]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/edac/edac_mc_sysfs.c
Merge remote-tracking branch 'h8300/h8300-next'
[karo-tx-linux.git] / drivers / edac / edac_mc_sysfs.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *      The entire API were re-written, and ported to use struct device
12  *
13  */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34         return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39         return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44         return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50         return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55         unsigned long l;
56         int ret;
57
58         if (!val)
59                 return -EINVAL;
60
61         ret = kstrtoul(val, 0, &l);
62         if (ret)
63                 return ret;
64
65         if (l < 1000)
66                 return -EINVAL;
67
68         *((unsigned long *)kp->arg) = l;
69
70         /* notify edac_mc engine to reset the poll period */
71         edac_mc_reset_delay_period(l);
72
73         return 0;
74 }
75
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81                  "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84                  "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86                   &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88
89 static struct device *mci_pdev;
90
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const mem_types[] = {
95         [MEM_EMPTY] = "Empty",
96         [MEM_RESERVED] = "Reserved",
97         [MEM_UNKNOWN] = "Unknown",
98         [MEM_FPM] = "FPM",
99         [MEM_EDO] = "EDO",
100         [MEM_BEDO] = "BEDO",
101         [MEM_SDR] = "Unbuffered-SDR",
102         [MEM_RDR] = "Registered-SDR",
103         [MEM_DDR] = "Unbuffered-DDR",
104         [MEM_RDDR] = "Registered-DDR",
105         [MEM_RMBS] = "RMBS",
106         [MEM_DDR2] = "Unbuffered-DDR2",
107         [MEM_FB_DDR2] = "FullyBuffered-DDR2",
108         [MEM_RDDR2] = "Registered-DDR2",
109         [MEM_XDR] = "XDR",
110         [MEM_DDR3] = "Unbuffered-DDR3",
111         [MEM_RDDR3] = "Registered-DDR3",
112         [MEM_DDR4] = "Unbuffered-DDR4",
113         [MEM_RDDR4] = "Registered-DDR4"
114 };
115
116 static const char * const dev_types[] = {
117         [DEV_UNKNOWN] = "Unknown",
118         [DEV_X1] = "x1",
119         [DEV_X2] = "x2",
120         [DEV_X4] = "x4",
121         [DEV_X8] = "x8",
122         [DEV_X16] = "x16",
123         [DEV_X32] = "x32",
124         [DEV_X64] = "x64"
125 };
126
127 static const char * const edac_caps[] = {
128         [EDAC_UNKNOWN] = "Unknown",
129         [EDAC_NONE] = "None",
130         [EDAC_RESERVED] = "Reserved",
131         [EDAC_PARITY] = "PARITY",
132         [EDAC_EC] = "EC",
133         [EDAC_SECDED] = "SECDED",
134         [EDAC_S2ECD2ED] = "S2ECD2ED",
135         [EDAC_S4ECD4ED] = "S4ECD4ED",
136         [EDAC_S8ECD8ED] = "S8ECD8ED",
137         [EDAC_S16ECD16ED] = "S16ECD16ED"
138 };
139
140 #ifdef CONFIG_EDAC_LEGACY_SYSFS
141 /*
142  * EDAC sysfs CSROW data structures and methods
143  */
144
145 #define to_csrow(k) container_of(k, struct csrow_info, dev)
146
147 /*
148  * We need it to avoid namespace conflicts between the legacy API
149  * and the per-dimm/per-rank one
150  */
151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
152         static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
153
154 struct dev_ch_attribute {
155         struct device_attribute attr;
156         int channel;
157 };
158
159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
160         static struct dev_ch_attribute dev_attr_legacy_##_name = \
161                 { __ATTR(_name, _mode, _show, _store), (_var) }
162
163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
164
165 /* Set of more default csrow<id> attribute show/store functions */
166 static ssize_t csrow_ue_count_show(struct device *dev,
167                                    struct device_attribute *mattr, char *data)
168 {
169         struct csrow_info *csrow = to_csrow(dev);
170
171         return sprintf(data, "%u\n", csrow->ue_count);
172 }
173
174 static ssize_t csrow_ce_count_show(struct device *dev,
175                                    struct device_attribute *mattr, char *data)
176 {
177         struct csrow_info *csrow = to_csrow(dev);
178
179         return sprintf(data, "%u\n", csrow->ce_count);
