]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 }
198
199 enum {
200         ADVANCED_CONTEXT = 0,
201         LEGACY_CONTEXT,
202         ADVANCED_AD_CONTEXT,
203         LEGACY_64B_CONTEXT
204 };
205 #define GEN8_CTX_MODE_SHIFT 3
206 enum {
207         FAULT_AND_HANG = 0,
208         FAULT_AND_HALT, /* Debug only */
209         FAULT_AND_STREAM,
210         FAULT_AND_CONTINUE /* Unsupported */
211 };
212 #define GEN8_CTX_ID_SHIFT 32
213 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
214
215 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
216
217 /**
218  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
219  * @dev: DRM device.
220  * @enable_execlists: value of i915.enable_execlists module parameter.
221  *
222  * Only certain platforms support Execlists (the prerequisites being
223  * support for Logical Ring Contexts and Aliasing PPGTT or better).
224  *
225  * Return: 1 if Execlists is supported and has to be enabled.
226  */
227 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
228 {
229         WARN_ON(i915.enable_ppgtt == -1);
230
231         if (INTEL_INFO(dev)->gen >= 9)
232                 return 1;
233
234         if (enable_execlists == 0)
235                 return 0;
236
237         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
238             i915.use_mmio_flip >= 0)
239                 return 1;
240
241         return 0;
242 }
243
244 /**
245  * intel_execlists_ctx_id() - get the Execlists Context ID
246  * @ctx_obj: Logical Ring Context backing object.
247  *
248  * Do not confuse with ctx->id! Unfortunately we have a name overload
249  * here: the old context ID we pass to userspace as a handler so that
250  * they can refer to a context, and the new context ID we pass to the
251  * ELSP so that the GPU can inform us of the context status via
252  * interrupts.
253  *
254  * Return: 20-bits globally unique context ID.
255  */
256 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
257 {
258         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
259
260         /* LRCA is required to be 4K aligned so the more significant 20 bits
261          * are globally unique */
262         return lrca >> 12;
263 }
264
265 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_request *rq)
266 {
267         struct intel_engine_cs *ring = rq->ring;
268         struct drm_device *dev = ring->dev;
269         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
270         uint64_t desc;
271         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
272
273         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
274
275         desc = GEN8_CTX_VALID;
276         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
277         if (IS_GEN8(ctx_obj->base.dev))
278                 desc |= GEN8_CTX_L3LLC_COHERENT;
279         desc |= GEN8_CTX_PRIVILEGE;
280         desc |= lrca;
281         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283         /* TODO: WaDisableLiteRestore when we start using semaphore
284          * signalling between Command Streamers */
285         /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
287         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288         if (IS_GEN9(dev) &&
289             INTEL_REVID(dev) <= SKL_REVID_B0 &&
290             (ring->id == BCS || ring->id == VCS ||
291             ring->id == VECS || ring->id == VCS2))
292                 desc |= GEN8_CTX_FORCE_RESTORE;
293
294         return desc;
295 }
296
297 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
298                                  struct drm_i915_gem_request *rq1)
299 {
300
301         struct intel_engine_cs *ring = rq0->ring;
302         struct drm_device *dev = ring->dev;
303         struct drm_i915_private *dev_priv = dev->dev_private;
304         uint64_t desc[2];
305
306         if (rq1) {
307                 desc[1] = execlists_ctx_descriptor(rq1);
308                 rq1->elsp_submitted++;
309         } else {
310                 desc[1] = 0;
311         }
312
313         desc[0] = execlists_ctx_descriptor(rq0);
314         rq0->elsp_submitted++;
315
316         /* You must always write both descriptors in the order below. */
317         spin_lock(&dev_priv->uncore.lock);
318         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
319         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
320         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
321
322         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
323         /* The context is automatically loaded after the following */
324         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
325
326         /* ELSP is a wo register, use another nearby reg for posting */
327         POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
328         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
329         spin_unlock(&dev_priv->uncore.lock);
330 }
331
332 static int execlists_update_context(struct drm_i915_gem_request *rq)
333 {
334         struct intel_engine_cs *ring = rq->ring;
335         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
336         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
337         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
338         struct page *page;
339         uint32_t *reg_state;
340
341         BUG_ON(!ctx_obj);
342         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
343         WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
344
345         page = i915_gem_object_get_page(ctx_obj, 1);
346         reg_state = kmap_atomic(page);
347
348         reg_state[CTX_RING_TAIL+1] = rq->tail;
349         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
350
351         /* True PPGTT with dynamic page allocation: update PDP registers and
352          * point the unallocated PDPs to the scratch page
353          */
354         if (ppgtt) {
355                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
356                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
357                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
358                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
359         }
360
361         kunmap_atomic(reg_state);
362
363         return 0;
364 }
365
366 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
367                                       struct drm_i915_gem_request *rq1)
368 {
369         execlists_update_context(rq0);
370
371         if (rq1)
372                 execlists_update_context(rq1);
373
374         execlists_elsp_write(rq0, rq1);
375 }
376
377 static void execlists_context_unqueue(struct intel_engine_cs *ring)
378 {
379         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
380         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
381
382         assert_spin_locked(&ring->execlist_lock);
383
384         /*
385          * If irqs are not active generate a warning as batches that finish
386          * without the irqs may get lost and a GPU Hang may occur.
387          */
388         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
389
390         if (list_empty(&ring->execlist_queue))
391                 return;
392
393         /* Try to read in pairs */
394         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
395                                  execlist_link) {
396                 if (!req0) {
397                         req0 = cursor;
398                 } else if (req0->ctx == cursor->ctx) {
399                         /* Same ctx: ignore first request, as second request
400                          * will update tail past first request's workload */
401                         cursor->elsp_submitted = req0->elsp_submitted;
402                         list_del(&req0->execlist_link);
403                         list_add_tail(&req0->execlist_link,
404                                 &ring->execlist_retired_req_list);
405                         req0 = cursor;
406                 } else {
407                         req1 = cursor;
408                         break;
409                 }
410         }
411
412         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
413                 /*
414                  * WaIdleLiteRestore: make sure we never cause a lite
415                  * restore with HEAD==TAIL
416                  */
417                 if (req0->elsp_submitted) {
418                         /*
419                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
420                          * as we resubmit the request. See gen8_emit_request()
421                          * for where we prepare the padding after the end of the
422                          * request.
423                          */
424                         struct intel_ringbuffer *ringbuf;
425
426                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
427                         req0->tail += 8;
428                         req0->tail &= ringbuf->size - 1;
429                 }
430         }
431
432         WARN_ON(req1 && req1->elsp_submitted);
433
434         execlists_submit_requests(req0, req1);
435 }
436
437 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
438                                            u32 request_id)
439 {
440         struct drm_i915_gem_request *head_req;
441
442         assert_spin_locked(&ring->execlist_lock);
443
444         head_req = list_first_entry_or_null(&ring->execlist_queue,
445                                             struct drm_i915_gem_request,
446                                             execlist_link);
447
448         if (head_req != NULL) {
449                 struct drm_i915_gem_object *ctx_obj =
450                                 head_req->ctx->engine[ring->id].state;
451                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
452                         WARN(head_req->elsp_submitted == 0,
453                              "Never submitted head request\n");
454
455                         if (--head_req->elsp_submitted <= 0) {
456                                 list_del(&head_req->execlist_link);
457                                 list_add_tail(&head_req->execlist_link,
458                                         &ring->execlist_retired_req_list);
459                                 return true;
460                         }
461                 }
462         }
463
464         return false;
465 }
466
467 /**
468  * intel_lrc_irq_handler() - handle Context Switch interrupts
469  * @ring: Engine Command Streamer to handle.
470  *
471  * Check the unread Context Status Buffers and manage the submission of new
472  * contexts to the ELSP accordingly.
