]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/crypto/mxs-dcp.c
crypto: marvell/cesa - another fix up for of_get_named_gen_pool() rename
[karo-tx-linux.git] / drivers / crypto / mxs-dcp.c
1 /*
2  * Freescale i.MX23/i.MX28 Data Co-Processor driver
3  *
4  * Copyright (C) 2013 Marek Vasut <marex@denx.de>
5  *
6  * The code contained herein is licensed under the GNU General Public
7  * License. You may obtain a copy of the GNU General Public License
8  * Version 2 or later at the following locations:
9  *
10  * http://www.opensource.org/licenses/gpl-license.html
11  * http://www.gnu.org/copyleft/gpl.html
12  */
13
14 #include <linux/crypto.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/kthread.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/platform_device.h>
23 #include <linux/stmp_device.h>
24
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/internal/hash.h>
28
29 #define DCP_MAX_CHANS   4
30 #define DCP_BUF_SZ      PAGE_SIZE
31
32 #define DCP_ALIGNMENT   64
33
34 /* DCP DMA descriptor. */
35 struct dcp_dma_desc {
36         uint32_t        next_cmd_addr;
37         uint32_t        control0;
38         uint32_t        control1;
39         uint32_t        source;
40         uint32_t        destination;
41         uint32_t        size;
42         uint32_t        payload;
43         uint32_t        status;
44 };
45
46 /* Coherent aligned block for bounce buffering. */
47 struct dcp_coherent_block {
48         uint8_t                 aes_in_buf[DCP_BUF_SZ];
49         uint8_t                 aes_out_buf[DCP_BUF_SZ];
50         uint8_t                 sha_in_buf[DCP_BUF_SZ];
51
52         uint8_t                 aes_key[2 * AES_KEYSIZE_128];
53
54         struct dcp_dma_desc     desc[DCP_MAX_CHANS];
55 };
56
57 struct dcp {
58         struct device                   *dev;
59         void __iomem                    *base;
60
61         uint32_t                        caps;
62
63         struct dcp_coherent_block       *coh;
64
65         struct completion               completion[DCP_MAX_CHANS];
66         struct mutex                    mutex[DCP_MAX_CHANS];
67         struct task_struct              *thread[DCP_MAX_CHANS];
68         struct crypto_queue             queue[DCP_MAX_CHANS];
69 };
70
71 enum dcp_chan {
72         DCP_CHAN_HASH_SHA       = 0,
73         DCP_CHAN_CRYPTO         = 2,
74 };
75
76 struct dcp_async_ctx {
77         /* Common context */
78         enum dcp_chan   chan;
79         uint32_t        fill;
80
81         /* SHA Hash-specific context */
82         struct mutex                    mutex;
83         uint32_t                        alg;
84         unsigned int                    hot:1;
85
86         /* Crypto-specific context */
87         struct crypto_ablkcipher        *fallback;
88         unsigned int                    key_len;
89         uint8_t                         key[AES_KEYSIZE_128];
90 };
91
92 struct dcp_aes_req_ctx {
93         unsigned int    enc:1;
94         unsigned int    ecb:1;
95 };
96
97 struct dcp_sha_req_ctx {
98         unsigned int    init:1;
99         unsigned int    fini:1;
100 };
101
102 /*
103  * There can even be only one instance of the MXS DCP due to the
104  * design of Linux Crypto API.
