR_SRCCTX       0x0040  /* Source context interrupt */
120 #define HIFN_PUISR_SRCDATA      0x0020  /* Source data interrupt */
121 #define HIFN_PUISR_DSTDATA      0x0010  /* Destination data interrupt */
122 #define HIFN_PUISR_DSTRESULT    0x0004  /* Destination result interrupt */
123
124 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
125 #define HIFN_PUCNFG_DRAMMASK    0xe000  /* DRAM size mask */
126 #define HIFN_PUCNFG_DSZ_256K    0x0000  /* 256k dram */
127 #define HIFN_PUCNFG_DSZ_512K    0x2000  /* 512k dram */
128 #define HIFN_PUCNFG_DSZ_1M      0x4000  /* 1m dram */
129 #define HIFN_PUCNFG_DSZ_2M      0x6000  /* 2m dram */
130 #define HIFN_PUCNFG_DSZ_4M      0x8000  /* 4m dram */
131 #define HIFN_PUCNFG_DSZ_8M      0xa000  /* 8m dram */
132 #define HIFN_PUNCFG_DSZ_16M     0xc000  /* 16m dram */
133 #define HIFN_PUCNFG_DSZ_32M     0xe000  /* 32m dram */
134 #define HIFN_PUCNFG_DRAMREFRESH 0x1800  /* DRAM refresh rate mask */
135 #define HIFN_PUCNFG_DRFR_512    0x0000  /* 512 divisor of ECLK */
136 #define HIFN_PUCNFG_DRFR_256    0x0800  /* 256 divisor of ECLK */
137 #define HIFN_PUCNFG_DRFR_128    0x1000  /* 128 divisor of ECLK */
138 #define HIFN_PUCNFG_TCALLPHASES 0x0200  /* your guess is as good as mine... */
139 #define HIFN_PUCNFG_TCDRVTOTEM  0x0100  /* your guess is as good as mine... */
140 #define HIFN_PUCNFG_BIGENDIAN   0x0080  /* DMA big endian mode */
141 #define HIFN_PUCNFG_BUS32       0x0040  /* Bus width 32bits */
142 #define HIFN_PUCNFG_BUS16       0x0000  /* Bus width 16 bits */
143 #define HIFN_PUCNFG_CHIPID      0x0020  /* Allow chipid from PUSTAT */
144 #define HIFN_PUCNFG_DRAM        0x0010  /* Context RAM is DRAM */
145 #define HIFN_PUCNFG_SRAM        0x0000  /* Context RAM is SRAM */
146 #define HIFN_PUCNFG_COMPSING    0x0004  /* Enable single compression context */
147 #define HIFN_PUCNFG_ENCCNFG     0x0002  /* Encryption configuration */
148
149 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
150 #define HIFN_PUIER_CMDINVAL     0x8000  /* Invalid command interrupt */
151 #define HIFN_PUIER_DATAERR      0x4000  /* Data error interrupt */
152 #define HIFN_PUIER_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
153 #define HIFN_PUIER_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
154 #define HIFN_PUIER_DSTOVER      0x0200  /* Destination overrun interrupt */
155 #define HIFN_PUIER_SRCCMD       0x0080  /* Source command interrupt */
156 #define HIFN_PUIER_SRCCTX       0x0040  /* Source context interrupt */
157 #define HIFN_PUIER_SRCDATA      0x0020  /* Source data interrupt */
158 #define HIFN_PUIER_DSTDATA      0x0010  /* Destination data interrupt */
159 #define HIFN_PUIER_DSTRESULT    0x0004  /* Destination result interrupt */
160
161 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
162 #define HIFN_PUSTAT_CMDINVAL    0x8000  /* Invalid command interrupt */
163 #define HIFN_PUSTAT_DATAERR     0x4000  /* Data error interrupt */
164 #define HIFN_PUSTAT_SRCFIFO     0x2000  /* Source FIFO ready interrupt */
165 #define HIFN_PUSTAT_DSTFIFO     0x1000  /* Destination FIFO ready interrupt */
166 #define HIFN_PUSTAT_DSTOVER     0x0200  /* Destination overrun interrupt */
167 #define HIFN_PUSTAT_SRCCMD      0x0080  /* Source command interrupt */
168 #define HIFN_PUSTAT_SRCCTX      0x0040  /* Source context interrupt */
169 #define HIFN_PUSTAT_SRCDATA     0x0020  /* Source data interrupt */
170 #define HIFN_PUSTAT_DSTDATA     0x0010  /* Destination data interrupt */
171 #define HIFN_PUSTAT_DSTRESULT   0x0004  /* Destination result interrupt */
172 #define HIFN_PUSTAT_CHIPREV     0x00ff  /* Chip revision mask */
173 #define HIFN_PUSTAT_CHIPENA     0xff00  /* Chip enabled mask */
174 #define HIFN_PUSTAT_ENA_2       0x1100  /* Level 2 enabled */
175 #define HIFN_PUSTAT_ENA_1       0x1000  /* Level 1 enabled */
176 #define HIFN_PUSTAT_ENA_0       0x3000  /* Level 0 enabled */
177 #define HIFN_PUSTAT_REV_2       0x0020  /* 7751 PT6/2 */
178 #define HIFN_PUSTAT_REV_3       0x0030  /* 7751 PT6/3 */
179
180 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
181 #define HIFN_FIFOSTAT_SRC       0x7f00  /* Source FIFO available */
182 #define HIFN_FIFOSTAT_DST       0x007f  /* Destination FIFO available */
183
184 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
185 #define HIFN_FIFOCNFG_THRESHOLD 0x0400  /* must be written as 1 */
186
187 /*
188  * DMA Interface Registers (offset from BASEREG1)
189  */
190 #define HIFN_1_DMA_CRAR         0x0c    /* DMA Command Ring Address */
191 #define HIFN_1_DMA_SRAR         0x1c    /* DMA Source Ring Address */
192 #define HIFN_1_DMA_RRAR         0x2c    /* DMA Result Ring Address */
193 #define HIFN_1_DMA_DRAR         0x3c    /* DMA Destination Ring Address */
194 #define HIFN_1_DMA_CSR          0x40    /* DMA Status and Control */
195 #define HIFN_1_DMA_IER          0x44    /* DMA Interrupt Enable */
196 #define HIFN_1_DMA_CNFG         0x48    /* DMA Configuration */
197 #define HIFN_1_PLL              0x4c    /* 795x: PLL config */
198 #define HIFN_1_7811_RNGENA      0x60    /* 7811: rng enable */
199 #define HIFN_1_7811_RNGCFG      0x64    /* 7811: rng config */
200 #define HIFN_1_7811_RNGDAT      0x68    /* 7811: rng data */
201 #define HIFN_1_7811_RNGSTS      0x6c    /* 7811: rng status */
202 #define HIFN_1_7811_MIPSRST     0x94    /* 7811: MIPS reset */
203 #define HIFN_1_REVID            0x98    /* Revision ID */
204 #define HIFN_1_UNLOCK_SECRET1   0xf4
205 #define HIFN_1_UNLOCK_SECRET2   0xfc
206 #define HIFN_1_PUB_RESET        0x204   /* Public/RNG Reset */
207 #define HIFN_1_PUB_BASE         0x300   /* Public Base Address */
208 #define HIFN_1_PUB_OPLEN        0x304   /* Public Operand Length */
209 #define HIFN_1_PUB_OP           0x308   /* Public Operand */
210 #define HIFN_1_PUB_STATUS       0x30c   /* Public Status */
211 #define HIFN_1_PUB_IEN          0x310   /* Public Interrupt enable */
212 #define HIFN_1_RNG_CONFIG       0x314   /* RNG config */
213 #define HIFN_1_RNG_DATA         0x318   /* RNG data */
214 #define HIFN_1_PUB_MEM          0x400   /* start of Public key memory */
215 #define HIFN_1_PUB_MEMEND       0xbff   /* end of Public key memory */
216
217 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
218 #define HIFN_DMACSR_D_CTRLMASK  0xc0000000      /* Destinition Ring Control */
219 #define HIFN_DMACSR_D_CTRL_NOP  0x00000000      /* Dest. Control: no-op */
220 #define HIFN_DMACSR_D_CTRL_DIS  0x40000000      /* Dest. Control: disable */
221 #define HIFN_DMACSR_D_CTRL_ENA  0x80000000      /* Dest. Control: enable */
222 #define HIFN_DMACSR_D_ABORT     0x20000000      /* Destinition Ring PCIAbort */
223 #define HIFN_DMACSR_D_DONE      0x10000000      /* Destinition Ring Done */
224 #define HIFN_DMACSR_D_LAST      0x08000000      /* Destinition Ring Last */
225 #define HIFN_DMACSR_D_WAIT      0x04000000      /* Destinition Ring Waiting */
226 #define HIFN_DMACSR_D_OVER      0x02000000      /* Destinition Ring Overflow */
227 #define HIFN_DMACSR_R_CTRL      0x00c00000      /* Result Ring Control */
228 #define HIFN_DMACSR_R_CTRL_NOP  0x00000000      /* Result Control: no-op */
229 #define HIFN_DMACSR_R_CTRL_DIS  0x00400000      /* Result Control: disable */
230 #define HIFN_DMACSR_R_CTRL_ENA  0x00800000      /* Result Control: enable */
231 #define HIFN_DMACSR_R_ABORT     0x00200000      /* Result Ring PCI Abort */
232 #define HIFN_DMACSR_R_DONE      0x00100000      /* Result Ring Done */
233 #define HIFN_DMACSR_R_LAST      0x00080000      /* Result Ring Last */
234 #define HIFN_DMACSR_R_WAIT      0x00040000      /* Result Ring Waiting */
235 #define HIFN_DMACSR_R_OVER      0x00020000      /* Result Ring Overflow */
236 #define HIFN_DMACSR_S_CTRL      0x0000c000      /* Source Ring Control */
237 #define HIFN_DMACSR_S_CTRL_NOP  0x00000000      /* Source Control: no-op */
238 #define HIFN_DMACSR_S_CTRL_DIS  0x00004000      /* Source Control: disable */
239 #define HIFN_DMACSR_S_CTRL_ENA  0x00008000      /* Source Control: enable */
240 #define HIFN_DMACSR_S_ABORT     0x00002000      /* Source Ring PCI Abort */
241 #define HIFN_DMACSR_S_DONE      0x00001000      /* Source Ring Done */
242 #define HIFN_DMACSR_S_LAST      0x00000800      /* Source Ring Last */
243 #define HIFN_DMACSR_S_WAIT      0x00000400      /* Source Ring Waiting */
244 #define HIFN_DMACSR_ILLW        0x00000200      /* Illegal write (7811 only) */
245 #define HIFN_DMACSR_ILLR        0x00000100      /* Illegal read (7811 only) */
246 #define HIFN_DMACSR_C_CTRL      0x000000c0      /* Command Ring Control */
247 #define HIFN_DMACSR_C_CTRL_NOP  0x00000000      /* Command Control: no-op */
248 #define HIFN_DMACSR_C_CTRL_DIS  0x00000040      /* Command Control: disable */
249 #define HIFN_DMACSR_C_CTRL_ENA  0x00000080      /* Command Control: enable */
250 #define HIFN_DMACSR_C_ABORT     0x00000020      /* Command Ring PCI Abort */
