]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
Merge remote-tracking branch 'omap/for-next'
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - tail;
56         if (space <= 0)
57                 space += size;
58         return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63         if (ringbuf->last_retired_head != -1) {
64                 ringbuf->head = ringbuf->last_retired_head;
65                 ringbuf->last_retired_head = -1;
66         }
67
68         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69                                             ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74         intel_ring_update_space(ringbuf);
75         return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80         struct drm_i915_private *dev_priv = ring->dev->dev_private;
81         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86         struct intel_ringbuffer *ringbuf = ring->buffer;
87         ringbuf->tail &= ringbuf->size - 1;
88         if (intel_ring_stopped(ring))
89                 return;
90         ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95                        u32      invalidate_domains,
96                        u32      flush_domains)
97 {
98         struct intel_engine_cs *ring = req->ring;
99         u32 cmd;
100         int ret;
101
102         cmd = MI_FLUSH;
103         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104                 cmd |= MI_NO_WRITE_FLUSH;
105
106         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107                 cmd |= MI_READ_FLUSH;
108
109         ret = intel_ring_begin(req, 2);
110         if (ret)
111                 return ret;
112
113         intel_ring_emit(ring, cmd);
114         intel_ring_emit(ring, MI_NOOP);
115         intel_ring_advance(ring);
116
117         return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122                        u32      invalidate_domains,
123                        u32      flush_domains)
124 {
125         struct intel_engine_cs *ring = req->ring;
126         struct drm_device *dev = ring->dev;
127         u32 cmd;
128         int ret;
129
130         /*
131          * read/write caches:
132          *
133          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
135          * also flushed at 2d versus 3d pipeline switches.
136          *
137          * read-only caches:
138          *
139          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140          * MI_READ_FLUSH is set, and is always flushed on 965.
141          *
142          * I915_GEM_DOMAIN_COMMAND may not exist?
143          *
144          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145          * invalidated when MI_EXE_FLUSH is set.
146          *
147          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148          * invalidated with every MI_FLUSH.
149          *
150          * TLBs:
151          *
152          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155          * are flushed at any MI_FLUSH.
156          */
157
158         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160                 cmd &= ~MI_NO_WRITE_FLUSH;
161         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162                 cmd |= MI_EXE_FLUSH;
163
164         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165             (IS_G4X(dev) || IS_GEN5(dev)))
166                 cmd |= MI_INVALIDATE_ISP;
167
168         ret = intel_ring_begin(req, 2);
169         if (ret)
170                 return ret;
171
172         intel_ring_emit(ring, cmd);
173         intel_ring_emit(ring, MI_NOOP);
174         intel_ring_advance(ring);
175
176         return 0;
177 }
178
179 /**
180  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181  * implementing two workarounds on gen6.  From section 1.4.7.1
182  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183  *
184  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185  * produced by non-pipelined state commands), software needs to first
186  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187  * 0.
188  *
189  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191  *
192  * And the workaround for these two requires this workaround first:
193  *
194  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195  * BEFORE the pipe-control with a post-sync op and no write-cache
196  * flushes.
197  *
198  * And this last workaround is tricky because of the requirements on
199  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200  * volume 2 part 1:
201  *
202  *     "1 of the following must also be set:
203  *      - Render Target Cache Flush Enable ([12] of DW1)
204  *      - Depth Cache Flush Enable ([0] of DW1)
205  *      - Stall at Pixel Scoreboard ([1] of DW1)
206  *      - Depth Stall ([13] of DW1)
207  *      - Post-Sync Operation ([13] of DW1)
208  *      - Notify Enable ([8] of DW1)"
209  *
210  * The cache flushes require the workaround flush that triggered this
211  * one, so we can't use it.  Depth stall would trigger the same.
212  * Post-sync nonzero is what triggered this second workaround, so we
213  * can't use that one either.  Notify enable is IRQs, which aren't
214  * really our business.  That leaves only stall at scoreboard.