105  */
106 static struct dcp *global_sdcp;
107
108 /* DCP register layout. */
109 #define MXS_DCP_CTRL                            0x00
110 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES     (1 << 23)
111 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING     (1 << 22)
112
113 #define MXS_DCP_STAT                            0x10
114 #define MXS_DCP_STAT_CLR                        0x18
115 #define MXS_DCP_STAT_IRQ_MASK                   0xf
116
117 #define MXS_DCP_CHANNELCTRL                     0x20
118 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
119
120 #define MXS_DCP_CAPABILITY1                     0x40
121 #define MXS_DCP_CAPABILITY1_SHA256              (4 << 16)
122 #define MXS_DCP_CAPABILITY1_SHA1                (1 << 16)
123 #define MXS_DCP_CAPABILITY1_AES128              (1 << 0)
124
125 #define MXS_DCP_CONTEXT                         0x50
126
127 #define MXS_DCP_CH_N_CMDPTR(n)                  (0x100 + ((n) * 0x40))
128
129 #define MXS_DCP_CH_N_SEMA(n)                    (0x110 + ((n) * 0x40))
130
131 #define MXS_DCP_CH_N_STAT(n)                    (0x120 + ((n) * 0x40))
132 #define MXS_DCP_CH_N_STAT_CLR(n)                (0x128 + ((n) * 0x40))
133
134 /* DMA descriptor bits. */
135 #define MXS_DCP_CONTROL0_HASH_TERM              (1 << 13)
136 #define MXS_DCP_CONTROL0_HASH_INIT              (1 << 12)
137 #define MXS_DCP_CONTROL0_PAYLOAD_KEY            (1 << 11)
138 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT         (1 << 8)
139 #define MXS_DCP_CONTROL0_CIPHER_INIT            (1 << 9)
140 #define MXS_DCP_CONTROL0_ENABLE_HASH            (1 << 6)
141 #define MXS_DCP_CONTROL0_ENABLE_CIPHER          (1 << 5)
142 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE         (1 << 1)
143 #define MXS_DCP_CONTROL0_INTERRUPT              (1 << 0)
144
145 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256     (2 << 16)
146 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1       (0 << 16)
147 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC        (1 << 4)
148 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB        (0 << 4)
149 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128   (0 << 0)
150
151 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
152 {
153         struct dcp *sdcp = global_sdcp;
154         const int chan = actx->chan;
155         uint32_t stat;
156         unsigned long ret;
157         struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
158
159         dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
160                                               DMA_TO_DEVICE);
161
162         reinit_completion(&sdcp->completion[chan]);
163
164         /* Clear status register. */
165         writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
166
167         /* Load the DMA descriptor. */
168         writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
169
170         /* Increment the semaphore to start the DMA transfer. */
171         writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
172
173         ret = wait_for_completion_timeout(&sdcp->completion[chan],
174                                           msecs_to_jiffies(1000));
175         if (!ret) {
176                 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
177                         chan, readl(sdcp->base + MXS_DCP_STAT));
178                 return -ETIMEDOUT;
179         }
180
181         stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
182         if (stat & 0xff) {
183                 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
184                         chan, stat);
185                 return -EINVAL;
186         }
187
188         dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
189
190         return 0;
191 }
192
193 /*
194  * Encryption (AES128)
195  */
196 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
197                            struct ablkcipher_request *req, int init)
198 {
199         struct dcp *sdcp = global_sdcp;
200         struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
201         struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
202         int ret;
203
204         dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
205                                              2 * AES_KEYSIZE_128,
206                                              DMA_TO_DEVICE);
207         dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
208                                              DCP_BUF_SZ, DMA_TO_DEVICE);
209         dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
210                                              DCP_BUF_SZ, DMA_FROM_DEVICE);
211
212         /* Fill in the DMA descriptor. */
213         desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
214                     MXS_DCP_CONTROL0_INTERRUPT |
215                     MXS_DCP_CONTROL0_ENABLE_CIPHER;
216
217         /* Payload contains the key. */
218         desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
219
220         if (rctx->enc)
221                 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
222         if (init)
223                 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
224
225         desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
226
227         if (rctx->ecb)
228                 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
229         else
230                 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
231
232         desc->next_cmd_addr = 0;
233         desc->source = src_phys;
234         desc->destination = dst_phys;
235         desc->size = actx->fill;
236         desc->payload = key_phys;
237         desc->status = 0;
238
239         ret = mxs_dcp_start_dma(actx);
240
241         dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
242                          DMA_TO_DEVICE);
243         dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
244         dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
245
246         return ret;
247 }
248
249 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
250 {
251         struct dcp *sdcp = global_sdcp;
252
253         struct ablkcipher_request *req = ablkcipher_request_cast(arq);
254         struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
255         struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
256
257         struct scatterlist *dst = req->dst;
258         struct scatterlist *src = req->src;
259         const int nents = sg_nents(req->src);
260
261         const int out_off = DCP_BUF_SZ;
262         uint8_t *in_buf = sdcp->coh->aes_in_buf;
263         uint8_t *out_buf = sdcp->coh->aes_out_buf;
264
265         uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
266         uint32_t dst_off = 0;
267
268         uint8_t *key = sdcp->coh->aes_key;
269
270         int ret = 0;
271         int split = 0;
272         unsigned int i, len, clen, rem = 0;
273         int init = 0;
274
275         actx->fill = 0;
276
277         /* Copy the key from the temporary location. */
278         memcpy(key, actx->key, actx->key_len);
279
280         if (!rctx->ecb) {
281                 /* Copy the CBC IV just past the key. */
282                 memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
283                 /* CBC needs the INIT set. */
284                 init = 1;
285         } else {
286                 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
287         }
288
289         for_each_sg(req->src, src, nents, i) {
290                 src_buf = sg_virt(src);
291                 len = sg_dma_len(src);
292
293                 do {
294                         if (actx->fill + len > out_off)
295                                 clen = out_off - actx->fill;
296                         else
297                                 clen = len;
298
299                         memcpy(in_buf + actx->fill, src_buf, clen);
300                         len -= clen;
301                         src_buf += clen;
302                         actx->fill += clen;
303
304                         /*
305                          * If we filled the buffer or this is the last SG,
306                          * submit the buffer.