180 }
181
182 static ssize_t csrow_size_show(struct device *dev,
183                                struct device_attribute *mattr, char *data)
184 {
185         struct csrow_info *csrow = to_csrow(dev);
186         int i;
187         u32 nr_pages = 0;
188
189         for (i = 0; i < csrow->nr_channels; i++)
190                 nr_pages += csrow->channels[i]->dimm->nr_pages;
191         return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
192 }
193
194 static ssize_t csrow_mem_type_show(struct device *dev,
195                                    struct device_attribute *mattr, char *data)
196 {
197         struct csrow_info *csrow = to_csrow(dev);
198
199         return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
200 }
201
202 static ssize_t csrow_dev_type_show(struct device *dev,
203                                    struct device_attribute *mattr, char *data)
204 {
205         struct csrow_info *csrow = to_csrow(dev);
206
207         return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
208 }
209
210 static ssize_t csrow_edac_mode_show(struct device *dev,
211                                     struct device_attribute *mattr,
212                                     char *data)
213 {
214         struct csrow_info *csrow = to_csrow(dev);
215
216         return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
217 }
218
219 /* show/store functions for DIMM Label attributes */
220 static ssize_t channel_dimm_label_show(struct device *dev,
221                                        struct device_attribute *mattr,
222                                        char *data)
223 {
224         struct csrow_info *csrow = to_csrow(dev);
225         unsigned chan = to_channel(mattr);
226         struct rank_info *rank = csrow->channels[chan];
227
228         /* if field has not been initialized, there is nothing to send */
229         if (!rank->dimm->label[0])
230                 return 0;
231
232         return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
233                         rank->dimm->label);
234 }
235
236 static ssize_t channel_dimm_label_store(struct device *dev,
237                                         struct device_attribute *mattr,
238                                         const char *data, size_t count)
239 {
240         struct csrow_info *csrow = to_csrow(dev);
241         unsigned chan = to_channel(mattr);
242         struct rank_info *rank = csrow->channels[chan];
243         size_t copy_count = count;
244
245         if (count == 0)
246                 return -EINVAL;
247
248         if (data[count - 1] == '\0' || data[count - 1] == '\n')
249                 copy_count -= 1;
250
251         if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
252                 return -EINVAL;
253
254         strncpy(rank->dimm->label, data, copy_count);
255         rank->dimm->label[copy_count] = '\0';
256
257         return count;
258 }
259
260 /* show function for dynamic chX_ce_count attribute */
261 static ssize_t channel_ce_count_show(struct device *dev,
262                                      struct device_attribute *mattr, char *data)
263 {
264         struct csrow_info *csrow = to_csrow(dev);
265         unsigned chan = to_channel(mattr);
266         struct rank_info *rank = csrow->channels[chan];
267
268         return sprintf(data, "%u\n", rank->ce_count);
269 }
270
271 /* cwrow<id>/attribute files */
272 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
273 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
274 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
275 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
276 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
277 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
278
279 /* default attributes of the CSROW<id> object */
280 static struct attribute *csrow_attrs[] = {
281         &dev_attr_legacy_dev_type.attr,
282         &dev_attr_legacy_mem_type.attr,
283         &dev_attr_legacy_edac_mode.attr,
284         &dev_attr_legacy_size_mb.attr,
285         &dev_attr_legacy_ue_count.attr,
286         &dev_attr_legacy_ce_count.attr,
287         NULL,
288 };
289
290 static struct attribute_group csrow_attr_grp = {
291         .attrs  = csrow_attrs,
292 };
293
294 static const struct attribute_group *csrow_attr_groups[] = {
295         &csrow_attr_grp,
296         NULL
297 };
298