473  */
474 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
475 {
476         struct drm_i915_private *dev_priv = ring->dev->dev_private;
477         u32 status_pointer;
478         u8 read_pointer;
479         u8 write_pointer;
480         u32 status;
481         u32 status_id;
482         u32 submit_contexts = 0;
483
484         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
485
486         read_pointer = ring->next_context_status_buffer;
487         write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
488         if (read_pointer > write_pointer)
489                 write_pointer += GEN8_CSB_ENTRIES;
490
491         spin_lock(&ring->execlist_lock);
492
493         while (read_pointer < write_pointer) {
494                 read_pointer++;
495                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
496                                 (read_pointer % GEN8_CSB_ENTRIES) * 8);
497                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
498                                 (read_pointer % GEN8_CSB_ENTRIES) * 8 + 4);
499
500                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
501                         continue;
502
503                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
504                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
505                                 if (execlists_check_remove_request(ring, status_id))
506                                         WARN(1, "Lite Restored request removed from queue\n");
507                         } else
508                                 WARN(1, "Preemption without Lite Restore\n");
509                 }
510
511                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
512                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
513                         if (execlists_check_remove_request(ring, status_id))
514                                 submit_contexts++;
515                 }
516         }
517
518         if (submit_contexts != 0)
519                 execlists_context_unqueue(ring);
520
521         spin_unlock(&ring->execlist_lock);
522
523         WARN(submit_contexts > 2, "More than two context complete events?\n");
524         ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
525
526         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
527                    _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
528                                  ((u32)ring->next_context_status_buffer &
529                                   GEN8_CSB_PTR_MASK) << 8));
530 }
531
532 static int execlists_context_queue(struct drm_i915_gem_request *request)
533 {
534         struct intel_engine_cs *ring = request->ring;
535         struct drm_i915_gem_request *cursor;
536         int num_elements = 0;
537
538         if (request->ctx != ring->default_context)
539                 intel_lr_context_pin(request);
540
541         i915_gem_request_reference(request);
542
543         request->tail = request->ringbuf->tail;
544
545         spin_lock_irq(&ring->execlist_lock);
546
547         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
548                 if (++num_elements > 2)
549                         break;
550
551         if (num_elements > 2) {
552                 struct drm_i915_gem_request *tail_req;
553
554                 tail_req = list_last_entry(&ring->execlist_queue,
555                                            struct drm_i915_gem_request,
556                                            execlist_link);
557
558                 if (request->ctx == tail_req->ctx) {
559                         WARN(tail_req->elsp_submitted != 0,
560                                 "More than 2 already-submitted reqs queued\n");
561                         list_del(&tail_req->execlist_link);
562                         list_add_tail(&tail_req->execlist_link,
563                                 &ring->execlist_retired_req_list);
564                 }
565         }
566
567         list_add_tail(&request->execlist_link, &ring->execlist_queue);
568         if (num_elements == 0)
569                 execlists_context_unqueue(ring);
570
571         spin_unlock_irq(&ring->execlist_lock);
572
573         return 0;
574 }
575
576 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
577 {
578         struct intel_engine_cs *ring = req->ring;
579         uint32_t flush_domains;
580         int ret;
581
582         flush_domains = 0;
583         if (ring->gpu_caches_dirty)
584                 flush_domains = I915_GEM_GPU_DOMAINS;
585
586         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
587         if (ret)
588                 return ret;
589
590         ring->gpu_caches_dirty = false;
591         return 0;
592 }
593
594 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
595                                  struct list_head *vmas)
596 {
597         const unsigned other_rings = ~intel_ring_flag(req->ring);
598         struct i915_vma *vma;
599         uint32_t flush_domains = 0;
600         bool flush_chipset = false;
601         int ret;
602
603         list_for_each_entry(vma, vmas, exec_list) {
604                 struct drm_i915_gem_object *obj = vma->obj;
605
606                 if (obj->active & other_rings) {
607                         ret = i915_gem_object_sync(obj, req->ring, &req);
608                         if (ret)
609                                 return ret;
610                 }
611
612                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
613                         flush_chipset |= i915_gem_clflush_object(obj, false);
614
615                 flush_domains |= obj->base.write_domain;
616         }
617
618         if (flush_domains & I915_GEM_DOMAIN_GTT)
619                 wmb();
620
621         /* Unconditionally invalidate gpu caches and ensure that we do flush
622          * any residual writes from the previous batch.
623          */
624         return logical_ring_invalidate_all_caches(req);
625 }
626
627 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
628 {
629         int ret;
630
631         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
632
633         if (request->ctx != request->ring->default_context) {
634                 ret = intel_lr_context_pin(request);
635                 if (ret)
636                         return ret;
637         }
638
639         return 0;
640 }
641
642 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
643                                        int bytes)
644 {
645         struct intel_ringbuffer *ringbuf = req->ringbuf;
646         struct intel_engine_cs *ring = req->ring;
647         struct drm_i915_gem_request *target;
648         unsigned space;
649         int ret;
650
651         if (intel_ring_space(ringbuf) >= bytes)
652                 return 0;
653
654         /* The whole point of reserving space is to not wait! */
655         WARN_ON(ringbuf->reserved_in_use);
656
657         list_for_each_entry(target, &ring->request_list, list) {
658                 /*
659                  * The request queue is per-engine, so can contain requests
660                  * from multiple ringbuffers. Here, we must ignore any that
661                  * aren't from the ringbuffer we're considering.
662                  */
663                 if (target->ringbuf != ringbuf)
664                         continue;
665
666                 /* Would completion of this request free enough space? */
667                 space = __intel_ring_space(target->postfix, ringbuf->tail,
668                                            ringbuf->size);
669                 if (space >= bytes)
670                         break;
671         }
672
673         if (WARN_ON(&target->list == &ring->request_list))
674                 return -ENOSPC;
675
676         ret = i915_wait_request(target);
677         if (ret)
678                 return ret;
679
680         ringbuf->space = space;
681         return 0;
682 }
683
684 /*
685  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
686  * @request: Request to advance the logical ringbuffer of.
687  *
688  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
689  * really happens during submission is that the context and current tail will be placed
690  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
691  * point, the tail *inside* the context is updated and the ELSP written to.
692  */
693 static void
694 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
695 {
696         struct intel_engine_cs *ring = request->ring;
697
698         intel_logical_ring_advance(request->ringbuf);
699
700         if (intel_ring_stopped(ring))
701                 return;
702
703         execlists_context_queue(request);
704 }
705
706 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
707 {
708         uint32_t __iomem *virt;
709         int rem = ringbuf->size - ringbuf->tail;
710
711         virt = ringbuf->virtual_start + ringbuf->tail;
712         rem /= 4;
713         while (rem--)
714                 iowrite32(MI_NOOP, virt++);
715
716         ringbuf->tail = 0;
717         intel_ring_update_space(ringbuf);
718 }
719
720 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
721 {
722         struct intel_ringbuffer *ringbuf = req->ringbuf;
723         int remain_usable = ringbuf->effective_size - ringbuf->tail;
724         int remain_actual = ringbuf->size - ringbuf->tail;
725         int ret, total_bytes, wait_bytes = 0;
726         bool need_wrap = false;
727
728         if (ringbuf->reserved_in_use)
729                 total_bytes = bytes;
730         else
731                 total_bytes = bytes + ringbuf->reserved_size;
732
733         if (unlikely(bytes > remain_usable)) {
734                 /*
735                  * Not enough space for the basic request. So need to flush
736                  * out the remainder and then wait for base + reserved.
737                  */
738                 wait_bytes = remain_actual + total_bytes;
739                 need_wrap = true;
740         } else {
741                 if (unlikely(total_bytes > remain_usable)) {
742                         /*
743                          * The base request will fit but the reserved space
744                          * falls off the end. So only need to to wait for the
745                          * reserved size after flushing out the remainder.
746                          */
747                         wait_bytes = remain_actual + ringbuf->reserved_size;
748                         need_wrap = true;
749                 } else if (total_bytes > ringbuf->space) {
750                         /* No wrapping required, just waiting. */
751                         wait_bytes = total_bytes;
752                 }
753         }
754
755         if (wait_bytes) {
756                 ret = logical_ring_wait_for_space(req, wait_bytes);
757                 if (unlikely(ret))
758                         return ret;
759
760                 if (need_wrap)
761                         __wrap_ring_buffer(ringbuf);
762         }
763
764         return 0;
765 }
766
767 /**
768  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
769  *
770  * @request: The request to start some new work for
771  * @ctx: Logical ring context whose ringbuffer is being prepared.
772  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
773  *
774  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
775  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
776  * and also preallocates a request (every workload submission is still mediated through
777  * requests, same as it did with legacy ringbuffer submission).
