]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_spt[HPD_NUM_PINS] = {
65         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
66         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
67         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
68         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
69 };
70
71 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
72         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
73         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
74         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
75         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
76         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
77         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
78 };
79
80 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
81         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
82         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
83         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
84         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
85         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
86         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
87 };
88
89 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
90         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
91         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
92         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
93         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
94         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
95         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
96 };
97
98 /* BXT hpd list */
99 static const u32 hpd_bxt[HPD_NUM_PINS] = {
100         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
101         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
102 };
103
104 /* IIR can theoretically queue up two events. Be paranoid. */
105 #define GEN8_IRQ_RESET_NDX(type, which) do { \
106         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
107         POSTING_READ(GEN8_##type##_IMR(which)); \
108         I915_WRITE(GEN8_##type##_IER(which), 0); \
109         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
110         POSTING_READ(GEN8_##type##_IIR(which)); \
111         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
112         POSTING_READ(GEN8_##type##_IIR(which)); \
113 } while (0)
114
115 #define GEN5_IRQ_RESET(type) do { \
116         I915_WRITE(type##IMR, 0xffffffff); \
117         POSTING_READ(type##IMR); \
118         I915_WRITE(type##IER, 0); \
119         I915_WRITE(type##IIR, 0xffffffff); \
120         POSTING_READ(type##IIR); \
121         I915_WRITE(type##IIR, 0xffffffff); \
122         POSTING_READ(type##IIR); \
123 } while (0)
124
125 /*
126  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
127  */
128 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
129         u32 val = I915_READ(reg); \
130         if (val) { \
131                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
132                      (reg), val); \
133                 I915_WRITE((reg), 0xffffffff); \
134                 POSTING_READ(reg); \
135                 I915_WRITE((reg), 0xffffffff); \
136                 POSTING_READ(reg); \
137         } \
138 } while (0)
139
140 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
141         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
142         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
143         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
144         POSTING_READ(GEN8_##type##_IMR(which)); \
145 } while (0)
146
147 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
148         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
149         I915_WRITE(type##IER, (ier_val)); \
150         I915_WRITE(type##IMR, (imr_val)); \
151         POSTING_READ(type##IMR); \
152 } while (0)
153
154 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
155
156 /* For display hotplug interrupt */
157 void
158 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
159 {
160         assert_spin_locked(&dev_priv->irq_lock);
161
162         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
163                 return;
164
165         if ((dev_priv->irq_mask & mask) != 0) {
166                 dev_priv->irq_mask &= ~mask;
167                 I915_WRITE(DEIMR, dev_priv->irq_mask);
168                 POSTING_READ(DEIMR);
169         }
170 }
171
172 void
173 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
174 {
175         assert_spin_locked(&dev_priv->irq_lock);
176
177         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
178                 return;
179
180         if ((dev_priv->irq_mask & mask) != mask) {
181                 dev_priv->irq_mask |= mask;
182                 I915_WRITE(DEIMR, dev_priv->irq_mask);
183                 POSTING_READ(DEIMR);
184         }
185 }
186
187 /**
188  * ilk_update_gt_irq - update GTIMR
189  * @dev_priv: driver private
190  * @interrupt_mask: mask of interrupt bits to update
191  * @enabled_irq_mask: mask of interrupt bits to enable
192  */
193 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
194                               uint32_t interrupt_mask,
195                               uint32_t enabled_irq_mask)
196 {
197         assert_spin_locked(&dev_priv->irq_lock);
198
199         WARN_ON(enabled_irq_mask & ~interrupt_mask);
200
201         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
202                 return;
203
204         dev_priv->gt_irq_mask &= ~interrupt_mask;
205         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
206         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
207         POSTING_READ(GTIMR);
208 }
209
210 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
211 {
212         ilk_update_gt_irq(dev_priv, mask, mask);
213 }
214
215 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
216 {
217         ilk_update_gt_irq(dev_priv, mask, 0);
218 }
219
220 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
221 {
222         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
223 }
224
225 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
226 {
227         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
228 }
229
230 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
231 {
232         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
233 }
234
235 /**
236   * snb_update_pm_irq - update GEN6_PMIMR
237   * @dev_priv: driver private
238   * @interrupt_mask: mask of interrupt bits to update
239   * @enabled_irq_mask: mask of interrupt bits to enable
240   */
241 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
242                               uint32_t interrupt_mask,
243                               uint32_t enabled_irq_mask)
244 {
245         uint32_t new_val;
246
247         WARN_ON(enabled_irq_mask & ~interrupt_mask);
248
249         assert_spin_locked(&dev_priv->irq_lock);
250
251         new_val = dev_priv->pm_irq_mask;
252         new_val &= ~interrupt_mask;
253         new_val |= (~enabled_irq_mask & interrupt_mask);
254
255         if (new_val != dev_priv->pm_irq_mask) {
256                 dev_priv->pm_irq_mask = new_val;
257                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
258                 POSTING_READ(gen6_pm_imr(dev_priv));
259         }
260 }
261
262 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
263 {
264         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
265                 return;
266
267         snb_update_pm_irq(dev_priv, mask, mask);
268 }
269
270 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
271                                   uint32_t mask)
272 {
273         snb_update_pm_irq(dev_priv, mask, 0);
274 }
275
276 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
277 {
278         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
279                 return;
280
281         __gen6_disable_pm_irq(dev_priv, mask);
282 }
283
284 void gen6_reset_rps_interrupts(struct drm_device *dev)
285 {
286         struct drm_i915_private *dev_priv = dev->dev_private;
287         uint32_t reg = gen6_pm_iir(dev_priv);
288
289         spin_lock_irq(&dev_priv->irq_lock);
290         I915_WRITE(reg, dev_priv->pm_rps_events);
291         I915_WRITE(reg, dev_priv->pm_rps_events);
292         POSTING_READ(reg);
293         dev_priv->rps.pm_iir = 0;
294         spin_unlock_irq(&dev_priv->irq_lock);
295 }
296
297 void gen6_enable_rps_interrupts(struct drm_device *dev)
298 {
299         struct drm_i915_private *dev_priv = dev->dev_private;
300
301         spin_lock_irq(&dev_priv->irq_lock);
302
303         WARN_ON(dev_priv->rps.pm_iir);
304         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
305         dev_priv->rps.interrupts_enabled = true;
306         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
307                                 dev_priv->pm_rps_events);
308         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
309
310         spin_unlock_irq(&dev_priv->irq_lock);
311 }
312
313 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
314 {
315         /*
316          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
317          * if GEN6_PM_UP_EI_EXPIRED is masked.
318          *
319          * TODO: verify if this can be reproduced on VLV,CHV.
320          */
321         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
322                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
323
324         if (INTEL_INFO(dev_priv)->gen >= 8)
325                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
326
327         return mask;
328 }
329
330 void gen6_disable_rps_interrupts(struct drm_device *dev)
331 {
332         struct drm_i915_private *dev_priv = dev->dev_private;
333
334         spin_lock_irq(&dev_priv->irq_lock);
335         dev_priv->rps.interrupts_enabled = false;
336         spin_unlock_irq(&dev_priv->irq_lock);
337
338         cancel_work_sync(&dev_priv->rps.work);
339
340         spin_lock_irq(&dev_priv->irq_lock);
341
342         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
343
344         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
345         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
346                                 ~dev_priv->pm_rps_events);
347
348         spin_unlock_irq(&dev_priv->irq_lock);
349
350         synchronize_irq(dev->irq);
351 }
352
353 /**
354  * ibx_display_interrupt_update - update SDEIMR
355  * @dev_priv: driver private
356  * @interrupt_mask: mask of interrupt bits to update
357  * @enabled_irq_mask: mask of interrupt bits to enable
358  */
359 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
360                                   uint32_t interrupt_mask,
361                                   uint32_t enabled_irq_mask)
362 {
363         uint32_t sdeimr = I915_READ(SDEIMR);
364         sdeimr &= ~interrupt_mask;
365         sdeimr |= (~enabled_irq_mask & interrupt_mask);
366
367         WARN_ON(enabled_irq_mask & ~interrupt_mask);
368
369         assert_spin_locked(&dev_priv->irq_lock);
370
371         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
372                 return;
373
374         I915_WRITE(SDEIMR, sdeimr);
375         POSTING_READ(SDEIMR);
376 }
377
378 static void
379 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
380                        u32 enable_mask, u32 status_mask)
381 {
382         u32 reg = PIPESTAT(pipe);
383         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
384
385         assert_spin_locked(&dev_priv->irq_lock);
386         WARN_ON(!intel_irqs_enabled(dev_priv));
387
388         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
389                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
390                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
391                       pipe_name(pipe), enable_mask, status_mask))
392                 return;
393
394         if ((pipestat & enable_mask) == enable_mask)
395                 return;
396
397         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
398
399         /* Enable the interrupt, clear any pending status */
400         pipestat |= enable_mask | status_mask;
401         I915_WRITE(reg, pipestat);
402         POSTING_READ(reg);
403 }
404
405 static void
406 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
407                         u32 enable_mask, u32 status_mask)
408 {
409         u32 reg = PIPESTAT(pipe);
410         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
411
412         assert_spin_locked(&dev_priv->irq_lock);
413         WARN_ON(!intel_irqs_enabled(dev_priv));
414
415         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
416                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
417                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
418                       pipe_name(pipe), enable_mask, status_mask))
419                 return;
420
421         if ((pipestat & enable_mask) == 0)
422                 return;
423
424         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
425
426         pipestat &= ~enable_mask;
427         I915_WRITE(reg, pipestat);
428         POSTING_READ(reg);
429 }
430
431 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
432 {
433         u32 enable_mask = status_mask << 16;
434
435         /*
436          * On pipe A we don't support the PSR interrupt yet,
437          * on pipe B and C the same bit MBZ.
438          */
439         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
440                 return 0;
441         /*
442          * On pipe B and C we don't support the PSR interrupt yet, on pipe
443          * A the same bit is for perf counters which we don't use either.
444          */
445         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
446                 return 0;
447
448         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
449                          SPRITE0_FLIP_DONE_INT_EN_VLV |
450                          SPRITE1_FLIP_DONE_INT_EN_VLV);
451         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
452                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
453         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
454                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
455
456         return enable_mask;
457 }
458
459 void
460 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
461                      u32 status_mask)
462 {
463         u32 enable_mask;
464
465         if (IS_VALLEYVIEW(dev_priv->dev))
466                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
467                                                            status_mask);
468         else
469                 enable_mask = status_mask << 16;
470         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
471 }
472
473 void
474 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
475                       u32 status_mask)
476 {
477         u32 enable_mask;
478
479         if (IS_VALLEYVIEW(dev_priv->dev))
480                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
481                                                            status_mask);
482         else
483                 enable_mask = status_mask << 16;
484         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
485 }
486
487 /**
488  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
489  */
490 static void i915_enable_asle_pipestat(struct drm_device *dev)
491 {
492         struct drm_i915_private *dev_priv = dev->dev_private;
493
494         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
495                 return;
496
497         spin_lock_irq(&dev_priv->irq_lock);
498
499         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
500         if (INTEL_INFO(dev)->gen >= 4)
501                 i915_enable_pipestat(dev_priv, PIPE_A,
502                                      PIPE_LEGACY_BLC_EVENT_STATUS);
503
504         spin_unlock_irq(&dev_priv->irq_lock);
505 }
506
507 /*
508  * This timing diagram depicts the video signal in and
509  * around the vertical blanking period.
510  *
511  * Assumptions about the fictitious mode used in this example:
512  *  vblank_start >= 3
513  *  vsync_start = vblank_start + 1
514  *  vsync_end = vblank_start + 2
515  *  vtotal = vblank_start + 3
516  *
517  *           start of vblank:
518  *           latch double buffered registers
519  *           increment frame counter (ctg+)
520  *           generate start of vblank interrupt (gen4+)
521  *           |
522  *           |          frame start:
523  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
524  *           |          may be shifted forward 1-3 extra lines via PIPECONF
525  *           |          |
526  *           |          |  start of vsync:
527  *           |          |  generate vsync interrupt
528  *           |          |  |
529  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
530  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
531  * ----va---> <-----------------vb--------------------> <--------va-------------
532  *       |          |       <----vs----->                     |
533  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
534  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
535  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
536  *       |          |                                         |
537  *       last visible pixel                                   first visible pixel
538  *                  |                                         increment frame counter (gen3/4)
539  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
540  *
541  * x  = horizontal active
542  * _  = horizontal blanking
543  * hs = horizontal sync
544  * va = vertical active
545  * vb = vertical blanking
546  * vs = vertical sync
547  * vbs = vblank_start (number)
548  *
549  * Summary:
550  * - most events happen at the start of horizontal sync
551  * - frame start happens at the start of horizontal blank, 1-4 lines
552  *   (depending on PIPECONF settings) after the start of vblank
553  * - gen3/4 pixel and frame counter are synchronized with the start
554  *   of horizontal active on the first line of vertical active
555  */
556
557 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
558 {
559         /* Gen2 doesn't have a hardware frame counter */
560         return 0;
561 }
562
563 /* Called from drm generic code, passed a 'crtc', which
564  * we use as a pipe index
565  */
566 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
567 {
568         struct drm_i915_private *dev_priv = dev->dev_private;
569         unsigned long high_frame;
570         unsigned long low_frame;
571         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
572         struct intel_crtc *intel_crtc =
573                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
574         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
575
576         htotal = mode->crtc_htotal;
577         hsync_start = mode->crtc_hsync_start;
578         vbl_start = mode->crtc_vblank_start;
579         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
580                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
581
582         /* Convert to pixel count */
583         vbl_start *= htotal;
584
585         /* Start of vblank event occurs at start of hsync */
586         vbl_start -= htotal - hsync_start;
587
588         high_frame = PIPEFRAME(pipe);
589         low_frame = PIPEFRAMEPIXEL(pipe);
590
591         /*
592          * High & low register fields aren't synchronized, so make sure
593          * we get a low value that's stable across two reads of the high
594          * register.
595          */
596         do {
597                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
598                 low   = I915_READ(low_frame);
599                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
600         } while (high1 != high2);
601
602         high1 >>= PIPE_FRAME_HIGH_SHIFT;
603         pixel = low & PIPE_PIXEL_MASK;
604         low >>= PIPE_FRAME_LOW_SHIFT;
605
606         /*
607          * The frame counter increments at beginning of active.
608          * Cook up a vblank counter by also checking the pixel
609          * counter against vblank start.
610          */
611         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
612 }
613
614 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
615 {
616         struct drm_i915_private *dev_priv = dev->dev_private;
617         int reg = PIPE_FRMCOUNT_GM45(pipe);
618
619         return I915_READ(reg);
620 }
621
622 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
623 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
624
625 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
626 {
627         struct drm_device *dev = crtc->base.dev;
628         struct drm_i915_private *dev_priv = dev->dev_private;
629         const struct drm_display_mode *mode = &crtc->base.hwmode;
630         enum pipe pipe = crtc->pipe;
631         int position, vtotal;
632
633         vtotal = mode->crtc_vtotal;
634         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
635                 vtotal /= 2;
636
637         if (IS_GEN2(dev))
638                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
639         else
640                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
641
642         /*
643          * On HSW, the DSL reg (0x70000) appears to return 0 if we
644          * read it just before the start of vblank.  So try it again
645          * so we don't accidentally end up spanning a vblank frame
646          * increment, causing the pipe_update_end() code to squak at us.
647          *
648          * The nature of this problem means we can't simply check the ISR
649          * bit and return the vblank start value; nor can we use the scanline
650          * debug register in the transcoder as it appears to have the same
651          * problem.  We may need to extend this to include other platforms,
652          * but so far testing only shows the problem on HSW.