299 static void csrow_attr_release(struct device *dev)
300 {
301         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
302
303         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
304         kfree(csrow);
305 }
306
307 static struct device_type csrow_attr_type = {
308         .groups         = csrow_attr_groups,
309         .release        = csrow_attr_release,
310 };
311
312 /*
313  * possible dynamic channel DIMM Label attribute files
314  *
315  */
316
317 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
318         channel_dimm_label_show, channel_dimm_label_store, 0);
319 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
320         channel_dimm_label_show, channel_dimm_label_store, 1);
321 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
322         channel_dimm_label_show, channel_dimm_label_store, 2);
323 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
324         channel_dimm_label_show, channel_dimm_label_store, 3);
325 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
326         channel_dimm_label_show, channel_dimm_label_store, 4);
327 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
328         channel_dimm_label_show, channel_dimm_label_store, 5);
329
330 /* Total possible dynamic DIMM Label attribute file table */
331 static struct attribute *dynamic_csrow_dimm_attr[] = {
332         &dev_attr_legacy_ch0_dimm_label.attr.attr,
333         &dev_attr_legacy_ch1_dimm_label.attr.attr,
334         &dev_attr_legacy_ch2_dimm_label.attr.attr,
335         &dev_attr_legacy_ch3_dimm_label.attr.attr,
336         &dev_attr_legacy_ch4_dimm_label.attr.attr,
337         &dev_attr_legacy_ch5_dimm_label.attr.attr,
338         NULL
339 };
340
341 /* possible dynamic channel ce_count attribute files */
342 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
343                    channel_ce_count_show, NULL, 0);
344 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
345                    channel_ce_count_show, NULL, 1);
346 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
347                    channel_ce_count_show, NULL, 2);
348 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
349                    channel_ce_count_show, NULL, 3);
350 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
351                    channel_ce_count_show, NULL, 4);
352 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
353                    channel_ce_count_show, NULL, 5);
354
355 /* Total possible dynamic ce_count attribute file table */
356 static struct attribute *dynamic_csrow_ce_count_attr[] = {
357         &dev_attr_legacy_ch0_ce_count.attr.attr,
358         &dev_attr_legacy_ch1_ce_count.attr.attr,
359         &dev_attr_legacy_ch2_ce_count.attr.attr,
360         &dev_attr_legacy_ch3_ce_count.attr.attr,
361         &dev_attr_legacy_ch4_ce_count.attr.attr,
362         &dev_attr_legacy_ch5_ce_count.attr.attr,
363         NULL
364 };
365
366 static umode_t csrow_dev_is_visible(struct kobject *kobj,
367                                     struct attribute *attr, int idx)
368 {
369         struct device *dev = kobj_to_dev(kobj);
370         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
371
372         if (idx >= csrow->nr_channels)
373                 return 0;
374         /* Only expose populated DIMMs */
375         if (!csrow->channels[idx]->dimm->nr_pages)
376                 return 0;
377         return attr->mode;
378 }
379
380
381 static const struct attribute_group csrow_dev_dimm_group = {
382         .attrs = dynamic_csrow_dimm_attr,
383         .is_visible = csrow_dev_is_visible,
384 };
385
386 static const struct attribute_group csrow_dev_ce_count_group = {
387         .attrs = dynamic_csrow_ce_count_attr,
388         .is_visible = csrow_dev_is_visible,
389 };
390
391 static const struct attribute_group *csrow_dev_groups[] = {
392         &csrow_dev_dimm_group,
393         &csrow_dev_ce_count_group,
394         NULL
395 };
396
397 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
398 {
399         int chan, nr_pages = 0;
400
401         for (chan = 0; chan < csrow->nr_channels; chan++)
402                 nr_pages += csrow->channels[chan]->dimm->nr_pages;
403
404         return nr_pages;
405 }
406
407 /* Create a CSROW object under specifed edac_mc_device */
408 static int edac_create_csrow_object(struct mem_ctl_info *mci,