251 #define HIFN_DMACSR_C_DONE      0x00000010      /* Command Ring Done */
252 #define HIFN_DMACSR_C_LAST      0x00000008      /* Command Ring Last */
253 #define HIFN_DMACSR_C_WAIT      0x00000004      /* Command Ring Waiting */
254 #define HIFN_DMACSR_PUBDONE     0x00000002      /* Public op done (7951 only) */
255 #define HIFN_DMACSR_ENGINE      0x00000001      /* Command Ring Engine IRQ */
256
257 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
258 #define HIFN_DMAIER_D_ABORT     0x20000000      /* Destination Ring PCIAbort */
259 #define HIFN_DMAIER_D_DONE      0x10000000      /* Destination Ring Done */
260 #define HIFN_DMAIER_D_LAST      0x08000000      /* Destination Ring Last */
261 #define HIFN_DMAIER_D_WAIT      0x04000000      /* Destination Ring Waiting */
262 #define HIFN_DMAIER_D_OVER      0x02000000      /* Destination Ring Overflow */
263 #define HIFN_DMAIER_R_ABORT     0x00200000      /* Result Ring PCI Abort */
264 #define HIFN_DMAIER_R_DONE      0x00100000      /* Result Ring Done */
265 #define HIFN_DMAIER_R_LAST      0x00080000      /* Result Ring Last */
266 #define HIFN_DMAIER_R_WAIT      0x00040000      /* Result Ring Waiting */
267 #define HIFN_DMAIER_R_OVER      0x00020000      /* Result Ring Overflow */
268 #define HIFN_DMAIER_S_ABORT     0x00002000      /* Source Ring PCI Abort */
269 #define HIFN_DMAIER_S_DONE      0x00001000      /* Source Ring Done */
270 #define HIFN_DMAIER_S_LAST      0x00000800      /* Source Ring Last */
271 #define HIFN_DMAIER_S_WAIT      0x00000400      /* Source Ring Waiting */
272 #define HIFN_DMAIER_ILLW        0x00000200      /* Illegal write (7811 only) */
273 #define HIFN_DMAIER_ILLR        0x00000100      /* Illegal read (7811 only) */
274 #define HIFN_DMAIER_C_ABORT     0x00000020      /* Command Ring PCI Abort */
275 #define HIFN_DMAIER_C_DONE      0x00000010      /* Command Ring Done */
276 #define HIFN_DMAIER_C_LAST      0x00000008      /* Command Ring Last */
277 #define HIFN_DMAIER_C_WAIT      0x00000004      /* Command Ring Waiting */
278 #define HIFN_DMAIER_PUBDONE     0x00000002      /* public op done (7951 only) */
279 #define HIFN_DMAIER_ENGINE      0x00000001      /* Engine IRQ */
280
281 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
282 #define HIFN_DMACNFG_BIGENDIAN  0x10000000      /* big endian mode */
283 #define HIFN_DMACNFG_POLLFREQ   0x00ff0000      /* Poll frequency mask */
284 #define HIFN_DMACNFG_UNLOCK     0x00000800
285 #define HIFN_DMACNFG_POLLINVAL  0x00000700      /* Invalid Poll Scalar */
286 #define HIFN_DMACNFG_LAST       0x00000010      /* Host control LAST bit */
287 #define HIFN_DMACNFG_MODE       0x00000004      /* DMA mode */
288 #define HIFN_DMACNFG_DMARESET   0x00000002      /* DMA Reset # */
289 #define HIFN_DMACNFG_MSTRESET   0x00000001      /* Master Reset # */
290
291 /* PLL configuration register */
292 #define HIFN_PLL_REF_CLK_HBI    0x00000000      /* HBI reference clock */
293 #define HIFN_PLL_REF_CLK_PLL    0x00000001      /* PLL reference clock */
294 #define HIFN_PLL_BP             0x00000002      /* Reference clock bypass */
295 #define HIFN_PLL_PK_CLK_HBI     0x00000000      /* PK engine HBI clock */
296 #define HIFN_PLL_PK_CLK_PLL     0x00000008      /* PK engine PLL clock */
297 #define HIFN_PLL_PE_CLK_HBI     0x00000000      /* PE engine HBI clock */
298 #define HIFN_PLL_PE_CLK_PLL     0x00000010      /* PE engine PLL clock */
299 #define HIFN_PLL_RESERVED_1     0x00000400      /* Reserved bit, must be 1 */
300 #define HIFN_PLL_ND_SHIFT       11              /* Clock multiplier shift */
301 #define HIFN_PLL_ND_MULT_2      0x00000000      /* PLL clock multiplier 2 */
302 #define HIFN_PLL_ND_MULT_4      0x00000800      /* PLL clock multiplier 4 */
303 #define HIFN_PLL_ND_MULT_6      0x00001000      /* PLL clock multiplier 6 */
304 #define HIFN_PLL_ND_MULT_8      0x00001800      /* PLL clock multiplier 8 */
305 #define HIFN_PLL_ND_MULT_10     0x00002000      /* PLL clock multiplier 10 */
306 #define HIFN_PLL_ND_MULT_12     0x00002800      /* PLL clock multiplier 12 */
307 #define HIFN_PLL_IS_1_8         0x00000000      /* charge pump (mult. 1-8) */
308 #define HIFN_PLL_IS_9_12        0x00010000      /* charge pump (mult. 9-12) */
309
310 #define HIFN_PLL_FCK_MAX        266             /* Maximum PLL frequency */
311
312 /* Public key reset register (HIFN_1_PUB_RESET) */
313 #define HIFN_PUBRST_RESET       0x00000001      /* reset public/rng unit */
314
315 /* Public base address register (HIFN_1_PUB_BASE) */
316 #define HIFN_PUBBASE_ADDR       0x00003fff      /* base address */
317
318 /* Public operand length register (HIFN_1_PUB_OPLEN) */
319 #define HIFN_PUBOPLEN_MOD_M     0x0000007f      /* modulus length mask */
320 #define HIFN_PUBOPLEN_MOD_S     0               /* modulus length shift */
321 #define HIFN_PUBOPLEN_EXP_M     0x0003ff80      /* exponent length mask */
322 #define HIFN_PUBOPLEN_EXP_S     7               /* exponent length shift */
323 #define HIFN_PUBOPLEN_RED_M     0x003c0000      /* reducend length mask */
324 #define HIFN_PUBOPLEN_RED_S     18              /* reducend length shift */
325
326 /* Public operation register (HIFN_1_PUB_OP) */
327 #define HIFN_PUBOP_AOFFSET_M    0x0000007f      /* A offset mask */
328 #define HIFN_PUBOP_AOFFSET_S    0               /* A offset shift */
329 #define HIFN_PUBOP_BOFFSET_M    0x00000f80      /* B offset mask */
330 #define HIFN_PUBOP_BOFFSET_S    7               /* B offset shift */
331 #define HIFN_PUBOP_MOFFSET_M    0x0003f000      /* M offset mask */
332 #define HIFN_PUBOP_MOFFSET_S    12              /* M offset shift */
333 #define HIFN_PUBOP_OP_MASK      0x003c0000      /* Opcode: */
334 #define HIFN_PUBOP_OP_NOP       0x00000000      /*  NOP */
335 #define HIFN_PUBOP_OP_ADD       0x00040000      /*  ADD */
336 #define HIFN_PUBOP_OP_ADDC      0x00080000      /*  ADD w/carry */
337 #define HIFN_PUBOP_OP_SUB       0x000c0000      /*  SUB */
338 #define HIFN_PUBOP_OP_SUBC      0x00100000      /*  SUB w/carry */
339 #define HIFN_PUBOP_OP_MODADD    0x00140000      /*  Modular ADD */
340 #define HIFN_PUBOP_OP_MODSUB    0x00180000      /*  Modular SUB */
341 #define HIFN_PUBOP_OP_INCA      0x001c0000      /*  INC A */
342 #define HIFN_PUBOP_OP_DECA      0x00200000      /*  DEC A */
343 #define HIFN_PUBOP_OP_MULT      0x00240000      /*  MULT */
344 #define HIFN_PUBOP_OP_MODMULT   0x00280000      /*  Modular MULT */
345 #define HIFN_PUBOP_OP_MODRED    0x002c0000      /*  Modular RED */
346 #define HIFN_PUBOP_OP_MODEXP    0x00300000      /*  Modular EXP */
347
348 /* Public status register (HIFN_1_PUB_STATUS) */
349 #define HIFN_PUBSTS_DONE        0x00000001      /* operation done */
350 #define HIFN_PUBSTS_CARRY       0x00000002      /* carry */
351
352 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
353 #define HIFN_PUBIEN_DONE        0x00000001      /* operation done interrupt */
354
355 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
356 #define HIFN_RNGCFG_ENA         0x00000001      /* enable rng */
357
358 #define HIFN_NAMESIZE                   32
359 #define HIFN_MAX_RESULT_ORDER           5
360
361 #define HIFN_D_CMD_RSIZE                24*1
362 #define HIFN_D_SRC_RSIZE                80*1
363 #define HIFN_D_DST_RSIZE                80*1
364 #define HIFN_D_RES_RSIZE                24*1
365
366 #define HIFN_D_DST_DALIGN               4
367
368 #define HIFN_QUEUE_LENGTH               (HIFN_D_CMD_RSIZE - 1)
369
370 #define AES_MIN_KEY_SIZE                16
371 #define AES_MAX_KEY_SIZE                32
372
373 #define HIFN_DES_KEY_LENGTH             8
374 #define HIFN_3DES_KEY_LENGTH            24
375 #define HIFN_MAX_CRYPT_KEY_LENGTH       AES_MAX_KEY_SIZE
376 #define HIFN_IV_LENGTH                  8
377 #define HIFN_AES_IV_LENGTH              16
378 #define HIFN_MAX_IV_LENGTH              HIFN_AES_IV_LENGTH
379
380 #define HIFN_MAC_KEY_LENGTH             64
381 #define HIFN_MD5_LENGTH                 16
382 #define HIFN_SHA1_LENGTH                20
383 #define HIFN_MAC_TRUNC_LENGTH           12
384
385 #define HIFN_MAX_COMMAND                (8 + 8 + 8 + 64 + 260)
386 #define HIFN_MAX_RESULT                 (8 + 4 + 4 + 20 + 4)
387 #define HIFN_USED_RESULT                12
388
389 struct hifn_desc
390 {
391         volatile __le32         l;
392         volatile __le32         p;
393 };
394
395 struct hifn_dma {
396         struct hifn_desc        cmdr[HIFN_D_CMD_RSIZE+1];
397         struct hifn_desc        srcr[HIFN_D_SRC_RSIZE+1];
398         struct hifn_desc        dstr[HIFN_D_DST_RSIZE+1];
399         struct hifn_desc        resr[HIFN_D_RES_RSIZE+1];
400
401         u8                      command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
402         u8                      result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
403
404         /*
405          *  Our current positions for insertion and removal from the descriptor
406          *  rings.