778  *
779  * Return: non-zero if the ringbuffer is not ready to be written to.
780  */
781 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
782 {
783         struct drm_i915_private *dev_priv;
784         int ret;
785
786         WARN_ON(req == NULL);
787         dev_priv = req->ring->dev->dev_private;
788
789         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
790                                    dev_priv->mm.interruptible);
791         if (ret)
792                 return ret;
793
794         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
795         if (ret)
796                 return ret;
797
798         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
799         return 0;
800 }
801
802 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
803 {
804         /*
805          * The first call merely notes the reserve request and is common for
806          * all back ends. The subsequent localised _begin() call actually
807          * ensures that the reservation is available. Without the begin, if
808          * the request creator immediately submitted the request without
809          * adding any commands to it then there might not actually be
810          * sufficient room for the submission commands.
811          */
812         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
813
814         return intel_logical_ring_begin(request, 0);
815 }
816
817 /**
818  * execlists_submission() - submit a batchbuffer for execution, Execlists style
819  * @dev: DRM device.
820  * @file: DRM file.
821  * @ring: Engine Command Streamer to submit to.
822  * @ctx: Context to employ for this submission.
823  * @args: execbuffer call arguments.
824  * @vmas: list of vmas.
825  * @batch_obj: the batchbuffer to submit.
826  * @exec_start: batchbuffer start virtual address pointer.
827  * @dispatch_flags: translated execbuffer call flags.
828  *
829  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
830  * away the submission details of the execbuffer ioctl call.
831  *
832  * Return: non-zero if the submission fails.
833  */
834 int intel_execlists_submission(struct i915_execbuffer_params *params,
835                                struct drm_i915_gem_execbuffer2 *args,
836                                struct list_head *vmas)
837 {
838         struct drm_device       *dev = params->dev;
839         struct intel_engine_cs  *ring = params->ring;
840         struct drm_i915_private *dev_priv = dev->dev_private;
841         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
842         u64 exec_start;
843         int instp_mode;
844         u32 instp_mask;
845         int ret;
846
847         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
848         instp_mask = I915_EXEC_CONSTANTS_MASK;
849         switch (instp_mode) {
850         case I915_EXEC_CONSTANTS_REL_GENERAL:
851         case I915_EXEC_CONSTANTS_ABSOLUTE:
852         case I915_EXEC_CONSTANTS_REL_SURFACE:
853                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
854                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
855                         return -EINVAL;
856                 }
857
858                 if (instp_mode != dev_priv->relative_constants_mode) {
859                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
860                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
861                                 return -EINVAL;
862                         }
863
864                         /* The HW changed the meaning on this bit on gen6 */
865                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
866                 }
867                 break;
868         default:
869                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
870                 return -EINVAL;
871         }
872
873         if (args->num_cliprects != 0) {
874                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
875                 return -EINVAL;
876         } else {
877                 if (args->DR4 == 0xffffffff) {
878                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
879                         args->DR4 = 0;
880                 }
881
882                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
883                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
884                         return -EINVAL;
885                 }
886         }
887
888         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
889                 DRM_DEBUG("sol reset is gen7 only\n");
890                 return -EINVAL;
891         }
892
893         ret = execlists_move_to_gpu(params->request, vmas);
894         if (ret)
895                 return ret;
896
897         if (ring == &dev_priv->ring[RCS] &&
898             instp_mode != dev_priv->relative_constants_mode) {
899                 ret = intel_logical_ring_begin(params->request, 4);
900                 if (ret)
901                         return ret;
902
903                 intel_logical_ring_emit(ringbuf, MI_NOOP);
904                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
905                 intel_logical_ring_emit(ringbuf, INSTPM);
906                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
907                 intel_logical_ring_advance(ringbuf);
908
909                 dev_priv->relative_constants_mode = instp_mode;
910         }
911
912         exec_start = params->batch_obj_vm_offset +
913                      args->batch_start_offset;
914
915         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
916         if (ret)
917                 return ret;
918
919         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
920
921         i915_gem_execbuffer_move_to_active(vmas, params->request);
922         i915_gem_execbuffer_retire_commands(params);
923
924         return 0;
925 }
926
927 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
928 {
929         struct drm_i915_gem_request *req, *tmp;
930         struct list_head retired_list;
931
932         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
933         if (list_empty(&ring->execlist_retired_req_list))
934                 return;
935
936         INIT_LIST_HEAD(&retired_list);
937         spin_lock_irq(&ring->execlist_lock);
938         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
939         spin_unlock_irq(&ring->execlist_lock);
940
941         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
942                 struct intel_context *ctx = req->ctx;
943                 struct drm_i915_gem_object *ctx_obj =
944                                 ctx->engine[ring->id].state;
945
946                 if (ctx_obj && (ctx != ring->default_context))
947                         intel_lr_context_unpin(req);
948                 list_del(&req->execlist_link);
949                 i915_gem_request_unreference(req);
950         }
951 }
952
953 void intel_logical_ring_stop(struct intel_engine_cs *ring)
954 {
955         struct drm_i915_private *dev_priv = ring->dev->dev_private;
956         int ret;
957
958         if (!intel_ring_initialized(ring))
959                 return;
960
961         ret = intel_ring_idle(ring);
962         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
963                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
964                           ring->name, ret);
965
966         /* TODO: Is this correct with Execlists enabled? */
967         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
968         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
969                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
970                 return;
971         }
972         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
973 }
974
975 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
976 {
977         struct intel_engine_cs *ring = req->ring;
978         int ret;
979
980         if (!ring->gpu_caches_dirty)
981                 return 0;
982
983         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
984         if (ret)
985                 return ret;
986
987         ring->gpu_caches_dirty = false;
988         return 0;
989 }
990
991 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
992 {
993         struct intel_engine_cs *ring = rq->ring;
994         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
995         struct intel_ringbuffer *ringbuf = rq->ringbuf;
996         int ret = 0;
997
998         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
999         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1000                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1001                                 GEN8_LR_CONTEXT_ALIGN, 0);
1002                 if (ret)
1003                         goto reset_pin_count;
1004
1005                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1006                 if (ret)
1007                         goto unpin_ctx_obj;
1008
1009                 ctx_obj->dirty = true;
1010         }
1011
1012         return ret;
1013
1014 unpin_ctx_obj:
1015         i915_gem_object_ggtt_unpin(ctx_obj);
1016 reset_pin_count:
1017         rq->ctx->engine[ring->id].pin_count = 0;
1018
1019         return ret;
1020 }
1021
1022 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1023 {
1024         struct intel_engine_cs *ring = rq->ring;
1025         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1026         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1027
1028         if (ctx_obj) {
1029                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1030                 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1031                         intel_unpin_ringbuffer_obj(ringbuf);
1032                         i915_gem_object_ggtt_unpin(ctx_obj);
1033                 }
1034         }
1035 }
1036
1037 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1038 {
1039         int ret, i;
1040         struct intel_engine_cs *ring = req->ring;
1041         struct intel_ringbuffer *ringbuf = req->ringbuf;
1042         struct drm_device *dev = ring->dev;
1043         struct drm_i915_private *dev_priv = dev->dev_private;
1044         struct i915_workarounds *w = &dev_priv->workarounds;
1045
1046         if (WARN_ON_ONCE(w->count == 0))
1047                 return 0;
1048
1049         ring->gpu_caches_dirty = true;
1050         ret = logical_ring_flush_all_caches(req);
1051         if (ret)
1052                 return ret;
1053
1054         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1055         if (ret)
1056                 return ret;
1057
1058         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1059         for (i = 0; i < w->count; i++) {
1060                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1061                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1062         }
1063         intel_logical_ring_emit(ringbuf, MI_NOOP);
1064
1065         intel_logical_ring_advance(ringbuf);
1066
1067         ring->gpu_caches_dirty = true;
1068         ret = logical_ring_flush_all_caches(req);
1069         if (ret)
1070                 return ret;
1071
1072         return 0;
1073 }
1074
1075 #define wa_ctx_emit(batch, index, cmd)                                  \
1076         do {                                                            \
1077                 int __index = (index)++;                                \
1078                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1079                         return -ENOSPC;                                 \
1080                 }                                                       \
1081                 batch[__index] = (cmd);                                 \
1082         } while (0)
1083
1084
1085 /*
1086  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1087  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1088  * but there is a slight complication as this is applied in WA batch where the
1089  * values are only initialized once so we cannot take register value at the
1090  * beginning and reuse it further; hence we save its value to memory, upload a
1091  * constant value with bit21 set and then we restore it back with the saved value.