409                                     struct csrow_info *csrow, int index)
410 {
411         csrow->dev.type = &csrow_attr_type;
412         csrow->dev.bus = mci->bus;
413         csrow->dev.groups = csrow_dev_groups;
414         device_initialize(&csrow->dev);
415         csrow->dev.parent = &mci->dev;
416         csrow->mci = mci;
417         dev_set_name(&csrow->dev, "csrow%d", index);
418         dev_set_drvdata(&csrow->dev, csrow);
419
420         edac_dbg(0, "creating (virtual) csrow node %s\n",
421                  dev_name(&csrow->dev));
422
423         return device_add(&csrow->dev);
424 }
425
426 /* Create a CSROW object under specifed edac_mc_device */
427 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
428 {
429         int err, i;
430         struct csrow_info *csrow;
431
432         for (i = 0; i < mci->nr_csrows; i++) {
433                 csrow = mci->csrows[i];
434                 if (!nr_pages_per_csrow(csrow))
435                         continue;
436                 err = edac_create_csrow_object(mci, mci->csrows[i], i);
437                 if (err < 0) {
438                         edac_dbg(1,
439                                  "failure: create csrow objects for csrow %d\n",
440                                  i);
441                         goto error;
442                 }
443         }
444         return 0;
445
446 error:
447         for (--i; i >= 0; i--) {
448                 csrow = mci->csrows[i];
449                 if (!nr_pages_per_csrow(csrow))
450                         continue;
451                 put_device(&mci->csrows[i]->dev);
452         }
453
454         return err;
455 }
456
457 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
458 {
459         int i;
460         struct csrow_info *csrow;
461
462         for (i = mci->nr_csrows - 1; i >= 0; i--) {
463                 csrow = mci->csrows[i];
464                 if (!nr_pages_per_csrow(csrow))
465                         continue;
466                 device_unregister(&mci->csrows[i]->dev);
467         }
468 }
469 #endif
470
471 /*
472  * Per-dimm (or per-rank) devices
473  */
474
475 #define to_dimm(k) container_of(k, struct dimm_info, dev)
476
477 /* show/store functions for DIMM Label attributes */
478 static ssize_t dimmdev_location_show(struct device *dev,
479                                      struct device_attribute *mattr, char *data)
480 {
481         struct dimm_info *dimm = to_dimm(dev);
482
483         return edac_dimm_info_location(dimm, data, PAGE_SIZE);
484 }
485
486 static ssize_t dimmdev_label_show(struct device *dev,
487                                   struct device_attribute *mattr, char *data)
488 {
489         struct dimm_info *dimm = to_dimm(dev);
490
491         /* if field has not been initialized, there is nothing to send */
492         if (!dimm->label[0])
493                 return 0;
494
495         return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
496 }
497
498 static ssize_t dimmdev_label_store(struct device *dev,
499                                    struct device_attribute *mattr,
500                                    const char *data,
501                                    size_t count)
502 {
503         struct dimm_info *dimm = to_dimm(dev);
504         size_t copy_count = count;
505
506         if (count == 0)
507                 return -EINVAL;
508
509         if (data[count - 1] == '\0' || data[count - 1] == '\n')
510                 copy_count -= 1;
511
512         if (copy_count == 0 || copy_count >= sizeof(dimm->label))
513                 return -EINVAL;
514
515         strncpy(dimm->label, data, copy_count);
516         dimm->label[copy_count] = '\0';
517
518         return count;
519 }
520
521 static ssize_t dimmdev_size_show(struct device *dev,
522                                  struct device_attribute *mattr, char *data)
523 {
524         struct dimm_info *dimm = to_dimm(dev);
525
526         return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
527 }
528
529 static ssize_t dimmdev_mem_type_show(struct device *dev,
530                                      struct device_attribute *mattr, char *data)
531 {
532         struct dimm_info *dimm = to_dimm(dev);
533
534         return sprintf(data, "%s\n", mem_types[dimm->mtype]);
535 }
536
537 static ssize_t dimmdev_dev_type_show(struct device *dev,
538                                      struct device_attribute *mattr, char *data)