407          */
408         volatile int            cmdi, srci, dsti, resi;
409         volatile int            cmdu, srcu, dstu, resu;
410         int                     cmdk, srck, dstk, resk;
411 };
412
413 #define HIFN_FLAG_CMD_BUSY      (1<<0)
414 #define HIFN_FLAG_SRC_BUSY      (1<<1)
415 #define HIFN_FLAG_DST_BUSY      (1<<2)
416 #define HIFN_FLAG_RES_BUSY      (1<<3)
417 #define HIFN_FLAG_OLD_KEY       (1<<4)
418
419 #define HIFN_DEFAULT_ACTIVE_NUM 5
420
421 struct hifn_device
422 {
423         char                    name[HIFN_NAMESIZE];
424
425         int                     irq;
426
427         struct pci_dev          *pdev;
428         void __iomem            *bar[3];
429
430         void                    *desc_virt;
431         dma_addr_t              desc_dma;
432
433         u32                     dmareg;
434
435         void                    *sa[HIFN_D_RES_RSIZE];
436
437         spinlock_t              lock;
438
439         u32                     flags;
440         int                     active, started;
441         struct delayed_work     work;
442         unsigned long           reset;
443         unsigned long           success;
444         unsigned long           prev_success;
445
446         u8                      snum;
447
448         struct tasklet_struct   tasklet;
449
450         struct crypto_queue     queue;
451         struct list_head        alg_list;
452
453         unsigned int            pk_clk_freq;
454
455 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
456         unsigned int            rng_wait_time;
457         ktime_t                 rngtime;
458         struct hwrng            rng;
459 #endif
460 };
461
462 #define HIFN_D_LENGTH                   0x0000ffff
463 #define HIFN_D_NOINVALID                0x01000000
464 #define HIFN_D_MASKDONEIRQ              0x02000000
465 #define HIFN_D_DESTOVER                 0x04000000
466 #define HIFN_D_OVER                     0x08000000
467 #define HIFN_D_LAST                     0x20000000
468 #define HIFN_D_JUMP                     0x40000000
469 #define HIFN_D_VALID                    0x80000000
470
471 struct hifn_base_command
472 {
473         volatile __le16         masks;
474         volatile __le16         session_num;
475         volatile __le16         total_source_count;
476         volatile __le16         total_dest_count;
477 };
478
479 #define HIFN_BASE_CMD_COMP              0x0100  /* enable compression engine */
480 #define HIFN_BASE_CMD_PAD               0x0200  /* enable padding engine */
481 #define HIFN_BASE_CMD_MAC               0x0400  /* enable MAC engine */
482 #define HIFN_BASE_CMD_CRYPT             0x0800  /* enable crypt engine */
483 #define HIFN_BASE_CMD_DECODE            0x2000
484 #define HIFN_BASE_CMD_SRCLEN_M          0xc000
485 #define HIFN_BASE_CMD_SRCLEN_S          14
486 #define HIFN_BASE_CMD_DSTLEN_M          0x3000
487 #define HIFN_BASE_CMD_DSTLEN_S          12
488 #define HIFN_BASE_CMD_LENMASK_HI        0x30000
489 #define HIFN_BASE_CMD_LENMASK_LO        0x0ffff
490
491 /*
492  * Structure to help build up the command data structure.
493  */
494 struct hifn_crypt_command
495 {
496         volatile __le16                 masks;
497         volatile __le16                 header_skip;
498         volatile __le16                 source_count;
499         volatile __le16                 reserved;
500 };
501
502 #define HIFN_CRYPT_CMD_ALG_MASK         0x0003          /* algorithm: */
503 #define HIFN_CRYPT_CMD_ALG_DES          0x0000          /*   DES */
504 #define HIFN_CRYPT_CMD_ALG_3DES         0x0001          /*   3DES */
505 #define HIFN_CRYPT_CMD_ALG_RC4          0x0002          /*   RC4 */
506 #define HIFN_CRYPT_CMD_ALG_AES          0x0003          /*   AES */
507 #define HIFN_CRYPT_CMD_MODE_MASK        0x0018          /* Encrypt mode: */
508 #define HIFN_CRYPT_CMD_MODE_ECB         0x0000          /*   ECB */
509 #define HIFN_CRYPT_CMD_MODE_CBC         0x0008          /*   CBC */
510 #define HIFN_CRYPT_CMD_MODE_CFB         0x0010          /*   CFB */
511 #define HIFN_CRYPT_CMD_MODE_OFB         0x0018          /*   OFB */
512 #define HIFN_CRYPT_CMD_CLR_CTX          0x0040          /* clear context */
513 #define HIFN_CRYPT_CMD_KSZ_MASK         0x0600          /* AES key size: */
514 #define HIFN_CRYPT_CMD_KSZ_128          0x0000          /*  128 bit */
515 #define HIFN_CRYPT_CMD_KSZ_192          0x0200          /*  192 bit */
516 #define HIFN_CRYPT_CMD_KSZ_256          0x0400          /*  256 bit */
517 #define HIFN_CRYPT_CMD_NEW_KEY          0x0800          /* expect new key */
518 #define HIFN_CRYPT_CMD_NEW_IV           0x1000          /* expect new iv */
519 #define HIFN_CRYPT_CMD_SRCLEN_M         0xc000
520 #define HIFN_CRYPT_CMD_SRCLEN_S         14
521
522 /*
523  * Structure to help build up the command data structure.
524  */
525 struct hifn_mac_command
526 {
527         volatile __le16         masks;
528         volatile __le16         header_skip;
529         volatile __le16         source_count;
530         volatile __le16         reserved;
531 };
532
533 #define HIFN_MAC_CMD_ALG_MASK           0x0001
534 #define HIFN_MAC_CMD_ALG_SHA1           0x0000
535 #define HIFN_MAC_CMD_ALG_MD5            0x0001
536 #define HIFN_MAC_CMD_MODE_MASK          0x000c
537 #define HIFN_MAC_CMD_MODE_HMAC          0x0000
538 #define HIFN_MAC_CMD_MODE_SSL_MAC       0x0004
539 #define HIFN_MAC_CMD_MODE_HASH          0x0008
540 #define HIFN_MAC_CMD_MODE_FULL          0x0004
541 #define HIFN_MAC_CMD_TRUNC              0x0010
542 #define HIFN_MAC_CMD_RESULT             0x0020
543 #define HIFN_MAC_CMD_APPEND             0x0040
544 #define HIFN_MAC_CMD_SRCLEN_M           0xc000
545 #define HIFN_MAC_CMD_SRCLEN_S           14
546
547 /*
548  * MAC POS IPsec initiates authentication after encryption on encodes
549  * and before decryption on decodes.
550  */
551 #define HIFN_MAC_CMD_POS_IPSEC          0x0200
552 #define HIFN_MAC_CMD_NEW_KEY            0x0800
553
554 struct hifn_comp_command
555 {
556         volatile __le16         masks;
557         volatile __le16         header_skip;
558         volatile __le16         source_count;
559         volatile __le16         reserved;
560 };
561
562 #define HIFN_COMP_CMD_SRCLEN_M          0xc000
563 #define HIFN_COMP_CMD_SRCLEN_S          14
564 #define HIFN_COMP_CMD_ONE               0x0100  /* must be one */
565 #define HIFN_COMP_CMD_CLEARHIST         0x0010  /* clear history */
566 #define HIFN_COMP_CMD_UPDATEHIST        0x0008  /* update history */
567 #define HIFN_COMP_CMD_LZS_STRIP0        0x0004  /* LZS: strip zero */
568 #define HIFN_COMP_CMD_MPPC_RESTART      0x0004  /* MPPC: restart */
569 #define HIFN_COMP_CMD_ALG_MASK          0x0001  /* compression mode: */
570 #define HIFN_COMP_CMD_ALG_MPPC          0x0001  /*   MPPC */
571 #define HIFN_COMP_CMD_ALG_LZS           0x0000  /*   LZS */
572
573 struct hifn_base_result
574 {
575         volatile __le16         flags;
576         volatile __le16         session;
577         volatile __le16         src_cnt;                /* 15:0 of source count */
578         volatile __le16         dst_cnt;                /* 15:0 of dest count */
579 };
580
581 #define HIFN_BASE_RES_DSTOVERRUN        0x0200  /* destination overrun */
582 #define HIFN_BASE_RES_SRCLEN_M          0xc000  /* 17:16 of source count */
583 #define HIFN_BASE_RES_SRCLEN_S          14
584 #define HIFN_BASE_RES_DSTLEN_M          0x3000  /* 17:16 of dest count */
585 #define HIFN_BASE_RES_DSTLEN_S          12
586
587 struct hifn_comp_result
588 {
589         volatile __le16         flags;
590         volatile __le16         crc;
591 };
592
593 #define HIFN_COMP_RES_LCB_M             0xff00  /* longitudinal check byte */
594 #define HIFN_COMP_RES_LCB_S             8
595 #define HIFN_COMP_RES_RESTART           0x0004  /* MPPC: restart */
596 #define HIFN_COMP_RES_ENDMARKER         0x0002  /* LZS: end marker seen */
597 #define HIFN_COMP_RES_SRC_NOTZERO       0x0001  /* source expired */
598
599 struct hifn_mac_result
600 {
601         volatile __le16         flags;
602         volatile __le16         reserved;
603         /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
604 };
605
606 #define HIFN_MAC_RES_MISCOMPARE         0x0002  /* compare failed */
607 #define HIFN_MAC_RES_SRC_NOTZERO        0x0001  /* source expired */
608
609 struct hifn_crypt_result
610 {
611         volatile __le16         flags;
612         volatile __le16         reserved;
613 };
614
615 #define HIFN_CRYPT_RES_SRC_NOTZERO      0x0001  /* source expired */
616
617 #ifndef HIFN_POLL_FREQUENCY
618 #define HIFN_POLL_FREQUENCY     0x1
619 #endif
620
621 #ifndef HIFN_POLL_SCALAR
622 #define HIFN_POLL_SCALAR        0x0
623 #endif
624
625 #define HIFN_MAX_SEGLEN         0xffff          /* maximum dma segment len */
626 #define HIFN_MAX_DMALEN         0x3ffff         /* maximum dma length */
627
628 struct hifn_crypto_alg
629 {
630         struct list_head        entry;
631         struct crypto_alg       alg;
632         struct hifn_device      *dev;
633 };
634
635 #define ASYNC_SCATTERLIST_CACHE 16
636
637 #define ASYNC_FLAGS_MISALIGNED  (1<<0)
638
639 struct hifn_cipher_walk
640 {
641         struct scatterlist      cache[ASYNC_SCATTERLIST_CACHE];
642         u32                     flags;
643         int                     num;
644 };
645
646 struct hifn_context
647 {
648         u8                      key[HIFN_MAX_CRYPT_KEY_LENGTH];
649         struct hifn_device      *dev;
650         unsigned int            keysize;
651 };
652
653 struct hifn_request_context
654 {
655         u8                      *iv;
656         unsigned int            ivsize;
657         u8                      op, type, mode, unused;
658         struct hifn_cipher_walk walk;
659 };
660
661 #define crypto_alg_to_hifn(a)   container_of(a, struct hifn_crypto_alg, alg)
662
663 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
664 {
665         u32 ret;
666
667         ret = readl(dev->bar[0] + reg);
668
669         return ret;
670 }
671
672 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
673 {
674         u32 ret;
675
676         ret = readl(dev->bar[1] + reg);
677
678         return ret;
679 }
680
681 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
682 {
683         writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
684 }
685
686 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
687 {
688         writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
689 }
690
691 static void hifn_wait_puc(struct hifn_device *dev)
692 {
693         int i;
694         u32 ret;
695
696         for (i=10000; i > 0; --i) {
697                 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
698                 if (!(ret & HIFN_PUCTRL_RESET))
699                         break;
700
701                 udelay(1);
702         }
703
704         if (!i)
705                 dprintk("%s: Failed to reset PUC unit.\n", dev->name);
706 }
707
708 static void hifn_reset_puc(struct hifn_device *dev)
709 {
710         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
711         hifn_wait_puc(dev);
712 }
713
714 static void hifn_stop_device(struct hifn_device *dev)
715 {
716         hifn_write_1(dev, HIFN_1_DMA_CSR,
717                 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
718                 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
719         hifn_write_0(dev, HIFN_0_PUIER, 0);
720         hifn_write_1(dev, HIFN_1_DMA_IER, 0);
721 }
722
723 static void hifn_reset_dma(struct hifn_device *dev, int full)
724 {
725         hifn_stop_device(dev);
726
727         /*
728          * Setting poll frequency and others to 0.