215  */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219         struct intel_engine_cs *ring = req->ring;
220         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221         int ret;
222
223         ret = intel_ring_begin(req, 6);
224         if (ret)
225                 return ret;
226
227         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
230         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231         intel_ring_emit(ring, 0); /* low dword */
232         intel_ring_emit(ring, 0); /* high dword */
233         intel_ring_emit(ring, MI_NOOP);
234         intel_ring_advance(ring);
235
236         ret = intel_ring_begin(req, 6);
237         if (ret)
238                 return ret;
239
240         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243         intel_ring_emit(ring, 0);
244         intel_ring_emit(ring, 0);
245         intel_ring_emit(ring, MI_NOOP);
246         intel_ring_advance(ring);
247
248         return 0;
249 }
250
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253                        u32 invalidate_domains, u32 flush_domains)
254 {
255         struct intel_engine_cs *ring = req->ring;
256         u32 flags = 0;
257         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258         int ret;
259
260         /* Force SNB workarounds for PIPE_CONTROL flushes */
261         ret = intel_emit_post_sync_nonzero_flush(req);
262         if (ret)
263                 return ret;
264
265         /* Just flush everything.  Experiments have shown that reducing the
266          * number of bits based on the write domains has little performance
267          * impact.
268          */
269         if (flush_domains) {
270                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272                 /*
273                  * Ensure that any following seqno writes only happen
274                  * when the render cache is indeed flushed.
275                  */
276                 flags |= PIPE_CONTROL_CS_STALL;
277         }
278         if (invalidate_domains) {
279                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285                 /*
286                  * TLB invalidate requires a post-sync write.
287                  */
288                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289         }
290
291         ret = intel_ring_begin(req, 4);
292         if (ret)
293                 return ret;
294
295         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296         intel_ring_emit(ring, flags);
297         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298         intel_ring_emit(ring, 0);
299         intel_ring_advance(ring);
300
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307         struct intel_engine_cs *ring = req->ring;
308         int ret;
309
310         ret = intel_ring_begin(req, 4);
311         if (ret)
312                 return ret;
313
314         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
317         intel_ring_emit(ring, 0);
318         intel_ring_emit(ring, 0);
319         intel_ring_advance(ring);
320
321         return 0;
322 }
323
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326                        u32 invalidate_domains, u32 flush_domains)
327 {
328         struct intel_engine_cs *ring = req->ring;
329         u32 flags = 0;
330         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331         int ret;
332
333         /*
334          * Ensure that any following seqno writes only happen when the render
335          * cache is indeed flushed.
336          *
337          * Workaround: 4th PIPE_CONTROL command (except the ones with only
338          * read-cache invalidate bits set) must have the CS_STALL bit set. We
339          * don't try to be clever and just set it unconditionally.
340          */
341         flags |= PIPE_CONTROL_CS_STALL;
342
343         /* Just flush everything.  Experiments have shown that reducing the
344          * number of bits based on the write domains has little performance
345          * impact.
346          */
347         if (flush_domains) {
348                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
351         }
352         if (invalidate_domains) {
353                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
354                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
355                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
356                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
357                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
358                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
359                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
360                 /*
361                  * TLB invalidate requires a post-sync write.
362                  */
363                 flags |= PIPE_CONTROL_QW_WRITE;
364                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
365
366                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
367
368                 /* Workaround: we must issue a pipe_control with CS-stall bit
369                  * set before a pipe_control command that has the state cache
370                  * invalidate bit set. */
371                 gen7_render_ring_cs_stall_wa(req);
372         }
373
374         ret = intel_ring_begin(req, 4);
375         if (ret)
376                 return ret;
377
378         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
379         intel_ring_emit(ring, flags);
380         intel_ring_emit(ring, scratch_addr);
381         intel_ring_emit(ring, 0);
382         intel_ring_advance(ring);
383
384         return 0;
385 }
386
387 static int
388 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
389                        u32 flags, u32 scratch_addr)
390 {
391         struct intel_engine_cs *ring = req->ring;
392         int ret;
393
394         ret = intel_ring_begin(req, 6);
395         if (ret)
396                 return ret;
397
398         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
399         intel_ring_emit(ring, flags);
400         intel_ring_emit(ring, scratch_addr);