539 {
540         struct dimm_info *dimm = to_dimm(dev);
541
542         return sprintf(data, "%s\n", dev_types[dimm->dtype]);
543 }
544
545 static ssize_t dimmdev_edac_mode_show(struct device *dev,
546                                       struct device_attribute *mattr,
547                                       char *data)
548 {
549         struct dimm_info *dimm = to_dimm(dev);
550
551         return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
552 }
553
554 /* dimm/rank attribute files */
555 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
556                    dimmdev_label_show, dimmdev_label_store);
557 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
558 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
559 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
560 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
561 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
562
563 /* attributes of the dimm<id>/rank<id> object */
564 static struct attribute *dimm_attrs[] = {
565         &dev_attr_dimm_label.attr,
566         &dev_attr_dimm_location.attr,
567         &dev_attr_size.attr,
568         &dev_attr_dimm_mem_type.attr,
569         &dev_attr_dimm_dev_type.attr,
570         &dev_attr_dimm_edac_mode.attr,
571         NULL,
572 };
573
574 static struct attribute_group dimm_attr_grp = {
575         .attrs  = dimm_attrs,
576 };
577
578 static const struct attribute_group *dimm_attr_groups[] = {
579         &dimm_attr_grp,
580         NULL
581 };
582
583 static void dimm_attr_release(struct device *dev)
584 {
585         struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
586
587         edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
588         kfree(dimm);
589 }
590
591 static struct device_type dimm_attr_type = {
592         .groups         = dimm_attr_groups,
593         .release        = dimm_attr_release,
594 };
595
596 /* Create a DIMM object under specifed memory controller device */
597 static int edac_create_dimm_object(struct mem_ctl_info *mci,
598                                    struct dimm_info *dimm,
599                                    int index)
600 {
601         int err;
602         dimm->mci = mci;
603
604         dimm->dev.type = &dimm_attr_type;
605         dimm->dev.bus = mci->bus;
606         device_initialize(&dimm->dev);
607
608         dimm->dev.parent = &mci->dev;
609         if (mci->csbased)
610                 dev_set_name(&dimm->dev, "rank%d", index);
611         else
612                 dev_set_name(&dimm->dev, "dimm%d", index);
613         dev_set_drvdata(&dimm->dev, dimm);
614         pm_runtime_forbid(&mci->dev);
615
616         err =  device_add(&dimm->dev);
617
618         edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
619
620         return err;
621 }
622
623 /*
624  * Memory controller device
625  */
626
627 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
628
629 static ssize_t mci_reset_counters_store(struct device *dev,
630                                         struct device_attribute *mattr,
631                                         const char *data, size_t count)
632 {
633         struct mem_ctl_info *mci = to_mci(dev);
634         int cnt, row, chan, i;
635         mci->ue_mc = 0;
636         mci->ce_mc = 0;
637         mci->ue_noinfo_count = 0;
638         mci->ce_noinfo_count = 0;
639
640         for (row = 0; row < mci->nr_csrows; row++) {
641                 struct csrow_info *ri = mci->csrows[row];
642
643                 ri->ue_count = 0;
644                 ri->ce_count = 0;
645
646                 for (chan = 0; chan < ri->nr_channels; chan++)
647                         ri->channels[chan]->ce_count = 0;
648         }
649
650         cnt = 1;
651         for (i = 0; i < mci->n_layers; i++) {
652                 cnt *= mci->layers[i].size;
653                 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
654                 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
655         }
656
657         mci->start_time = jiffies;
658         return count;
659 }
660
661 /* Memory scrubbing interface:
662  *
663  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
664  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
665  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
666  *
667  * Negative value still means that an error has occurred while setting
668  * the scrub rate.