729          */
730         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
731                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
732         mdelay(1);
733
734         /*
735          * Reset DMA.
736          */
737         if (full) {
738                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
739                 mdelay(1);
740         } else {
741                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
742                                 HIFN_DMACNFG_MSTRESET);
743                 hifn_reset_puc(dev);
744         }
745
746         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
747                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
748
749         hifn_reset_puc(dev);
750 }
751
752 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
753 {
754         int i;
755         u32 v;
756
757         for (i = 0; i < cnt; i++) {
758
759                 /* get the parity */
760                 v = a & 0x80080125;
761                 v ^= v >> 16;
762                 v ^= v >> 8;
763                 v ^= v >> 4;
764                 v ^= v >> 2;
765                 v ^= v >> 1;
766
767                 a = (v & 1) ^ (a << 1);
768         }
769
770         return a;
771 }
772
773 static struct pci2id {
774         u_short         pci_vendor;
775         u_short         pci_prod;
776         char            card_id[13];
777 } pci2id[] = {
778         {
779                 PCI_VENDOR_ID_HIFN,
780                 PCI_DEVICE_ID_HIFN_7955,
781                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
782                   0x00, 0x00, 0x00, 0x00, 0x00 }
783         },
784         {
785                 PCI_VENDOR_ID_HIFN,
786                 PCI_DEVICE_ID_HIFN_7956,
787                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
788                   0x00, 0x00, 0x00, 0x00, 0x00 }
789         }
790 };
791
792 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
793 static int hifn_rng_data_present(struct hwrng *rng, int wait)
794 {
795         struct hifn_device *dev = (struct hifn_device *)rng->priv;
796         s64 nsec;
797
798         nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
799         nsec -= dev->rng_wait_time;
800         if (nsec <= 0)
801                 return 1;
802         if (!wait)
803                 return 0;
804         ndelay(nsec);
805         return 1;
806 }
807
808 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
809 {
810         struct hifn_device *dev = (struct hifn_device *)rng->priv;
811
812         *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
813         dev->rngtime = ktime_get();
814         return 4;
815 }
816
817 static int hifn_register_rng(struct hifn_device *dev)
818 {
819         /*
820          * We must wait at least 256 Pk_clk cycles between two reads of the rng.
821          */
822         dev->rng_wait_time      = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
823                                                    dev->pk_clk_freq) * 256;
824
825         dev->rng.name           = dev->name;
826         dev->rng.data_present   = hifn_rng_data_present,
827         dev->rng.data_read      = hifn_rng_data_read,
828         dev->rng.priv           = (unsigned long)dev;
829
830         return hwrng_register(&dev->rng);
831 }
832
833 static void hifn_unregister_rng(struct hifn_device *dev)
834 {
835         hwrng_unregister(&dev->rng);
836 }
837 #else
838 #define hifn_register_rng(dev)          0
839 #define hifn_unregister_rng(dev)
840 #endif
841
842 static int hifn_init_pubrng(struct hifn_device *dev)
843 {
844         int i;
845
846         hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
847                         HIFN_PUBRST_RESET);
848
849         for (i=100; i > 0; --i) {
850                 mdelay(1);
851
852                 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
853                         break;
854         }
855
856         if (!i)
857                 dprintk("Chip %s: Failed to initialise public key engine.\n",
858                                 dev->name);
859         else {
860                 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
861                 dev->dmareg |= HIFN_DMAIER_PUBDONE;
862                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
863
864                 dprintk("Chip %s: Public key engine has been successfully "
865                                 "initialised.\n", dev->name);
866         }
867
868         /*
869          * Enable RNG engine.
870          */
871
872         hifn_write_1(dev, HIFN_1_RNG_CONFIG,
873                         hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
874         dprintk("Chip %s: RNG engine has been successfully initialised.\n",
875                         dev->name);
876
877 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
878         /* First value must be discarded */
879         hifn_read_1(dev, HIFN_1_RNG_DATA);
880         dev->rngtime = ktime_get();
881 #endif
882         return 0;
883 }
884
885 static int hifn_enable_crypto(struct hifn_device *dev)
886 {
887         u32 dmacfg, addr;
888         char *offtbl = NULL;
889         int i;
890
891         for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
892                 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
893                                 pci2id[i].pci_prod == dev->pdev->device) {
894                         offtbl = pci2id[i].card_id;
895                         break;
896                 }
897         }
898
899         if (offtbl == NULL) {
900                 dprintk("Chip %s: Unknown card!\n", dev->name);
901                 return -ENODEV;
902         }
903
904         dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
905
906         hifn_write_1(dev, HIFN_1_DMA_CNFG,
907                         HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
908                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
909         mdelay(1);
910         addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
911         mdelay(1);
912         hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
913         mdelay(1);
914
915         for (i=0; i<12; ++i) {
916                 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
917                 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
918
919                 mdelay(1);
920         }
921         hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
922
923         dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
924
925         return 0;
926 }
927
928 static void hifn_init_dma(struct hifn_device *dev)
929 {
930         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
931         u32 dptr = dev->desc_dma;
932         int i;
933
934         for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
935                 dma->cmdr[i].p = __cpu_to_le32(dptr +
936                                 offsetof(struct hifn_dma, command_bufs[i][0]));
937         for (i=0; i<HIFN_D_RES_RSIZE; ++i)
938                 dma->resr[i].p = __cpu_to_le32(dptr +
939                                 offsetof(struct hifn_dma, result_bufs[i][0]));
940
941         /*
942          * Setup LAST descriptors.
943          */
944         dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
945                         offsetof(struct hifn_dma, cmdr[0]));
946         dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
947                         offsetof(struct hifn_dma, srcr[0]));
948         dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
949                         offsetof(struct hifn_dma, dstr[0]));
950         dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
951                         offsetof(struct hifn_dma, resr[0]));
952
953         dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
954         dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
955         dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
956 }
957
958 /*
959  * Initialize the PLL. We need to know the frequency of the reference clock
960  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
961  * allows us to operate without the risk of overclocking the chip. If it
962  * actually uses 33MHz, the chip will operate at half the speed, this can be
963  * overriden by specifying the frequency as module parameter (pci33).
964  *
965  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
966  * stable clock and the PCI clock frequency may vary, so the default is the
967  * external clock. There is no way to find out its frequency, we default to
968  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
969  * has an external crystal populated at 66MHz.
970  */
971 static void hifn_init_pll(struct hifn_device *dev)
972 {
973         unsigned int freq, m;
974         u32 pllcfg;
975
976         pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
977
978         if (strncmp(hifn_pll_ref, "ext", 3) == 0)
979                 pllcfg |= HIFN_PLL_REF_CLK_PLL;
980         else
981                 pllcfg |= HIFN_PLL_REF_CLK_HBI;
982
983         if (hifn_pll_ref[3] != '\0')
984                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
985         else {
986                 freq = 66;
987                 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
988                                  "override with hifn_pll_ref=%.3s<frequency>\n",
989                        freq, hifn_pll_ref);
990         }
991
992         m = HIFN_PLL_FCK_MAX / freq;
993
994         pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
995         if (m <= 8)
996                 pllcfg |= HIFN_PLL_IS_1_8;
997         else
998                 pllcfg |= HIFN_PLL_IS_9_12;
999
1000         /* Select clock source and enable clock bypass */
1001         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1002                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1003
1004         /* Let the chip lock to the input clock */
1005         mdelay(10);
1006
1007         /* Disable clock bypass */
1008         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1009                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1010
1011         /* Switch the engines to the PLL */
1012         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1013                      HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1014
1015         /*
1016          * The Fpk_clk runs at half the total speed. Its frequency is needed to
1017          * calculate the minimum time between two reads of the rng. Since 33MHz
1018          * is actually 33.333... we overestimate the frequency here, resulting
1019          * in slightly larger intervals.