1092  * To simplify the WA, a constant value is formed by using the default value
1093  * of this register. This shouldn't be a problem because we are only modifying
1094  * it for a short period and this batch in non-premptible. We can ofcourse
1095  * use additional instructions that read the actual value of the register
1096  * at that time and set our bit of interest but it makes the WA complicated.
1097  *
1098  * This WA is also required for Gen9 so extracting as a function avoids
1099  * code duplication.
1100  */
1101 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1102                                                 uint32_t *const batch,
1103                                                 uint32_t index)
1104 {
1105         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1106
1107         /*
1108          * WaDisableLSQCROPERFforOCL:skl
1109          * This WA is implemented in skl_init_clock_gating() but since
1110          * this batch updates GEN8_L3SQCREG4 with default value we need to
1111          * set this bit here to retain the WA during flush.
1112          */
1113         if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1114                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1115
1116         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8(1) |
1117                                    MI_SRM_LRM_GLOBAL_GTT));
1118         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1119         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1120         wa_ctx_emit(batch, index, 0);
1121
1122         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1123         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1124         wa_ctx_emit(batch, index, l3sqc4_flush);
1125
1126         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1127         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1128                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1129         wa_ctx_emit(batch, index, 0);
1130         wa_ctx_emit(batch, index, 0);
1131         wa_ctx_emit(batch, index, 0);
1132         wa_ctx_emit(batch, index, 0);
1133
1134         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8(1) |
1135                                    MI_SRM_LRM_GLOBAL_GTT));
1136         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1137         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1138         wa_ctx_emit(batch, index, 0);
1139
1140         return index;
1141 }
1142
1143 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1144                                     uint32_t offset,
1145                                     uint32_t start_alignment)
1146 {
1147         return wa_ctx->offset = ALIGN(offset, start_alignment);
1148 }
1149
1150 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1151                              uint32_t offset,
1152                              uint32_t size_alignment)
1153 {
1154         wa_ctx->size = offset - wa_ctx->offset;
1155
1156         WARN(wa_ctx->size % size_alignment,
1157              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1158              wa_ctx->size, size_alignment);
1159         return 0;
1160 }
1161
1162 /**
1163  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1164  *
1165  * @ring: only applicable for RCS
1166  * @wa_ctx: structure representing wa_ctx
1167  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1168  *    with the offset value received as input.
1169  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1170  * @batch: page in which WA are loaded
1171  * @offset: This field specifies the start of the batch, it should be
1172  *  cache-aligned otherwise it is adjusted accordingly.
1173  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1174  *  initialized at the beginning and shared across all contexts but this field
1175  *  helps us to have multiple batches at different offsets and select them based
1176  *  on a criteria. At the moment this batch always start at the beginning of the page
1177  *  and at this point we don't have multiple wa_ctx batch buffers.
1178  *
1179  *  The number of WA applied are not known at the beginning; we use this field
1180  *  to return the no of DWORDS written.
1181  *
1182  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1183  *  so it adds NOOPs as padding to make it cacheline aligned.
1184  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1185  *  makes a complete batch buffer.
1186  *
1187  * Return: non-zero if we exceed the PAGE_SIZE limit.
1188  */
1189
1190 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1191                                     struct i915_wa_ctx_bb *wa_ctx,
1192                                     uint32_t *const batch,
1193                                     uint32_t *offset)
1194 {
1195         uint32_t scratch_addr;
1196         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1197
1198         /* WaDisableCtxRestoreArbitration:bdw,chv */
1199         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1200
1201         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1202         if (IS_BROADWELL(ring->dev)) {
1203                 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1204                 if (index < 0)
1205                         return index;
1206         }
1207
1208         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1209         /* Actual scratch location is at 128 bytes offset */
1210         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1211
1212         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1213         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1214                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1215                                    PIPE_CONTROL_CS_STALL |
1216                                    PIPE_CONTROL_QW_WRITE));
1217         wa_ctx_emit(batch, index, scratch_addr);
1218         wa_ctx_emit(batch, index, 0);
1219         wa_ctx_emit(batch, index, 0);
1220         wa_ctx_emit(batch, index, 0);
1221
1222         /* Pad to end of cacheline */
1223         while (index % CACHELINE_DWORDS)
1224                 wa_ctx_emit(batch, index, MI_NOOP);
1225
1226         /*
1227          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1228          * execution depends on the length specified in terms of cache lines
1229          * in the register CTX_RCS_INDIRECT_CTX
1230          */
1231
1232         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1233 }
1234
1235 /**
1236  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1237  *
1238  * @ring: only applicable for RCS
1239  * @wa_ctx: structure representing wa_ctx
1240  *  offset: specifies start of the batch, should be cache-aligned.
1241  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1242  * @batch: page in which WA are loaded
1243  * @offset: This field specifies the start of this batch.
1244  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1245  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1246  *
1247  *   The number of DWORDS written are returned using this field.
1248  *
1249  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1250  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1251  */
1252 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1253                                struct i915_wa_ctx_bb *wa_ctx,
1254                                uint32_t *const batch,
1255                                uint32_t *offset)
1256 {
1257         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1258
1259         /* WaDisableCtxRestoreArbitration:bdw,chv */
1260         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1261
1262         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1263
1264         return wa_ctx_end(wa_ctx, *offset = index, 1);
1265 }
1266
1267 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1268                                     struct i915_wa_ctx_bb *wa_ctx,
1269                                     uint32_t *const batch,
1270                                     uint32_t *offset)
1271 {
1272         int ret;
1273         struct drm_device *dev = ring->dev;
1274         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1275
1276         /* WaDisableCtxRestoreArbitration:skl,bxt */
1277         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1278             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1279                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1280
1281         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1282         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1283         if (ret < 0)
1284                 return ret;
1285         index = ret;
1286
1287         /* Pad to end of cacheline */
1288         while (index % CACHELINE_DWORDS)
1289                 wa_ctx_emit(batch, index, MI_NOOP);
1290
1291         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1292 }
1293
1294 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1295                                struct i915_wa_ctx_bb *wa_ctx,
1296                                uint32_t *const batch,
1297                                uint32_t *offset)
1298 {
1299         struct drm_device *dev = ring->dev;
1300         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1301
1302         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1303         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1304             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1305                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1306                 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1307                 wa_ctx_emit(batch, index,
1308                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1309                 wa_ctx_emit(batch, index, MI_NOOP);
1310         }
1311
1312         /* WaDisableCtxRestoreArbitration:skl,bxt */
1313         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1314             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1315                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1316
1317         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1318
1319         return wa_ctx_end(wa_ctx, *offset = index, 1);
1320 }
1321
1322 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1323 {
1324         int ret;
1325
1326         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1327         if (!ring->wa_ctx.obj) {
1328                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1329                 return -ENOMEM;
1330         }
1331
1332         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1333         if (ret) {
1334                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1335                                  ret);
1336                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1337                 return ret;
1338         }
1339
1340         return 0;
1341 }
1342
1343 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1344 {
1345         if (ring->wa_ctx.obj) {
1346                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1347                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1348                 ring->wa_ctx.obj = NULL;
1349         }
1350 }
1351
1352 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1353 {
1354         int ret;
1355         uint32_t *batch;
1356         uint32_t offset;
1357         struct page *page;
1358         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1359
1360         WARN_ON(ring->id != RCS);
1361
1362         /* update this when WA for higher Gen are added */
1363         if (INTEL_INFO(ring->dev)->gen > 9) {
1364                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1365                           INTEL_INFO(ring->dev)->gen);
1366                 return 0;
1367         }
1368
1369         /* some WA perform writes to scratch page, ensure it is valid */
1370         if (ring->scratch.obj == NULL) {
1371                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1372                 return -EINVAL;
1373         }
1374
1375         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1376         if (ret) {
1377                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1378                 return ret;
1379         }
1380
1381         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1382         batch = kmap_atomic(page);
1383         offset = 0;
1384
1385         if (INTEL_INFO(ring->dev)->gen == 8) {
1386                 ret = gen8_init_indirectctx_bb(ring,
1387                                                &wa_ctx->indirect_ctx,
1388                                                batch,
1389                                                &offset);
1390                 if (ret)
1391                         goto out;
1392
1393                 ret = gen8_init_perctx_bb(ring,
1394                                           &wa_ctx->per_ctx,
1395                                           batch,
1396                                           &offset);
1397                 if (ret)
1398                         goto out;
1399         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1400                 ret = gen9_init_indirectctx_bb(ring,
1401                                                &wa_ctx->indirect_ctx,
1402                                                batch,
1403                                                &offset);
1404                 if (ret)
1405                         goto out;
1406
1407                 ret = gen9_init_perctx_bb(ring,
1408                                           &wa_ctx->per_ctx,
1409                                           batch,
1410                                           &offset);
1411                 if (ret)
1412                         goto out;
1413         }
1414
1415 out:
1416         kunmap_atomic(batch);
1417         if (ret)
1418                 lrc_destroy_wa_ctx_obj(ring);
1419
1420         return ret;
1421 }
1422
1423 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1424 {
1425         struct drm_device *dev = ring->dev;
1426         struct drm_i915_private *dev_priv = dev->dev_private;
1427         u8 next_context_status_buffer_hw;
1428
1429         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1430         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1431
1432         if (ring->status_page.obj) {
1433                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1434                            (u32)ring->status_page.gfx_addr);
1435                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1436         }
1437
1438         I915_WRITE(RING_MODE_GEN7(ring),
1439                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1440                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1441         POSTING_READ(RING_MODE_GEN7(ring));
1442
1443         /*
1444          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1445          * zero, we need to read the write pointer from hardware and use its
1446          * value because "this register is power context save restored".