307                          */
308                         if (actx->fill == out_off || sg_is_last(src)) {
309                                 ret = mxs_dcp_run_aes(actx, req, init);
310                                 if (ret)
311                                         return ret;
312                                 init = 0;
313
314                                 out_tmp = out_buf;
315                                 while (dst && actx->fill) {
316                                         if (!split) {
317                                                 dst_buf = sg_virt(dst);
318                                                 dst_off = 0;
319                                         }
320                                         rem = min(sg_dma_len(dst) - dst_off,
321                                                   actx->fill);
322
323                                         memcpy(dst_buf + dst_off, out_tmp, rem);
324                                         out_tmp += rem;
325                                         dst_off += rem;
326                                         actx->fill -= rem;
327
328                                         if (dst_off == sg_dma_len(dst)) {
329                                                 dst = sg_next(dst);
330                                                 split = 0;
331                                         } else {
332                                                 split = 1;
333                                         }
334                                 }
335                         }
336                 } while (len);
337         }
338
339         return ret;
340 }
341
342 static int dcp_chan_thread_aes(void *data)
343 {
344         struct dcp *sdcp = global_sdcp;
345         const int chan = DCP_CHAN_CRYPTO;
346
347         struct crypto_async_request *backlog;
348         struct crypto_async_request *arq;
349
350         int ret;
351
352         do {
353                 __set_current_state(TASK_INTERRUPTIBLE);
354
355                 mutex_lock(&sdcp->mutex[chan]);
356                 backlog = crypto_get_backlog(&sdcp->queue[chan]);
357                 arq = crypto_dequeue_request(&sdcp->queue[chan]);
358                 mutex_unlock(&sdcp->mutex[chan]);
359
360                 if (backlog)
361                         backlog->complete(backlog, -EINPROGRESS);
362
363                 if (arq) {
364                         ret = mxs_dcp_aes_block_crypt(arq);
365                         arq->complete(arq, ret);
366                         continue;
367                 }
368
369                 schedule();
370         } while (!kthread_should_stop());
371
372         return 0;
373 }
374
375 static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
376 {
377         struct crypto_tfm *tfm =
378                 crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
379         struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(
380                 crypto_ablkcipher_reqtfm(req));
381         int ret;
382
383         ablkcipher_request_set_tfm(req, ctx->fallback);
384
385         if (enc)
386                 ret = crypto_ablkcipher_encrypt(req);
387         else
388                 ret = crypto_ablkcipher_decrypt(req);
389
390         ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
391
392         return ret;
393 }
394
395 static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
396 {
397         struct dcp *sdcp = global_sdcp;
398         struct crypto_async_request *arq = &req->base;
399         struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
400         struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
401         int ret;
402
403         if (unlikely(actx->key_len != AES_KEYSIZE_128))
404                 return mxs_dcp_block_fallback(req, enc);
405
406         rctx->enc = enc;
407         rctx->ecb = ecb;
408         actx->chan = DCP_CHAN_CRYPTO;
409
410         mutex_lock(&sdcp->mutex[actx->chan]);
411         ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
412         mutex_unlock(&sdcp->mutex[actx->chan]);
413
414         wake_up_process(sdcp->thread[actx->chan]);
415
416         return -EINPROGRESS;
417 }
418
419 static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
420 {
421         return mxs_dcp_aes_enqueue(req, 0, 1);
422 }
423
424 static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
425 {
426         return mxs_dcp_aes_enqueue(req, 1, 1);
427 }
428
429 static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
430 {
431         return mxs_dcp_aes_enqueue(req, 0, 0);
432 }
433
434 static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
435 {
436         return mxs_dcp_aes_enqueue(req, 1, 0);
437 }
438
439 static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
440                               unsigned int len)
441 {
442         struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
443         unsigned int ret;
444
445         /*
446          * AES 128 is supposed by the hardware, store key into temporary
447          * buffer and exit. We must use the temporary buffer here, since
448          * there can still be an operation in progress.