1020          */
1021         dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1022 }
1023
1024 static void hifn_init_registers(struct hifn_device *dev)
1025 {
1026         u32 dptr = dev->desc_dma;
1027
1028         /* Initialization magic... */
1029         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1030         hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1031         hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1032
1033         /* write all 4 ring address registers */
1034         hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1035                                 offsetof(struct hifn_dma, cmdr[0]));
1036         hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1037                                 offsetof(struct hifn_dma, srcr[0]));
1038         hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1039                                 offsetof(struct hifn_dma, dstr[0]));
1040         hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1041                                 offsetof(struct hifn_dma, resr[0]));
1042
1043         mdelay(2);
1044 #if 0
1045         hifn_write_1(dev, HIFN_1_DMA_CSR,
1046             HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1047             HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1048             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1049             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1050             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1051             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1052             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1053             HIFN_DMACSR_S_WAIT |
1054             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1055             HIFN_DMACSR_C_WAIT |
1056             HIFN_DMACSR_ENGINE |
1057             HIFN_DMACSR_PUBDONE);
1058 #else
1059         hifn_write_1(dev, HIFN_1_DMA_CSR,
1060             HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1061             HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1062             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1063             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1064             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1065             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1066             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1067             HIFN_DMACSR_S_WAIT |
1068             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1069             HIFN_DMACSR_C_WAIT |
1070             HIFN_DMACSR_ENGINE |
1071             HIFN_DMACSR_PUBDONE);
1072 #endif
1073         hifn_read_1(dev, HIFN_1_DMA_CSR);
1074
1075         dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1076             HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1077             HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1078             HIFN_DMAIER_ENGINE;
1079         dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1080
1081         hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1082         hifn_read_1(dev, HIFN_1_DMA_IER);
1083 #if 0
1084         hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1085                     HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1086                     HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1087                     HIFN_PUCNFG_DRAM);
1088 #else
1089         hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1090 #endif
1091         hifn_init_pll(dev);
1092
1093         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1094         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1095             HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1096             ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1097             ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1098 }
1099
1100 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1101                 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1102 {
1103         struct hifn_base_command *base_cmd;
1104         u8 *buf_pos = buf;
1105
1106         base_cmd = (struct hifn_base_command *)buf_pos;
1107         base_cmd->masks = __cpu_to_le16(mask);
1108         base_cmd->total_source_count =
1109                 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1110         base_cmd->total_dest_count =
1111                 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1112
1113         dlen >>= 16;
1114         slen >>= 16;
1115         base_cmd->session_num = __cpu_to_le16(snum |
1116             ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1117             ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1118
1119         return sizeof(struct hifn_base_command);
1120 }
1121
1122 static int hifn_setup_crypto_command(struct hifn_device *dev,
1123                 u8 *buf, unsigned dlen, unsigned slen,
1124                 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1125 {
1126         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1127         struct hifn_crypt_command *cry_cmd;
1128         u8 *buf_pos = buf;
1129         u16 cmd_len;
1130
1131         cry_cmd = (struct hifn_crypt_command *)buf_pos;
1132
1133         cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1134         dlen >>= 16;
1135         cry_cmd->masks = __cpu_to_le16(mode |
1136                         ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1137                          HIFN_CRYPT_CMD_SRCLEN_M));
1138         cry_cmd->header_skip = 0;
1139         cry_cmd->reserved = 0;
1140
1141         buf_pos += sizeof(struct hifn_crypt_command);
1142
1143         dma->cmdu++;
1144         if (dma->cmdu > 1) {
1145                 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1146                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1147         }
1148
1149         if (keylen) {
1150                 memcpy(buf_pos, key, keylen);
1151                 buf_pos += keylen;
1152         }
1153         if (ivsize) {
1154                 memcpy(buf_pos, iv, ivsize);
1155                 buf_pos += ivsize;
1156         }
1157
1158         cmd_len = buf_pos - buf;
1159
1160         return cmd_len;
1161 }
1162
1163 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1164                 struct hifn_context *ctx, struct hifn_request_context *rctx,
1165                 void *priv, unsigned int nbytes)
1166 {
1167         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1168         int cmd_len, sa_idx;
1169         u8 *buf, *buf_pos;
1170         u16 mask;
1171
1172         sa_idx = dma->cmdi;
1173         buf_pos = buf = dma->command_bufs[dma->cmdi];
1174
1175         mask = 0;
1176         switch (rctx->op) {
1177                 case ACRYPTO_OP_DECRYPT:
1178                         mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1179                         break;
1180                 case ACRYPTO_OP_ENCRYPT:
1181                         mask = HIFN_BASE_CMD_CRYPT;
1182                         break;
1183                 case ACRYPTO_OP_HMAC:
1184                         mask = HIFN_BASE_CMD_MAC;
1185                         break;
1186                 default:
1187                         goto err_out;
1188         }
1189
1190         buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1191                         nbytes, mask, dev->snum);
1192
1193         if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1194                 u16 md = 0;
1195
1196                 if (ctx->keysize)
1197                         md |= HIFN_CRYPT_CMD_NEW_KEY;
1198                 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1199                         md |= HIFN_CRYPT_CMD_NEW_IV;
1200
1201                 switch (rctx->mode) {
1202                         case ACRYPTO_MODE_ECB:
1203                                 md |= HIFN_CRYPT_CMD_MODE_ECB;
1204                                 break;
1205                         case ACRYPTO_MODE_CBC:
1206                                 md |= HIFN_CRYPT_CMD_MODE_CBC;
1207                                 break;
1208                         case ACRYPTO_MODE_CFB:
1209                                 md |= HIFN_CRYPT_CMD_MODE_CFB;
1210                                 break;
1211                         case ACRYPTO_MODE_OFB:
1212                                 md |= HIFN_CRYPT_CMD_MODE_OFB;
1213                                 break;
1214                         default:
1215                                 goto err_out;
1216                 }
1217
1218                 switch (rctx->type) {
1219                         case ACRYPTO_TYPE_AES_128:
1220                                 if (ctx->keysize != 16)
1221                                         goto err_out;
1222                                 md |= HIFN_CRYPT_CMD_KSZ_128 |
1223                                         HIFN_CRYPT_CMD_ALG_AES;
1224                                 break;
1225                         case ACRYPTO_TYPE_AES_192:
1226                                 if (ctx->keysize != 24)
1227                                         goto err_out;
1228                                 md |= HIFN_CRYPT_CMD_KSZ_192 |
1229                                         HIFN_CRYPT_CMD_ALG_AES;
1230                                 break;
1231                         case ACRYPTO_TYPE_AES_256:
1232                                 if (ctx->keysize != 32)
1233                                         goto err_out;
1234                                 md |= HIFN_CRYPT_CMD_KSZ_256 |
1235                                         HIFN_CRYPT_CMD_ALG_AES;
1236                                 break;
1237                         case ACRYPTO_TYPE_3DES:
1238                                 if (ctx->keysize != 24)
1239                                         goto err_out;
1240                                 md |= HIFN_CRYPT_CMD_ALG_3DES;
1241                                 break;
1242                         case ACRYPTO_TYPE_DES:
1243                                 if (ctx->keysize != 8)
1244                                         goto err_out;
1245                                 md |= HIFN_CRYPT_CMD_ALG_DES;
1246                                 break;
1247                         default:
1248                                 goto err_out;
1249                 }
1250
1251                 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1252                                 nbytes, nbytes, ctx->key, ctx->keysize,
1253                                 rctx->iv, rctx->ivsize, md);
1254         }
1255
1256         dev->sa[sa_idx] = priv;
1257         dev->started++;
1258
1259         cmd_len = buf_pos - buf;
1260         dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1261                         HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1262
1263         if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1264                 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1265                         HIFN_D_VALID | HIFN_D_LAST |
1266                         HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1267                 dma->cmdi = 0;
1268         } else
1269                 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1270
1271         if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1272                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1273                 dev->flags |= HIFN_FLAG_CMD_BUSY;
1274         }
1275         return 0;
1276
1277 err_out:
1278         return -EINVAL;
1279 }
1280
1281 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1282                 unsigned int offset, unsigned int size, int last)
1283 {
1284         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1285         int idx;
1286         dma_addr_t addr;
1287
1288         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1289
1290         idx = dma->srci;
1291
1292         dma->srcr[idx].p = __cpu_to_le32(addr);
1293         dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1294                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1295
1296         if (++idx == HIFN_D_SRC_RSIZE) {
1297                 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1298                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1299                                 (last ? HIFN_D_LAST : 0));
1300                 idx = 0;
1301         }
1302
1303         dma->srci = idx;
1304         dma->srcu++;
1305
1306         if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1307                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1308                 dev->flags |= HIFN_FLAG_SRC_BUSY;
1309         }
1310
1311         return size;
1312 }
1313
1314 static void hifn_setup_res_desc(struct hifn_device *dev)
1315 {
1316         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1317
1318         dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1319                         HIFN_D_VALID | HIFN_D_LAST);
1320         /*
1321          * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1322          *                                      HIFN_D_LAST);
1323          */
1324
1325         if (++dma->resi == HIFN_D_RES_RSIZE) {
1326                 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1327                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1328                 dma->resi = 0;
1329         }
1330
1331         dma->resu++;
1332
1333         if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1334                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1335                 dev->flags |= HIFN_FLAG_RES_BUSY;
1336         }
1337 }
1338
1339 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1340                 unsigned offset, unsigned size, int last)
1341 {
1342         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1343         int idx;
1344         dma_addr_t addr;
1345
1346         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1347
1348         idx = dma->dsti;
1349         dma->dstr[idx].p = __cpu_to_le32(addr);
1350         dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1351                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1352
1353         if (++idx == HIFN_D_DST_RSIZE) {
1354                 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1355                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1356                                 (last ? HIFN_D_LAST : 0));
1357                 idx = 0;
1358         }
1359         dma->dsti = idx;
1360         dma->dstu++;
1361
1362         if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1363                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1364                 dev->flags |= HIFN_FLAG_DST_BUSY;
1365         }
1366 }
1367
1368 static int hifn_setup_dma(struct hifn_device *dev,
1369                 struct hifn_context *ctx, struct hifn_request_context *rctx,
1370                 struct scatterlist *src, struct scatterlist *dst,
1371                 unsigned int nbytes, void *priv)
1372 {
1373         struct scatterlist *t;
1374         struct page *spage, *dpage;
1375         unsigned int soff, doff;
1376         unsigned int n, len;
1377
1378         n = nbytes;
1379         while (n) {
1380                 spage = sg_page(src);
1381                 soff = src->offset;
1382                 len = min(src->length, n);
1383
1384                 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1385
1386                 src++;
1387                 n -= len;
1388         }
1389
1390         t = &rctx->walk.cache[0];
1391         n = nbytes;
1392         while (n) {
1393                 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1394                         BUG_ON(!sg_page(t));
1395                         dpage = sg_page(t);
1396                         doff = 0;
1397                         len = t->length;
1398                 } else {
1399                         BUG_ON(!sg_page(dst));
1400                         dpage = sg_page(dst);
1401                         doff = dst->offset;
1402                         len = dst->length;
1403                 }
1404                 len = min(len, n);
1405
1406                 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1407
1408                 dst++;
1409                 t++;
1410                 n -= len;
1411         }
1412
1413         hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1414         hifn_setup_res_desc(dev);
1415         return 0;
1416 }
1417
1418 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1419                 int num, gfp_t gfp_flags)
1420 {
1421         int i;
1422
1423         num = min(ASYNC_SCATTERLIST_CACHE, num);
1424         sg_init_table(w->cache, num);
1425
1426         w->num = 0;
1427         for (i=0; i<num; ++i) {
1428                 struct page *page = alloc_page(gfp_flags);
1429                 struct scatterlist *s;
1430
1431                 if (!page)
1432                         break;
1433
1434                 s = &w->cache[i];
1435
1436                 sg_set_page(s, page, PAGE_SIZE, 0);
1437                 w->num++;
1438         }
1439
1440         return i;
1441 }
1442
1443 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1444 {
1445         int i;
1446
1447         for (i=0; i<w->num; ++i) {
1448                 struct scatterlist *s = &w->cache[i];
1449
1450                 __free_page(sg_page(s));
1451
1452                 s->length = 0;
1453         }
1454
1455         w->num = 0;
1456 }
1457
1458 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1459                 unsigned int size, unsigned int *nbytesp)
1460 {
1461         unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1462         int idx = 0;
1463
1464         if (drest < size || size > nbytes)
1465                 return -EINVAL;
1466
1467         while (size) {
1468                 copy = min3(drest, size, dst->length);
1469
1470                 size -= copy;
1471                 drest -= copy;
1472                 nbytes -= copy;
1473
1474                 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1475                                 __func__, copy, size, drest, nbytes);
1476
1477                 dst++;
1478                 idx++;
1479         }
1480
1481         *nbytesp = nbytes;
1482         *drestp = drest;
1483
1484         return idx;
1485 }
1486
1487 static int hifn_cipher_walk(struct ablkcipher_request *req,
1488                 struct hifn_cipher_walk *w)
1489 {
1490         struct scatterlist *dst, *t;
1491         unsigned int nbytes = req->nbytes, offset, copy, diff;
1492         int idx, tidx, err;
1493
1494         tidx = idx = 0;
1495         offset = 0;
1496         while (nbytes) {
1497                 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1498                         return -EINVAL;
1499
1500                 dst = &req->dst[idx];
1501
1502                 dprintk("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1503                         __func__, dst->length, dst->offset, offset, nbytes);
1504
1505                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1506                     !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1507                     offset) {
1508                         unsigned slen = min(dst->length - offset, nbytes);
1509                         unsigned dlen = PAGE_SIZE;
1510
1511                         t = &w->cache[idx];
1512
1513                         err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1514                         if (err < 0)
1515                                 return err;
1516
1517                         idx += err;
1518
1519                         copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1520                         diff = slen & (HIFN_D_DST_DALIGN - 1);
1521
1522                         if (dlen < nbytes) {
1523                                 /*
1524                                  * Destination page does not have enough space
1525                                  * to put there additional blocksized chunk,
1526                                  * so we mark that page as containing only
1527                                  * blocksize aligned chunks:
1528                                  *      t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1529                                  * and increase number of bytes to be processed
1530                                  * in next chunk:
1531                                  *      nbytes += diff;
1532                                  */
1533                                 nbytes += diff;
1534
1535                                 /*
1536                                  * Temporary of course...
1537                                  * Kick author if you will catch this one.