1447          * Effectively, these states have been observed:
1448          *
1449          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1450          * BDW  | CSB regs not reset       | CSB regs reset       |
1451          * CHT  | CSB regs not reset       | CSB regs not reset   |
1452          */
1453         next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1454                                                    & GEN8_CSB_PTR_MASK);
1455
1456         /*
1457          * When the CSB registers are reset (also after power-up / gpu reset),
1458          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1459          * this special case, so the first element read is CSB[0].
1460          */
1461         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1462                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1463
1464         ring->next_context_status_buffer = next_context_status_buffer_hw;
1465         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1466
1467         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1468
1469         return 0;
1470 }
1471
1472 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1473 {
1474         struct drm_device *dev = ring->dev;
1475         struct drm_i915_private *dev_priv = dev->dev_private;
1476         int ret;
1477
1478         ret = gen8_init_common_ring(ring);
1479         if (ret)
1480                 return ret;
1481
1482         /* We need to disable the AsyncFlip performance optimisations in order
1483          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1484          * programmed to '1' on all products.
1485          *
1486          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1487          */
1488         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1489
1490         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1491
1492         return init_workarounds_ring(ring);
1493 }
1494
1495 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1496 {
1497         int ret;
1498
1499         ret = gen8_init_common_ring(ring);
1500         if (ret)
1501                 return ret;
1502
1503         return init_workarounds_ring(ring);
1504 }
1505
1506 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1507 {
1508         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1509         struct intel_engine_cs *ring = req->ring;
1510         struct intel_ringbuffer *ringbuf = req->ringbuf;
1511         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1512         int i, ret;
1513
1514         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1515         if (ret)
1516                 return ret;
1517
1518         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1519         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1520                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1521
1522                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1523                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1524                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1525                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1526         }
1527
1528         intel_logical_ring_emit(ringbuf, MI_NOOP);
1529         intel_logical_ring_advance(ringbuf);
1530
1531         return 0;
1532 }
1533
1534 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1535                               u64 offset, unsigned dispatch_flags)
1536 {
1537         struct intel_ringbuffer *ringbuf = req->ringbuf;
1538         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1539         int ret;
1540
1541         /* Don't rely in hw updating PDPs, specially in lite-restore.
1542          * Ideally, we should set Force PD Restore in ctx descriptor,
1543          * but we can't. Force Restore would be a second option, but
1544          * it is unsafe in case of lite-restore (because the ctx is
1545          * not idle). */
1546         if (req->ctx->ppgtt &&
1547             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1548                 ret = intel_logical_ring_emit_pdps(req);
1549                 if (ret)
1550                         return ret;
1551
1552                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1553         }
1554
1555         ret = intel_logical_ring_begin(req, 4);
1556         if (ret)
1557                 return ret;
1558
1559         /* FIXME(BDW): Address space and security selectors. */
1560         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1561                                 (ppgtt<<8) |
1562                                 (dispatch_flags & I915_DISPATCH_RS ?
1563                                  MI_BATCH_RESOURCE_STREAMER : 0));
1564         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1565         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1566         intel_logical_ring_emit(ringbuf, MI_NOOP);
1567         intel_logical_ring_advance(ringbuf);
1568
1569         return 0;
1570 }
1571
1572 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1573 {
1574         struct drm_device *dev = ring->dev;
1575         struct drm_i915_private *dev_priv = dev->dev_private;
1576         unsigned long flags;
1577
1578         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1579                 return false;
1580
1581         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1582         if (ring->irq_refcount++ == 0) {
1583                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1584                 POSTING_READ(RING_IMR(ring->mmio_base));
1585         }
1586         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1587
1588         return true;
1589 }
1590
1591 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1592 {
1593         struct drm_device *dev = ring->dev;
1594         struct drm_i915_private *dev_priv = dev->dev_private;
1595         unsigned long flags;
1596
1597         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1598         if (--ring->irq_refcount == 0) {
1599                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1600                 POSTING_READ(RING_IMR(ring->mmio_base));
1601         }
1602         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1603 }
1604
1605 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1606                            u32 invalidate_domains,
1607                            u32 unused)
1608 {
1609         struct intel_ringbuffer *ringbuf = request->ringbuf;
1610         struct intel_engine_cs *ring = ringbuf->ring;
1611         struct drm_device *dev = ring->dev;
1612         struct drm_i915_private *dev_priv = dev->dev_private;
1613         uint32_t cmd;
1614         int ret;
1615
1616         ret = intel_logical_ring_begin(request, 4);
1617         if (ret)
1618                 return ret;
1619
1620         cmd = MI_FLUSH_DW + 1;
1621
1622         /* We always require a command barrier so that subsequent
1623          * commands, such as breadcrumb interrupts, are strictly ordered
1624          * wrt the contents of the write cache being flushed to memory
1625          * (and thus being coherent from the CPU).
1626          */
1627         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1628
1629         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1630                 cmd |= MI_INVALIDATE_TLB;
1631                 if (ring == &dev_priv->ring[VCS])
1632                         cmd |= MI_INVALIDATE_BSD;
1633         }
1634
1635         intel_logical_ring_emit(ringbuf, cmd);
1636         intel_logical_ring_emit(ringbuf,
1637                                 I915_GEM_HWS_SCRATCH_ADDR |
1638                                 MI_FLUSH_DW_USE_GTT);
1639         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1640         intel_logical_ring_emit(ringbuf, 0); /* value */
1641         intel_logical_ring_advance(ringbuf);
1642
1643         return 0;
1644 }
1645
1646 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1647                                   u32 invalidate_domains,
1648                                   u32 flush_domains)
1649 {
1650         struct intel_ringbuffer *ringbuf = request->ringbuf;
1651         struct intel_engine_cs *ring = ringbuf->ring;
1652         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1653         bool vf_flush_wa;
1654         u32 flags = 0;
1655         int ret;
1656
1657         flags |= PIPE_CONTROL_CS_STALL;
1658
1659         if (flush_domains) {
1660                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1661                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1662         }
1663
1664         if (invalidate_domains) {
1665                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1666                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1667                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1668                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1669                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1670                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1671                 flags |= PIPE_CONTROL_QW_WRITE;
1672                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1673         }
1674
1675         /*
1676          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1677          * control.