449          */
450         actx->key_len = len;
451         if (len == AES_KEYSIZE_128) {
452                 memcpy(actx->key, key, len);
453                 return 0;
454         }
455
456         /* Check if the key size is supported by kernel at all. */
457         if (len != AES_KEYSIZE_192 && len != AES_KEYSIZE_256) {
458                 tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
459                 return -EINVAL;
460         }
461
462         /*
463          * If the requested AES key size is not supported by the hardware,
464          * but is supported by in-kernel software implementation, we use
465          * software fallback.
466          */
467         actx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
468         actx->fallback->base.crt_flags |=
469                 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK;
470
471         ret = crypto_ablkcipher_setkey(actx->fallback, key, len);
472         if (!ret)
473                 return 0;
474
475         tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
476         tfm->base.crt_flags |=
477                 actx->fallback->base.crt_flags & CRYPTO_TFM_RES_MASK;
478
479         return ret;
480 }
481
482 static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
483 {
484         const char *name = crypto_tfm_alg_name(tfm);
485         const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
486         struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
487         struct crypto_ablkcipher *blk;
488
489         blk = crypto_alloc_ablkcipher(name, 0, flags);
490         if (IS_ERR(blk))
491                 return PTR_ERR(blk);
492
493         actx->fallback = blk;
494         tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
495         return 0;
496 }
497
498 static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
499 {
500         struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
501
502         crypto_free_ablkcipher(actx->fallback);
503         actx->fallback = NULL;
504 }
505
506 /*
507  * Hashing (SHA1/SHA256)
508  */
509 static int mxs_dcp_run_sha(struct ahash_request *req)
510 {
511         struct dcp *sdcp = global_sdcp;
512         int ret;
513
514         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
515         struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
516         struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
517         struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
518
519         struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
520
521         dma_addr_t digest_phys = 0;
522         dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
523                                              DCP_BUF_SZ, DMA_TO_DEVICE);
524
525         /* Fill in the DMA descriptor. */
526         desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
527                     MXS_DCP_CONTROL0_INTERRUPT |
528                     MXS_DCP_CONTROL0_ENABLE_HASH;
529         if (rctx->init)
530                 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
531
532         desc->control1 = actx->alg;
533         desc->next_cmd_addr = 0;
534         desc->source = buf_phys;
535         desc->destination = 0;
536         desc->size = actx->fill;
537         desc->payload = 0;
538         desc->status = 0;
539
540         /* Set HASH_TERM bit for last transfer block. */
541         if (rctx->fini) {
542                 digest_phys = dma_map_single(sdcp->dev, req->result,
543                                              halg->digestsize, DMA_FROM_DEVICE);
544                 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
545                 desc->payload = digest_phys;
546         }
547
548         ret = mxs_dcp_start_dma(actx);
549
550         if (rctx->fini)
551                 dma_unmap_single(sdcp->dev, digest_phys, halg->digestsize,
552                                  DMA_FROM_DEVICE);
553
554         dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
555
556         return ret;
557 }
558
559 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
560 {
561         struct dcp *sdcp = global_sdcp;
562
563         struct ahash_request *req = ahash_request_cast(arq);
564         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
565         struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
566         struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
567         struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
568         const int nents = sg_nents(req->src);
569
570         uint8_t *in_buf = sdcp->coh->sha_in_buf;
571
572         uint8_t *src_buf;
573
574         struct scatterlist *src;
575
576         unsigned int i, len, clen;
577         int ret;
578
579         int fin = rctx->fini;
580         if (fin)
581                 rctx->fini = 0;
582
583         for_each_sg(req->src, src, nents, i) {
584                 src_buf = sg_virt(src);
585                 len = sg_dma_len(src);
586
587                 do {
588                         if (actx->fill + len > DCP_BUF_SZ)
589                                 clen = DCP_BUF_SZ - actx->fill;
590                         else
591                                 clen = len;
592
593                         memcpy(in_buf + actx->fill, src_buf, clen);
594                         len -= clen;
595                         src_buf += clen;
596                         actx->fill += clen;
597
598                         /*
599                          * If we filled the buffer and still have some
600                          * more data, submit the buffer.