1538                                  */
1539                                 printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1540                                         "slen: %u, offset: %u.\n",
1541                                         __func__, dlen, nbytes, slen, offset);
1542                                 printk(KERN_ERR "%s: please contact author to fix this "
1543                                         "issue, generally you should not catch "
1544                                         "this path under any condition but who "
1545                                         "knows how did you use crypto code.\n"
1546                                         "Thank you.\n", __func__);
1547                                 BUG();
1548                         } else {
1549                                 copy += diff + nbytes;
1550
1551                                 dst = &req->dst[idx];
1552
1553                                 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1554                                 if (err < 0)
1555                                         return err;
1556
1557                                 idx += err;
1558                         }
1559
1560                         t->length = copy;
1561                         t->offset = offset;
1562                 } else {
1563                         nbytes -= min(dst->length, nbytes);
1564                         idx++;
1565                 }
1566
1567                 tidx++;
1568         }
1569
1570         return tidx;
1571 }
1572
1573 static int hifn_setup_session(struct ablkcipher_request *req)
1574 {
1575         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1576         struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1577         struct hifn_device *dev = ctx->dev;
1578         unsigned long dlen, flags;
1579         unsigned int nbytes = req->nbytes, idx = 0;
1580         int err = -EINVAL, sg_num;
1581         struct scatterlist *dst;
1582
1583         if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1584                 goto err_out_exit;
1585
1586         rctx->walk.flags = 0;
1587
1588         while (nbytes) {
1589                 dst = &req->dst[idx];
1590                 dlen = min(dst->length, nbytes);
1591
1592                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1593                     !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1594                         rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1595
1596                 nbytes -= dlen;
1597                 idx++;
1598         }
1599
1600         if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1601                 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1602                 if (err < 0)
1603                         return err;
1604         }
1605
1606         sg_num = hifn_cipher_walk(req, &rctx->walk);
1607         if (sg_num < 0) {
1608                 err = sg_num;
1609                 goto err_out_exit;
1610         }
1611
1612         spin_lock_irqsave(&dev->lock, flags);
1613         if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1614                 err = -EAGAIN;
1615                 goto err_out;
1616         }
1617
1618         err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1619         if (err)
1620                 goto err_out;
1621
1622         dev->snum++;
1623
1624         dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1625         spin_unlock_irqrestore(&dev->lock, flags);
1626
1627         return 0;
1628
1629 err_out:
1630         spin_unlock_irqrestore(&dev->lock, flags);
1631 err_out_exit:
1632         if (err) {
1633                 printk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1634                                 "type: %u, err: %d.\n",
1635                         dev->name, rctx->iv, rctx->ivsize,
1636                         ctx->key, ctx->keysize,
1637                         rctx->mode, rctx->op, rctx->type, err);
1638         }
1639
1640         return err;
1641 }
1642
1643 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1644 {
1645         int n, err;
1646         u8 src[16];
1647         struct hifn_context ctx;
1648         struct hifn_request_context rctx;
1649         u8 fips_aes_ecb_from_zero[16] = {
1650                 0x66, 0xE9, 0x4B, 0xD4,
1651                 0xEF, 0x8A, 0x2C, 0x3B,
1652                 0x88, 0x4C, 0xFA, 0x59,
1653                 0xCA, 0x34, 0x2B, 0x2E};
1654         struct scatterlist sg;
1655
1656         memset(src, 0, sizeof(src));
1657         memset(ctx.key, 0, sizeof(ctx.key));
1658
1659         ctx.dev = dev;
1660         ctx.keysize = 16;
1661         rctx.ivsize = 0;
1662         rctx.iv = NULL;
1663         rctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1664         rctx.mode = ACRYPTO_MODE_ECB;
1665         rctx.type = ACRYPTO_TYPE_AES_128;
1666         rctx.walk.cache[0].length = 0;
1667
1668         sg_init_one(&sg, &src, sizeof(src));
1669
1670         err = hifn_setup_dma(dev, &ctx, &rctx, &sg, &sg, sizeof(src), NULL);
1671         if (err)
1672                 goto err_out;
1673
1674         dev->started = 0;
1675         msleep(200);
1676
1677         dprintk("%s: decoded: ", dev->name);
1678         for (n=0; n<sizeof(src); ++n)
1679                 dprintk("%02x ", src[n]);
1680         dprintk("\n");
1681         dprintk("%s: FIPS   : ", dev->name);
1682         for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1683                 dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1684         dprintk("\n");
1685
1686         if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1687                 printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1688                                 "passed.\n", dev->name);
1689                 return 0;
1690         }
1691
1692 err_out:
1693         printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1694         return -1;
1695 }
1696
1697 static int hifn_start_device(struct hifn_device *dev)
1698 {
1699         int err;
1700
1701         dev->started = dev->active = 0;
1702         hifn_reset_dma(dev, 1);
1703
1704         err = hifn_enable_crypto(dev);
1705         if (err)
1706                 return err;
1707
1708         hifn_reset_puc(dev);
1709
1710         hifn_init_dma(dev);
1711
1712         hifn_init_registers(dev);
1713
1714         hifn_init_pubrng(dev);
1715
1716         return 0;
1717 }
1718
1719 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1720                 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1721 {
1722         unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1723         void *daddr;
1724         int idx = 0;
1725
1726         if (srest < size || size > nbytes)
1727                 return -EINVAL;
1728
1729         while (size) {
1730                 copy = min3(srest, dst->length, size);
1731
1732                 daddr = kmap_atomic(sg_page(dst));
1733                 memcpy(daddr + dst->offset + offset, saddr, copy);
1734                 kunmap_atomic(daddr);
1735
1736                 nbytes -= copy;
1737                 size -= copy;
1738                 srest -= copy;
1739                 saddr += copy;
1740                 offset = 0;
1741
1742                 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1743                                 __func__, copy, size, srest, nbytes);
1744
1745                 dst++;
1746                 idx++;
1747         }
1748
1749         *nbytesp = nbytes;
1750         *srestp = srest;
1751
1752         return idx;
1753 }
1754
1755 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1756 {
1757         unsigned long flags;
1758
1759         spin_lock_irqsave(&dev->lock, flags);
1760         dev->sa[i] = NULL;
1761         dev->started--;
1762         if (dev->started < 0)
1763                 printk("%s: started: %d.\n", __func__, dev->started);
1764         spin_unlock_irqrestore(&dev->lock, flags);
1765         BUG_ON(dev->started < 0);
1766 }
1767
1768 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1769 {
1770         struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1771
1772         if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1773                 unsigned int nbytes = req->nbytes;
1774                 int idx = 0, err;
1775                 struct scatterlist *dst, *t;
1776                 void *saddr;
1777
1778                 while (nbytes) {
1779                         t = &rctx->walk.cache[idx];
1780                         dst = &req->dst[idx];
1781
1782                         dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1783                                 "sg_page(dst): %p, dst->length: %u, "
1784                                 "nbytes: %u.\n",
1785                                 __func__, sg_page(t), t->length,
1786                                 sg_page(dst), dst->length, nbytes);
1787
1788                         if (!t->length) {
1789                                 nbytes -= min(dst->length, nbytes);
1790                                 idx++;
1791                                 continue;
1792                         }
1793
1794                         saddr = kmap_atomic(sg_page(t));
1795
1796                         err = ablkcipher_get(saddr, &t->length, t->offset,
1797                                         dst, nbytes, &nbytes);
1798                         if (err < 0) {
1799                                 kunmap_atomic(saddr);
1800                                 break;
1801                         }
1802
1803                         idx += err;
1804                         kunmap_atomic(saddr);
1805                 }
1806
1807                 hifn_cipher_walk_exit(&rctx->walk);
1808         }
1809
1810         req->base.complete(&req->base, error);
1811 }
1812
1813 static void hifn_clear_rings(struct hifn_device *dev, int error)
1814 {
1815         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1816         int i, u;
1817
1818         dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1819                         "k: %d.%d.%d.%d.\n",
1820                         dev->name,
1821                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1822                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1823                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1824
1825         i = dma->resk; u = dma->resu;
1826         while (u != 0) {
1827                 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1828                         break;
1829
1830                 if (dev->sa[i]) {
1831                         dev->success++;
1832                         dev->reset = 0;
1833                         hifn_process_ready(dev->sa[i], error);
1834                         hifn_complete_sa(dev, i);
1835                 }
1836
1837                 if (++i == HIFN_D_RES_RSIZE)
1838                         i = 0;
1839                 u--;
1840         }
1841         dma->resk = i; dma->resu = u;
1842
1843         i = dma->srck; u = dma->srcu;
1844         while (u != 0) {
1845                 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1846                         break;
1847                 if (++i == HIFN_D_SRC_RSIZE)
1848                         i = 0;
1849                 u--;
1850         }
1851         dma->srck = i; dma->srcu = u;
1852
1853         i = dma->cmdk; u = dma->cmdu;
1854         while (u != 0) {
1855                 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1856                         break;
1857                 if (++i == HIFN_D_CMD_RSIZE)
1858                         i = 0;
1859                 u--;
1860         }
1861         dma->cmdk = i; dma->cmdu = u;
1862
1863         i = dma->dstk; u = dma->dstu;
1864         while (u != 0) {
1865                 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1866                         break;
1867                 if (++i == HIFN_D_DST_RSIZE)
1868                         i = 0;
1869                 u--;
1870         }
1871         dma->dstk = i; dma->dstu = u;
1872
1873         dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1874                         "k: %d.%d.%d.%d.\n",
1875                         dev->name,
1876                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1877                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1878                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1879 }
1880
1881 static void hifn_work(struct work_struct *work)
1882 {
1883         struct delayed_work *dw = to_delayed_work(work);
1884         struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1885         unsigned long flags;
1886         int reset = 0;
1887         u32 r = 0;
1888
1889         spin_lock_irqsave(&dev->lock, flags);
1890         if (dev->active == 0) {
1891                 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1892
1893                 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1894                         dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1895                         r |= HIFN_DMACSR_C_CTRL_DIS;
1896                 }
1897                 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1898                         dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1899                         r |= HIFN_DMACSR_S_CTRL_DIS;
1900                 }
1901                 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1902                         dev->flags &= ~HIFN_FLAG_DST_BUSY;
1903                         r |= HIFN_DMACSR_D_CTRL_DIS;
1904                 }
1905                 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1906                         dev->flags &= ~HIFN_FLAG_RES_BUSY;
1907                         r |= HIFN_DMACSR_R_CTRL_DIS;
1908                 }
1909                 if (r)
1910                         hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1911         } else
1912                 dev->active--;
1913
1914         if ((dev->prev_success == dev->success) && dev->started)
1915                 reset = 1;
1916         dev->prev_success = dev->success;
1917         spin_unlock_irqrestore(&dev->lock, flags);
1918
1919         if (reset) {
1920                 if (++dev->reset >= 5) {
1921                         int i;
1922                         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1923
1924                         printk("%s: r: %08x, active: %d, started: %d, "
1925                                 "success: %lu: qlen: %u/%u, reset: %d.\n",
1926                                 dev->name, r, dev->active, dev->started,
1927                                 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1928                                 reset);
1929
1930                         printk("%s: res: ", __func__);
1931                         for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1932                                 printk("%x.%p ", dma->resr[i].l, dev->sa[i]);
1933                                 if (dev->sa[i]) {
1934                                         hifn_process_ready(dev->sa[i], -ENODEV);
1935                                         hifn_complete_sa(dev, i);
1936                                 }
1937                         }
1938                         printk("\n");
1939
1940                         hifn_reset_dma(dev, 1);
1941                         hifn_stop_device(dev);
1942                         hifn_start_device(dev);
1943                         dev->reset = 0;
1944                 }
1945
1946                 tasklet_schedule(&dev->tasklet);
1947         }
1948
1949         schedule_delayed_work(&dev->work, HZ);
1950 }
1951
1952 static irqreturn_t hifn_interrupt(int irq, void *data)
1953 {
1954         struct hifn_device *dev = (struct hifn_device *)data;
1955         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1956         u32 dmacsr, restart;
1957
1958         dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1959
1960         dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1961                         "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1962                 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1963                 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1964                 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1965
1966         if ((dmacsr & dev->dmareg) == 0)
1967                 return IRQ_NONE;
1968
1969         hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1970
1971         if (dmacsr & HIFN_DMACSR_ENGINE)
1972                 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1973         if (dmacsr & HIFN_DMACSR_PUBDONE)
1974                 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1975                         hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1976
1977         restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1978         if (restart) {
1979                 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1980
1981                 printk(KERN_WARNING "%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1982                         dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
1983                         !!(dmacsr & HIFN_DMACSR_D_OVER),
1984                         puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1985                 if (!!(puisr & HIFN_PUISR_DSTOVER))