669  */
670 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
671                                           struct device_attribute *mattr,
672                                           const char *data, size_t count)
673 {
674         struct mem_ctl_info *mci = to_mci(dev);
675         unsigned long bandwidth = 0;
676         int new_bw = 0;
677
678         if (kstrtoul(data, 10, &bandwidth) < 0)
679                 return -EINVAL;
680
681         new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
682         if (new_bw < 0) {
683                 edac_printk(KERN_WARNING, EDAC_MC,
684                             "Error setting scrub rate to: %lu\n", bandwidth);
685                 return -EINVAL;
686         }
687
688         return count;
689 }
690
691 /*
692  * ->get_sdram_scrub_rate() return value semantics same as above.
693  */
694 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
695                                          struct device_attribute *mattr,
696                                          char *data)
697 {
698         struct mem_ctl_info *mci = to_mci(dev);
699         int bandwidth = 0;
700
701         bandwidth = mci->get_sdram_scrub_rate(mci);
702         if (bandwidth < 0) {
703                 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
704                 return bandwidth;
705         }
706
707         return sprintf(data, "%d\n", bandwidth);
708 }
709
710 /* default attribute files for the MCI object */
711 static ssize_t mci_ue_count_show(struct device *dev,
712                                  struct device_attribute *mattr,
713                                  char *data)
714 {
715         struct mem_ctl_info *mci = to_mci(dev);
716
717         return sprintf(data, "%d\n", mci->ue_mc);
718 }
719
720 static ssize_t mci_ce_count_show(struct device *dev,
721                                  struct device_attribute *mattr,
722                                  char *data)
723 {
724         struct mem_ctl_info *mci = to_mci(dev);
725
726         return sprintf(data, "%d\n", mci->ce_mc);
727 }
728
729 static ssize_t mci_ce_noinfo_show(struct device *dev,
730                                   struct device_attribute *mattr,
731                                   char *data)
732 {
733         struct mem_ctl_info *mci = to_mci(dev);
734
735         return sprintf(data, "%d\n", mci->ce_noinfo_count);
736 }
737
738 static ssize_t mci_ue_noinfo_show(struct device *dev,
739                                   struct device_attribute *mattr,
740                                   char *data)
741 {
742         struct mem_ctl_info *mci = to_mci(dev);
743
744         return sprintf(data, "%d\n", mci->ue_noinfo_count);
745 }
746
747 static ssize_t mci_seconds_show(struct device *dev,
748                                 struct device_attribute *mattr,
749                                 char *data)
750 {
751         struct mem_ctl_info *mci = to_mci(dev);
752
753         return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
754 }
755
756 static ssize_t mci_ctl_name_show(struct device *dev,
757                                  struct device_attribute *mattr,
758                                  char *data)
759 {
760         struct mem_ctl_info *mci = to_mci(dev);
761
762         return sprintf(data, "%s\n", mci->ctl_name);
763 }
764
765 static ssize_t mci_size_mb_show(struct device *dev,
766                                 struct device_attribute *mattr,
767                                 char *data)
768 {
769         struct mem_ctl_info *mci = to_mci(dev);
770         int total_pages = 0, csrow_idx, j;
771
772         for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
773                 struct csrow_info *csrow = mci->csrows[csrow_idx];
774
775                 for (j = 0; j < csrow->nr_channels; j++) {
776                         struct dimm_info *dimm = csrow->channels[j]->dimm;
777
778                         total_pages += dimm->nr_pages;
779                 }
780         }
781
782         return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
783 }
784
785 static ssize_t mci_max_location_show(struct device *dev,
786                                      struct device_attribute *mattr,
787                                      char *data)
788 {
789         struct mem_ctl_info *mci = to_mci(dev);
790         int i;
791         char *p = data;
792
793         for (i = 0; i < mci->n_layers; i++) {
794                 p += sprintf(p, "%s %d ",