401         intel_ring_emit(ring, 0);
402         intel_ring_emit(ring, 0);
403         intel_ring_emit(ring, 0);
404         intel_ring_advance(ring);
405
406         return 0;
407 }
408
409 static int
410 gen8_render_ring_flush(struct drm_i915_gem_request *req,
411                        u32 invalidate_domains, u32 flush_domains)
412 {
413         u32 flags = 0;
414         u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
415         int ret;
416
417         flags |= PIPE_CONTROL_CS_STALL;
418
419         if (flush_domains) {
420                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
421                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
422                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
423         }
424         if (invalidate_domains) {
425                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
426                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
427                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
428                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
429                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
430                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
431                 flags |= PIPE_CONTROL_QW_WRITE;
432                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
433
434                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
435                 ret = gen8_emit_pipe_control(req,
436                                              PIPE_CONTROL_CS_STALL |
437                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
438                                              0);
439                 if (ret)
440                         return ret;
441         }
442
443         return gen8_emit_pipe_control(req, flags, scratch_addr);
444 }
445
446 static void ring_write_tail(struct intel_engine_cs *ring,
447                             u32 value)
448 {
449         struct drm_i915_private *dev_priv = ring->dev->dev_private;
450         I915_WRITE_TAIL(ring, value);
451 }
452
453 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
454 {
455         struct drm_i915_private *dev_priv = ring->dev->dev_private;
456         u64 acthd;
457
458         if (INTEL_INFO(ring->dev)->gen >= 8)
459                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
460                                          RING_ACTHD_UDW(ring->mmio_base));
461         else if (INTEL_INFO(ring->dev)->gen >= 4)
462                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
463         else
464                 acthd = I915_READ(ACTHD);
465
466         return acthd;
467 }
468
469 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
470 {
471         struct drm_i915_private *dev_priv = ring->dev->dev_private;
472         u32 addr;
473
474         addr = dev_priv->status_page_dmah->busaddr;
475         if (INTEL_INFO(ring->dev)->gen >= 4)
476                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
477         I915_WRITE(HWS_PGA, addr);
478 }
479
480 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
481 {
482         struct drm_device *dev = ring->dev;
483         struct drm_i915_private *dev_priv = ring->dev->dev_private;
484         u32 mmio = 0;
485
486         /* The ring status page addresses are no longer next to the rest of
487          * the ring registers as of gen7.
488          */
489         if (IS_GEN7(dev)) {
490                 switch (ring->id) {
491                 case RCS:
492                         mmio = RENDER_HWS_PGA_GEN7;
493                         break;
494                 case BCS:
495                         mmio = BLT_HWS_PGA_GEN7;
496                         break;
497                 /*
498                  * VCS2 actually doesn't exist on Gen7. Only shut up
499                  * gcc switch check warning
500                  */
501                 case VCS2:
502                 case VCS:
503                         mmio = BSD_HWS_PGA_GEN7;
504                         break;
505                 case VECS:
506                         mmio = VEBOX_HWS_PGA_GEN7;
507                         break;
508                 }
509         } else if (IS_GEN6(ring->dev)) {
510                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
511         } else {
512                 /* XXX: gen8 returns to sanity */
513                 mmio = RING_HWS_PGA(ring->mmio_base);
514         }
515
516         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
517         POSTING_READ(mmio);
518
519         /*
520          * Flush the TLB for this page
521          *
522          * FIXME: These two bits have disappeared on gen8, so a question
523          * arises: do we still need this and if so how should we go about
524          * invalidating the TLB?
525          */
526         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
527                 u32 reg = RING_INSTPM(ring->mmio_base);
528
529                 /* ring should be idle before issuing a sync flush*/
530                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
531
532                 I915_WRITE(reg,
533                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
534                                               INSTPM_SYNC_FLUSH));
535                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
536                              1000))
537                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
538                                   ring->name);
539         }
540 }
541
542 static bool stop_ring(struct intel_engine_cs *ring)
543 {
544         struct drm_i915_private *dev_priv = to_i915(ring->dev);
545
546         if (!IS_GEN2(ring->dev)) {
547                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
548                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
549                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
550                         /* Sometimes we observe that the idle flag is not
551                          * set even though the ring is empty. So double
552                          * check before giving up.