653          */
654         if (IS_HASWELL(dev) && !position) {
655                 int i, temp;
656
657                 for (i = 0; i < 100; i++) {
658                         udelay(1);
659                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
660                                 DSL_LINEMASK_GEN3;
661                         if (temp != position) {
662                                 position = temp;
663                                 break;
664                         }
665                 }
666         }
667
668         /*
669          * See update_scanline_offset() for the details on the
670          * scanline_offset adjustment.
671          */
672         return (position + crtc->scanline_offset) % vtotal;
673 }
674
675 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
676                                     unsigned int flags, int *vpos, int *hpos,
677                                     ktime_t *stime, ktime_t *etime)
678 {
679         struct drm_i915_private *dev_priv = dev->dev_private;
680         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
681         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
682         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
683         int position;
684         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
685         bool in_vbl = true;
686         int ret = 0;
687         unsigned long irqflags;
688
689         if (WARN_ON(!mode->crtc_clock)) {
690                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
691                                  "pipe %c\n", pipe_name(pipe));
692                 return 0;
693         }
694
695         htotal = mode->crtc_htotal;
696         hsync_start = mode->crtc_hsync_start;
697         vtotal = mode->crtc_vtotal;
698         vbl_start = mode->crtc_vblank_start;
699         vbl_end = mode->crtc_vblank_end;
700
701         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
702                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
703                 vbl_end /= 2;
704                 vtotal /= 2;
705         }
706
707         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
708
709         /*
710          * Lock uncore.lock, as we will do multiple timing critical raw
711          * register reads, potentially with preemption disabled, so the
712          * following code must not block on uncore.lock.
713          */
714         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
715
716         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
717
718         /* Get optional system timestamp before query. */
719         if (stime)
720                 *stime = ktime_get();
721
722         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
723                 /* No obvious pixelcount register. Only query vertical
724                  * scanout position from Display scan line register.
725                  */
726                 position = __intel_get_crtc_scanline(intel_crtc);
727         } else {
728                 /* Have access to pixelcount since start of frame.
729                  * We can split this into vertical and horizontal
730                  * scanout position.
731                  */
732                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
733
734                 /* convert to pixel counts */
735                 vbl_start *= htotal;
736                 vbl_end *= htotal;
737                 vtotal *= htotal;
738
739                 /*
740                  * In interlaced modes, the pixel counter counts all pixels,
741                  * so one field will have htotal more pixels. In order to avoid
742                  * the reported position from jumping backwards when the pixel
743                  * counter is beyond the length of the shorter field, just
744                  * clamp the position the length of the shorter field. This
745                  * matches how the scanline counter based position works since
746                  * the scanline counter doesn't count the two half lines.
747                  */
748                 if (position >= vtotal)
749                         position = vtotal - 1;
750
751                 /*
752                  * Start of vblank interrupt is triggered at start of hsync,
753                  * just prior to the first active line of vblank. However we
754                  * consider lines to start at the leading edge of horizontal
755                  * active. So, should we get here before we've crossed into
756                  * the horizontal active of the first line in vblank, we would
757                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
758                  * always add htotal-hsync_start to the current pixel position.
759                  */
760                 position = (position + htotal - hsync_start) % vtotal;
761         }
762
763         /* Get optional system timestamp after query. */
764         if (etime)
765                 *etime = ktime_get();
766
767         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
768
769         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
770
771         in_vbl = position >= vbl_start && position < vbl_end;
772
773         /*
774          * While in vblank, position will be negative
775          * counting up towards 0 at vbl_end. And outside
776          * vblank, position will be positive counting
777          * up since vbl_end.
778          */
779         if (position >= vbl_start)
780                 position -= vbl_end;
781         else
782                 position += vtotal - vbl_end;
783
784         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
785                 *vpos = position;
786                 *hpos = 0;
787         } else {
788                 *vpos = position / htotal;
789                 *hpos = position - (*vpos * htotal);
790         }
791
792         /* In vblank? */
793         if (in_vbl)
794                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
795
796         return ret;
797 }
798
799 int intel_get_crtc_scanline(struct intel_crtc *crtc)
800 {
801         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
802         unsigned long irqflags;
803         int position;
804
805         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
806         position = __intel_get_crtc_scanline(crtc);
807         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
808
809         return position;
810 }
811
812 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
813                               int *max_error,
814                               struct timeval *vblank_time,
815                               unsigned flags)
816 {
817         struct drm_crtc *crtc;
818
819         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
820                 DRM_ERROR("Invalid crtc %d\n", pipe);
821                 return -EINVAL;
822         }
823
824         /* Get drm_crtc to timestamp: */
825         crtc = intel_get_crtc_for_pipe(dev, pipe);
826         if (crtc == NULL) {
827                 DRM_ERROR("Invalid crtc %d\n", pipe);
828                 return -EINVAL;
829         }
830
831         if (!crtc->hwmode.crtc_clock) {
832                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
833                 return -EBUSY;
834         }
835
836         /* Helper routine in DRM core does all the work: */
837         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
838                                                      vblank_time, flags,
839                                                      crtc,
840                                                      &crtc->hwmode);
841 }
842
843 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
844 {
845         struct drm_i915_private *dev_priv = dev->dev_private;
846         u32 busy_up, busy_down, max_avg, min_avg;
847         u8 new_delay;
848
849         spin_lock(&mchdev_lock);
850
851         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
852
853         new_delay = dev_priv->ips.cur_delay;
854
855         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
856         busy_up = I915_READ(RCPREVBSYTUPAVG);
857         busy_down = I915_READ(RCPREVBSYTDNAVG);
858         max_avg = I915_READ(RCBMAXAVG);
859         min_avg = I915_READ(RCBMINAVG);
860
861         /* Handle RCS change request from hw */
862         if (busy_up > max_avg) {
863                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
864                         new_delay = dev_priv->ips.cur_delay - 1;
865                 if (new_delay < dev_priv->ips.max_delay)
866                         new_delay = dev_priv->ips.max_delay;
867         } else if (busy_down < min_avg) {
868                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
869                         new_delay = dev_priv->ips.cur_delay + 1;
870                 if (new_delay > dev_priv->ips.min_delay)
871                         new_delay = dev_priv->ips.min_delay;
872         }
873
874         if (ironlake_set_drps(dev, new_delay))
875                 dev_priv->ips.cur_delay = new_delay;
876
877         spin_unlock(&mchdev_lock);
878
879         return;
880 }
881
882 static void notify_ring(struct intel_engine_cs *ring)
883 {
884         if (!intel_ring_initialized(ring))
885                 return;
886
887         trace_i915_gem_request_notify(ring);
888
889         wake_up_all(&ring->irq_queue);
890 }
891
892 static void vlv_c0_read(struct drm_i915_private *dev_priv,
893                         struct intel_rps_ei *ei)
894 {
895         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
896         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
897         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
898 }
899
900 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
901                          const struct intel_rps_ei *old,
902                          const struct intel_rps_ei *now,
903                          int threshold)
904 {
905         u64 time, c0;
906
907         if (old->cz_clock == 0)
908                 return false;
909
910         time = now->cz_clock - old->cz_clock;
911         time *= threshold * dev_priv->mem_freq;
912
913         /* Workload can be split between render + media, e.g. SwapBuffers
914          * being blitted in X after being rendered in mesa. To account for
915          * this we need to combine both engines into our activity counter.
916          */
917         c0 = now->render_c0 - old->render_c0;
918         c0 += now->media_c0 - old->media_c0;
919         c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
920
921         return c0 >= time;
922 }
923
924 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
925 {
926         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
927         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
928 }
929
930 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
931 {
932         struct intel_rps_ei now;
933         u32 events = 0;
934
935         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
936                 return 0;
937
938         vlv_c0_read(dev_priv, &now);
939         if (now.cz_clock == 0)
940                 return 0;
941
942         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
943                 if (!vlv_c0_above(dev_priv,
944                                   &dev_priv->rps.down_ei, &now,
945                                   dev_priv->rps.down_threshold))
946                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
947                 dev_priv->rps.down_ei = now;
948         }
949
950         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
951                 if (vlv_c0_above(dev_priv,
952                                  &dev_priv->rps.up_ei, &now,
953                                  dev_priv->rps.up_threshold))
954                         events |= GEN6_PM_RP_UP_THRESHOLD;
955                 dev_priv->rps.up_ei = now;
956         }
957
958         return events;
959 }
960
961 static bool any_waiters(struct drm_i915_private *dev_priv)
962 {
963         struct intel_engine_cs *ring;
964         int i;
965
966         for_each_ring(ring, dev_priv, i)
967                 if (ring->irq_refcount)
968                         return true;
969
970         return false;
971 }
972
973 static void gen6_pm_rps_work(struct work_struct *work)
974 {
975         struct drm_i915_private *dev_priv =
976                 container_of(work, struct drm_i915_private, rps.work);
977         bool client_boost;
978         int new_delay, adj, min, max;
979         u32 pm_iir;
980
981         spin_lock_irq(&dev_priv->irq_lock);
982         /* Speed up work cancelation during disabling rps interrupts. */
983         if (!dev_priv->rps.interrupts_enabled) {
984                 spin_unlock_irq(&dev_priv->irq_lock);
985                 return;
986         }
987         pm_iir = dev_priv->rps.pm_iir;
988         dev_priv->rps.pm_iir = 0;
989         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
990         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
991         client_boost = dev_priv->rps.client_boost;
992         dev_priv->rps.client_boost = false;
993         spin_unlock_irq(&dev_priv->irq_lock);
994
995         /* Make sure we didn't queue anything we're not going to process. */
996         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
997
998         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
999                 return;
1000
1001         mutex_lock(&dev_priv->rps.hw_lock);
1002
1003         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1004
1005         adj = dev_priv->rps.last_adj;
1006         new_delay = dev_priv->rps.cur_freq;
1007         min = dev_priv->rps.min_freq_softlimit;
1008         max = dev_priv->rps.max_freq_softlimit;
1009
1010         if (client_boost) {
1011                 new_delay = dev_priv->rps.max_freq_softlimit;
1012                 adj = 0;
1013         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1014                 if (adj > 0)
1015                         adj *= 2;
1016                 else /* CHV needs even encode values */
1017                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1018                 /*
1019                  * For better performance, jump directly
1020                  * to RPe if we're below it.
1021                  */
1022                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1023                         new_delay = dev_priv->rps.efficient_freq;
1024                         adj = 0;
1025                 }
1026         } else if (any_waiters(dev_priv)) {
1027                 adj = 0;
1028         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1029                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1030                         new_delay = dev_priv->rps.efficient_freq;
1031                 else
1032                         new_delay = dev_priv->rps.min_freq_softlimit;
1033                 adj = 0;
1034         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1035                 if (adj < 0)
1036                         adj *= 2;
1037                 else /* CHV needs even encode values */
1038                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1039         } else { /* unknown event */
1040                 adj = 0;
1041         }
1042
1043         dev_priv->rps.last_adj = adj;
1044
1045         /* sysfs frequency interfaces may have snuck in while servicing the
1046          * interrupt
1047          */
1048         new_delay += adj;
1049         new_delay = clamp_t(int, new_delay, min, max);
1050
1051         intel_set_rps(dev_priv->dev, new_delay);
1052
1053         mutex_unlock(&dev_priv->rps.hw_lock);
1054 }
1055
1056
1057 /**
1058  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1059  * occurred.
1060  * @work: workqueue struct
1061  *
1062  * Doesn't actually do anything except notify userspace. As a consequence of
1063  * this event, userspace should try to remap the bad rows since statistically
1064  * it is likely the same row is more likely to go bad again.
1065  */
1066 static void ivybridge_parity_work(struct work_struct *work)
1067 {
1068         struct drm_i915_private *dev_priv =
1069                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1070         u32 error_status, row, bank, subbank;
1071         char *parity_event[6];
1072         uint32_t misccpctl;
1073         uint8_t slice = 0;
1074
1075         /* We must turn off DOP level clock gating to access the L3 registers.
1076          * In order to prevent a get/put style interface, acquire struct mutex
1077          * any time we access those registers.