795                              edac_layer_name[mci->layers[i].type],
796                              mci->layers[i].size - 1);
797         }
798
799         return p - data;
800 }
801
802 /* default Control file */
803 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
804
805 /* default Attribute files */
806 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
807 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
808 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
809 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
810 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
811 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
812 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
813 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
814
815 /* memory scrubber attribute file */
816 DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
817             mci_sdram_scrub_rate_store); /* umode set later in is_visible */
818
819 static struct attribute *mci_attrs[] = {
820         &dev_attr_reset_counters.attr,
821         &dev_attr_mc_name.attr,
822         &dev_attr_size_mb.attr,
823         &dev_attr_seconds_since_reset.attr,
824         &dev_attr_ue_noinfo_count.attr,
825         &dev_attr_ce_noinfo_count.attr,
826         &dev_attr_ue_count.attr,
827         &dev_attr_ce_count.attr,
828         &dev_attr_max_location.attr,
829         &dev_attr_sdram_scrub_rate.attr,
830         NULL
831 };
832
833 static umode_t mci_attr_is_visible(struct kobject *kobj,
834                                    struct attribute *attr, int idx)
835 {
836         struct device *dev = kobj_to_dev(kobj);
837         struct mem_ctl_info *mci = to_mci(dev);
838         umode_t mode = 0;
839
840         if (attr != &dev_attr_sdram_scrub_rate.attr)
841                 return attr->mode;
842         if (mci->get_sdram_scrub_rate)
843                 mode |= S_IRUGO;
844         if (mci->set_sdram_scrub_rate)
845                 mode |= S_IWUSR;
846         return mode;
847 }
848
849 static struct attribute_group mci_attr_grp = {
850         .attrs  = mci_attrs,
851         .is_visible = mci_attr_is_visible,
852 };
853
854 static const struct attribute_group *mci_attr_groups[] = {
855         &mci_attr_grp,
856         NULL
857 };
858
859 static void mci_attr_release(struct device *dev)
860 {
861         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
862
863         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
864         kfree(mci);
865 }
866
867 static struct device_type mci_attr_type = {
868         .groups         = mci_attr_groups,
869         .release        = mci_attr_release,
870 };
871
872 /*
873  * Create a new Memory Controller kobject instance,
874  *      mc<id> under the 'mc' directory
875  *
876  * Return:
877  *      0       Success
878  *      !0      Failure
879  */
880 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
881                                  const struct attribute_group **groups)
882 {
883         int i, err;
884
885         /*
886          * The memory controller needs its own bus, in order to avoid
887          * namespace conflicts at /sys/bus/edac.
888          */
889         mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
890         if (!mci->bus->name)
891                 return -ENOMEM;
892
893         edac_dbg(0, "creating bus %s\n", mci->bus->name);
894
895         err = bus_register(mci->bus);
896         if (err < 0)
897                 goto fail_free_name;
898
899         /* get the /sys/devices/system/edac subsys reference */
900         mci->dev.type = &mci_attr_type;
901         device_initialize(&mci->dev);
902
903         mci->dev.parent = mci_pdev;
904         mci->dev.bus = mci->bus;
905         mci->dev.groups = groups;
906         dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
907         dev_set_drvdata(&mci->dev, mci);
908         pm_runtime_forbid(&mci->dev);
909
910         edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
911         err = device_add(&mci->dev);
912         if (err < 0) {
913                 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
914                 goto fail_unregister_bus;
915         }
916
917         /*
918          * Create the dimm/rank devices
919          */
920         for (i = 0; i < mci->tot_dimms; i++) {
921                 struct dimm_info *dimm = mci->dimms[i];
922                 /* Only expose populated DIMMs */