1678          */
1679         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1680                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1681
1682         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1683         if (ret)
1684                 return ret;
1685
1686         if (vf_flush_wa) {
1687                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1688                 intel_logical_ring_emit(ringbuf, 0);
1689                 intel_logical_ring_emit(ringbuf, 0);
1690                 intel_logical_ring_emit(ringbuf, 0);
1691                 intel_logical_ring_emit(ringbuf, 0);
1692                 intel_logical_ring_emit(ringbuf, 0);
1693         }
1694
1695         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1696         intel_logical_ring_emit(ringbuf, flags);
1697         intel_logical_ring_emit(ringbuf, scratch_addr);
1698         intel_logical_ring_emit(ringbuf, 0);
1699         intel_logical_ring_emit(ringbuf, 0);
1700         intel_logical_ring_emit(ringbuf, 0);
1701         intel_logical_ring_advance(ringbuf);
1702
1703         return 0;
1704 }
1705
1706 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1707 {
1708         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1709 }
1710
1711 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1712 {
1713         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1714 }
1715
1716 static int gen8_emit_request(struct drm_i915_gem_request *request)
1717 {
1718         struct intel_ringbuffer *ringbuf = request->ringbuf;
1719         struct intel_engine_cs *ring = ringbuf->ring;
1720         u32 cmd;
1721         int ret;
1722
1723         /*
1724          * Reserve space for 2 NOOPs at the end of each request to be
1725          * used as a workaround for not being allowed to do lite
1726          * restore with HEAD==TAIL (WaIdleLiteRestore).
1727          */
1728         ret = intel_logical_ring_begin(request, 8);
1729         if (ret)
1730                 return ret;
1731
1732         cmd = MI_STORE_DWORD_IMM_GEN4;
1733         cmd |= MI_GLOBAL_GTT;
1734
1735         intel_logical_ring_emit(ringbuf, cmd);
1736         intel_logical_ring_emit(ringbuf,
1737                                 (ring->status_page.gfx_addr +
1738                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1739         intel_logical_ring_emit(ringbuf, 0);
1740         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1741         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1742         intel_logical_ring_emit(ringbuf, MI_NOOP);
1743         intel_logical_ring_advance_and_submit(request);
1744
1745         /*
1746          * Here we add two extra NOOPs as padding to avoid
1747          * lite restore of a context with HEAD==TAIL.
1748          */
1749         intel_logical_ring_emit(ringbuf, MI_NOOP);
1750         intel_logical_ring_emit(ringbuf, MI_NOOP);
1751         intel_logical_ring_advance(ringbuf);
1752
1753         return 0;
1754 }
1755
1756 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1757 {
1758         struct render_state so;
1759         int ret;
1760
1761         ret = i915_gem_render_state_prepare(req->ring, &so);
1762         if (ret)
1763                 return ret;
1764
1765         if (so.rodata == NULL)
1766                 return 0;
1767
1768         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1769                                        I915_DISPATCH_SECURE);
1770         if (ret)
1771                 goto out;
1772
1773         ret = req->ring->emit_bb_start(req,
1774                                        (so.ggtt_offset + so.aux_batch_offset),
1775                                        I915_DISPATCH_SECURE);
1776         if (ret)
1777                 goto out;
1778
1779         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1780
1781 out:
1782         i915_gem_render_state_fini(&so);
1783         return ret;
1784 }
1785
1786 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1787 {
1788         int ret;
1789
1790         ret = intel_logical_ring_workarounds_emit(req);
1791         if (ret)
1792                 return ret;
1793
1794         ret = intel_rcs_context_init_mocs(req);
1795         /*
1796          * Failing to program the MOCS is non-fatal.The system will not
1797          * run at peak performance. So generate an error and carry on.
1798          */
1799         if (ret)
1800                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1801
1802         return intel_lr_context_render_state_init(req);
1803 }
1804
1805 /**
1806  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1807  *
1808  * @ring: Engine Command Streamer.
1809  *
1810  */
1811 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1812 {
1813         struct drm_i915_private *dev_priv;
1814
1815         if (!intel_ring_initialized(ring))
1816                 return;
1817
1818         dev_priv = ring->dev->dev_private;
1819
1820         intel_logical_ring_stop(ring);
1821         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1822
1823         if (ring->cleanup)
1824                 ring->cleanup(ring);
1825
1826         i915_cmd_parser_fini_ring(ring);
1827         i915_gem_batch_pool_fini(&ring->batch_pool);
1828
1829         if (ring->status_page.obj) {
1830                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1831                 ring->status_page.obj = NULL;
1832         }
1833
1834         lrc_destroy_wa_ctx_obj(ring);
1835 }
1836
1837 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1838 {
1839         int ret;
1840
1841         /* Intentionally left blank. */
1842         ring->buffer = NULL;
1843
1844         ring->dev = dev;
1845         INIT_LIST_HEAD(&ring->active_list);
1846         INIT_LIST_HEAD(&ring->request_list);
1847         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1848         init_waitqueue_head(&ring->irq_queue);
1849
1850         INIT_LIST_HEAD(&ring->execlist_queue);
1851         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1852         spin_lock_init(&ring->execlist_lock);
1853
1854         ret = i915_cmd_parser_init_ring(ring);
1855         if (ret)
1856                 return ret;
1857
1858         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1859
1860         return ret;
1861 }
1862
1863 static int logical_render_ring_init(struct drm_device *dev)
1864 {
1865         struct drm_i915_private *dev_priv = dev->dev_private;
1866         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1867         int ret;
1868
1869         ring->name = "render ring";
1870         ring->id = RCS;
1871         ring->mmio_base = RENDER_RING_BASE;
1872         ring->irq_enable_mask =
1873                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1874         ring->irq_keep_mask =
1875                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1876         if (HAS_L3_DPF(dev))
1877                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1878
1879         if (INTEL_INFO(dev)->gen >= 9)
1880                 ring->init_hw = gen9_init_render_ring;
1881         else
1882                 ring->init_hw = gen8_init_render_ring;
1883         ring->init_context = gen8_init_rcs_context;
1884         ring->cleanup = intel_fini_pipe_control;
1885         ring->get_seqno = gen8_get_seqno;
1886         ring->set_seqno = gen8_set_seqno;
1887         ring->emit_request = gen8_emit_request;
1888         ring->emit_flush = gen8_emit_flush_render;
1889         ring->irq_get = gen8_logical_ring_get_irq;
1890         ring->irq_put = gen8_logical_ring_put_irq;
1891         ring->emit_bb_start = gen8_emit_bb_start;
1892
1893         ring->dev = dev;
1894
1895         ret = intel_init_pipe_control(ring);
1896         if (ret)
1897                 return ret;
1898
1899         ret = intel_init_workaround_bb(ring);
1900         if (ret) {
1901                 /*
1902                  * We continue even if we fail to initialize WA batch
1903                  * because we only expect rare glitches but nothing
1904                  * critical to prevent us from using GPU
1905                  */
1906                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1907                           ret);
1908         }
1909
1910         ret = logical_ring_init(dev, ring);
1911         if (ret) {
1912                 lrc_destroy_wa_ctx_obj(ring);
1913         }
1914
1915         return ret;
1916 }
1917
1918 static int logical_bsd_ring_init(struct drm_device *dev)
1919 {
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1922
1923         ring->name = "bsd ring";
1924         ring->id = VCS;
1925         ring->mmio_base = GEN6_BSD_RING_BASE;
1926         ring->irq_enable_mask =
1927                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1928         ring->irq_keep_mask =
1929                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1930
1931         ring->init_hw = gen8_init_common_ring;
1932         ring->get_seqno = gen8_get_seqno;
1933         ring->set_seqno = gen8_set_seqno;
1934         ring->emit_request = gen8_emit_request;
1935         ring->emit_flush = gen8_emit_flush;
1936         ring->irq_get = gen8_logical_ring_get_irq;
1937         ring->irq_put = gen8_logical_ring_put_irq;
1938         ring->emit_bb_start = gen8_emit_bb_start;
1939
1940         return logical_ring_init(dev, ring);
1941 }
1942
1943 static int logical_bsd2_ring_init(struct drm_device *dev)
1944 {
1945         struct drm_i915_private *dev_priv = dev->dev_private;
1946         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1947
1948         ring->name = "bds2 ring";
1949         ring->id = VCS2;
1950         ring->mmio_base = GEN8_BSD2_RING_BASE;
1951         ring->irq_enable_mask =
1952                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1953         ring->irq_keep_mask =
1954                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1955
1956         ring->init_hw = gen8_init_common_ring;
1957         ring->get_seqno = gen8_get_seqno;
1958         ring->set_seqno = gen8_set_seqno;
1959         ring->emit_request = gen8_emit_request;
1960         ring->emit_flush = gen8_emit_flush;
1961         ring->irq_get = gen8_logical_ring_get_irq;
1962         ring->irq_put = gen8_logical_ring_put_irq;
1963         ring->emit_bb_start = gen8_emit_bb_start;
1964
1965         return logical_ring_init(dev, ring);
1966 }
1967
1968 static int logical_blt_ring_init(struct drm_device *dev)
1969 {
1970         struct drm_i915_private *dev_priv = dev->dev_private;
1971         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1972
1973         ring->name = "blitter ring";
1974         ring->id = BCS;
1975         ring->mmio_base = BLT_RING_BASE;
1976         ring->irq_enable_mask =
1977                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1978         ring->irq_keep_mask =
1979                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1980
1981         ring->init_hw = gen8_init_common_ring;
1982         ring->get_seqno = gen8_get_seqno;
1983         ring->set_seqno = gen8_set_seqno;
1984         ring->emit_request = gen8_emit_request;
1985         ring->emit_flush = gen8_emit_flush;
1986         ring->irq_get = gen8_logical_ring_get_irq;
1987         ring->irq_put = gen8_logical_ring_put_irq;
1988         ring->emit_bb_start = gen8_emit_bb_start;
1989
1990         return logical_ring_init(dev, ring);
1991 }
1992