601                          */
602                         if (len && actx->fill == DCP_BUF_SZ) {
603                                 ret = mxs_dcp_run_sha(req);
604                                 if (ret)
605                                         return ret;
606                                 actx->fill = 0;
607                                 rctx->init = 0;
608                         }
609                 } while (len);
610         }
611
612         if (fin) {
613                 rctx->fini = 1;
614
615                 /* Submit whatever is left. */
616                 if (!req->result)
617                         return -EINVAL;
618
619                 ret = mxs_dcp_run_sha(req);
620                 if (ret)
621                         return ret;
622
623                 actx->fill = 0;
624
625                 /* For some reason, the result is flipped. */
626                 for (i = 0; i < halg->digestsize / 2; i++) {
627                         swap(req->result[i],
628                              req->result[halg->digestsize - i - 1]);
629                 }
630         }
631
632         return 0;
633 }
634
635 static int dcp_chan_thread_sha(void *data)
636 {
637         struct dcp *sdcp = global_sdcp;
638         const int chan = DCP_CHAN_HASH_SHA;
639
640         struct crypto_async_request *backlog;
641         struct crypto_async_request *arq;
642
643         struct dcp_sha_req_ctx *rctx;
644
645         struct ahash_request *req;
646         int ret, fini;
647
648         do {
649                 __set_current_state(TASK_INTERRUPTIBLE);
650
651                 mutex_lock(&sdcp->mutex[chan]);
652                 backlog = crypto_get_backlog(&sdcp->queue[chan]);
653                 arq = crypto_dequeue_request(&sdcp->queue[chan]);
654                 mutex_unlock(&sdcp->mutex[chan]);
655
656                 if (backlog)
657                         backlog->complete(backlog, -EINPROGRESS);
658
659                 if (arq) {
660                         req = ahash_request_cast(arq);
661                         rctx = ahash_request_ctx(req);
662
663                         ret = dcp_sha_req_to_buf(arq);
664                         fini = rctx->fini;
665                         arq->complete(arq, ret);
666                         if (!fini)
667                                 continue;
668                 }
669
670                 schedule();
671         } while (!kthread_should_stop());
672
673         return 0;
674 }
675
676 static int dcp_sha_init(struct ahash_request *req)
677 {
678         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
679         struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
680
681         struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
682
683         /*
684          * Start hashing session. The code below only inits the
685          * hashing session context, nothing more.
686          */
687         memset(actx, 0, sizeof(*actx));
688
689         if (strcmp(halg->base.cra_name, "sha1") == 0)
690                 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
691         else
692                 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
693
694         actx->fill = 0;
695         actx->hot = 0;
696         actx->chan = DCP_CHAN_HASH_SHA;
697
698         mutex_init(&actx->mutex);
699
700         return 0;
701 }
702
703 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
704 {
705         struct dcp *sdcp = global_sdcp;
706
707         struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
708         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
709         struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
710
711         int ret;
712
713         /*
714          * Ignore requests that have no data in them and are not
715          * the trailing requests in the stream of requests.