1078          */
1079         mutex_lock(&dev_priv->dev->struct_mutex);
1080
1081         /* If we've screwed up tracking, just let the interrupt fire again */
1082         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1083                 goto out;
1084
1085         misccpctl = I915_READ(GEN7_MISCCPCTL);
1086         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1087         POSTING_READ(GEN7_MISCCPCTL);
1088
1089         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1090                 u32 reg;
1091
1092                 slice--;
1093                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1094                         break;
1095
1096                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1097
1098                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1099
1100                 error_status = I915_READ(reg);
1101                 row = GEN7_PARITY_ERROR_ROW(error_status);
1102                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1103                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1104
1105                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1106                 POSTING_READ(reg);
1107
1108                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1109                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1110                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1111                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1112                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1113                 parity_event[5] = NULL;
1114
1115                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1116                                    KOBJ_CHANGE, parity_event);
1117
1118                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1119                           slice, row, bank, subbank);
1120
1121                 kfree(parity_event[4]);
1122                 kfree(parity_event[3]);
1123                 kfree(parity_event[2]);
1124                 kfree(parity_event[1]);
1125         }
1126
1127         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1128
1129 out:
1130         WARN_ON(dev_priv->l3_parity.which_slice);
1131         spin_lock_irq(&dev_priv->irq_lock);
1132         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1133         spin_unlock_irq(&dev_priv->irq_lock);
1134
1135         mutex_unlock(&dev_priv->dev->struct_mutex);
1136 }
1137
1138 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1139 {
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141
1142         if (!HAS_L3_DPF(dev))
1143                 return;
1144
1145         spin_lock(&dev_priv->irq_lock);
1146         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1147         spin_unlock(&dev_priv->irq_lock);
1148
1149         iir &= GT_PARITY_ERROR(dev);
1150         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1151                 dev_priv->l3_parity.which_slice |= 1 << 1;
1152
1153         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1154                 dev_priv->l3_parity.which_slice |= 1 << 0;
1155
1156         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1157 }
1158
1159 static void ilk_gt_irq_handler(struct drm_device *dev,
1160                                struct drm_i915_private *dev_priv,
1161                                u32 gt_iir)
1162 {
1163         if (gt_iir &
1164             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1165                 notify_ring(&dev_priv->ring[RCS]);
1166         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1167                 notify_ring(&dev_priv->ring[VCS]);
1168 }
1169
1170 static void snb_gt_irq_handler(struct drm_device *dev,
1171                                struct drm_i915_private *dev_priv,
1172                                u32 gt_iir)
1173 {
1174
1175         if (gt_iir &
1176             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1177                 notify_ring(&dev_priv->ring[RCS]);
1178         if (gt_iir & GT_BSD_USER_INTERRUPT)
1179                 notify_ring(&dev_priv->ring[VCS]);
1180         if (gt_iir & GT_BLT_USER_INTERRUPT)
1181                 notify_ring(&dev_priv->ring[BCS]);
1182
1183         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1184                       GT_BSD_CS_ERROR_INTERRUPT |
1185                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1186                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1187
1188         if (gt_iir & GT_PARITY_ERROR(dev))
1189                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1190 }
1191
1192 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1193                                        u32 master_ctl)
1194 {
1195         irqreturn_t ret = IRQ_NONE;
1196
1197         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1198                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1199                 if (tmp) {
1200                         I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1201                         ret = IRQ_HANDLED;
1202
1203                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1204                                 intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1205                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1206                                 notify_ring(&dev_priv->ring[RCS]);
1207
1208                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1209                                 intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1210                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1211                                 notify_ring(&dev_priv->ring[BCS]);
1212                 } else
1213                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1214         }
1215
1216         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1217                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1218                 if (tmp) {
1219                         I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1220                         ret = IRQ_HANDLED;
1221
1222                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1223                                 intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1224                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1225                                 notify_ring(&dev_priv->ring[VCS]);
1226
1227                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1228                                 intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1229                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1230                                 notify_ring(&dev_priv->ring[VCS2]);
1231                 } else
1232                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1233         }
1234
1235         if (master_ctl & GEN8_GT_VECS_IRQ) {
1236                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1237                 if (tmp) {
1238                         I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1239                         ret = IRQ_HANDLED;
1240
1241                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1242                                 intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1243                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1244                                 notify_ring(&dev_priv->ring[VECS]);
1245                 } else
1246                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1247         }
1248
1249         if (master_ctl & GEN8_GT_PM_IRQ) {
1250                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1251                 if (tmp & dev_priv->pm_rps_events) {
1252                         I915_WRITE_FW(GEN8_GT_IIR(2),
1253                                       tmp & dev_priv->pm_rps_events);
1254                         ret = IRQ_HANDLED;
1255                         gen6_rps_irq_handler(dev_priv, tmp);
1256                 } else
1257                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1258         }
1259
1260         return ret;
1261 }
1262
1263 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1264 {
1265         switch (port) {
1266         case PORT_A:
1267                 return val & BXT_PORTA_HOTPLUG_LONG_DETECT;
1268         case PORT_B:
1269                 return val & PORTB_HOTPLUG_LONG_DETECT;
1270         case PORT_C:
1271                 return val & PORTC_HOTPLUG_LONG_DETECT;
1272         case PORT_D:
1273                 return val & PORTD_HOTPLUG_LONG_DETECT;
1274         default:
1275                 return false;
1276         }
1277 }
1278
1279 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1280 {
1281         switch (port) {
1282         case PORT_B:
1283                 return val & PORTB_HOTPLUG_LONG_DETECT;
1284         case PORT_C:
1285                 return val & PORTC_HOTPLUG_LONG_DETECT;
1286         case PORT_D:
1287                 return val & PORTD_HOTPLUG_LONG_DETECT;
1288         case PORT_E:
1289                 return val & PORTE_HOTPLUG_LONG_DETECT;
1290         default:
1291                 return false;
1292         }
1293 }
1294
1295 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1296 {
1297         switch (port) {
1298         case PORT_B:
1299                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1300         case PORT_C:
1301                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1302         case PORT_D:
1303                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1304         default:
1305                 return false;
1306         }
1307 }
1308
1309 /* Get a bit mask of pins that have triggered, and which ones may be long. */
1310 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1311                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1312                              const u32 hpd[HPD_NUM_PINS],
1313                              bool long_pulse_detect(enum port port, u32 val))
1314 {
1315         enum port port;
1316         int i;
1317
1318         *pin_mask = 0;
1319         *long_mask = 0;
1320
1321         for_each_hpd_pin(i) {
1322                 if ((hpd[i] & hotplug_trigger) == 0)
1323                         continue;
1324
1325                 *pin_mask |= BIT(i);
1326
1327                 if (!intel_hpd_pin_to_port(i, &port))
1328                         continue;
1329
1330                 if (long_pulse_detect(port, dig_hotplug_reg))
1331                         *long_mask |= BIT(i);
1332         }
1333
1334         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1335                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1336
1337 }
1338
1339 static void gmbus_irq_handler(struct drm_device *dev)
1340 {
1341         struct drm_i915_private *dev_priv = dev->dev_private;
1342
1343         wake_up_all(&dev_priv->gmbus_wait_queue);
1344 }
1345
1346 static void dp_aux_irq_handler(struct drm_device *dev)
1347 {
1348         struct drm_i915_private *dev_priv = dev->dev_private;
1349
1350         wake_up_all(&dev_priv->gmbus_wait_queue);
1351 }
1352
1353 #if defined(CONFIG_DEBUG_FS)
1354 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1355                                          uint32_t crc0, uint32_t crc1,
1356                                          uint32_t crc2, uint32_t crc3,
1357                                          uint32_t crc4)
1358 {
1359         struct drm_i915_private *dev_priv = dev->dev_private;
1360         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1361         struct intel_pipe_crc_entry *entry;
1362         int head, tail;
1363
1364         spin_lock(&pipe_crc->lock);
1365
1366         if (!pipe_crc->entries) {
1367                 spin_unlock(&pipe_crc->lock);
1368                 DRM_DEBUG_KMS("spurious interrupt\n");
1369                 return;
1370         }
1371
1372         head = pipe_crc->head;
1373         tail = pipe_crc->tail;
1374
1375         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1376                 spin_unlock(&pipe_crc->lock);
1377                 DRM_ERROR("CRC buffer overflowing\n");
1378                 return;
1379         }
1380
1381         entry = &pipe_crc->entries[head];
1382
1383         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1384         entry->crc[0] = crc0;
1385         entry->crc[1] = crc1;
1386         entry->crc[2] = crc2;
1387         entry->crc[3] = crc3;
1388         entry->crc[4] = crc4;
1389
1390         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1391         pipe_crc->head = head;
1392
1393         spin_unlock(&pipe_crc->lock);
1394
1395         wake_up_interruptible(&pipe_crc->wq);
1396 }
1397 #else
1398 static inline void
1399 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1400                              uint32_t crc0, uint32_t crc1,
1401                              uint32_t crc2, uint32_t crc3,
1402                              uint32_t crc4) {}
1403 #endif
1404
1405
1406 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1407 {
1408         struct drm_i915_private *dev_priv = dev->dev_private;
1409
1410         display_pipe_crc_irq_handler(dev, pipe,
1411                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1412                                      0, 0, 0, 0);
1413 }
1414
1415 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1416 {
1417         struct drm_i915_private *dev_priv = dev->dev_private;
1418
1419         display_pipe_crc_irq_handler(dev, pipe,
1420                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1421                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1422                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1423                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1424                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1425 }
1426
1427 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1428 {
1429         struct drm_i915_private *dev_priv = dev->dev_private;
1430         uint32_t res1, res2;
1431
1432         if (INTEL_INFO(dev)->gen >= 3)
1433                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1434         else
1435                 res1 = 0;
1436
1437         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1438                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1439         else
1440                 res2 = 0;
1441
1442         display_pipe_crc_irq_handler(dev, pipe,
1443                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1444                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1445                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1446                                      res1, res2);
1447 }
1448
1449 /* The RPS events need forcewake, so we add them to a work queue and mask their
1450  * IMR bits until the work is done. Other interrupts can be processed without
1451  * the work queue. */
1452 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1453 {
1454         if (pm_iir & dev_priv->pm_rps_events) {
1455                 spin_lock(&dev_priv->irq_lock);
1456                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1457                 if (dev_priv->rps.interrupts_enabled) {
1458                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1459                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1460                 }
1461                 spin_unlock(&dev_priv->irq_lock);
1462         }
1463
1464         if (INTEL_INFO(dev_priv)->gen >= 8)
1465                 return;
1466
1467         if (HAS_VEBOX(dev_priv->dev)) {
1468                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1469                         notify_ring(&dev_priv->ring[VECS]);
1470
1471                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1472                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1473         }
1474 }
1475
1476 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1477 {
1478         if (!drm_handle_vblank(dev, pipe))
1479                 return false;
1480
1481         return true;
1482 }
1483
1484 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1485 {
1486         struct drm_i915_private *dev_priv = dev->dev_private;
1487         u32 pipe_stats[I915_MAX_PIPES] = { };
1488         int pipe;
1489
1490         spin_lock(&dev_priv->irq_lock);
1491         for_each_pipe(dev_priv, pipe) {
1492                 int reg;
1493                 u32 mask, iir_bit = 0;
1494
1495                 /*
1496                  * PIPESTAT bits get signalled even when the interrupt is
1497                  * disabled with the mask bits, and some of the status bits do
1498                  * not generate interrupts at all (like the underrun bit). Hence
1499                  * we need to be careful that we only handle what we want to
1500                  * handle.
1501                  */
1502
1503                 /* fifo underruns are filterered in the underrun handler. */
1504                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1505
1506                 switch (pipe) {
1507                 case PIPE_A:
1508                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1509                         break;
1510                 case PIPE_B:
1511                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1512                         break;
1513                 case PIPE_C:
1514                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1515                         break;
1516                 }
1517                 if (iir & iir_bit)
1518                         mask |= dev_priv->pipestat_irq_mask[pipe];
1519
1520                 if (!mask)
1521                         continue;
1522
1523                 reg = PIPESTAT(pipe);
1524                 mask |= PIPESTAT_INT_ENABLE_MASK;
1525                 pipe_stats[pipe] = I915_READ(reg) & mask;
1526
1527                 /*
1528                  * Clear the PIPE*STAT regs before the IIR
1529                  */
1530                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1531                                         PIPESTAT_INT_STATUS_MASK))
1532                         I915_WRITE(reg, pipe_stats[pipe]);
1533         }
1534         spin_unlock(&dev_priv->irq_lock);
1535
1536         for_each_pipe(dev_priv, pipe) {
1537                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1538                     intel_pipe_handle_vblank(dev, pipe))
1539                         intel_check_page_flip(dev, pipe);
1540
1541                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1542                         intel_prepare_page_flip(dev, pipe);
1543                         intel_finish_page_flip(dev, pipe);
1544                 }
1545
1546                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1547                         i9xx_pipe_crc_irq_handler(dev, pipe);
1548
1549                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1550                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1551         }
1552
1553         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1554                 gmbus_irq_handler(dev);
1555 }
1556
1557 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1558 {
1559         struct drm_i915_private *dev_priv = dev->dev_private;
1560         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1561         u32 pin_mask, long_mask;
1562
1563         if (!hotplug_status)
1564                 return;
1565
1566         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1567         /*
1568          * Make sure hotplug status is cleared before we clear IIR, or else we
1569          * may miss hotplug events.
1570          */
1571         POSTING_READ(PORT_HOTPLUG_STAT);
1572
1573         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1574                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1575
1576                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1577                                    hotplug_trigger, hpd_status_g4x,
1578                                    i9xx_port_hotplug_long_detect);
1579                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1580
1581                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1582                         dp_aux_irq_handler(dev);
1583         } else {
1584                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1585
1586                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1587                                    hotplug_trigger, hpd_status_i915,
1588                                    i9xx_port_hotplug_long_detect);
1589                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1590         }
1591 }
1592
1593 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1594 {
1595         struct drm_device *dev = arg;
1596         struct drm_i915_private *dev_priv = dev->dev_private;
1597         u32 iir, gt_iir, pm_iir;
1598         irqreturn_t ret = IRQ_NONE;
1599
1600         if (!intel_irqs_enabled(dev_priv))
1601                 return IRQ_NONE;
1602
1603         while (true) {
1604                 /* Find, clear, then process each source of interrupt */
1605
1606                 gt_iir = I915_READ(GTIIR);
1607                 if (gt_iir)
1608                         I915_WRITE(GTIIR, gt_iir);
1609
1610                 pm_iir = I915_READ(GEN6_PMIIR);
1611                 if (pm_iir)
1612                         I915_WRITE(GEN6_PMIIR, pm_iir);
1613
1614                 iir = I915_READ(VLV_IIR);
1615                 if (iir) {
1616                         /* Consume port before clearing IIR or we'll miss events */
1617                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1618                                 i9xx_hpd_irq_handler(dev);
1619                         I915_WRITE(VLV_IIR, iir);
1620                 }
1621
1622                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1623                         goto out;
1624
1625                 ret = IRQ_HANDLED;
1626
1627                 if (gt_iir)
1628                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1629                 if (pm_iir)
1630                         gen6_rps_irq_handler(dev_priv, pm_iir);
1631                 /* Call regardless, as some status bits might not be
1632                  * signalled in iir */
1633                 valleyview_pipestat_irq_handler(dev, iir);
1634         }
1635
1636 out:
1637         return ret;
1638 }
1639
1640 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1641 {
1642         struct drm_device *dev = arg;
1643         struct drm_i915_private *dev_priv = dev->dev_private;
1644         u32 master_ctl, iir;
1645         irqreturn_t ret = IRQ_NONE;
1646
1647         if (!intel_irqs_enabled(dev_priv))
1648                 return IRQ_NONE;
1649
1650         for (;;) {
1651                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1652                 iir = I915_READ(VLV_IIR);
1653
1654                 if (master_ctl == 0 && iir == 0)
1655                         break;
1656
1657                 ret = IRQ_HANDLED;
1658
1659                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1660
1661                 /* Find, clear, then process each source of interrupt */
1662
1663                 if (iir) {
1664                         /* Consume port before clearing IIR or we'll miss events */
1665                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1666                                 i9xx_hpd_irq_handler(dev);
1667                         I915_WRITE(VLV_IIR, iir);
1668                 }
1669
1670                 gen8_gt_irq_handler(dev_priv, master_ctl);
1671
1672                 /* Call regardless, as some status bits might not be
1673                  * signalled in iir */
1674                 valleyview_pipestat_irq_handler(dev, iir);
1675
1676                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1677                 POSTING_READ(GEN8_MASTER_IRQ);
1678         }
1679
1680         return ret;
1681 }
1682
1683 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1684 {
1685         struct drm_i915_private *dev_priv = dev->dev_private;
1686         int pipe;
1687         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1688
1689         if (hotplug_trigger) {
1690                 u32 dig_hotplug_reg, pin_mask, long_mask;