553                          */
554                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
555                                 return false;
556                 }
557         }
558
559         I915_WRITE_CTL(ring, 0);
560         I915_WRITE_HEAD(ring, 0);
561         ring->write_tail(ring, 0);
562
563         if (!IS_GEN2(ring->dev)) {
564                 (void)I915_READ_CTL(ring);
565                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
566         }
567
568         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
569 }
570
571 static int init_ring_common(struct intel_engine_cs *ring)
572 {
573         struct drm_device *dev = ring->dev;
574         struct drm_i915_private *dev_priv = dev->dev_private;
575         struct intel_ringbuffer *ringbuf = ring->buffer;
576         struct drm_i915_gem_object *obj = ringbuf->obj;
577         int ret = 0;
578
579         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
580
581         if (!stop_ring(ring)) {
582                 /* G45 ring initialization often fails to reset head to zero */
583                 DRM_DEBUG_KMS("%s head not reset to zero "
584                               "ctl %08x head %08x tail %08x start %08x\n",
585                               ring->name,
586                               I915_READ_CTL(ring),
587                               I915_READ_HEAD(ring),
588                               I915_READ_TAIL(ring),
589                               I915_READ_START(ring));
590
591                 if (!stop_ring(ring)) {
592                         DRM_ERROR("failed to set %s head to zero "
593                                   "ctl %08x head %08x tail %08x start %08x\n",
594                                   ring->name,
595                                   I915_READ_CTL(ring),
596                                   I915_READ_HEAD(ring),
597                                   I915_READ_TAIL(ring),
598                                   I915_READ_START(ring));
599                         ret = -EIO;
600                         goto out;
601                 }
602         }
603
604         if (I915_NEED_GFX_HWS(dev))
605                 intel_ring_setup_status_page(ring);
606         else
607                 ring_setup_phys_status_page(ring);
608
609         /* Enforce ordering by reading HEAD register back */
610         I915_READ_HEAD(ring);
611
612         /* Initialize the ring. This must happen _after_ we've cleared the ring
613          * registers with the above sequence (the readback of the HEAD registers
614          * also enforces ordering), otherwise the hw might lose the new ring
615          * register values. */
616         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
617
618         /* WaClearRingBufHeadRegAtInit:ctg,elk */
619         if (I915_READ_HEAD(ring))
620                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
621                           ring->name, I915_READ_HEAD(ring));
622         I915_WRITE_HEAD(ring, 0);
623         (void)I915_READ_HEAD(ring);
624
625         I915_WRITE_CTL(ring,
626                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
627                         | RING_VALID);
628
629         /* If the head is still not zero, the ring is dead */
630         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
631                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
632                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
633                 DRM_ERROR("%s initialization failed "
634                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
635                           ring->name,
636                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
637                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
638                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
639                 ret = -EIO;
640                 goto out;
641         }
642
643         ringbuf->last_retired_head = -1;
644         ringbuf->head = I915_READ_HEAD(ring);
645         ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
646         intel_ring_update_space(ringbuf);
647
648         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
649
650 out:
651         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
652
653         return ret;
654 }
655
656 void
657 intel_fini_pipe_control(struct intel_engine_cs *ring)
658 {
659         struct drm_device *dev = ring->dev;
660
661         if (ring->scratch.obj == NULL)
662                 return;
663
664         if (INTEL_INFO(dev)->gen >= 5) {
665                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
666                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
667         }
668
669         drm_gem_object_unreference(&ring->scratch.obj->base);
670         ring->scratch.obj = NULL;
671 }
672
673 int
674 intel_init_pipe_control(struct intel_engine_cs *ring)
675 {
676         int ret;
677
678         WARN_ON(ring->scratch.obj);
679
680         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
681         if (ring->scratch.obj == NULL) {
682                 DRM_ERROR("Failed to allocate seqno page\n");
683                 ret = -ENOMEM;
684                 goto err;
685         }
686
687         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
688         if (ret)
689                 goto err_unref;
690
691         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
692         if (ret)
693                 goto err_unref;
694
695         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
696         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