716          */
717         if (!req->nbytes && !fini)
718                 return 0;
719
720         mutex_lock(&actx->mutex);
721
722         rctx->fini = fini;
723
724         if (!actx->hot) {
725                 actx->hot = 1;
726                 rctx->init = 1;
727         }
728
729         mutex_lock(&sdcp->mutex[actx->chan]);
730         ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
731         mutex_unlock(&sdcp->mutex[actx->chan]);
732
733         wake_up_process(sdcp->thread[actx->chan]);
734         mutex_unlock(&actx->mutex);
735
736         return -EINPROGRESS;
737 }
738
739 static int dcp_sha_update(struct ahash_request *req)
740 {
741         return dcp_sha_update_fx(req, 0);
742 }
743
744 static int dcp_sha_final(struct ahash_request *req)
745 {
746         ahash_request_set_crypt(req, NULL, req->result, 0);
747         req->nbytes = 0;
748         return dcp_sha_update_fx(req, 1);
749 }
750
751 static int dcp_sha_finup(struct ahash_request *req)
752 {
753         return dcp_sha_update_fx(req, 1);
754 }
755
756 static int dcp_sha_digest(struct ahash_request *req)
757 {
758         int ret;
759
760         ret = dcp_sha_init(req);
761         if (ret)
762                 return ret;
763
764         return dcp_sha_finup(req);
765 }
766
767 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
768 {
769         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
770                                  sizeof(struct dcp_sha_req_ctx));
771         return 0;
772 }
773
774 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
775 {
776 }
777
778 /* AES 128 ECB and AES 128 CBC */
779 static struct crypto_alg dcp_aes_algs[] = {
780         {
781                 .cra_name               = "ecb(aes)",
782                 .cra_driver_name        = "ecb-aes-dcp",
783                 .cra_priority           = 400,
784                 .cra_alignmask          = 15,
785                 .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
786                                           CRYPTO_ALG_ASYNC |
787                                           CRYPTO_ALG_NEED_FALLBACK,
788                 .cra_init               = mxs_dcp_aes_fallback_init,
789                 .cra_exit               = mxs_dcp_aes_fallback_exit,
790                 .cra_blocksize          = AES_BLOCK_SIZE,
791                 .cra_ctxsize            = sizeof(struct dcp_async_ctx),
792                 .cra_type               = &crypto_ablkcipher_type,
793                 .cra_module             = THIS_MODULE,
794                 .cra_u  = {
795                         .ablkcipher = {
796                                 .min_keysize    = AES_MIN_KEY_SIZE,
797                                 .max_keysize    = AES_MAX_KEY_SIZE,
798                                 .setkey         = mxs_dcp_aes_setkey,
799                                 .encrypt        = mxs_dcp_aes_ecb_encrypt,
800                                 .decrypt        = mxs_dcp_aes_ecb_decrypt
801                         },
802                 },
803         }, {
804                 .cra_name               = "cbc(aes)",
805                 .cra_driver_name        = "cbc-aes-dcp",
806                 .cra_priority           = 400,
807                 .cra_alignmask          = 15,
808                 .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
809                                           CRYPTO_ALG_ASYNC |
810                                           CRYPTO_ALG_NEED_FALLBACK,
811                 .cra_init               = mxs_dcp_aes_fallback_init,
812                 .cra_exit               = mxs_dcp_aes_fallback_exit,
813                 .cra_blocksize          = AES_BLOCK_SIZE,
814                 .cra_ctxsize            = sizeof(struct dcp_async_ctx),
815                 .cra_type               = &crypto_ablkcipher_type,
816                 .cra_module             = THIS_MODULE,
817                 .cra_u = {
818                         .ablkcipher = {
819                                 .min_keysize    = AES_MIN_KEY_SIZE,
820                                 .max_keysize    = AES_MAX_KEY_SIZE,
821                                 .setkey         = mxs_dcp_aes_setkey,
822                                 .encrypt        = mxs_dcp_aes_cbc_encrypt,
823                                 .decrypt        = mxs_dcp_aes_cbc_decrypt,
824                                 .ivsize         = AES_BLOCK_SIZE,
825                         },
826                 },
827         },
828 };
829
830 /* SHA1 */
831 static struct ahash_alg dcp_sha1_alg = {
832         .init   = dcp_sha_init,
833         .update = dcp_sha_update,
834         .final  = dcp_sha_final,
835         .finup  = dcp_sha_finup,
836         .digest = dcp_sha_digest,
837         .halg   = {
838                 .digestsize     = SHA1_DIGEST_SIZE,
839                 .base           = {
840                         .cra_name               = "sha1",
841                         .cra_driver_name        = "sha1-dcp",
842                         .cra_priority           = 400,
843                         .cra_alignmask          = 63,