1691
1692                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1693                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1694
1695                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1696                                    dig_hotplug_reg, hpd_ibx,
1697                                    pch_port_hotplug_long_detect);
1698                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1699         }
1700
1701         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1702                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1703                                SDE_AUDIO_POWER_SHIFT);
1704                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1705                                  port_name(port));
1706         }
1707
1708         if (pch_iir & SDE_AUX_MASK)
1709                 dp_aux_irq_handler(dev);
1710
1711         if (pch_iir & SDE_GMBUS)
1712                 gmbus_irq_handler(dev);
1713
1714         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1715                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1716
1717         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1718                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1719
1720         if (pch_iir & SDE_POISON)
1721                 DRM_ERROR("PCH poison interrupt\n");
1722
1723         if (pch_iir & SDE_FDI_MASK)
1724                 for_each_pipe(dev_priv, pipe)
1725                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1726                                          pipe_name(pipe),
1727                                          I915_READ(FDI_RX_IIR(pipe)));
1728
1729         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1730                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1731
1732         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1733                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1734
1735         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1736                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1737
1738         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1739                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1740 }
1741
1742 static void ivb_err_int_handler(struct drm_device *dev)
1743 {
1744         struct drm_i915_private *dev_priv = dev->dev_private;
1745         u32 err_int = I915_READ(GEN7_ERR_INT);
1746         enum pipe pipe;
1747
1748         if (err_int & ERR_INT_POISON)
1749                 DRM_ERROR("Poison interrupt\n");
1750
1751         for_each_pipe(dev_priv, pipe) {
1752                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1753                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1754
1755                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1756                         if (IS_IVYBRIDGE(dev))
1757                                 ivb_pipe_crc_irq_handler(dev, pipe);
1758                         else
1759                                 hsw_pipe_crc_irq_handler(dev, pipe);
1760                 }
1761         }
1762
1763         I915_WRITE(GEN7_ERR_INT, err_int);
1764 }
1765
1766 static void cpt_serr_int_handler(struct drm_device *dev)
1767 {
1768         struct drm_i915_private *dev_priv = dev->dev_private;
1769         u32 serr_int = I915_READ(SERR_INT);
1770
1771         if (serr_int & SERR_INT_POISON)
1772                 DRM_ERROR("PCH poison interrupt\n");
1773
1774         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1775                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1776
1777         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1778                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1779
1780         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1781                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1782
1783         I915_WRITE(SERR_INT, serr_int);
1784 }
1785
1786 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1787 {
1788         struct drm_i915_private *dev_priv = dev->dev_private;
1789         int pipe;
1790         u32 hotplug_trigger;
1791
1792         if (HAS_PCH_SPT(dev))
1793                 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT;
1794         else
1795                 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1796
1797         if (hotplug_trigger) {
1798                 u32 dig_hotplug_reg, pin_mask, long_mask;
1799
1800                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1801                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1802
1803                 if (HAS_PCH_SPT(dev)) {
1804                         intel_get_hpd_pins(&pin_mask, &long_mask,
1805                                            hotplug_trigger,
1806                                            dig_hotplug_reg, hpd_spt,
1807                                            pch_port_hotplug_long_detect);
1808
1809                         /* detect PORTE HP event */
1810                         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1811                         if (pch_port_hotplug_long_detect(PORT_E,
1812                                                          dig_hotplug_reg))
1813                                 long_mask |= 1 << HPD_PORT_E;
1814                 } else
1815                         intel_get_hpd_pins(&pin_mask, &long_mask,
1816                                            hotplug_trigger,
1817                                            dig_hotplug_reg, hpd_cpt,
1818                                            pch_port_hotplug_long_detect);
1819
1820                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1821         }
1822
1823         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1824                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1825                                SDE_AUDIO_POWER_SHIFT_CPT);
1826                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1827                                  port_name(port));
1828         }
1829
1830         if (pch_iir & SDE_AUX_MASK_CPT)
1831                 dp_aux_irq_handler(dev);
1832
1833         if (pch_iir & SDE_GMBUS_CPT)
1834                 gmbus_irq_handler(dev);
1835
1836         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1837                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1838
1839         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1840                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1841
1842         if (pch_iir & SDE_FDI_MASK_CPT)
1843                 for_each_pipe(dev_priv, pipe)
1844                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1845                                          pipe_name(pipe),
1846                                          I915_READ(FDI_RX_IIR(pipe)));
1847
1848         if (pch_iir & SDE_ERROR_CPT)
1849                 cpt_serr_int_handler(dev);
1850 }
1851
1852 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1853 {
1854         struct drm_i915_private *dev_priv = dev->dev_private;
1855         enum pipe pipe;
1856
1857         if (de_iir & DE_AUX_CHANNEL_A)
1858                 dp_aux_irq_handler(dev);
1859
1860         if (de_iir & DE_GSE)
1861                 intel_opregion_asle_intr(dev);
1862
1863         if (de_iir & DE_POISON)
1864                 DRM_ERROR("Poison interrupt\n");
1865
1866         for_each_pipe(dev_priv, pipe) {
1867                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
1868                     intel_pipe_handle_vblank(dev, pipe))
1869                         intel_check_page_flip(dev, pipe);
1870
1871                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1872                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1873
1874                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1875                         i9xx_pipe_crc_irq_handler(dev, pipe);
1876
1877                 /* plane/pipes map 1:1 on ilk+ */
1878                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1879                         intel_prepare_page_flip(dev, pipe);
1880                         intel_finish_page_flip_plane(dev, pipe);
1881                 }
1882         }
1883
1884         /* check event from PCH */
1885         if (de_iir & DE_PCH_EVENT) {
1886                 u32 pch_iir = I915_READ(SDEIIR);
1887
1888                 if (HAS_PCH_CPT(dev))
1889                         cpt_irq_handler(dev, pch_iir);
1890                 else
1891                         ibx_irq_handler(dev, pch_iir);
1892
1893                 /* should clear PCH hotplug event before clear CPU irq */
1894                 I915_WRITE(SDEIIR, pch_iir);
1895         }
1896
1897         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1898                 ironlake_rps_change_irq_handler(dev);
1899 }
1900
1901 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1902 {
1903         struct drm_i915_private *dev_priv = dev->dev_private;
1904         enum pipe pipe;
1905
1906         if (de_iir & DE_ERR_INT_IVB)
1907                 ivb_err_int_handler(dev);
1908
1909         if (de_iir & DE_AUX_CHANNEL_A_IVB)
1910                 dp_aux_irq_handler(dev);
1911
1912         if (de_iir & DE_GSE_IVB)
1913                 intel_opregion_asle_intr(dev);
1914
1915         for_each_pipe(dev_priv, pipe) {
1916                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
1917                     intel_pipe_handle_vblank(dev, pipe))
1918                         intel_check_page_flip(dev, pipe);
1919
1920                 /* plane/pipes map 1:1 on ilk+ */
1921                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1922                         intel_prepare_page_flip(dev, pipe);
1923                         intel_finish_page_flip_plane(dev, pipe);
1924                 }
1925         }
1926
1927         /* check event from PCH */
1928         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1929                 u32 pch_iir = I915_READ(SDEIIR);
1930
1931                 cpt_irq_handler(dev, pch_iir);
1932
1933                 /* clear PCH hotplug event before clear CPU irq */
1934                 I915_WRITE(SDEIIR, pch_iir);
1935         }
1936 }
1937
1938 /*
1939  * To handle irqs with the minimum potential races with fresh interrupts, we:
1940  * 1 - Disable Master Interrupt Control.
1941  * 2 - Find the source(s) of the interrupt.
1942  * 3 - Clear the Interrupt Identity bits (IIR).
1943  * 4 - Process the interrupt(s) that had bits set in the IIRs.
1944  * 5 - Re-enable Master Interrupt Control.
1945  */
1946 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1947 {
1948         struct drm_device *dev = arg;
1949         struct drm_i915_private *dev_priv = dev->dev_private;
1950         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1951         irqreturn_t ret = IRQ_NONE;
1952
1953         if (!intel_irqs_enabled(dev_priv))
1954                 return IRQ_NONE;
1955
1956         /* We get interrupts on unclaimed registers, so check for this before we
1957          * do any I915_{READ,WRITE}. */
1958         intel_uncore_check_errors(dev);
1959
1960         /* disable master interrupt before clearing iir  */
1961         de_ier = I915_READ(DEIER);
1962         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1963         POSTING_READ(DEIER);
1964
1965         /* Disable south interrupts. We'll only write to SDEIIR once, so further
1966          * interrupts will will be stored on its back queue, and then we'll be
1967          * able to process them after we restore SDEIER (as soon as we restore
1968          * it, we'll get an interrupt if SDEIIR still has something to process
1969          * due to its back queue). */
1970         if (!HAS_PCH_NOP(dev)) {
1971                 sde_ier = I915_READ(SDEIER);
1972                 I915_WRITE(SDEIER, 0);
1973                 POSTING_READ(SDEIER);
1974         }
1975
1976         /* Find, clear, then process each source of interrupt */
1977
1978         gt_iir = I915_READ(GTIIR);
1979         if (gt_iir) {
1980                 I915_WRITE(GTIIR, gt_iir);
1981                 ret = IRQ_HANDLED;
1982                 if (INTEL_INFO(dev)->gen >= 6)
1983                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1984                 else
1985                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1986         }
1987
1988         de_iir = I915_READ(DEIIR);
1989         if (de_iir) {
1990                 I915_WRITE(DEIIR, de_iir);
1991                 ret = IRQ_HANDLED;
1992                 if (INTEL_INFO(dev)->gen >= 7)
1993                         ivb_display_irq_handler(dev, de_iir);
1994                 else
1995                         ilk_display_irq_handler(dev, de_iir);
1996         }
1997
1998         if (INTEL_INFO(dev)->gen >= 6) {
1999                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2000                 if (pm_iir) {
2001                         I915_WRITE(GEN6_PMIIR, pm_iir);
2002                         ret = IRQ_HANDLED;
2003                         gen6_rps_irq_handler(dev_priv, pm_iir);
2004                 }
2005         }
2006
2007         I915_WRITE(DEIER, de_ier);
2008         POSTING_READ(DEIER);
2009         if (!HAS_PCH_NOP(dev)) {
2010                 I915_WRITE(SDEIER, sde_ier);
2011                 POSTING_READ(SDEIER);
2012         }
2013
2014         return ret;
2015 }
2016
2017 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
2018 {
2019         struct drm_i915_private *dev_priv = dev->dev_private;
2020         u32 hp_control, hp_trigger;
2021         u32 pin_mask, long_mask;
2022
2023         /* Get the status */
2024         hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
2025         hp_control = I915_READ(BXT_HOTPLUG_CTL);
2026
2027         /* Hotplug not enabled ? */
2028         if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
2029                 DRM_ERROR("Interrupt when HPD disabled\n");
2030                 return;
2031         }
2032
2033         /* Clear sticky bits in hpd status */
2034         I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
2035
2036         intel_get_hpd_pins(&pin_mask, &long_mask, hp_trigger, hp_control,
2037                            hpd_bxt, bxt_port_hotplug_long_detect);
2038         intel_hpd_irq_handler(dev, pin_mask, long_mask);
2039 }
2040
2041 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2042 {
2043         struct drm_device *dev = arg;
2044         struct drm_i915_private *dev_priv = dev->dev_private;
2045         u32 master_ctl;
2046         irqreturn_t ret = IRQ_NONE;
2047         uint32_t tmp = 0;
2048         enum pipe pipe;
2049         u32 aux_mask = GEN8_AUX_CHANNEL_A;
2050
2051         if (!intel_irqs_enabled(dev_priv))
2052                 return IRQ_NONE;
2053
2054         if (IS_GEN9(dev))
2055                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2056                         GEN9_AUX_CHANNEL_D;
2057
2058         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2059         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2060         if (!master_ctl)
2061                 return IRQ_NONE;
2062
2063         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2064
2065         /* Find, clear, then process each source of interrupt */
2066
2067         ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2068
2069         if (master_ctl & GEN8_DE_MISC_IRQ) {
2070                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2071                 if (tmp) {
2072                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2073                         ret = IRQ_HANDLED;
2074                         if (tmp & GEN8_DE_MISC_GSE)
2075                                 intel_opregion_asle_intr(dev);
2076                         else
2077                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2078                 }
2079                 else
2080                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2081         }
2082
2083         if (master_ctl & GEN8_DE_PORT_IRQ) {
2084                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2085                 if (tmp) {
2086                         bool found = false;
2087
2088                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2089                         ret = IRQ_HANDLED;
2090
2091                         if (tmp & aux_mask) {
2092                                 dp_aux_irq_handler(dev);
2093                                 found = true;
2094                         }
2095
2096                         if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2097                                 bxt_hpd_handler(dev, tmp);
2098                                 found = true;
2099                         }
2100
2101                         if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2102                                 gmbus_irq_handler(dev);
2103                                 found = true;
2104                         }
2105
2106                         if (!found)
2107                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2108                 }
2109                 else
2110                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2111         }
2112
2113         for_each_pipe(dev_priv, pipe) {
2114                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2115
2116                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2117                         continue;
2118
2119                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2120                 if (pipe_iir) {
2121                         ret = IRQ_HANDLED;
2122                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2123
2124                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2125                             intel_pipe_handle_vblank(dev, pipe))
2126                                 intel_check_page_flip(dev, pipe);
2127
2128                         if (IS_GEN9(dev))
2129                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2130                         else
2131                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2132
2133                         if (flip_done) {
2134                                 intel_prepare_page_flip(dev, pipe);
2135                                 intel_finish_page_flip_plane(dev, pipe);
2136                         }
2137
2138                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2139                                 hsw_pipe_crc_irq_handler(dev, pipe);
2140
2141                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2142                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2143                                                                     pipe);
2144
2145
2146                         if (IS_GEN9(dev))
2147                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2148                         else
2149                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2150
2151                         if (fault_errors)
2152                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2153                                           pipe_name(pipe),
2154                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2155                 } else
2156                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2157         }
2158
2159         if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2160             master_ctl & GEN8_DE_PCH_IRQ) {
2161                 /*
2162                  * FIXME(BDW): Assume for now that the new interrupt handling
2163                  * scheme also closed the SDE interrupt handling race we've seen
2164                  * on older pch-split platforms. But this needs testing.
2165                  */
2166                 u32 pch_iir = I915_READ(SDEIIR);
2167                 if (pch_iir) {
2168                         I915_WRITE(SDEIIR, pch_iir);
2169                         ret = IRQ_HANDLED;
2170                         cpt_irq_handler(dev, pch_iir);
2171                 } else
2172                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2173
2174         }
2175
2176         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2177         POSTING_READ_FW(GEN8_MASTER_IRQ);
2178
2179         return ret;
2180 }
2181
2182 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2183                                bool reset_completed)
2184 {
2185         struct intel_engine_cs *ring;
2186         int i;
2187
2188         /*
2189          * Notify all waiters for GPU completion events that reset state has
2190          * been changed, and that they need to restart their wait after
2191          * checking for potential errors (and bail out to drop locks if there is
2192          * a gpu reset pending so that i915_error_work_func can acquire them).
2193          */
2194
2195         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2196         for_each_ring(ring, dev_priv, i)
2197                 wake_up_all(&ring->irq_queue);
2198
2199         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2200         wake_up_all(&dev_priv->pending_flip_queue);
2201
2202         /*
2203          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2204          * reset state is cleared.
2205          */
2206         if (reset_completed)
2207                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2208 }
2209
2210 /**
2211  * i915_reset_and_wakeup - do process context error handling work
2212  *
2213  * Fire an error uevent so userspace can see that a hang or error
2214  * was detected.
2215  */
2216 static void i915_reset_and_wakeup(struct drm_device *dev)
2217 {
2218         struct drm_i915_private *dev_priv = to_i915(dev);
2219         struct i915_gpu_error *error = &dev_priv->gpu_error;
2220         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2221         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2222         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2223         int ret;
2224
2225         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2226
2227         /*
2228          * Note that there's only one work item which does gpu resets, so we
2229          * need not worry about concurrent gpu resets potentially incrementing
2230          * error->reset_counter twice. We only need to take care of another
2231          * racing irq/hangcheck declaring the gpu dead for a second time. A
2232          * quick check for that is good enough: schedule_work ensures the
2233          * correct ordering between hang detection and this work item, and since
2234          * the reset in-progress bit is only ever set by code outside of this
2235          * work we don't need to worry about any other races.
2236          */
2237         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2238                 DRM_DEBUG_DRIVER("resetting chip\n");
2239                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2240                                    reset_event);
2241
2242                 /*
2243                  * In most cases it's guaranteed that we get here with an RPM
2244                  * reference held, for example because there is a pending GPU
2245                  * request that won't finish until the reset is done. This
2246                  * isn't the case at least when we get here by doing a
2247                  * simulated reset via debugs, so get an RPM reference.
2248                  */
2249                 intel_runtime_pm_get(dev_priv);
2250
2251                 intel_prepare_reset(dev);
2252
2253                 /*
2254                  * All state reset _must_ be completed before we update the
2255                  * reset counter, for otherwise waiters might miss the reset
2256                  * pending state and not properly drop locks, resulting in
2257                  * deadlocks with the reset work.
2258                  */
2259                 ret = i915_reset(dev);
2260
2261                 intel_finish_reset(dev);
2262
2263                 intel_runtime_pm_put(dev_priv);
2264
2265                 if (ret == 0) {
2266                         /*
2267                          * After all the gem state is reset, increment the reset
2268                          * counter and wake up everyone waiting for the reset to
2269                          * complete.