923                 if (!dimm->nr_pages)
924                         continue;
925
926 #ifdef CONFIG_EDAC_DEBUG
927                 edac_dbg(1, "creating dimm%d, located at ", i);
928                 if (edac_debug_level >= 1) {
929                         int lay;
930                         for (lay = 0; lay < mci->n_layers; lay++)
931                                 printk(KERN_CONT "%s %d ",
932                                         edac_layer_name[mci->layers[lay].type],
933                                         dimm->location[lay]);
934                         printk(KERN_CONT "\n");
935                 }
936 #endif
937                 err = edac_create_dimm_object(mci, dimm, i);
938                 if (err) {
939                         edac_dbg(1, "failure: create dimm %d obj\n", i);
940                         goto fail_unregister_dimm;
941                 }
942         }
943
944 #ifdef CONFIG_EDAC_LEGACY_SYSFS
945         err = edac_create_csrow_objects(mci);
946         if (err < 0)
947                 goto fail_unregister_dimm;
948 #endif
949
950         edac_create_debugfs_nodes(mci);
951         return 0;
952
953 fail_unregister_dimm:
954         for (i--; i >= 0; i--) {
955                 struct dimm_info *dimm = mci->dimms[i];
956                 if (!dimm->nr_pages)
957                         continue;
958
959                 device_unregister(&dimm->dev);
960         }
961         device_unregister(&mci->dev);
962 fail_unregister_bus:
963         bus_unregister(mci->bus);
964 fail_free_name:
965         kfree(mci->bus->name);
966         return err;
967 }
968
969 /*
970  * remove a Memory Controller instance
971  */
972 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
973 {
974         int i;
975
976         edac_dbg(0, "\n");
977
978 #ifdef CONFIG_EDAC_DEBUG
979         edac_debugfs_remove_recursive(mci->debugfs);
980 #endif
981 #ifdef CONFIG_EDAC_LEGACY_SYSFS
982         edac_delete_csrow_objects(mci);
983 #endif
984
985         for (i = 0; i < mci->tot_dimms; i++) {
986                 struct dimm_info *dimm = mci->dimms[i];
987                 if (dimm->nr_pages == 0)
988                         continue;
989                 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
990                 device_unregister(&dimm->dev);
991         }
992 }
993
994 void edac_unregister_sysfs(struct mem_ctl_info *mci)
995 {
996         edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
997         device_unregister(&mci->dev);
998         bus_unregister(mci->bus);
999         kfree(mci->bus->name);
1000 }
1001
1002 static void mc_attr_release(struct device *dev)
1003 {
1004         /*
1005          * There's no container structure here, as this is just the mci
1006          * parent device, used to create the /sys/devices/mc sysfs node.
1007          * So, there are no attributes on it.
1008          */
1009         edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1010         kfree(dev);
1011 }
1012
1013 static struct device_type mc_attr_type = {
1014         .release        = mc_attr_release,
1015 };
1016 /*
1017  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1018  */
1019 int __init edac_mc_sysfs_init(void)
1020 {
1021         struct bus_type *edac_subsys;
1022         int err;
1023
1024         /* get the /sys/devices/system/edac subsys reference */
1025         edac_subsys = edac_get_sysfs_subsys();
1026         if (edac_subsys == NULL) {
1027                 edac_dbg(1, "no edac_subsys\n");
1028                 err = -EINVAL;
1029                 goto out;
1030         }
1031
1032         mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1033         if (!mci_pdev) {
1034                 err = -ENOMEM;
1035                 goto out_put_sysfs;
1036         }
1037
1038         mci_pdev->bus = edac_subsys;
1039         mci_pdev->type = &mc_attr_type;
1040         device_initialize(mci_pdev);
1041         dev_set_name(mci_pdev, "mc");
1042
1043         err = device_add(mci_pdev);
1044         if (err < 0)
1045                 goto out_dev_free;
1046
1047         edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1048
1049         return 0;
1050
1051  out_dev_free:
1052         kfree(mci_pdev);
1053  out_put_sysfs:
1054         edac_put_sysfs_subsys();
1055  out:
1056         return err;
1057 }
1058
1059 void edac_mc_sysfs_exit(void)
1060 {
1061         device_unregister(mci_pdev);
1062         edac_put_sysfs_subsys();
1063 }