697         if (ring->scratch.cpu_page == NULL) {
698                 ret = -ENOMEM;
699                 goto err_unpin;
700         }
701
702         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
703                          ring->name, ring->scratch.gtt_offset);
704         return 0;
705
706 err_unpin:
707         i915_gem_object_ggtt_unpin(ring->scratch.obj);
708 err_unref:
709         drm_gem_object_unreference(&ring->scratch.obj->base);
710 err:
711         return ret;
712 }
713
714 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
715 {
716         int ret, i;
717         struct intel_engine_cs *ring = req->ring;
718         struct drm_device *dev = ring->dev;
719         struct drm_i915_private *dev_priv = dev->dev_private;
720         struct i915_workarounds *w = &dev_priv->workarounds;
721
722         if (WARN_ON_ONCE(w->count == 0))
723                 return 0;
724
725         ring->gpu_caches_dirty = true;
726         ret = intel_ring_flush_all_caches(req);
727         if (ret)
728                 return ret;
729
730         ret = intel_ring_begin(req, (w->count * 2 + 2));
731         if (ret)
732                 return ret;
733
734         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
735         for (i = 0; i < w->count; i++) {
736                 intel_ring_emit(ring, w->reg[i].addr);
737                 intel_ring_emit(ring, w->reg[i].value);
738         }
739         intel_ring_emit(ring, MI_NOOP);
740
741         intel_ring_advance(ring);
742
743         ring->gpu_caches_dirty = true;
744         ret = intel_ring_flush_all_caches(req);
745         if (ret)
746                 return ret;
747
748         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
749
750         return 0;
751 }
752
753 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
754 {
755         int ret;
756
757         ret = intel_ring_workarounds_emit(req);
758         if (ret != 0)
759                 return ret;
760
761         ret = i915_gem_render_state_init(req);
762         if (ret)
763                 DRM_ERROR("init render state: %d\n", ret);
764
765         return ret;
766 }
767
768 static int wa_add(struct drm_i915_private *dev_priv,
769                   const u32 addr, const u32 mask, const u32 val)
770 {
771         const u32 idx = dev_priv->workarounds.count;
772
773         if (WARN_ON(idx >= I915_MAX_WA_REGS))
774                 return -ENOSPC;
775
776         dev_priv->workarounds.reg[idx].addr = addr;
777         dev_priv->workarounds.reg[idx].value = val;
778         dev_priv->workarounds.reg[idx].mask = mask;
779
780         dev_priv->workarounds.count++;
781
782         return 0;
783 }
784
785 #define WA_REG(addr, mask, val) do { \
786                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
787                 if (r) \
788                         return r; \
789         } while (0)
790
791 #define WA_SET_BIT_MASKED(addr, mask) \
792         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
793
794 #define WA_CLR_BIT_MASKED(addr, mask) \
795         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
796
797 #define WA_SET_FIELD_MASKED(addr, mask, value) \
798         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
799
800 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
801 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
802
803 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
804
805 static int bdw_init_workarounds(struct intel_engine_cs *ring)
806 {
807         struct drm_device *dev = ring->dev;
808         struct drm_i915_private *dev_priv = dev->dev_private;
809
810         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
811
812         /* WaDisableAsyncFlipPerfMode:bdw */
813         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
814
815         /* WaDisablePartialInstShootdown:bdw */
816         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
817         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
818                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
819                           STALL_DOP_GATING_DISABLE);
820
821         /* WaDisableDopClockGating:bdw */
822         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
823                           DOP_CLOCK_GATING_DISABLE);
824
825         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
826                           GEN8_SAMPLER_POWER_BYPASS_DIS);
827
828         /* Use Force Non-Coherent whenever executing a 3D context. This is a
829          * workaround for for a possible hang in the unlikely event a TLB
830          * invalidation occurs during a PSD flush.
831          */
832         WA_SET_BIT_MASKED(HDC_CHICKEN0,
833                           /* WaForceEnableNonCoherent:bdw */
834                           HDC_FORCE_NON_COHERENT |
835                           /* WaForceContextSaveRestoreNonCoherent:bdw */
836                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
837                           /* WaHdcDisableFetchWhenMasked:bdw */
838                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
839                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
840                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
841
842         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
843          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
844          *  polygons in the same 8x4 pixel/sample area to be processed without
845          *  stalling waiting for the earlier ones to write to Hierarchical Z
846          *  buffer."
847          *
848          * This optimization is off by default for Broadwell; turn it on.