2270                          *
2271                          * Since unlock operations are a one-sided barrier only,
2272                          * we need to insert a barrier here to order any seqno
2273                          * updates before
2274                          * the counter increment.
2275                          */
2276                         smp_mb__before_atomic();
2277                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2278
2279                         kobject_uevent_env(&dev->primary->kdev->kobj,
2280                                            KOBJ_CHANGE, reset_done_event);
2281                 } else {
2282                         atomic_or(I915_WEDGED, &error->reset_counter);
2283                 }
2284
2285                 /*
2286                  * Note: The wake_up also serves as a memory barrier so that
2287                  * waiters see the update value of the reset counter atomic_t.
2288                  */
2289                 i915_error_wake_up(dev_priv, true);
2290         }
2291 }
2292
2293 static void i915_report_and_clear_eir(struct drm_device *dev)
2294 {
2295         struct drm_i915_private *dev_priv = dev->dev_private;
2296         uint32_t instdone[I915_NUM_INSTDONE_REG];
2297         u32 eir = I915_READ(EIR);
2298         int pipe, i;
2299
2300         if (!eir)
2301                 return;
2302
2303         pr_err("render error detected, EIR: 0x%08x\n", eir);
2304
2305         i915_get_extra_instdone(dev, instdone);
2306
2307         if (IS_G4X(dev)) {
2308                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2309                         u32 ipeir = I915_READ(IPEIR_I965);
2310
2311                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2312                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2313                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2314                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2315                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2316                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2317                         I915_WRITE(IPEIR_I965, ipeir);
2318                         POSTING_READ(IPEIR_I965);
2319                 }
2320                 if (eir & GM45_ERROR_PAGE_TABLE) {
2321                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2322                         pr_err("page table error\n");
2323                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2324                         I915_WRITE(PGTBL_ER, pgtbl_err);
2325                         POSTING_READ(PGTBL_ER);
2326                 }
2327         }
2328
2329         if (!IS_GEN2(dev)) {
2330                 if (eir & I915_ERROR_PAGE_TABLE) {
2331                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2332                         pr_err("page table error\n");
2333                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2334                         I915_WRITE(PGTBL_ER, pgtbl_err);
2335                         POSTING_READ(PGTBL_ER);
2336                 }
2337         }
2338
2339         if (eir & I915_ERROR_MEMORY_REFRESH) {
2340                 pr_err("memory refresh error:\n");
2341                 for_each_pipe(dev_priv, pipe)
2342                         pr_err("pipe %c stat: 0x%08x\n",
2343                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2344                 /* pipestat has already been acked */
2345         }
2346         if (eir & I915_ERROR_INSTRUCTION) {
2347                 pr_err("instruction error\n");
2348                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2349                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2350                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2351                 if (INTEL_INFO(dev)->gen < 4) {
2352                         u32 ipeir = I915_READ(IPEIR);
2353
2354                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2355                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2356                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2357                         I915_WRITE(IPEIR, ipeir);
2358                         POSTING_READ(IPEIR);
2359                 } else {
2360                         u32 ipeir = I915_READ(IPEIR_I965);
2361
2362                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2363                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2364                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2365                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2366                         I915_WRITE(IPEIR_I965, ipeir);
2367                         POSTING_READ(IPEIR_I965);
2368                 }
2369         }
2370
2371         I915_WRITE(EIR, eir);
2372         POSTING_READ(EIR);
2373         eir = I915_READ(EIR);
2374         if (eir) {
2375                 /*
2376                  * some errors might have become stuck,
2377                  * mask them.
2378                  */
2379                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2380                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2381                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2382         }
2383 }
2384
2385 /**
2386  * i915_handle_error - handle a gpu error
2387  * @dev: drm device
2388  *
2389  * Do some basic checking of regsiter state at error time and
2390  * dump it to the syslog.  Also call i915_capture_error_state() to make
2391  * sure we get a record and make it available in debugfs.  Fire a uevent
2392  * so userspace knows something bad happened (should trigger collection
2393  * of a ring dump etc.).
2394  */
2395 void i915_handle_error(struct drm_device *dev, bool wedged,
2396                        const char *fmt, ...)
2397 {
2398         struct drm_i915_private *dev_priv = dev->dev_private;
2399         va_list args;
2400         char error_msg[80];
2401
2402         va_start(args, fmt);
2403         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2404         va_end(args);
2405
2406         i915_capture_error_state(dev, wedged, error_msg);
2407         i915_report_and_clear_eir(dev);
2408
2409         if (wedged) {
2410                 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2411                                 &dev_priv->gpu_error.reset_counter);
2412
2413                 /*
2414                  * Wakeup waiting processes so that the reset function
2415                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2416                  * various locks. By bumping the reset counter first, the woken
2417                  * processes will see a reset in progress and back off,
2418                  * releasing their locks and then wait for the reset completion.
2419                  * We must do this for _all_ gpu waiters that might hold locks
2420                  * that the reset work needs to acquire.
2421                  *
2422                  * Note: The wake_up serves as the required memory barrier to
2423                  * ensure that the waiters see the updated value of the reset
2424                  * counter atomic_t.
2425                  */
2426                 i915_error_wake_up(dev_priv, false);
2427         }
2428
2429         i915_reset_and_wakeup(dev);
2430 }
2431
2432 /* Called from drm generic code, passed 'crtc' which
2433  * we use as a pipe index
2434  */
2435 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2436 {
2437         struct drm_i915_private *dev_priv = dev->dev_private;
2438         unsigned long irqflags;
2439
2440         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2441         if (INTEL_INFO(dev)->gen >= 4)
2442                 i915_enable_pipestat(dev_priv, pipe,
2443                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2444         else
2445                 i915_enable_pipestat(dev_priv, pipe,
2446                                      PIPE_VBLANK_INTERRUPT_STATUS);
2447         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2448
2449         return 0;
2450 }
2451
2452 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2453 {
2454         struct drm_i915_private *dev_priv = dev->dev_private;
2455         unsigned long irqflags;
2456         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2457                                                      DE_PIPE_VBLANK(pipe);
2458
2459         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2460         ironlake_enable_display_irq(dev_priv, bit);
2461         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2462
2463         return 0;
2464 }
2465
2466 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2467 {
2468         struct drm_i915_private *dev_priv = dev->dev_private;
2469         unsigned long irqflags;
2470
2471         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2472         i915_enable_pipestat(dev_priv, pipe,
2473                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2474         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2475
2476         return 0;
2477 }
2478
2479 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2480 {
2481         struct drm_i915_private *dev_priv = dev->dev_private;
2482         unsigned long irqflags;
2483
2484         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2485         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2486         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2487         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2488         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2489         return 0;
2490 }
2491
2492 /* Called from drm generic code, passed 'crtc' which
2493  * we use as a pipe index
2494  */
2495 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2496 {
2497         struct drm_i915_private *dev_priv = dev->dev_private;
2498         unsigned long irqflags;
2499
2500         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2501         i915_disable_pipestat(dev_priv, pipe,
2502                               PIPE_VBLANK_INTERRUPT_STATUS |
2503                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2504         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2505 }
2506
2507 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2508 {
2509         struct drm_i915_private *dev_priv = dev->dev_private;
2510         unsigned long irqflags;
2511         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2512                                                      DE_PIPE_VBLANK(pipe);
2513
2514         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2515         ironlake_disable_display_irq(dev_priv, bit);
2516         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2517 }
2518
2519 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2520 {
2521         struct drm_i915_private *dev_priv = dev->dev_private;
2522         unsigned long irqflags;
2523
2524         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2525         i915_disable_pipestat(dev_priv, pipe,
2526                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2527         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2528 }
2529
2530 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2531 {
2532         struct drm_i915_private *dev_priv = dev->dev_private;
2533         unsigned long irqflags;
2534
2535         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2536         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2537         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2538         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2539         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2540 }
2541
2542 static bool
2543 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2544 {
2545         return (list_empty(&ring->request_list) ||
2546                 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2547 }
2548
2549 static bool
2550 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2551 {
2552         if (INTEL_INFO(dev)->gen >= 8) {
2553                 return (ipehr >> 23) == 0x1c;
2554         } else {
2555                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2556                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2557                                  MI_SEMAPHORE_REGISTER);
2558         }
2559 }
2560
2561 static struct intel_engine_cs *
2562 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2563 {
2564         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2565         struct intel_engine_cs *signaller;
2566         int i;
2567
2568         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2569                 for_each_ring(signaller, dev_priv, i) {
2570                         if (ring == signaller)
2571                                 continue;
2572
2573                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2574                                 return signaller;
2575                 }
2576         } else {
2577                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2578
2579                 for_each_ring(signaller, dev_priv, i) {
2580                         if(ring == signaller)
2581                                 continue;
2582
2583                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2584                                 return signaller;
2585                 }
2586         }
2587
2588         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2589                   ring->id, ipehr, offset);
2590
2591         return NULL;
2592 }
2593
2594 static struct intel_engine_cs *
2595 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2596 {
2597         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2598         u32 cmd, ipehr, head;
2599         u64 offset = 0;
2600         int i, backwards;
2601
2602         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2603         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2604                 return NULL;
2605
2606         /*
2607          * HEAD is likely pointing to the dword after the actual command,
2608          * so scan backwards until we find the MBOX. But limit it to just 3
2609          * or 4 dwords depending on the semaphore wait command size.
2610          * Note that we don't care about ACTHD here since that might
2611          * point at at batch, and semaphores are always emitted into the
2612          * ringbuffer itself.
2613          */
2614         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2615         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2616
2617         for (i = backwards; i; --i) {
2618                 /*
2619                  * Be paranoid and presume the hw has gone off into the wild -
2620                  * our ring is smaller than what the hardware (and hence
2621                  * HEAD_ADDR) allows. Also handles wrap-around.
2622                  */
2623                 head &= ring->buffer->size - 1;
2624
2625                 /* This here seems to blow up */
2626                 cmd = ioread32(ring->buffer->virtual_start + head);
2627                 if (cmd == ipehr)
2628                         break;
2629
2630                 head -= 4;
2631         }
2632
2633         if (!i)
2634                 return NULL;
2635
2636         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2637         if (INTEL_INFO(ring->dev)->gen >= 8) {
2638                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2639                 offset <<= 32;
2640                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2641         }
2642         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2643 }
2644
2645 static int semaphore_passed(struct intel_engine_cs *ring)
2646 {
2647         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2648         struct intel_engine_cs *signaller;
2649         u32 seqno;
2650
2651         ring->hangcheck.deadlock++;
2652
2653         signaller = semaphore_waits_for(ring, &seqno);
2654         if (signaller == NULL)
2655                 return -1;
2656
2657         /* Prevent pathological recursion due to driver bugs */
2658         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2659                 return -1;
2660
2661         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2662                 return 1;
2663
2664         /* cursory check for an unkickable deadlock */
2665         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2666             semaphore_passed(signaller) < 0)
2667                 return -1;
2668
2669         return 0;
2670 }
2671
2672 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2673 {
2674         struct intel_engine_cs *ring;
2675         int i;
2676
2677         for_each_ring(ring, dev_priv, i)
2678                 ring->hangcheck.deadlock = 0;
2679 }
2680
2681 static enum intel_ring_hangcheck_action
2682 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2683 {
2684         struct drm_device *dev = ring->dev;
2685         struct drm_i915_private *dev_priv = dev->dev_private;
2686         u32 tmp;
2687
2688         if (acthd != ring->hangcheck.acthd) {
2689                 if (acthd > ring->hangcheck.max_acthd) {
2690                         ring->hangcheck.max_acthd = acthd;
2691                         return HANGCHECK_ACTIVE;
2692                 }
2693
2694                 return HANGCHECK_ACTIVE_LOOP;
2695         }
2696
2697         if (IS_GEN2(dev))
2698                 return HANGCHECK_HUNG;
2699
2700         /* Is the chip hanging on a WAIT_FOR_EVENT?
2701          * If so we can simply poke the RB_WAIT bit
2702          * and break the hang. This should work on
2703          * all but the second generation chipsets.
2704          */
2705         tmp = I915_READ_CTL(ring);
2706         if (tmp & RING_WAIT) {
2707                 i915_handle_error(dev, false,
2708                                   "Kicking stuck wait on %s",
2709                                   ring->name);
2710                 I915_WRITE_CTL(ring, tmp);
2711                 return HANGCHECK_KICK;
2712         }
2713
2714         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2715                 switch (semaphore_passed(ring)) {
2716                 default:
2717                         return HANGCHECK_HUNG;
2718                 case 1:
2719                         i915_handle_error(dev, false,
2720                                           "Kicking stuck semaphore on %s",
2721                                           ring->name);
2722                         I915_WRITE_CTL(ring, tmp);
2723                         return HANGCHECK_KICK;
2724                 case 0:
2725                         return HANGCHECK_WAIT;
2726                 }
2727         }
2728
2729         return HANGCHECK_HUNG;
2730 }
2731
2732 /*
2733  * This is called when the chip hasn't reported back with completed
2734  * batchbuffers in a long time. We keep track per ring seqno progress and
2735  * if there are no progress, hangcheck score for that ring is increased.
2736  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2737  * we kick the ring. If we see no progress on three subsequent calls
2738  * we assume chip is wedged and try to fix it by resetting the chip.
2739  */
2740 static void i915_hangcheck_elapsed(struct work_struct *work)
2741 {
2742         struct drm_i915_private *dev_priv =
2743                 container_of(work, typeof(*dev_priv),
2744                              gpu_error.hangcheck_work.work);
2745         struct drm_device *dev = dev_priv->dev;
2746         struct intel_engine_cs *ring;
2747         int i;
2748         int busy_count = 0, rings_hung = 0;
2749         bool stuck[I915_NUM_RINGS] = { 0 };
2750 #define BUSY 1
2751 #define KICK 5
2752 #define HUNG 20
2753
2754         if (!i915.enable_hangcheck)
2755                 return;
2756
2757         for_each_ring(ring, dev_priv, i) {
2758                 u64 acthd;
2759                 u32 seqno;
2760                 bool busy = true;
2761
2762                 semaphore_clear_deadlocks(dev_priv);
2763
2764                 seqno = ring->get_seqno(ring, false);
2765                 acthd = intel_ring_get_active_head(ring);
2766
2767                 if (ring->hangcheck.seqno == seqno) {
2768                         if (ring_idle(ring, seqno)) {
2769                                 ring->hangcheck.action = HANGCHECK_IDLE;
2770
2771                                 if (waitqueue_active(&ring->irq_queue)) {
2772                                         /* Issue a wake-up to catch stuck h/w. */
2773                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2774                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2775                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2776                                                                   ring->name);
2777                                                 else
2778                                                         DRM_INFO("Fake missed irq on %s\n",
2779                                                                  ring->name);
2780                                                 wake_up_all(&ring->irq_queue);
2781                                         }
2782                                         /* Safeguard against driver failure */
2783                                         ring->hangcheck.score += BUSY;
2784                                 } else
2785                                         busy = false;
2786                         } else {
2787                                 /* We always increment the hangcheck score
2788                                  * if the ring is busy and still processing
2789                                  * the same request, so that no single request
2790                                  * can run indefinitely (such as a chain of
2791                                  * batches). The only time we do not increment
2792                                  * the hangcheck score on this ring, if this
2793                                  * ring is in a legitimate wait for another
2794                                  * ring. In that case the waiting ring is a
2795                                  * victim and we want to be sure we catch the
2796                                  * right culprit. Then every time we do kick
2797                                  * the ring, add a small increment to the
2798                                  * score so that we can catch a batch that is
2799                                  * being repeatedly kicked and so responsible
2800                                  * for stalling the machine.