1993 static int logical_vebox_ring_init(struct drm_device *dev)
1994 {
1995         struct drm_i915_private *dev_priv = dev->dev_private;
1996         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1997
1998         ring->name = "video enhancement ring";
1999         ring->id = VECS;
2000         ring->mmio_base = VEBOX_RING_BASE;
2001         ring->irq_enable_mask =
2002                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2003         ring->irq_keep_mask =
2004                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2005
2006         ring->init_hw = gen8_init_common_ring;
2007         ring->get_seqno = gen8_get_seqno;
2008         ring->set_seqno = gen8_set_seqno;
2009         ring->emit_request = gen8_emit_request;
2010         ring->emit_flush = gen8_emit_flush;
2011         ring->irq_get = gen8_logical_ring_get_irq;
2012         ring->irq_put = gen8_logical_ring_put_irq;
2013         ring->emit_bb_start = gen8_emit_bb_start;
2014
2015         return logical_ring_init(dev, ring);
2016 }
2017
2018 /**
2019  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2020  * @dev: DRM device.
2021  *
2022  * This function inits the engines for an Execlists submission style (the equivalent in the
2023  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2024  * those engines that are present in the hardware.
2025  *
2026  * Return: non-zero if the initialization failed.
2027  */
2028 int intel_logical_rings_init(struct drm_device *dev)
2029 {
2030         struct drm_i915_private *dev_priv = dev->dev_private;
2031         int ret;
2032
2033         ret = logical_render_ring_init(dev);
2034         if (ret)
2035                 return ret;
2036
2037         if (HAS_BSD(dev)) {
2038                 ret = logical_bsd_ring_init(dev);
2039                 if (ret)
2040                         goto cleanup_render_ring;
2041         }
2042
2043         if (HAS_BLT(dev)) {
2044                 ret = logical_blt_ring_init(dev);
2045                 if (ret)
2046                         goto cleanup_bsd_ring;
2047         }
2048
2049         if (HAS_VEBOX(dev)) {
2050                 ret = logical_vebox_ring_init(dev);
2051                 if (ret)
2052                         goto cleanup_blt_ring;
2053         }
2054
2055         if (HAS_BSD2(dev)) {
2056                 ret = logical_bsd2_ring_init(dev);
2057                 if (ret)
2058                         goto cleanup_vebox_ring;
2059         }
2060
2061         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
2062         if (ret)
2063                 goto cleanup_bsd2_ring;
2064
2065         return 0;
2066
2067 cleanup_bsd2_ring:
2068         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
2069 cleanup_vebox_ring:
2070         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2071 cleanup_blt_ring:
2072         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2073 cleanup_bsd_ring:
2074         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2075 cleanup_render_ring:
2076         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2077
2078         return ret;
2079 }
2080
2081 static u32
2082 make_rpcs(struct drm_device *dev)
2083 {
2084         u32 rpcs = 0;
2085
2086         /*
2087          * No explicit RPCS request is needed to ensure full
2088          * slice/subslice/EU enablement prior to Gen9.
2089         */
2090         if (INTEL_INFO(dev)->gen < 9)
2091                 return 0;
2092
2093         /*
2094          * Starting in Gen9, render power gating can leave
2095          * slice/subslice/EU in a partially enabled state. We
2096          * must make an explicit request through RPCS for full
2097          * enablement.
2098         */
2099         if (INTEL_INFO(dev)->has_slice_pg) {
2100                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2101                 rpcs |= INTEL_INFO(dev)->slice_total <<
2102                         GEN8_RPCS_S_CNT_SHIFT;
2103                 rpcs |= GEN8_RPCS_ENABLE;
2104         }
2105
2106         if (INTEL_INFO(dev)->has_subslice_pg) {
2107                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2108                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2109                         GEN8_RPCS_SS_CNT_SHIFT;
2110                 rpcs |= GEN8_RPCS_ENABLE;
2111         }
2112
2113         if (INTEL_INFO(dev)->has_eu_pg) {
2114                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2115                         GEN8_RPCS_EU_MIN_SHIFT;
2116                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2117                         GEN8_RPCS_EU_MAX_SHIFT;
2118                 rpcs |= GEN8_RPCS_ENABLE;
2119         }
2120
2121         return rpcs;
2122 }
2123
2124 static int
2125 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2126                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2127 {
2128         struct drm_device *dev = ring->dev;
2129         struct drm_i915_private *dev_priv = dev->dev_private;
2130         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2131         struct page *page;
2132         uint32_t *reg_state;
2133         int ret;
2134
2135         if (!ppgtt)
2136                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2137
2138         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2139         if (ret) {
2140                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2141                 return ret;
2142         }
2143
2144         ret = i915_gem_object_get_pages(ctx_obj);
2145         if (ret) {
2146                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2147                 return ret;
2148         }
2149
2150         i915_gem_object_pin_pages(ctx_obj);
2151
2152         /* The second page of the context object contains some fields which must
2153          * be set up prior to the first execution. */
2154         page = i915_gem_object_get_page(ctx_obj, 1);
2155         reg_state = kmap_atomic(page);
2156
2157         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2158          * commands followed by (reg, value) pairs. The values we are setting here are
2159          * only for the first context restore: on a subsequent save, the GPU will
2160          * recreate this batchbuffer with new values (including all the missing
2161          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2162         if (ring->id == RCS)
2163                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2164         else
2165                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2166         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2167         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2168         reg_state[CTX_CONTEXT_CONTROL+1] =
2169                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2170                                    CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2171                                    CTX_CTRL_RS_CTX_ENABLE);
2172         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2173         reg_state[CTX_RING_HEAD+1] = 0;
2174         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2175         reg_state[CTX_RING_TAIL+1] = 0;
2176         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2177         /* Ring buffer start address is not known until the buffer is pinned.
2178          * It is written to the context image in execlists_update_context()
2179          */
2180         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2181         reg_state[CTX_RING_BUFFER_CONTROL+1] =
2182                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2183         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2184         reg_state[CTX_BB_HEAD_U+1] = 0;
2185         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2186         reg_state[CTX_BB_HEAD_L+1] = 0;
2187         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2188         reg_state[CTX_BB_STATE+1] = (1<<5);
2189         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2190         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2191         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2192         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2193         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2194         reg_state[CTX_SECOND_BB_STATE+1] = 0;
2195         if (ring->id == RCS) {
2196                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2197                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2198                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2199                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2200                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2201                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2202                 if (ring->wa_ctx.obj) {
2203                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2204                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2205
2206                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2207                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2208                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2209
2210                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2211                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2212
2213                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2214                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2215                                 0x01;
2216                 }
2217         }
2218         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2219         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2220         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2221         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2222         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2223         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2224         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2225         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2226         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2227         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2228         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2229         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2230
2231         /* With dynamic page allocation, PDPs may not be allocated at this point,
2232          * Point the unallocated PDPs to the scratch page
2233          */
2234         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2235         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2236         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2237         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2238         if (ring->id == RCS) {
2239                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2240                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2241                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2242         }
2243
2244         kunmap_atomic(reg_state);
2245
2246         ctx_obj->dirty = 1;
2247         set_page_dirty(page);
2248         i915_gem_object_unpin_pages(ctx_obj);
2249
2250         return 0;
2251 }
2252
2253 /**
2254  * intel_lr_context_free() - free the LRC specific bits of a context
2255  * @ctx: the LR context to free.