844                         .cra_flags              = CRYPTO_ALG_ASYNC,
845                         .cra_blocksize          = SHA1_BLOCK_SIZE,
846                         .cra_ctxsize            = sizeof(struct dcp_async_ctx),
847                         .cra_module             = THIS_MODULE,
848                         .cra_init               = dcp_sha_cra_init,
849                         .cra_exit               = dcp_sha_cra_exit,
850                 },
851         },
852 };
853
854 /* SHA256 */
855 static struct ahash_alg dcp_sha256_alg = {
856         .init   = dcp_sha_init,
857         .update = dcp_sha_update,
858         .final  = dcp_sha_final,
859         .finup  = dcp_sha_finup,
860         .digest = dcp_sha_digest,
861         .halg   = {
862                 .digestsize     = SHA256_DIGEST_SIZE,
863                 .base           = {
864                         .cra_name               = "sha256",
865                         .cra_driver_name        = "sha256-dcp",
866                         .cra_priority           = 400,
867                         .cra_alignmask          = 63,
868                         .cra_flags              = CRYPTO_ALG_ASYNC,
869                         .cra_blocksize          = SHA256_BLOCK_SIZE,
870                         .cra_ctxsize            = sizeof(struct dcp_async_ctx),
871                         .cra_module             = THIS_MODULE,
872                         .cra_init               = dcp_sha_cra_init,
873                         .cra_exit               = dcp_sha_cra_exit,
874                 },
875         },
876 };
877
878 static irqreturn_t mxs_dcp_irq(int irq, void *context)
879 {
880         struct dcp *sdcp = context;
881         uint32_t stat;
882         int i;
883
884         stat = readl(sdcp->base + MXS_DCP_STAT);
885         stat &= MXS_DCP_STAT_IRQ_MASK;
886         if (!stat)
887                 return IRQ_NONE;
888
889         /* Clear the interrupts. */
890         writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
891
892         /* Complete the DMA requests that finished. */
893         for (i = 0; i < DCP_MAX_CHANS; i++)
894                 if (stat & (1 << i))
895                         complete(&sdcp->completion[i]);
896
897         return IRQ_HANDLED;
898 }
899
900 static int mxs_dcp_probe(struct platform_device *pdev)
901 {
902         struct device *dev = &pdev->dev;
903         struct dcp *sdcp = NULL;
904         int i, ret;
905
906         struct resource *iores;
907         int dcp_vmi_irq, dcp_irq;
908
909         if (global_sdcp) {
910                 dev_err(dev, "Only one DCP instance allowed!\n");
911                 return -ENODEV;
912         }
913
914         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
915         dcp_vmi_irq = platform_get_irq(pdev, 0);
916         if (dcp_vmi_irq < 0)
917                 return dcp_vmi_irq;
918
919         dcp_irq = platform_get_irq(pdev, 1);
920         if (dcp_irq < 0)
921                 return dcp_irq;
922
923         sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
924         if (!sdcp)
925                 return -ENOMEM;
926
927         sdcp->dev = dev;
928         sdcp->base = devm_ioremap_resource(dev, iores);
929         if (IS_ERR(sdcp->base))
930                 return PTR_ERR(sdcp->base);
931
932
933         ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
934                                "dcp-vmi-irq", sdcp);
935         if (ret) {
936                 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
937                 return ret;
938         }
939
940         ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
941                                "dcp-irq", sdcp);
942         if (ret) {
943                 dev_err(dev, "Failed to claim DCP IRQ!\n");
944                 return ret;
945         }
946
947         /* Allocate coherent helper block. */
948         sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
949                                    GFP_KERNEL);
950         if (!sdcp->coh)
951                 return -ENOMEM;
952
953         /* Re-align the structure so it fits the DCP constraints. */
954         sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
955
956         /* Restart the DCP block. */
957         ret = stmp_reset_block(sdcp->base);
958         if (ret)
959                 return ret;
960
961         /* Initialize control register. */
962         writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
963                MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
964                sdcp->base + MXS_DCP_CTRL);
965
966         /* Enable all DCP DMA channels. */
967         writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
968                sdcp->base + MXS_DCP_CHANNELCTRL);
969
970         /*
971          * We do not enable context switching. Give the context buffer a
972          * pointer to an illegal address so if context switching is
973          * inadvertantly enabled, the DCP will return an error instead of
974          * trashing good memory. The DCP DMA cannot access ROM, so any ROM
975          * address will do.