2801                                  */
2802                                 ring->hangcheck.action = ring_stuck(ring,
2803                                                                     acthd);
2804
2805                                 switch (ring->hangcheck.action) {
2806                                 case HANGCHECK_IDLE:
2807                                 case HANGCHECK_WAIT:
2808                                 case HANGCHECK_ACTIVE:
2809                                         break;
2810                                 case HANGCHECK_ACTIVE_LOOP:
2811                                         ring->hangcheck.score += BUSY;
2812                                         break;
2813                                 case HANGCHECK_KICK:
2814                                         ring->hangcheck.score += KICK;
2815                                         break;
2816                                 case HANGCHECK_HUNG:
2817                                         ring->hangcheck.score += HUNG;
2818                                         stuck[i] = true;
2819                                         break;
2820                                 }
2821                         }
2822                 } else {
2823                         ring->hangcheck.action = HANGCHECK_ACTIVE;
2824
2825                         /* Gradually reduce the count so that we catch DoS
2826                          * attempts across multiple batches.
2827                          */
2828                         if (ring->hangcheck.score > 0)
2829                                 ring->hangcheck.score--;
2830
2831                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2832                 }
2833
2834                 ring->hangcheck.seqno = seqno;
2835                 ring->hangcheck.acthd = acthd;
2836                 busy_count += busy;
2837         }
2838
2839         for_each_ring(ring, dev_priv, i) {
2840                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2841                         DRM_INFO("%s on %s\n",
2842                                  stuck[i] ? "stuck" : "no progress",
2843                                  ring->name);
2844                         rings_hung++;
2845                 }
2846         }
2847
2848         if (rings_hung)
2849                 return i915_handle_error(dev, true, "Ring hung");
2850
2851         if (busy_count)
2852                 /* Reset timer case chip hangs without another request
2853                  * being added */
2854                 i915_queue_hangcheck(dev);
2855 }
2856
2857 void i915_queue_hangcheck(struct drm_device *dev)
2858 {
2859         struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
2860
2861         if (!i915.enable_hangcheck)
2862                 return;
2863
2864         /* Don't continually defer the hangcheck so that it is always run at
2865          * least once after work has been scheduled on any ring. Otherwise,
2866          * we will ignore a hung ring if a second ring is kept busy.
2867          */
2868
2869         queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
2870                            round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
2871 }
2872
2873 static void ibx_irq_reset(struct drm_device *dev)
2874 {
2875         struct drm_i915_private *dev_priv = dev->dev_private;
2876
2877         if (HAS_PCH_NOP(dev))
2878                 return;
2879
2880         GEN5_IRQ_RESET(SDE);
2881
2882         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2883                 I915_WRITE(SERR_INT, 0xffffffff);
2884 }
2885
2886 /*
2887  * SDEIER is also touched by the interrupt handler to work around missed PCH
2888  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2889  * instead we unconditionally enable all PCH interrupt sources here, but then
2890  * only unmask them as needed with SDEIMR.
2891  *
2892  * This function needs to be called before interrupts are enabled.
2893  */
2894 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2895 {
2896         struct drm_i915_private *dev_priv = dev->dev_private;
2897
2898         if (HAS_PCH_NOP(dev))
2899                 return;
2900
2901         WARN_ON(I915_READ(SDEIER) != 0);
2902         I915_WRITE(SDEIER, 0xffffffff);
2903         POSTING_READ(SDEIER);
2904 }
2905
2906 static void gen5_gt_irq_reset(struct drm_device *dev)
2907 {
2908         struct drm_i915_private *dev_priv = dev->dev_private;
2909
2910         GEN5_IRQ_RESET(GT);
2911         if (INTEL_INFO(dev)->gen >= 6)
2912                 GEN5_IRQ_RESET(GEN6_PM);
2913 }
2914
2915 /* drm_dma.h hooks
2916 */
2917 static void ironlake_irq_reset(struct drm_device *dev)
2918 {
2919         struct drm_i915_private *dev_priv = dev->dev_private;
2920
2921         I915_WRITE(HWSTAM, 0xffffffff);
2922
2923         GEN5_IRQ_RESET(DE);
2924         if (IS_GEN7(dev))
2925                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2926
2927         gen5_gt_irq_reset(dev);
2928
2929         ibx_irq_reset(dev);
2930 }
2931
2932 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2933 {
2934         enum pipe pipe;
2935
2936         I915_WRITE(PORT_HOTPLUG_EN, 0);
2937         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2938
2939         for_each_pipe(dev_priv, pipe)
2940                 I915_WRITE(PIPESTAT(pipe), 0xffff);
2941
2942         GEN5_IRQ_RESET(VLV_);
2943 }
2944
2945 static void valleyview_irq_preinstall(struct drm_device *dev)
2946 {
2947         struct drm_i915_private *dev_priv = dev->dev_private;
2948
2949         /* VLV magic */
2950         I915_WRITE(VLV_IMR, 0);
2951         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2952         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2953         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2954
2955         gen5_gt_irq_reset(dev);
2956
2957         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2958
2959         vlv_display_irq_reset(dev_priv);
2960 }
2961
2962 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2963 {
2964         GEN8_IRQ_RESET_NDX(GT, 0);
2965         GEN8_IRQ_RESET_NDX(GT, 1);
2966         GEN8_IRQ_RESET_NDX(GT, 2);
2967         GEN8_IRQ_RESET_NDX(GT, 3);
2968 }
2969
2970 static void gen8_irq_reset(struct drm_device *dev)
2971 {
2972         struct drm_i915_private *dev_priv = dev->dev_private;
2973         int pipe;
2974
2975         I915_WRITE(GEN8_MASTER_IRQ, 0);
2976         POSTING_READ(GEN8_MASTER_IRQ);
2977
2978         gen8_gt_irq_reset(dev_priv);
2979
2980         for_each_pipe(dev_priv, pipe)
2981                 if (intel_display_power_is_enabled(dev_priv,
2982                                                    POWER_DOMAIN_PIPE(pipe)))
2983                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2984
2985         GEN5_IRQ_RESET(GEN8_DE_PORT_);
2986         GEN5_IRQ_RESET(GEN8_DE_MISC_);
2987         GEN5_IRQ_RESET(GEN8_PCU_);
2988
2989         if (HAS_PCH_SPLIT(dev))
2990                 ibx_irq_reset(dev);
2991 }
2992
2993 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2994                                      unsigned int pipe_mask)
2995 {
2996         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2997
2998         spin_lock_irq(&dev_priv->irq_lock);
2999         if (pipe_mask & 1 << PIPE_A)
3000                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3001                                   dev_priv->de_irq_mask[PIPE_A],
3002                                   ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3003         if (pipe_mask & 1 << PIPE_B)
3004                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3005                                   dev_priv->de_irq_mask[PIPE_B],
3006                                   ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3007         if (pipe_mask & 1 << PIPE_C)
3008                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3009                                   dev_priv->de_irq_mask[PIPE_C],
3010                                   ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3011         spin_unlock_irq(&dev_priv->irq_lock);
3012 }
3013
3014 static void cherryview_irq_preinstall(struct drm_device *dev)
3015 {
3016         struct drm_i915_private *dev_priv = dev->dev_private;
3017
3018         I915_WRITE(GEN8_MASTER_IRQ, 0);
3019         POSTING_READ(GEN8_MASTER_IRQ);
3020
3021         gen8_gt_irq_reset(dev_priv);
3022
3023         GEN5_IRQ_RESET(GEN8_PCU_);
3024
3025         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3026
3027         vlv_display_irq_reset(dev_priv);
3028 }
3029
3030 static void ibx_hpd_irq_setup(struct drm_device *dev)
3031 {
3032         struct drm_i915_private *dev_priv = dev->dev_private;
3033         struct intel_encoder *intel_encoder;
3034         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3035
3036         if (HAS_PCH_IBX(dev)) {
3037                 hotplug_irqs = SDE_HOTPLUG_MASK;
3038                 for_each_intel_encoder(dev, intel_encoder)
3039                         if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3040                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3041         } else if (HAS_PCH_SPT(dev)) {
3042                 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3043                 for_each_intel_encoder(dev, intel_encoder)
3044                         if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3045                                 enabled_irqs |= hpd_spt[intel_encoder->hpd_pin];
3046         } else {
3047                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3048                 for_each_intel_encoder(dev, intel_encoder)
3049                         if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3050                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3051         }
3052
3053         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3054
3055         /*
3056          * Enable digital hotplug on the PCH, and configure the DP short pulse
3057          * duration to 2ms (which is the minimum in the Display Port spec)
3058          *
3059          * This register is the same on all known PCH chips.
3060          */
3061         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3062         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3063         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3064         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3065         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3066         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3067
3068         /* enable SPT PORTE hot plug */
3069         if (HAS_PCH_SPT(dev)) {
3070                 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3071                 hotplug |= PORTE_HOTPLUG_ENABLE;
3072                 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3073         }
3074 }
3075
3076 static void bxt_hpd_irq_setup(struct drm_device *dev)
3077 {
3078         struct drm_i915_private *dev_priv = dev->dev_private;
3079         struct intel_encoder *intel_encoder;
3080         u32 hotplug_port = 0;
3081         u32 hotplug_ctrl;
3082
3083         /* Now, enable HPD */
3084         for_each_intel_encoder(dev, intel_encoder) {
3085                 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state
3086                                 == HPD_ENABLED)
3087                         hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3088         }
3089
3090         /* Mask all HPD control bits */
3091         hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3092
3093         /* Enable requested port in hotplug control */
3094         /* TODO: implement (short) HPD support on port A */
3095         WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3096         if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3097                 hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3098         if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3099                 hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3100         I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3101
3102         /* Unmask DDI hotplug in IMR */
3103         hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3104         I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3105
3106         /* Enable DDI hotplug in IER */
3107         hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3108         I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3109         POSTING_READ(GEN8_DE_PORT_IER);
3110 }
3111
3112 static void ibx_irq_postinstall(struct drm_device *dev)
3113 {
3114         struct drm_i915_private *dev_priv = dev->dev_private;
3115         u32 mask;
3116
3117         if (HAS_PCH_NOP(dev))
3118                 return;
3119
3120         if (HAS_PCH_IBX(dev))
3121                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3122         else
3123                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3124
3125         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3126         I915_WRITE(SDEIMR, ~mask);
3127 }
3128
3129 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3130 {
3131         struct drm_i915_private *dev_priv = dev->dev_private;
3132         u32 pm_irqs, gt_irqs;
3133
3134         pm_irqs = gt_irqs = 0;
3135
3136         dev_priv->gt_irq_mask = ~0;
3137         if (HAS_L3_DPF(dev)) {
3138                 /* L3 parity interrupt is always unmasked. */
3139                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3140                 gt_irqs |= GT_PARITY_ERROR(dev);
3141         }
3142
3143         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3144         if (IS_GEN5(dev)) {
3145                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3146                            ILK_BSD_USER_INTERRUPT;
3147         } else {
3148                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3149         }
3150
3151         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3152
3153         if (INTEL_INFO(dev)->gen >= 6) {
3154                 /*
3155                  * RPS interrupts will get enabled/disabled on demand when RPS
3156                  * itself is enabled/disabled.
3157                  */
3158                 if (HAS_VEBOX(dev))
3159                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3160
3161                 dev_priv->pm_irq_mask = 0xffffffff;
3162                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3163         }
3164 }
3165
3166 static int ironlake_irq_postinstall(struct drm_device *dev)
3167 {
3168         struct drm_i915_private *dev_priv = dev->dev_private;
3169         u32 display_mask, extra_mask;
3170
3171         if (INTEL_INFO(dev)->gen >= 7) {
3172                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3173                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3174                                 DE_PLANEB_FLIP_DONE_IVB |
3175                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3176                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3177                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3178         } else {
3179                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3180                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3181                                 DE_AUX_CHANNEL_A |
3182                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3183                                 DE_POISON);
3184                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3185                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3186         }
3187
3188         dev_priv->irq_mask = ~display_mask;
3189
3190         I915_WRITE(HWSTAM, 0xeffe);
3191
3192         ibx_irq_pre_postinstall(dev);
3193
3194         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3195
3196         gen5_gt_irq_postinstall(dev);
3197
3198         ibx_irq_postinstall(dev);
3199
3200         if (IS_IRONLAKE_M(dev)) {
3201                 /* Enable PCU event interrupts
3202                  *
3203                  * spinlocking not required here for correctness since interrupt
3204                  * setup is guaranteed to run in single-threaded context. But we
3205                  * need it to make the assert_spin_locked happy. */
3206                 spin_lock_irq(&dev_priv->irq_lock);
3207                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3208                 spin_unlock_irq(&dev_priv->irq_lock);
3209         }
3210
3211         return 0;
3212 }
3213
3214 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3215 {
3216         u32 pipestat_mask;
3217         u32 iir_mask;
3218         enum pipe pipe;
3219
3220         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3221                         PIPE_FIFO_UNDERRUN_STATUS;
3222
3223         for_each_pipe(dev_priv, pipe)
3224                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3225         POSTING_READ(PIPESTAT(PIPE_A));
3226
3227         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3228                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3229
3230         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3231         for_each_pipe(dev_priv, pipe)
3232                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3233
3234         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3235                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3236                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3237         if (IS_CHERRYVIEW(dev_priv))
3238                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3239         dev_priv->irq_mask &= ~iir_mask;
3240
3241         I915_WRITE(VLV_IIR, iir_mask);
3242         I915_WRITE(VLV_IIR, iir_mask);
3243         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3244         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3245         POSTING_READ(VLV_IMR);
3246 }
3247
3248 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3249 {
3250         u32 pipestat_mask;
3251         u32 iir_mask;
3252         enum pipe pipe;
3253
3254         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3255                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3256                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3257         if (IS_CHERRYVIEW(dev_priv))
3258                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3259
3260         dev_priv->irq_mask |= iir_mask;
3261         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3262         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3263         I915_WRITE(VLV_IIR, iir_mask);
3264         I915_WRITE(VLV_IIR, iir_mask);
3265         POSTING_READ(VLV_IIR);
3266
3267         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3268                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3269
3270         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3271         for_each_pipe(dev_priv, pipe)
3272                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3273
3274         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3275                         PIPE_FIFO_UNDERRUN_STATUS;
3276
3277         for_each_pipe(dev_priv, pipe)
3278                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3279         POSTING_READ(PIPESTAT(PIPE_A));
3280 }
3281
3282 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3283 {
3284         assert_spin_locked(&dev_priv->irq_lock);
3285
3286         if (dev_priv->display_irqs_enabled)
3287                 return;
3288
3289         dev_priv->display_irqs_enabled = true;
3290
3291         if (intel_irqs_enabled(dev_priv))
3292                 valleyview_display_irqs_install(dev_priv);
3293 }
3294
3295 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3296 {
3297         assert_spin_locked(&dev_priv->irq_lock);
3298
3299         if (!dev_priv->display_irqs_enabled)
3300                 return;
3301
3302         dev_priv->display_irqs_enabled = false;
3303
3304         if (intel_irqs_enabled(dev_priv))
3305                 valleyview_display_irqs_uninstall(dev_priv);
3306 }
3307
3308 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3309 {
3310         dev_priv->irq_mask = ~0;
3311
3312         I915_WRITE(PORT_HOTPLUG_EN, 0);
3313         POSTING_READ(PORT_HOTPLUG_EN);
3314
3315         I915_WRITE(VLV_IIR, 0xffffffff);
3316         I915_WRITE(VLV_IIR, 0xffffffff);
3317         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3318         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3319         POSTING_READ(VLV_IMR);
3320
3321         /* Interrupt setup is already guaranteed to be single-threaded, this is
3322          * just to make the assert_spin_locked check happy. */
3323         spin_lock_irq(&dev_priv->irq_lock);
3324         if (dev_priv->display_irqs_enabled)
3325                 valleyview_display_irqs_install(dev_priv);
3326         spin_unlock_irq(&dev_priv->irq_lock);
3327 }
3328
3329 static int valleyview_irq_postinstall(struct drm_device *dev)
3330 {
3331         struct drm_i915_private *dev_priv = dev->dev_private;
3332
3333         vlv_display_irq_postinstall(dev_priv);
3334
3335         gen5_gt_irq_postinstall(dev);
3336
3337         /* ack & enable invalid PTE error interrupts */
3338 #if 0 /* FIXME: add support to irq handler for checking these bits */
3339         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3340         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3341 #endif
3342
3343         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3344
3345         return 0;
3346 }
3347
3348 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3349 {
3350         /* These are interrupts we'll toggle with the ring mask register */
3351         uint32_t gt_interrupts[] = {
3352                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3353                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3354                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3355                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3356                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3357                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3358                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3359                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3360                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3361                 0,
3362                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3363                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3364                 };
3365
3366         dev_priv->pm_irq_mask = 0xffffffff;
3367         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3368         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3369         /*
3370          * RPS interrupts will get enabled/disabled on demand when RPS itself
3371          * is enabled/disabled.