849          */
850         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
851
852         /* Wa4x4STCOptimizationDisable:bdw */
853         WA_SET_BIT_MASKED(CACHE_MODE_1,
854                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
855
856         /*
857          * BSpec recommends 8x4 when MSAA is used,
858          * however in practice 16x4 seems fastest.
859          *
860          * Note that PS/WM thread counts depend on the WIZ hashing
861          * disable bit, which we don't touch here, but it's good
862          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
863          */
864         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
865                             GEN6_WIZ_HASHING_MASK,
866                             GEN6_WIZ_HASHING_16x4);
867
868         return 0;
869 }
870
871 static int chv_init_workarounds(struct intel_engine_cs *ring)
872 {
873         struct drm_device *dev = ring->dev;
874         struct drm_i915_private *dev_priv = dev->dev_private;
875
876         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
877
878         /* WaDisableAsyncFlipPerfMode:chv */
879         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
880
881         /* WaDisablePartialInstShootdown:chv */
882         /* WaDisableThreadStallDopClockGating:chv */
883         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
884                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
885                           STALL_DOP_GATING_DISABLE);
886
887         /* Use Force Non-Coherent whenever executing a 3D context. This is a
888          * workaround for a possible hang in the unlikely event a TLB
889          * invalidation occurs during a PSD flush.
890          */
891         /* WaForceEnableNonCoherent:chv */
892         /* WaHdcDisableFetchWhenMasked:chv */
893         WA_SET_BIT_MASKED(HDC_CHICKEN0,
894                           HDC_FORCE_NON_COHERENT |
895                           HDC_DONOT_FETCH_MEM_WHEN_MASKED);
896
897         /* According to the CACHE_MODE_0 default value documentation, some
898          * CHV platforms disable this optimization by default.  Turn it on.
899          */
900         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
901
902         /* Wa4x4STCOptimizationDisable:chv */
903         WA_SET_BIT_MASKED(CACHE_MODE_1,
904                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
905
906         /* Improve HiZ throughput on CHV. */
907         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
908
909         /*
910          * BSpec recommends 8x4 when MSAA is used,
911          * however in practice 16x4 seems fastest.
912          *
913          * Note that PS/WM thread counts depend on the WIZ hashing
914          * disable bit, which we don't touch here, but it's good
915          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
916          */
917         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
918                             GEN6_WIZ_HASHING_MASK,
919                             GEN6_WIZ_HASHING_16x4);
920
921         return 0;
922 }
923
924 static int gen9_init_workarounds(struct intel_engine_cs *ring)
925 {
926         struct drm_device *dev = ring->dev;
927         struct drm_i915_private *dev_priv = dev->dev_private;
928         uint32_t tmp;
929
930         /* WaDisablePartialInstShootdown:skl,bxt */
931         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
932                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
933
934         /* Syncing dependencies between camera and graphics:skl,bxt */
935         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
936                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
937
938         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
939             INTEL_REVID(dev) == SKL_REVID_B0)) ||
940             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
941                 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
942                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
943                                   GEN9_DG_MIRROR_FIX_ENABLE);
944         }
945
946         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
947             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
948                 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
949                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
950                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
951                 /*
952                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
953                  * but we do that in per ctx batchbuffer as there is an issue
954                  * with this register not getting restored on ctx restore
955                  */
956         }
957
958         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
959             IS_BROXTON(dev)) {
960                 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
961                 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
962                                   GEN9_ENABLE_YV12_BUGFIX);
963         }
964
965         /* Wa4x4STCOptimizationDisable:skl,bxt */
966         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
967
968         /* WaDisablePartialResolveInVc:skl,bxt */
969         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
970
971         /* WaCcsTlbPrefetchDisable:skl,bxt */
972         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
973                           GEN9_CCS_TLB_PREFETCH_ENABLE);
974
975         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
976         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
977             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
978                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
979                                   PIXEL_MASK_CAMMING_DISABLE);
980
981         /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