1986                         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1987                 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1988                                         HIFN_DMACSR_D_OVER));
1989         }
1990
1991         restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1992                         HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1993         if (restart) {
1994                 printk(KERN_WARNING "%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
1995                         dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
1996                         !!(dmacsr & HIFN_DMACSR_S_ABORT),
1997                         !!(dmacsr & HIFN_DMACSR_D_ABORT),
1998                         !!(dmacsr & HIFN_DMACSR_R_ABORT));
1999                 hifn_reset_dma(dev, 1);
2000                 hifn_init_dma(dev);
2001                 hifn_init_registers(dev);
2002         }
2003
2004         if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2005                 dprintk("%s: wait on command.\n", dev->name);
2006                 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2007                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2008         }
2009
2010         tasklet_schedule(&dev->tasklet);
2011
2012         return IRQ_HANDLED;
2013 }
2014
2015 static void hifn_flush(struct hifn_device *dev)
2016 {
2017         unsigned long flags;
2018         struct crypto_async_request *async_req;
2019         struct ablkcipher_request *req;
2020         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2021         int i;
2022
2023         for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2024                 struct hifn_desc *d = &dma->resr[i];
2025
2026                 if (dev->sa[i]) {
2027                         hifn_process_ready(dev->sa[i],
2028                                 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2029                         hifn_complete_sa(dev, i);
2030                 }
2031         }
2032
2033         spin_lock_irqsave(&dev->lock, flags);
2034         while ((async_req = crypto_dequeue_request(&dev->queue))) {
2035                 req = container_of(async_req, struct ablkcipher_request, base);
2036                 spin_unlock_irqrestore(&dev->lock, flags);
2037
2038                 hifn_process_ready(req, -ENODEV);
2039
2040                 spin_lock_irqsave(&dev->lock, flags);
2041         }
2042         spin_unlock_irqrestore(&dev->lock, flags);
2043 }
2044
2045 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2046                 unsigned int len)
2047 {
2048         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2049         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2050         struct hifn_device *dev = ctx->dev;
2051
2052         if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2053                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2054                 return -1;
2055         }
2056
2057         if (len == HIFN_DES_KEY_LENGTH) {
2058                 u32 tmp[DES_EXPKEY_WORDS];
2059                 int ret = des_ekey(tmp, key);
2060                 
2061                 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2062                         tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2063                         return -EINVAL;
2064                 }
2065         }
2066
2067         dev->flags &= ~HIFN_FLAG_OLD_KEY;
2068
2069         memcpy(ctx->key, key, len);
2070         ctx->keysize = len;
2071
2072         return 0;
2073 }
2074
2075 static int hifn_handle_req(struct ablkcipher_request *req)
2076 {
2077         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2078         struct hifn_device *dev = ctx->dev;
2079         int err = -EAGAIN;
2080
2081         if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2082                 err = hifn_setup_session(req);
2083
2084         if (err == -EAGAIN) {
2085                 unsigned long flags;
2086
2087                 spin_lock_irqsave(&dev->lock, flags);
2088                 err = ablkcipher_enqueue_request(&dev->queue, req);
2089                 spin_unlock_irqrestore(&dev->lock, flags);
2090         }
2091
2092         return err;
2093 }
2094
2095 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2096                 u8 type, u8 mode)
2097 {
2098         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2099         struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2100         unsigned ivsize;
2101
2102         ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2103
2104         if (req->info && mode != ACRYPTO_MODE_ECB) {
2105                 if (type == ACRYPTO_TYPE_AES_128)
2106                         ivsize = HIFN_AES_IV_LENGTH;
2107                 else if (type == ACRYPTO_TYPE_DES)
2108                         ivsize = HIFN_DES_KEY_LENGTH;
2109                 else if (type == ACRYPTO_TYPE_3DES)
2110                         ivsize = HIFN_3DES_KEY_LENGTH;
2111         }
2112
2113         if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2114                 if (ctx->keysize == 24)
2115                         type = ACRYPTO_TYPE_AES_192;
2116                 else if (ctx->keysize == 32)
2117                         type = ACRYPTO_TYPE_AES_256;
2118         }
2119
2120         rctx->op = op;
2121         rctx->mode = mode;
2122         rctx->type = type;
2123         rctx->iv = req->info;
2124         rctx->ivsize = ivsize;
2125
2126         /*
2127          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2128          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2129          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2130          */
2131
2132         return hifn_handle_req(req);
2133 }
2134
2135 static int hifn_process_queue(struct hifn_device *dev)
2136 {
2137         struct crypto_async_request *async_req, *backlog;
2138         struct ablkcipher_request *req;
2139         unsigned long flags;
2140         int err = 0;
2141
2142         while (dev->started < HIFN_QUEUE_LENGTH) {
2143                 spin_lock_irqsave(&dev->lock, flags);
2144                 backlog = crypto_get_backlog(&dev->queue);
2145                 async_req = crypto_dequeue_request(&dev->queue);
2146                 spin_unlock_irqrestore(&dev->lock, flags);
2147
2148                 if (!async_req)
2149                         break;
2150
2151                 if (backlog)
2152                         backlog->complete(backlog, -EINPROGRESS);
2153
2154                 req = container_of(async_req, struct ablkcipher_request, base);
2155
2156                 err = hifn_handle_req(req);
2157                 if (err)
2158                         break;
2159         }
2160
2161         return err;
2162 }
2163
2164 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2165                 u8 type, u8 mode)
2166 {
2167         int err;
2168         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2169         struct hifn_device *dev = ctx->dev;
2170
2171         err = hifn_setup_crypto_req(req, op, type, mode);
2172         if (err)
2173                 return err;
2174
2175         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2176                 hifn_process_queue(dev);
2177
2178         return -EINPROGRESS;
2179 }
2180
2181 /*
2182  * AES ecryption functions.
2183  */
2184 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2185 {
2186         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2187                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2188 }
2189 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2190 {
2191         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2192                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2193 }
2194 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2195 {
2196         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2197                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2198 }
2199 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2200 {
2201         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2202                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2203 }
2204
2205 /*
2206  * AES decryption functions.
2207  */
2208 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2209 {
2210         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2211                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2212 }
2213 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2214 {
2215         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2216                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2217 }
2218 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2219 {
2220         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2221                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2222 }
2223 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2224 {
2225         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2226                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2227 }
2228
2229 /*
2230  * DES ecryption functions.
2231  */
2232 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2233 {
2234         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2235                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2236 }
2237 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2238 {
2239         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2240                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2241 }
2242 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2243 {
2244         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2245                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2246 }
2247 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2248 {
2249         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2250                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2251 }
2252
2253 /*
2254  * DES decryption functions.
2255  */
2256 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2257 {
2258         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2259                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2260 }
2261 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2262 {
2263         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2264                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2265 }
2266 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2267 {
2268         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2269                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2270 }
2271 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2272 {
2273         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2274                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2275 }
2276
2277 /*
2278  * 3DES ecryption functions.
2279  */
2280 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2281 {
2282         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2283                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2284 }
2285 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2286 {
2287         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2288                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2289 }
2290 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2291 {
2292         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2293                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2294 }
2295 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2296 {
2297         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2298                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2299 }
2300
2301 /*
2302  * 3DES decryption functions.
2303  */
2304 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2305 {
2306         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2307                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2308 }
2309 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2310 {
2311         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2312                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2313 }
2314 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2315 {
2316         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2317                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2318 }
2319 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2320 {
2321         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2322                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2323 }
2324
2325 struct hifn_alg_template
2326 {
2327         char name[CRYPTO_MAX_ALG_NAME];
2328         char drv_name[CRYPTO_MAX_ALG_NAME];
2329         unsigned int bsize;
2330         struct ablkcipher_alg ablkcipher;
2331 };
2332
2333 static struct hifn_alg_template hifn_alg_templates[] = {
2334         /*
2335          * 3DES ECB, CBC, CFB and OFB modes.
2336          */
2337         {
2338                 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2339                 .ablkcipher = {
2340                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2341                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2342                         .setkey         =       hifn_setkey,
2343                         .encrypt        =       hifn_encrypt_3des_cfb,
2344                         .decrypt        =       hifn_decrypt_3des_cfb,
2345                 },
2346         },
2347         {
2348                 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2349                 .ablkcipher = {
2350                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2351                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2352                         .setkey         =       hifn_setkey,
2353                         .encrypt        =       hifn_encrypt_3des_ofb,
2354                         .decrypt        =       hifn_decrypt_3des_ofb,
2355                 },
2356         },
2357         {
2358                 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2359                 .ablkcipher = {
2360                         .ivsize         =       HIFN_IV_LENGTH,
2361                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2362                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2363                         .setkey         =       hifn_setkey,
2364                         .encrypt        =       hifn_encrypt_3des_cbc,
2365                         .decrypt        =       hifn_decrypt_3des_cbc,
2366                 },
2367         },
2368         {
2369                 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2370                 .ablkcipher = {
2371                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2372                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2373                         .setkey         =       hifn_setkey,
2374                         .encrypt        =       hifn_encrypt_3des_ecb,
2375                         .decrypt        =       hifn_decrypt_3des_ecb,
2376                 },
2377         },
2378
2379         /*
2380          * DES ECB, CBC, CFB and OFB modes.
2381          */
2382         {
2383                 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2384                 .ablkcipher = {
2385                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2386                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2387                         .setkey         =       hifn_setkey,
2388                         .encrypt        =       hifn_encrypt_des_cfb,
2389                         .decrypt        =       hifn_decrypt_des_cfb,
2390                 },
2391         },
2392         {
2393                 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2394                 .ablkcipher = {
2395                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2396                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2397                         .setkey         =       hifn_setkey,
2398                         .encrypt        =       hifn_encrypt_des_ofb,
2399                         .decrypt        =       hifn_decrypt_des_ofb,
2400                 },
2401         },
2402         {
2403                 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2404                 .ablkcipher = {
2405                         .ivsize         =       HIFN_IV_LENGTH,
2406                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2407                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2408                         .setkey         =       hifn_setkey,
2409                         .encrypt        =       hifn_encrypt_des_cbc,
2410                         .decrypt        =       hifn_decrypt_des_cbc,
2411                 },
2412         },
2413         {
2414                 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2415                 .ablkcipher = {
2416                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2417                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2418                         .setkey         =       hifn_setkey,
2419                         .encrypt        =       hifn_encrypt_des_ecb,
2420                         .decrypt        =       hifn_decrypt_des_ecb,
2421                 },
2422         },
2423
2424         /*
2425          * AES ECB, CBC, CFB and OFB modes.