3372          */
3373         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3374         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3375 }
3376
3377 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3378 {
3379         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3380         uint32_t de_pipe_enables;
3381         int pipe;
3382         u32 de_port_en = GEN8_AUX_CHANNEL_A;
3383
3384         if (IS_GEN9(dev_priv)) {
3385                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3386                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3387                 de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3388                         GEN9_AUX_CHANNEL_D;
3389
3390                 if (IS_BROXTON(dev_priv))
3391                         de_port_en |= BXT_DE_PORT_GMBUS;
3392         } else
3393                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3394                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3395
3396         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3397                                            GEN8_PIPE_FIFO_UNDERRUN;
3398
3399         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3400         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3401         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3402
3403         for_each_pipe(dev_priv, pipe)
3404                 if (intel_display_power_is_enabled(dev_priv,
3405                                 POWER_DOMAIN_PIPE(pipe)))
3406                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3407                                           dev_priv->de_irq_mask[pipe],
3408                                           de_pipe_enables);
3409
3410         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3411 }
3412
3413 static int gen8_irq_postinstall(struct drm_device *dev)
3414 {
3415         struct drm_i915_private *dev_priv = dev->dev_private;
3416
3417         if (HAS_PCH_SPLIT(dev))
3418                 ibx_irq_pre_postinstall(dev);
3419
3420         gen8_gt_irq_postinstall(dev_priv);
3421         gen8_de_irq_postinstall(dev_priv);
3422
3423         if (HAS_PCH_SPLIT(dev))
3424                 ibx_irq_postinstall(dev);
3425
3426         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3427         POSTING_READ(GEN8_MASTER_IRQ);
3428
3429         return 0;
3430 }
3431
3432 static int cherryview_irq_postinstall(struct drm_device *dev)
3433 {
3434         struct drm_i915_private *dev_priv = dev->dev_private;
3435
3436         vlv_display_irq_postinstall(dev_priv);
3437
3438         gen8_gt_irq_postinstall(dev_priv);
3439
3440         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3441         POSTING_READ(GEN8_MASTER_IRQ);
3442
3443         return 0;
3444 }
3445
3446 static void gen8_irq_uninstall(struct drm_device *dev)
3447 {
3448         struct drm_i915_private *dev_priv = dev->dev_private;
3449
3450         if (!dev_priv)
3451                 return;
3452
3453         gen8_irq_reset(dev);
3454 }
3455
3456 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3457 {
3458         /* Interrupt setup is already guaranteed to be single-threaded, this is
3459          * just to make the assert_spin_locked check happy. */
3460         spin_lock_irq(&dev_priv->irq_lock);
3461         if (dev_priv->display_irqs_enabled)
3462                 valleyview_display_irqs_uninstall(dev_priv);
3463         spin_unlock_irq(&dev_priv->irq_lock);
3464
3465         vlv_display_irq_reset(dev_priv);
3466
3467         dev_priv->irq_mask = ~0;
3468 }
3469
3470 static void valleyview_irq_uninstall(struct drm_device *dev)
3471 {
3472         struct drm_i915_private *dev_priv = dev->dev_private;
3473
3474         if (!dev_priv)
3475                 return;
3476
3477         I915_WRITE(VLV_MASTER_IER, 0);
3478
3479         gen5_gt_irq_reset(dev);
3480
3481         I915_WRITE(HWSTAM, 0xffffffff);
3482
3483         vlv_display_irq_uninstall(dev_priv);
3484 }
3485
3486 static void cherryview_irq_uninstall(struct drm_device *dev)
3487 {
3488         struct drm_i915_private *dev_priv = dev->dev_private;
3489
3490         if (!dev_priv)
3491                 return;
3492
3493         I915_WRITE(GEN8_MASTER_IRQ, 0);
3494         POSTING_READ(GEN8_MASTER_IRQ);
3495
3496         gen8_gt_irq_reset(dev_priv);
3497
3498         GEN5_IRQ_RESET(GEN8_PCU_);
3499
3500         vlv_display_irq_uninstall(dev_priv);
3501 }
3502
3503 static void ironlake_irq_uninstall(struct drm_device *dev)
3504 {
3505         struct drm_i915_private *dev_priv = dev->dev_private;
3506
3507         if (!dev_priv)
3508                 return;
3509
3510         ironlake_irq_reset(dev);
3511 }
3512
3513 static void i8xx_irq_preinstall(struct drm_device * dev)
3514 {
3515         struct drm_i915_private *dev_priv = dev->dev_private;
3516         int pipe;
3517
3518         for_each_pipe(dev_priv, pipe)
3519                 I915_WRITE(PIPESTAT(pipe), 0);
3520         I915_WRITE16(IMR, 0xffff);
3521         I915_WRITE16(IER, 0x0);
3522         POSTING_READ16(IER);
3523 }
3524
3525 static int i8xx_irq_postinstall(struct drm_device *dev)
3526 {
3527         struct drm_i915_private *dev_priv = dev->dev_private;
3528
3529         I915_WRITE16(EMR,
3530                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3531
3532         /* Unmask the interrupts that we always want on. */
3533         dev_priv->irq_mask =
3534                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3535                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3536                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3537                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3538         I915_WRITE16(IMR, dev_priv->irq_mask);
3539
3540         I915_WRITE16(IER,
3541                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3542                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3543                      I915_USER_INTERRUPT);
3544         POSTING_READ16(IER);
3545
3546         /* Interrupt setup is already guaranteed to be single-threaded, this is
3547          * just to make the assert_spin_locked check happy. */
3548         spin_lock_irq(&dev_priv->irq_lock);
3549         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3550         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3551         spin_unlock_irq(&dev_priv->irq_lock);
3552
3553         return 0;
3554 }
3555
3556 /*
3557  * Returns true when a page flip has completed.
3558  */
3559 static bool i8xx_handle_vblank(struct drm_device *dev,
3560                                int plane, int pipe, u32 iir)
3561 {
3562         struct drm_i915_private *dev_priv = dev->dev_private;
3563         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3564
3565         if (!intel_pipe_handle_vblank(dev, pipe))
3566                 return false;
3567
3568         if ((iir & flip_pending) == 0)
3569                 goto check_page_flip;
3570
3571         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3572          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3573          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3574          * the flip is completed (no longer pending). Since this doesn't raise
3575          * an interrupt per se, we watch for the change at vblank.
3576          */
3577         if (I915_READ16(ISR) & flip_pending)
3578                 goto check_page_flip;
3579
3580         intel_prepare_page_flip(dev, plane);
3581         intel_finish_page_flip(dev, pipe);
3582         return true;
3583
3584 check_page_flip:
3585         intel_check_page_flip(dev, pipe);
3586         return false;
3587 }
3588
3589 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3590 {
3591         struct drm_device *dev = arg;
3592         struct drm_i915_private *dev_priv = dev->dev_private;
3593         u16 iir, new_iir;
3594         u32 pipe_stats[2];
3595         int pipe;
3596         u16 flip_mask =
3597                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3598                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3599
3600         if (!intel_irqs_enabled(dev_priv))
3601                 return IRQ_NONE;
3602
3603         iir = I915_READ16(IIR);
3604         if (iir == 0)
3605                 return IRQ_NONE;
3606
3607         while (iir & ~flip_mask) {
3608                 /* Can't rely on pipestat interrupt bit in iir as it might
3609                  * have been cleared after the pipestat interrupt was received.
3610                  * It doesn't set the bit in iir again, but it still produces
3611                  * interrupts (for non-MSI).
3612                  */
3613                 spin_lock(&dev_priv->irq_lock);
3614                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3615                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3616
3617                 for_each_pipe(dev_priv, pipe) {
3618                         int reg = PIPESTAT(pipe);
3619                         pipe_stats[pipe] = I915_READ(reg);
3620
3621                         /*
3622                          * Clear the PIPE*STAT regs before the IIR
3623                          */
3624                         if (pipe_stats[pipe] & 0x8000ffff)
3625                                 I915_WRITE(reg, pipe_stats[pipe]);
3626                 }
3627                 spin_unlock(&dev_priv->irq_lock);
3628
3629                 I915_WRITE16(IIR, iir & ~flip_mask);
3630                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3631
3632                 if (iir & I915_USER_INTERRUPT)
3633                         notify_ring(&dev_priv->ring[RCS]);
3634
3635                 for_each_pipe(dev_priv, pipe) {
3636                         int plane = pipe;
3637                         if (HAS_FBC(dev))
3638                                 plane = !plane;
3639
3640                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3641                             i8xx_handle_vblank(dev, plane, pipe, iir))
3642                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3643
3644                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3645                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3646
3647                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3648                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3649                                                                     pipe);
3650                 }
3651
3652                 iir = new_iir;
3653         }
3654
3655         return IRQ_HANDLED;
3656 }
3657
3658 static void i8xx_irq_uninstall(struct drm_device * dev)
3659 {
3660         struct drm_i915_private *dev_priv = dev->dev_private;
3661         int pipe;
3662
3663         for_each_pipe(dev_priv, pipe) {
3664                 /* Clear enable bits; then clear status bits */
3665                 I915_WRITE(PIPESTAT(pipe), 0);
3666                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3667         }
3668         I915_WRITE16(IMR, 0xffff);
3669         I915_WRITE16(IER, 0x0);
3670         I915_WRITE16(IIR, I915_READ16(IIR));
3671 }
3672
3673 static void i915_irq_preinstall(struct drm_device * dev)
3674 {
3675         struct drm_i915_private *dev_priv = dev->dev_private;
3676         int pipe;
3677
3678         if (I915_HAS_HOTPLUG(dev)) {
3679                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3680                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3681         }
3682
3683         I915_WRITE16(HWSTAM, 0xeffe);
3684         for_each_pipe(dev_priv, pipe)
3685                 I915_WRITE(PIPESTAT(pipe), 0);
3686         I915_WRITE(IMR, 0xffffffff);
3687         I915_WRITE(IER, 0x0);
3688         POSTING_READ(IER);
3689 }
3690
3691 static int i915_irq_postinstall(struct drm_device *dev)
3692 {
3693         struct drm_i915_private *dev_priv = dev->dev_private;
3694         u32 enable_mask;
3695
3696         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3697
3698         /* Unmask the interrupts that we always want on. */
3699         dev_priv->irq_mask =
3700                 ~(I915_ASLE_INTERRUPT |
3701                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3702                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3703                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3704                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3705
3706         enable_mask =
3707                 I915_ASLE_INTERRUPT |
3708                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3709                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3710                 I915_USER_INTERRUPT;
3711
3712         if (I915_HAS_HOTPLUG(dev)) {
3713                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3714                 POSTING_READ(PORT_HOTPLUG_EN);
3715
3716                 /* Enable in IER... */
3717                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3718                 /* and unmask in IMR */
3719                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3720         }
3721
3722         I915_WRITE(IMR, dev_priv->irq_mask);
3723         I915_WRITE(IER, enable_mask);
3724         POSTING_READ(IER);
3725
3726         i915_enable_asle_pipestat(dev);
3727
3728         /* Interrupt setup is already guaranteed to be single-threaded, this is
3729          * just to make the assert_spin_locked check happy. */
3730         spin_lock_irq(&dev_priv->irq_lock);
3731         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3732         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3733         spin_unlock_irq(&dev_priv->irq_lock);
3734
3735         return 0;
3736 }
3737
3738 /*
3739  * Returns true when a page flip has completed.
3740  */
3741 static bool i915_handle_vblank(struct drm_device *dev,
3742                                int plane, int pipe, u32 iir)
3743 {
3744         struct drm_i915_private *dev_priv = dev->dev_private;
3745         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3746
3747         if (!intel_pipe_handle_vblank(dev, pipe))
3748                 return false;
3749
3750         if ((iir & flip_pending) == 0)
3751                 goto check_page_flip;
3752
3753         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3754          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3755          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3756          * the flip is completed (no longer pending). Since this doesn't raise
3757          * an interrupt per se, we watch for the change at vblank.
3758          */
3759         if (I915_READ(ISR) & flip_pending)
3760                 goto check_page_flip;
3761
3762         intel_prepare_page_flip(dev, plane);
3763         intel_finish_page_flip(dev, pipe);
3764         return true;
3765
3766 check_page_flip:
3767         intel_check_page_flip(dev, pipe);
3768         return false;
3769 }
3770
3771 static irqreturn_t i915_irq_handler(int irq, void *arg)
3772 {
3773         struct drm_device *dev = arg;
3774         struct drm_i915_private *dev_priv = dev->dev_private;
3775         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3776         u32 flip_mask =
3777                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3778                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3779         int pipe, ret = IRQ_NONE;
3780
3781         if (!intel_irqs_enabled(dev_priv))
3782                 return IRQ_NONE;
3783
3784         iir = I915_READ(IIR);
3785         do {
3786                 bool irq_received = (iir & ~flip_mask) != 0;
3787                 bool blc_event = false;
3788
3789                 /* Can't rely on pipestat interrupt bit in iir as it might
3790                  * have been cleared after the pipestat interrupt was received.
3791                  * It doesn't set the bit in iir again, but it still produces
3792                  * interrupts (for non-MSI).
3793                  */
3794                 spin_lock(&dev_priv->irq_lock);
3795                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3796                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3797
3798                 for_each_pipe(dev_priv, pipe) {
3799                         int reg = PIPESTAT(pipe);
3800                         pipe_stats[pipe] = I915_READ(reg);
3801
3802                         /* Clear the PIPE*STAT regs before the IIR */
3803                         if (pipe_stats[pipe] & 0x8000ffff) {
3804                                 I915_WRITE(reg, pipe_stats[pipe]);
3805                                 irq_received = true;
3806                         }
3807                 }
3808                 spin_unlock(&dev_priv->irq_lock);
3809
3810                 if (!irq_received)
3811                         break;
3812
3813                 /* Consume port.  Then clear IIR or we'll miss events */
3814                 if (I915_HAS_HOTPLUG(dev) &&
3815                     iir & I915_DISPLAY_PORT_INTERRUPT)
3816                         i9xx_hpd_irq_handler(dev);
3817
3818                 I915_WRITE(IIR, iir & ~flip_mask);
3819                 new_iir = I915_READ(IIR); /* Flush posted writes */
3820
3821                 if (iir & I915_USER_INTERRUPT)
3822                         notify_ring(&dev_priv->ring[RCS]);
3823
3824                 for_each_pipe(dev_priv, pipe) {
3825                         int plane = pipe;
3826                         if (HAS_FBC(dev))
3827                                 plane = !plane;
3828
3829                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3830                             i915_handle_vblank(dev, plane, pipe, iir))
3831                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3832
3833                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3834                                 blc_event = true;
3835
3836                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3837                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3838
3839                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3840                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3841                                                                     pipe);
3842                 }
3843
3844                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3845                         intel_opregion_asle_intr(dev);
3846
3847                 /* With MSI, interrupts are only generated when iir
3848                  * transitions from zero to nonzero.  If another bit got
3849                  * set while we were handling the existing iir bits, then
3850                  * we would never get another interrupt.