982         tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
983         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
984             (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
985                 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
986         WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
987
988         return 0;
989 }
990
991 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
992 {
993         struct drm_device *dev = ring->dev;
994         struct drm_i915_private *dev_priv = dev->dev_private;
995         u8 vals[3] = { 0, 0, 0 };
996         unsigned int i;
997
998         for (i = 0; i < 3; i++) {
999                 u8 ss;
1000
1001                 /*
1002                  * Only consider slices where one, and only one, subslice has 7
1003                  * EUs
1004                  */
1005                 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1006                         continue;
1007
1008                 /*
1009                  * subslice_7eu[i] != 0 (because of the check above) and
1010                  * ss_max == 4 (maximum number of subslices possible per slice)
1011                  *
1012                  * ->    0 <= ss <= 3;
1013                  */
1014                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1015                 vals[i] = 3 - ss;
1016         }
1017
1018         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1019                 return 0;
1020
1021         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1022         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1023                             GEN9_IZ_HASHING_MASK(2) |
1024                             GEN9_IZ_HASHING_MASK(1) |
1025                             GEN9_IZ_HASHING_MASK(0),
1026                             GEN9_IZ_HASHING(2, vals[2]) |
1027                             GEN9_IZ_HASHING(1, vals[1]) |
1028                             GEN9_IZ_HASHING(0, vals[0]));
1029
1030         return 0;
1031 }
1032
1033
1034 static int skl_init_workarounds(struct intel_engine_cs *ring)
1035 {
1036         struct drm_device *dev = ring->dev;
1037         struct drm_i915_private *dev_priv = dev->dev_private;
1038
1039         gen9_init_workarounds(ring);
1040
1041         /* WaDisablePowerCompilerClockGating:skl */
1042         if (INTEL_REVID(dev) == SKL_REVID_B0)
1043                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1044                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1045
1046         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1047                 /*
1048                  *Use Force Non-Coherent whenever executing a 3D context. This
1049                  * is a workaround for a possible hang in the unlikely event
1050                  * a TLB invalidation occurs during a PSD flush.
1051                  */
1052                 /* WaForceEnableNonCoherent:skl */
1053                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1054                                   HDC_FORCE_NON_COHERENT);
1055         }
1056
1057         if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1058             INTEL_REVID(dev) == SKL_REVID_D0)
1059                 /* WaBarrierPerformanceFixDisable:skl */
1060                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1061                                   HDC_FENCE_DEST_SLM_DISABLE |
1062                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1063
1064         /* WaDisableSbeCacheDispatchPortSharing:skl */
1065         if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1066                 WA_SET_BIT_MASKED(
1067                         GEN7_HALF_SLICE_CHICKEN1,
1068                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1069         }
1070
1071         return skl_tune_iz_hashing(ring);
1072 }
1073
1074 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1075 {
1076         struct drm_device *dev = ring->dev;
1077         struct drm_i915_private *dev_priv = dev->dev_private;
1078
1079         gen9_init_workarounds(ring);
1080
1081         /* WaDisableThreadStallDopClockGating:bxt */
1082         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1083                           STALL_DOP_GATING_DISABLE);
1084
1085         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1086         if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1087                 WA_SET_BIT_MASKED(
1088                         GEN7_HALF_SLICE_CHICKEN1,
1089                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1090         }
1091
1092         return 0;
1093 }
1094
1095 int init_workarounds_ring(struct intel_engine_cs *ring)
1096 {
1097         struct drm_device *dev = ring->dev;
1098         struct drm_i915_private *dev_priv = dev->dev_private;
1099
1100         WARN_ON(ring->id != RCS);
1101
1102         dev_priv->workarounds.count = 0;
1103
1104         if (IS_BROADWELL(dev))
1105                 return bdw_init_workarounds(ring);
1106
1107         if (IS_CHERRYVIEW(dev))
1108                 return chv_init_workarounds(ring);
1109
1110         if (IS_SKYLAKE(dev))
1111                 return skl_init_workarounds(ring);
1112
1113         if (IS_BROXTON(dev))
1114                 return bxt_init_workarounds(ring);
1115
1116         return 0;
1117 }
1118
1119 static int init_render_ring(struct intel_engine_cs *ring)
1120 {
1121         struct drm_device *dev = ring->dev;
1122         struct drm_i915_private *dev_priv = dev->dev_private;
1123         int ret = init_ring_common(ring);
1124         if (ret)
1125                 return ret;
1126
1127         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1128         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1129                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1130
1131         /* We need to disable the AsyncFlip performance optimisations in order
1132          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1133          * programmed to '1' on all products.