2426          */
2427         {
2428                 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2429                 .ablkcipher = {
2430                         .min_keysize    =       AES_MIN_KEY_SIZE,
2431                         .max_keysize    =       AES_MAX_KEY_SIZE,
2432                         .setkey         =       hifn_setkey,
2433                         .encrypt        =       hifn_encrypt_aes_ecb,
2434                         .decrypt        =       hifn_decrypt_aes_ecb,
2435                 },
2436         },
2437         {
2438                 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2439                 .ablkcipher = {
2440                         .ivsize         =       HIFN_AES_IV_LENGTH,
2441                         .min_keysize    =       AES_MIN_KEY_SIZE,
2442                         .max_keysize    =       AES_MAX_KEY_SIZE,
2443                         .setkey         =       hifn_setkey,
2444                         .encrypt        =       hifn_encrypt_aes_cbc,
2445                         .decrypt        =       hifn_decrypt_aes_cbc,
2446                 },
2447         },
2448         {
2449                 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2450                 .ablkcipher = {
2451                         .min_keysize    =       AES_MIN_KEY_SIZE,
2452                         .max_keysize    =       AES_MAX_KEY_SIZE,
2453                         .setkey         =       hifn_setkey,
2454                         .encrypt        =       hifn_encrypt_aes_cfb,
2455                         .decrypt        =       hifn_decrypt_aes_cfb,
2456                 },
2457         },
2458         {
2459                 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2460                 .ablkcipher = {
2461                         .min_keysize    =       AES_MIN_KEY_SIZE,
2462                         .max_keysize    =       AES_MAX_KEY_SIZE,
2463                         .setkey         =       hifn_setkey,
2464                         .encrypt        =       hifn_encrypt_aes_ofb,
2465                         .decrypt        =       hifn_decrypt_aes_ofb,
2466                 },
2467         },
2468 };
2469
2470 static int hifn_cra_init(struct crypto_tfm *tfm)
2471 {
2472         struct crypto_alg *alg = tfm->__crt_alg;
2473         struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2474         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2475
2476         ctx->dev = ha->dev;
2477         tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2478         return 0;
2479 }
2480
2481 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2482 {
2483         struct hifn_crypto_alg *alg;
2484         int err;
2485
2486         alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2487         if (!alg)
2488                 return -ENOMEM;
2489
2490         snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2491         snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2492                  t->drv_name, dev->name);
2493
2494         alg->alg.cra_priority = 300;
2495         alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2496                                 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2497         alg->alg.cra_blocksize = t->bsize;
2498         alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2499         alg->alg.cra_alignmask = 0;
2500         alg->alg.cra_type = &crypto_ablkcipher_type;
2501         alg->alg.cra_module = THIS_MODULE;
2502         alg->alg.cra_u.ablkcipher = t->ablkcipher;
2503         alg->alg.cra_init = hifn_cra_init;
2504
2505         alg->dev = dev;
2506
2507         list_add_tail(&alg->entry, &dev->alg_list);
2508
2509         err = crypto_register_alg(&alg->alg);
2510         if (err) {
2511                 list_del(&alg->entry);
2512                 kfree(alg);
2513         }
2514
2515         return err;
2516 }
2517
2518 static void hifn_unregister_alg(struct hifn_device *dev)
2519 {
2520         struct hifn_crypto_alg *a, *n;
2521
2522         list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2523                 list_del(&a->entry);
2524                 crypto_unregister_alg(&a->alg);
2525                 kfree(a);
2526         }
2527 }
2528
2529 static int hifn_register_alg(struct hifn_device *dev)
2530 {
2531         int i, err;
2532
2533         for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2534                 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2535                 if (err)
2536                         goto err_out_exit;
2537         }
2538
2539         return 0;
2540
2541 err_out_exit:
2542         hifn_unregister_alg(dev);
2543         return err;
2544 }
2545
2546 static void hifn_tasklet_callback(unsigned long data)
2547 {
2548         struct hifn_device *dev = (struct hifn_device *)data;
2549
2550         /*
2551          * This is ok to call this without lock being held,
2552          * althogh it modifies some parameters used in parallel,
2553          * (like dev->success), but they are used in process
2554          * context or update is atomic (like setting dev->sa[i] to NULL).
2555          */
2556         hifn_clear_rings(dev, 0);
2557
2558         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2559                 hifn_process_queue(dev);
2560 }
2561
2562 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2563 {
2564         int err, i;
2565         struct hifn_device *dev;
2566         char name[8];
2567
2568         err = pci_enable_device(pdev);
2569         if (err)
2570                 return err;
2571         pci_set_master(pdev);
2572
2573         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2574         if (err)
2575                 goto err_out_disable_pci_device;
2576
2577         snprintf(name, sizeof(name), "hifn%d",
2578                         atomic_inc_return(&hifn_dev_number)-1);
2579
2580         err = pci_request_regions(pdev, name);
2581         if (err)
2582                 goto err_out_disable_pci_device;
2583
2584         if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2585             pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2586             pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2587                 dprintk("%s: Broken hardware - I/O regions are too small.\n",
2588                                 pci_name(pdev));
2589                 err = -ENODEV;
2590                 goto err_out_free_regions;
2591         }
2592
2593         dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2594                         GFP_KERNEL);
2595         if (!dev) {
2596                 err = -ENOMEM;
2597                 goto err_out_free_regions;
2598         }
2599
2600         INIT_LIST_HEAD(&dev->alg_list);
2601
2602         snprintf(dev->name, sizeof(dev->name), "%s", name);
2603         spin_lock_init(&dev->lock);
2604
2605         for (i=0; i<3; ++i) {
2606                 unsigned long addr, size;
2607
2608                 addr = pci_resource_start(pdev, i);
2609                 size = pci_resource_len(pdev, i);
2610
2611                 dev->bar[i] = ioremap_nocache(addr, size);
2612                 if (!dev->bar[i]) {
2613                         err = -ENOMEM;
2614                         goto err_out_unmap_bars;
2615                 }
2616         }
2617
2618         dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2619                                                &dev->desc_dma);
2620         if (!dev->desc_virt) {
2621                 dprintk("Failed to allocate descriptor rings.\n");
2622                 err = -ENOMEM;
2623                 goto err_out_unmap_bars;
2624         }
2625
2626         dev->pdev = pdev;
2627         dev->irq = pdev->irq;
2628
2629         for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2630                 dev->sa[i] = NULL;
2631
2632         pci_set_drvdata(pdev, dev);
2633
2634         tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2635
2636         crypto_init_queue(&dev->queue, 1);
2637
2638         err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2639         if (err) {
2640                 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2641                 dev->irq = 0;
2642                 goto err_out_free_desc;
2643         }
2644
2645         err = hifn_start_device(dev);
2646         if (err)
2647                 goto err_out_free_irq;
2648
2649         err = hifn_test(dev, 1, 0);
2650         if (err)
2651                 goto err_out_stop_device;
2652
2653         err = hifn_register_rng(dev);
2654         if (err)
2655                 goto err_out_stop_device;
2656
2657         err = hifn_register_alg(dev);
2658         if (err)
2659                 goto err_out_unregister_rng;
2660
2661         INIT_DELAYED_WORK(&dev->work, hifn_work);
2662         schedule_delayed_work(&dev->work, HZ);
2663
2664         dprintk("HIFN crypto accelerator card at %s has been "
2665                         "successfully registered as %s.\n",
2666                         pci_name(pdev), dev->name);
2667
2668         return 0;
2669
2670 err_out_unregister_rng:
2671         hifn_unregister_rng(dev);
2672 err_out_stop_device:
2673         hifn_reset_dma(dev, 1);
2674         hifn_stop_device(dev);
2675 err_out_free_irq:
2676         free_irq(dev->irq, dev);
2677         tasklet_kill(&dev->tasklet);
2678 err_out_free_desc:
2679         pci_free_consistent(pdev, sizeof(struct hifn_dma),
2680                         dev->desc_virt, dev->desc_dma);
2681
2682 err_out_unmap_bars:
2683         for (i=0; i<3; ++i)
2684                 if (dev->bar[i])
2685                         iounmap(dev->bar[i]);
2686
2687 err_out_free_regions:
2688         pci_release_regions(pdev);
2689
2690 err_out_disable_pci_device:
2691         pci_disable_device(pdev);
2692
2693         return err;
2694 }
2695
2696 static void hifn_remove(struct pci_dev *pdev)
2697 {
2698         int i;
2699         struct hifn_device *dev;
2700
2701         dev = pci_get_drvdata(pdev);
2702
2703         if (dev) {
2704                 cancel_delayed_work_sync(&dev->work);
2705
2706                 hifn_unregister_rng(dev);
2707                 hifn_unregister_alg(dev);
2708                 hifn_reset_dma(dev, 1);
2709                 hifn_stop_device(dev);
2710
2711                 free_irq(dev->irq, dev);
2712                 tasklet_kill(&dev->tasklet);
2713
2714                 hifn_flush(dev);
2715
2716                 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2717                                 dev->desc_virt, dev->desc_dma);
2718                 for (i=0; i<3; ++i)
2719                         if (dev->bar[i])
2720                                 iounmap(dev->bar[i]);
2721
2722                 kfree(dev);
2723         }
2724
2725         pci_release_regions(pdev);
2726         pci_disable_device(pdev);
2727 }
2728
2729 static struct pci_device_id hifn_pci_tbl[] = {
2730         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2731         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2732         { 0 }
2733 };
2734 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2735
2736 static struct pci_driver hifn_pci_driver = {
2737         .name     = "hifn795x",
2738         .id_table = hifn_pci_tbl,
2739         .probe    = hifn_probe,
2740         .remove   = hifn_remove,
2741 };
2742
2743 static int __init hifn_init(void)
2744 {
2745         unsigned int freq;
2746         int err;
2747
2748         /* HIFN supports only 32-bit addresses */
2749         BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2750
2751         if (strncmp(hifn_pll_ref, "ext", 3) &&
2752             strncmp(hifn_pll_ref, "pci", 3)) {
2753                 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2754                                 "must be pci or ext");
2755                 return -EINVAL;
2756         }
2757
2758         /*
2759          * For the 7955/7956 the reference clock frequency must be in the
2760          * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2761          * but this chip is currently not supported.
2762          */
2763         if (hifn_pll_ref[3] != '\0') {
2764                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2765                 if (freq < 20 || freq > 100) {
2766                         printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2767                                         "frequency, must be in the range "
2768                                         "of 20-100");
2769                         return -EINVAL;
2770                 }
2771         }
2772
2773         err = pci_register_driver(&hifn_pci_driver);
2774         if (err < 0) {
2775                 dprintk("Failed to register PCI driver for %s device.\n",
2776                                 hifn_pci_driver.name);
2777                 return -ENODEV;
2778         }
2779
2780         printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2781                         "has been successfully registered.\n");
2782
2783         return 0;
2784 }
2785
2786 static void __exit hifn_fini(void)
2787 {
2788         pci_unregister_driver(&hifn_pci_driver);
2789
2790         printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2791                         "has been successfully unregistered.\n");
2792 }
2793
2794 module_init(hifn_init);
2795 module_exit(hifn_fini);
2796
2797 MODULE_LICENSE("GPL");
2798 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2799 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");