2256  *
2257  * The real context freeing is done in i915_gem_context_free: this only
2258  * takes care of the bits that are LRC related: the per-engine backing
2259  * objects and the logical ringbuffer.
2260  */
2261 void intel_lr_context_free(struct intel_context *ctx)
2262 {
2263         int i;
2264
2265         for (i = 0; i < I915_NUM_RINGS; i++) {
2266                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2267
2268                 if (ctx_obj) {
2269                         struct intel_ringbuffer *ringbuf =
2270                                         ctx->engine[i].ringbuf;
2271                         struct intel_engine_cs *ring = ringbuf->ring;
2272
2273                         if (ctx == ring->default_context) {
2274                                 intel_unpin_ringbuffer_obj(ringbuf);
2275                                 i915_gem_object_ggtt_unpin(ctx_obj);
2276                         }
2277                         WARN_ON(ctx->engine[ring->id].pin_count);
2278                         intel_destroy_ringbuffer_obj(ringbuf);
2279                         kfree(ringbuf);
2280                         drm_gem_object_unreference(&ctx_obj->base);
2281                 }
2282         }
2283 }
2284
2285 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2286 {
2287         int ret = 0;
2288
2289         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2290
2291         switch (ring->id) {
2292         case RCS:
2293                 if (INTEL_INFO(ring->dev)->gen >= 9)
2294                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2295                 else
2296                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2297                 break;
2298         case VCS:
2299         case BCS:
2300         case VECS:
2301         case VCS2:
2302                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2303                 break;
2304         }
2305
2306         return ret;
2307 }
2308
2309 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2310                 struct drm_i915_gem_object *default_ctx_obj)
2311 {
2312         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2313
2314         /* The status page is offset 0 from the default context object
2315          * in LRC mode. */
2316         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2317         ring->status_page.page_addr =
2318                         kmap(sg_page(default_ctx_obj->pages->sgl));
2319         ring->status_page.obj = default_ctx_obj;
2320
2321         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2322                         (u32)ring->status_page.gfx_addr);
2323         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2324 }
2325
2326 /**
2327  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2328  * @ctx: LR context to create.
2329  * @ring: engine to be used with the context.
2330  *
2331  * This function can be called more than once, with different engines, if we plan
2332  * to use the context with them. The context backing objects and the ringbuffers
2333  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2334  * the creation is a deferred call: it's better to make sure first that we need to use
2335  * a given ring with the context.
2336  *
2337  * Return: non-zero on error.
2338  */
2339 int intel_lr_context_deferred_create(struct intel_context *ctx,
2340                                      struct intel_engine_cs *ring)
2341 {
2342         const bool is_global_default_ctx = (ctx == ring->default_context);
2343         struct drm_device *dev = ring->dev;
2344         struct drm_i915_gem_object *ctx_obj;
2345         uint32_t context_size;
2346         struct intel_ringbuffer *ringbuf;
2347         int ret;
2348
2349         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2350         WARN_ON(ctx->engine[ring->id].state);
2351
2352         context_size = round_up(get_lr_context_size(ring), 4096);
2353
2354         ctx_obj = i915_gem_alloc_object(dev, context_size);
2355         if (!ctx_obj) {
2356                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2357                 return -ENOMEM;
2358         }
2359
2360         if (is_global_default_ctx) {
2361                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2362                 if (ret) {
2363                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2364                                         ret);
2365                         drm_gem_object_unreference(&ctx_obj->base);
2366                         return ret;
2367                 }
2368         }
2369
2370         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2371         if (!ringbuf) {
2372                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2373                                 ring->name);
2374                 ret = -ENOMEM;
2375                 goto error_unpin_ctx;
2376         }
2377
2378         ringbuf->ring = ring;
2379
2380         ringbuf->size = 32 * PAGE_SIZE;
2381         ringbuf->effective_size = ringbuf->size;
2382         ringbuf->head = 0;
2383         ringbuf->tail = 0;
2384         ringbuf->last_retired_head = -1;
2385         intel_ring_update_space(ringbuf);
2386
2387         if (ringbuf->obj == NULL) {
2388                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2389                 if (ret) {
2390                         DRM_DEBUG_DRIVER(
2391                                 "Failed to allocate ringbuffer obj %s: %d\n",
2392                                 ring->name, ret);
2393                         goto error_free_rbuf;
2394                 }
2395
2396                 if (is_global_default_ctx) {
2397                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2398                         if (ret) {
2399                                 DRM_ERROR(
2400                                         "Failed to pin and map ringbuffer %s: %d\n",
2401                                         ring->name, ret);
2402                                 goto error_destroy_rbuf;
2403                         }
2404                 }
2405
2406         }
2407
2408         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2409         if (ret) {
2410                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2411                 goto error;
2412         }
2413
2414         ctx->engine[ring->id].ringbuf = ringbuf;
2415         ctx->engine[ring->id].state = ctx_obj;
2416
2417         if (ctx == ring->default_context)
2418                 lrc_setup_hardware_status_page(ring, ctx_obj);
2419         else if (ring->id == RCS && !ctx->rcs_initialized) {
2420                 if (ring->init_context) {
2421                         struct drm_i915_gem_request *req;
2422
2423                         ret = i915_gem_request_alloc(ring, ctx, &req);
2424                         if (ret)
2425                                 return ret;
2426
2427                         ret = ring->init_context(req);
2428                         if (ret) {
2429                                 DRM_ERROR("ring init context: %d\n", ret);
2430                                 i915_gem_request_cancel(req);
2431                                 ctx->engine[ring->id].ringbuf = NULL;
2432                                 ctx->engine[ring->id].state = NULL;
2433                                 goto error;
2434                         }
2435
2436                         i915_add_request_no_flush(req);
2437                 }
2438
2439                 ctx->rcs_initialized = true;
2440         }
2441
2442         return 0;
2443
2444 error:
2445         if (is_global_default_ctx)
2446                 intel_unpin_ringbuffer_obj(ringbuf);
2447 error_destroy_rbuf:
2448         intel_destroy_ringbuffer_obj(ringbuf);
2449 error_free_rbuf:
2450         kfree(ringbuf);
2451 error_unpin_ctx:
2452         if (is_global_default_ctx)
2453                 i915_gem_object_ggtt_unpin(ctx_obj);
2454         drm_gem_object_unreference(&ctx_obj->base);
2455         return ret;
2456 }
2457
2458 void intel_lr_context_reset(struct drm_device *dev,
2459                         struct intel_context *ctx)
2460 {
2461         struct drm_i915_private *dev_priv = dev->dev_private;
2462         struct intel_engine_cs *ring;
2463         int i;
2464
2465         for_each_ring(ring, dev_priv, i) {
2466                 struct drm_i915_gem_object *ctx_obj =
2467                                 ctx->engine[ring->id].state;
2468                 struct intel_ringbuffer *ringbuf =
2469                                 ctx->engine[ring->id].ringbuf;
2470                 uint32_t *reg_state;
2471                 struct page *page;
2472
2473                 if (!ctx_obj)
2474                         continue;
2475
2476                 if (i915_gem_object_get_pages(ctx_obj)) {
2477                         WARN(1, "Failed get_pages for context obj\n");
2478                         continue;
2479                 }
2480                 page = i915_gem_object_get_page(ctx_obj, 1);
2481                 reg_state = kmap_atomic(page);
2482
2483                 reg_state[CTX_RING_HEAD+1] = 0;
2484                 reg_state[CTX_RING_TAIL+1] = 0;
2485
2486                 kunmap_atomic(reg_state);
2487
2488                 ringbuf->head = 0;
2489                 ringbuf->tail = 0;
2490         }
2491 }