976          */
977         writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
978         for (i = 0; i < DCP_MAX_CHANS; i++)
979                 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
980         writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
981
982         global_sdcp = sdcp;
983
984         platform_set_drvdata(pdev, sdcp);
985
986         for (i = 0; i < DCP_MAX_CHANS; i++) {
987                 mutex_init(&sdcp->mutex[i]);
988                 init_completion(&sdcp->completion[i]);
989                 crypto_init_queue(&sdcp->queue[i], 50);
990         }
991
992         /* Create the SHA and AES handler threads. */
993         sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
994                                                       NULL, "mxs_dcp_chan/sha");
995         if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
996                 dev_err(dev, "Error starting SHA thread!\n");
997                 return PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
998         }
999
1000         sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1001                                                     NULL, "mxs_dcp_chan/aes");
1002         if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1003                 dev_err(dev, "Error starting SHA thread!\n");
1004                 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1005                 goto err_destroy_sha_thread;
1006         }
1007
1008         /* Register the various crypto algorithms. */
1009         sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1010
1011         if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1012                 ret = crypto_register_algs(dcp_aes_algs,
1013                                            ARRAY_SIZE(dcp_aes_algs));
1014                 if (ret) {
1015                         /* Failed to register algorithm. */
1016                         dev_err(dev, "Failed to register AES crypto!\n");
1017                         goto err_destroy_aes_thread;
1018                 }
1019         }
1020
1021         if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1022                 ret = crypto_register_ahash(&dcp_sha1_alg);
1023                 if (ret) {
1024                         dev_err(dev, "Failed to register %s hash!\n",
1025                                 dcp_sha1_alg.halg.base.cra_name);
1026                         goto err_unregister_aes;
1027                 }
1028         }
1029
1030         if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1031                 ret = crypto_register_ahash(&dcp_sha256_alg);
1032                 if (ret) {
1033                         dev_err(dev, "Failed to register %s hash!\n",
1034                                 dcp_sha256_alg.halg.base.cra_name);
1035                         goto err_unregister_sha1;
1036                 }
1037         }
1038
1039         return 0;
1040
1041 err_unregister_sha1:
1042         if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1043                 crypto_unregister_ahash(&dcp_sha1_alg);
1044
1045 err_unregister_aes:
1046         if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1047                 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1048
1049 err_destroy_aes_thread:
1050         kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1051
1052 err_destroy_sha_thread:
1053         kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1054         return ret;
1055 }
1056
1057 static int mxs_dcp_remove(struct platform_device *pdev)
1058 {
1059         struct dcp *sdcp = platform_get_drvdata(pdev);
1060
1061         if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1062                 crypto_unregister_ahash(&dcp_sha256_alg);
1063
1064         if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1065                 crypto_unregister_ahash(&dcp_sha1_alg);
1066
1067         if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1068                 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1069
1070         kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1071         kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1072
1073         platform_set_drvdata(pdev, NULL);
1074
1075         global_sdcp = NULL;
1076
1077         return 0;
1078 }
1079
1080 static const struct of_device_id mxs_dcp_dt_ids[] = {
1081         { .compatible = "fsl,imx23-dcp", .data = NULL, },
1082         { .compatible = "fsl,imx28-dcp", .data = NULL, },
1083         { /* sentinel */ }
1084 };
1085
1086 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1087
1088 static struct platform_driver mxs_dcp_driver = {
1089         .probe  = mxs_dcp_probe,
1090         .remove = mxs_dcp_remove,
1091         .driver = {
1092                 .name           = "mxs-dcp",
1093                 .of_match_table = mxs_dcp_dt_ids,
1094         },
1095 };
1096
1097 module_platform_driver(mxs_dcp_driver);
1098
1099 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1100 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1101 MODULE_LICENSE("GPL");
1102 MODULE_ALIAS("platform:mxs-dcp");