3851                  *
3852                  * This is fine on non-MSI as well, as if we hit this path
3853                  * we avoid exiting the interrupt handler only to generate
3854                  * another one.
3855                  *
3856                  * Note that for MSI this could cause a stray interrupt report
3857                  * if an interrupt landed in the time between writing IIR and
3858                  * the posting read.  This should be rare enough to never
3859                  * trigger the 99% of 100,000 interrupts test for disabling
3860                  * stray interrupts.
3861                  */
3862                 ret = IRQ_HANDLED;
3863                 iir = new_iir;
3864         } while (iir & ~flip_mask);
3865
3866         return ret;
3867 }
3868
3869 static void i915_irq_uninstall(struct drm_device * dev)
3870 {
3871         struct drm_i915_private *dev_priv = dev->dev_private;
3872         int pipe;
3873
3874         if (I915_HAS_HOTPLUG(dev)) {
3875                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3876                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3877         }
3878
3879         I915_WRITE16(HWSTAM, 0xffff);
3880         for_each_pipe(dev_priv, pipe) {
3881                 /* Clear enable bits; then clear status bits */
3882                 I915_WRITE(PIPESTAT(pipe), 0);
3883                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3884         }
3885         I915_WRITE(IMR, 0xffffffff);
3886         I915_WRITE(IER, 0x0);
3887
3888         I915_WRITE(IIR, I915_READ(IIR));
3889 }
3890
3891 static void i965_irq_preinstall(struct drm_device * dev)
3892 {
3893         struct drm_i915_private *dev_priv = dev->dev_private;
3894         int pipe;
3895
3896         I915_WRITE(PORT_HOTPLUG_EN, 0);
3897         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3898
3899         I915_WRITE(HWSTAM, 0xeffe);
3900         for_each_pipe(dev_priv, pipe)
3901                 I915_WRITE(PIPESTAT(pipe), 0);
3902         I915_WRITE(IMR, 0xffffffff);
3903         I915_WRITE(IER, 0x0);
3904         POSTING_READ(IER);
3905 }
3906
3907 static int i965_irq_postinstall(struct drm_device *dev)
3908 {
3909         struct drm_i915_private *dev_priv = dev->dev_private;
3910         u32 enable_mask;
3911         u32 error_mask;
3912
3913         /* Unmask the interrupts that we always want on. */
3914         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3915                                I915_DISPLAY_PORT_INTERRUPT |
3916                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3917                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3918                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3919                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3920                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3921
3922         enable_mask = ~dev_priv->irq_mask;
3923         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3924                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3925         enable_mask |= I915_USER_INTERRUPT;
3926
3927         if (IS_G4X(dev))
3928                 enable_mask |= I915_BSD_USER_INTERRUPT;
3929
3930         /* Interrupt setup is already guaranteed to be single-threaded, this is
3931          * just to make the assert_spin_locked check happy. */
3932         spin_lock_irq(&dev_priv->irq_lock);
3933         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3934         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3935         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3936         spin_unlock_irq(&dev_priv->irq_lock);
3937
3938         /*
3939          * Enable some error detection, note the instruction error mask
3940          * bit is reserved, so we leave it masked.
3941          */
3942         if (IS_G4X(dev)) {
3943                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3944                                GM45_ERROR_MEM_PRIV |
3945                                GM45_ERROR_CP_PRIV |
3946                                I915_ERROR_MEMORY_REFRESH);
3947         } else {
3948                 error_mask = ~(I915_ERROR_PAGE_TABLE |
3949                                I915_ERROR_MEMORY_REFRESH);
3950         }
3951         I915_WRITE(EMR, error_mask);
3952
3953         I915_WRITE(IMR, dev_priv->irq_mask);
3954         I915_WRITE(IER, enable_mask);
3955         POSTING_READ(IER);
3956
3957         I915_WRITE(PORT_HOTPLUG_EN, 0);
3958         POSTING_READ(PORT_HOTPLUG_EN);
3959
3960         i915_enable_asle_pipestat(dev);
3961
3962         return 0;
3963 }
3964
3965 static void i915_hpd_irq_setup(struct drm_device *dev)
3966 {
3967         struct drm_i915_private *dev_priv = dev->dev_private;
3968         struct intel_encoder *intel_encoder;
3969         u32 hotplug_en;
3970
3971         assert_spin_locked(&dev_priv->irq_lock);
3972
3973         hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3974         hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3975         /* Note HDMI and DP share hotplug bits */
3976         /* enable bits are the same for all generations */
3977         for_each_intel_encoder(dev, intel_encoder)
3978                 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3979                         hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3980         /* Programming the CRT detection parameters tends
3981            to generate a spurious hotplug event about three
3982            seconds later.  So just do it once.
3983         */
3984         if (IS_G4X(dev))
3985                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3986         hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3987         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3988
3989         /* Ignore TV since it's buggy */
3990         I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3991 }
3992
3993 static irqreturn_t i965_irq_handler(int irq, void *arg)
3994 {
3995         struct drm_device *dev = arg;
3996         struct drm_i915_private *dev_priv = dev->dev_private;
3997         u32 iir, new_iir;
3998         u32 pipe_stats[I915_MAX_PIPES];
3999         int ret = IRQ_NONE, pipe;
4000         u32 flip_mask =
4001                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4002                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4003
4004         if (!intel_irqs_enabled(dev_priv))
4005                 return IRQ_NONE;
4006
4007         iir = I915_READ(IIR);
4008
4009         for (;;) {
4010                 bool irq_received = (iir & ~flip_mask) != 0;
4011                 bool blc_event = false;
4012
4013                 /* Can't rely on pipestat interrupt bit in iir as it might
4014                  * have been cleared after the pipestat interrupt was received.
4015                  * It doesn't set the bit in iir again, but it still produces
4016                  * interrupts (for non-MSI).
4017                  */
4018                 spin_lock(&dev_priv->irq_lock);
4019                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4020                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4021
4022                 for_each_pipe(dev_priv, pipe) {
4023                         int reg = PIPESTAT(pipe);
4024                         pipe_stats[pipe] = I915_READ(reg);
4025
4026                         /*
4027                          * Clear the PIPE*STAT regs before the IIR
4028                          */
4029                         if (pipe_stats[pipe] & 0x8000ffff) {
4030                                 I915_WRITE(reg, pipe_stats[pipe]);
4031                                 irq_received = true;
4032                         }
4033                 }
4034                 spin_unlock(&dev_priv->irq_lock);
4035
4036                 if (!irq_received)
4037                         break;
4038
4039                 ret = IRQ_HANDLED;
4040
4041                 /* Consume port.  Then clear IIR or we'll miss events */
4042                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4043                         i9xx_hpd_irq_handler(dev);
4044
4045                 I915_WRITE(IIR, iir & ~flip_mask);
4046                 new_iir = I915_READ(IIR); /* Flush posted writes */
4047
4048                 if (iir & I915_USER_INTERRUPT)
4049                         notify_ring(&dev_priv->ring[RCS]);
4050                 if (iir & I915_BSD_USER_INTERRUPT)
4051                         notify_ring(&dev_priv->ring[VCS]);
4052
4053                 for_each_pipe(dev_priv, pipe) {
4054                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4055                             i915_handle_vblank(dev, pipe, pipe, iir))
4056                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4057
4058                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4059                                 blc_event = true;
4060
4061                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4062                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4063
4064                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4065                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4066                 }
4067
4068                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4069                         intel_opregion_asle_intr(dev);
4070
4071                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4072                         gmbus_irq_handler(dev);
4073
4074                 /* With MSI, interrupts are only generated when iir
4075                  * transitions from zero to nonzero.  If another bit got
4076                  * set while we were handling the existing iir bits, then
4077                  * we would never get another interrupt.
4078                  *
4079                  * This is fine on non-MSI as well, as if we hit this path
4080                  * we avoid exiting the interrupt handler only to generate
4081                  * another one.
4082                  *
4083                  * Note that for MSI this could cause a stray interrupt report
4084                  * if an interrupt landed in the time between writing IIR and
4085                  * the posting read.  This should be rare enough to never
4086                  * trigger the 99% of 100,000 interrupts test for disabling
4087                  * stray interrupts.
4088                  */
4089                 iir = new_iir;
4090         }
4091
4092         return ret;
4093 }
4094
4095 static void i965_irq_uninstall(struct drm_device * dev)
4096 {
4097         struct drm_i915_private *dev_priv = dev->dev_private;
4098         int pipe;
4099
4100         if (!dev_priv)
4101                 return;
4102
4103         I915_WRITE(PORT_HOTPLUG_EN, 0);
4104         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4105
4106         I915_WRITE(HWSTAM, 0xffffffff);
4107         for_each_pipe(dev_priv, pipe)
4108                 I915_WRITE(PIPESTAT(pipe), 0);
4109         I915_WRITE(IMR, 0xffffffff);
4110         I915_WRITE(IER, 0x0);
4111
4112         for_each_pipe(dev_priv, pipe)
4113                 I915_WRITE(PIPESTAT(pipe),
4114                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4115         I915_WRITE(IIR, I915_READ(IIR));
4116 }
4117
4118 /**
4119  * intel_irq_init - initializes irq support
4120  * @dev_priv: i915 device instance
4121  *
4122  * This function initializes all the irq support including work items, timers
4123  * and all the vtables. It does not setup the interrupt itself though.
4124  */
4125 void intel_irq_init(struct drm_i915_private *dev_priv)
4126 {
4127         struct drm_device *dev = dev_priv->dev;
4128
4129         intel_hpd_init_work(dev_priv);
4130
4131         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4132         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4133
4134         /* Let's track the enabled rps events */
4135         if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4136                 /* WaGsvRC0ResidencyMethod:vlv */
4137                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4138         else
4139                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4140
4141         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4142                           i915_hangcheck_elapsed);
4143
4144         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4145
4146         if (IS_GEN2(dev_priv)) {
4147                 dev->max_vblank_count = 0;
4148                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4149         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4150                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4151                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4152         } else {
4153                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4154                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4155         }
4156
4157         /*
4158          * Opt out of the vblank disable timer on everything except gen2.
4159          * Gen2 doesn't have a hardware frame counter and so depends on
4160          * vblank interrupts to produce sane vblank seuquence numbers.
4161          */
4162         if (!IS_GEN2(dev_priv))
4163                 dev->vblank_disable_immediate = true;
4164
4165         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4166         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4167
4168         if (IS_CHERRYVIEW(dev_priv)) {
4169                 dev->driver->irq_handler = cherryview_irq_handler;
4170                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4171                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4172                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4173                 dev->driver->enable_vblank = valleyview_enable_vblank;
4174                 dev->driver->disable_vblank = valleyview_disable_vblank;
4175                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4176         } else if (IS_VALLEYVIEW(dev_priv)) {
4177                 dev->driver->irq_handler = valleyview_irq_handler;
4178                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4179                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4180                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4181                 dev->driver->enable_vblank = valleyview_enable_vblank;
4182                 dev->driver->disable_vblank = valleyview_disable_vblank;
4183                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4184         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4185                 dev->driver->irq_handler = gen8_irq_handler;
4186                 dev->driver->irq_preinstall = gen8_irq_reset;
4187                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4188                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4189                 dev->driver->enable_vblank = gen8_enable_vblank;
4190                 dev->driver->disable_vblank = gen8_disable_vblank;
4191                 if (HAS_PCH_SPLIT(dev))
4192                         dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4193                 else
4194                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4195         } else if (HAS_PCH_SPLIT(dev)) {
4196                 dev->driver->irq_handler = ironlake_irq_handler;
4197                 dev->driver->irq_preinstall = ironlake_irq_reset;
4198                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4199                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4200                 dev->driver->enable_vblank = ironlake_enable_vblank;
4201                 dev->driver->disable_vblank = ironlake_disable_vblank;
4202                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4203         } else {
4204                 if (INTEL_INFO(dev_priv)->gen == 2) {
4205                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4206                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4207                         dev->driver->irq_handler = i8xx_irq_handler;
4208                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4209                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4210                         dev->driver->irq_preinstall = i915_irq_preinstall;
4211                         dev->driver->irq_postinstall = i915_irq_postinstall;
4212                         dev->driver->irq_uninstall = i915_irq_uninstall;
4213                         dev->driver->irq_handler = i915_irq_handler;
4214                 } else {
4215                         dev->driver->irq_preinstall = i965_irq_preinstall;
4216                         dev->driver->irq_postinstall = i965_irq_postinstall;
4217                         dev->driver->irq_uninstall = i965_irq_uninstall;
4218                         dev->driver->irq_handler = i965_irq_handler;
4219                 }
4220                 if (I915_HAS_HOTPLUG(dev_priv))
4221                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4222                 dev->driver->enable_vblank = i915_enable_vblank;
4223                 dev->driver->disable_vblank = i915_disable_vblank;
4224         }
4225 }
4226
4227 /**
4228  * intel_irq_install - enables the hardware interrupt
4229  * @dev_priv: i915 device instance
4230  *
4231  * This function enables the hardware interrupt handling, but leaves the hotplug
4232  * handling still disabled. It is called after intel_irq_init().
4233  *
4234  * In the driver load and resume code we need working interrupts in a few places
4235  * but don't want to deal with the hassle of concurrent probe and hotplug
4236  * workers. Hence the split into this two-stage approach.
4237  */
4238 int intel_irq_install(struct drm_i915_private *dev_priv)
4239 {
4240         /*
4241          * We enable some interrupt sources in our postinstall hooks, so mark
4242          * interrupts as enabled _before_ actually enabling them to avoid
4243          * special cases in our ordering checks.
4244          */
4245         dev_priv->pm.irqs_enabled = true;
4246
4247         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4248 }
4249
4250 /**
4251  * intel_irq_uninstall - finilizes all irq handling
4252  * @dev_priv: i915 device instance
4253  *
4254  * This stops interrupt and hotplug handling and unregisters and frees all
4255  * resources acquired in the init functions.
4256  */
4257 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4258 {
4259         drm_irq_uninstall(dev_priv->dev);
4260         intel_hpd_cancel_work(dev_priv);
4261         dev_priv->pm.irqs_enabled = false;
4262 }
4263
4264 /**
4265  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4266  * @dev_priv: i915 device instance
4267  *
4268  * This function is used to disable interrupts at runtime, both in the runtime
4269  * pm and the system suspend/resume code.
4270  */
4271 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4272 {
4273         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4274         dev_priv->pm.irqs_enabled = false;
4275         synchronize_irq(dev_priv->dev->irq);
4276 }
4277
4278 /**
4279  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4280  * @dev_priv: i915 device instance
4281  *
4282  * This function is used to enable interrupts at runtime, both in the runtime
4283  * pm and the system suspend/resume code.
4284  */
4285 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4286 {
4287         dev_priv->pm.irqs_enabled = true;
4288         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4289         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4290 }