1134          *
1135          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1136          */
1137         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1138                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1139
1140         /* Required for the hardware to program scanline values for waiting */
1141         /* WaEnableFlushTlbInvalidationMode:snb */
1142         if (INTEL_INFO(dev)->gen == 6)
1143                 I915_WRITE(GFX_MODE,
1144                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1145
1146         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1147         if (IS_GEN7(dev))
1148                 I915_WRITE(GFX_MODE_GEN7,
1149                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1150                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1151
1152         if (IS_GEN6(dev)) {
1153                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1154                  * "If this bit is set, STCunit will have LRA as replacement
1155                  *  policy. [...] This bit must be reset.  LRA replacement
1156                  *  policy is not supported."
1157                  */
1158                 I915_WRITE(CACHE_MODE_0,
1159                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1160         }
1161
1162         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1163                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1164
1165         if (HAS_L3_DPF(dev))
1166                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1167
1168         return init_workarounds_ring(ring);
1169 }
1170
1171 static void render_ring_cleanup(struct intel_engine_cs *ring)
1172 {
1173         struct drm_device *dev = ring->dev;
1174         struct drm_i915_private *dev_priv = dev->dev_private;
1175
1176         if (dev_priv->semaphore_obj) {
1177                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1178                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1179                 dev_priv->semaphore_obj = NULL;
1180         }
1181
1182         intel_fini_pipe_control(ring);
1183 }
1184
1185 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1186                            unsigned int num_dwords)
1187 {
1188 #define MBOX_UPDATE_DWORDS 8
1189         struct intel_engine_cs *signaller = signaller_req->ring;
1190         struct drm_device *dev = signaller->dev;
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192         struct intel_engine_cs *waiter;
1193         int i, ret, num_rings;
1194
1195         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1196         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1197 #undef MBOX_UPDATE_DWORDS
1198
1199         ret = intel_ring_begin(signaller_req, num_dwords);
1200         if (ret)
1201                 return ret;
1202
1203         for_each_ring(waiter, dev_priv, i) {
1204                 u32 seqno;
1205                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1206                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1207                         continue;
1208
1209                 seqno = i915_gem_request_get_seqno(signaller_req);
1210                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1211                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1212                                            PIPE_CONTROL_QW_WRITE |
1213                                            PIPE_CONTROL_FLUSH_ENABLE);
1214                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1215                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1216                 intel_ring_emit(signaller, seqno);
1217                 intel_ring_emit(signaller, 0);
1218                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1219                                            MI_SEMAPHORE_TARGET(waiter->id));
1220                 intel_ring_emit(signaller, 0);
1221         }
1222
1223         return 0;
1224 }
1225
1226 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1227                            unsigned int num_dwords)
1228 {
1229 #define MBOX_UPDATE_DWORDS 6
1230         struct intel_engine_cs *signaller = signaller_req->ring;
1231         struct drm_device *dev = signaller->dev;
1232         struct drm_i915_private *dev_priv = dev->dev_private;
1233         struct intel_engine_cs *waiter;
1234         int i, ret, num_rings;
1235
1236         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1237         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1238 #undef MBOX_UPDATE_DWORDS
1239
1240         ret = intel_ring_begin(signaller_req, num_dwords);
1241         if (ret)
1242                 return ret;
1243
1244         for_each_ring(waiter, dev_priv, i) {
1245                 u32 seqno;
1246                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1247                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1248                         continue;
1249
1250                 seqno = i915_gem_request_get_seqno(signaller_req);
1251                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1252                                            MI_FLUSH_DW_OP_STOREDW);
1253                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1254                                            MI_FLUSH_DW_USE_GTT);
1255                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1256                 intel_ring_emit(signaller, seqno);
1257                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1258                                            MI_SEMAPHORE_TARGET(waiter->id));
1259                 intel_ring_emit(signaller, 0);
1260         }
1261
1262         return 0;
1263 }
1264
1265 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1266                        unsigned int num_dwords)
1267 {
1268         struct intel_engine_cs *signaller = signaller_req->ring;
1269         struct drm_device *dev = signaller->dev;
1270         struct drm_i915_private *dev_priv = dev->dev_private;
1271         struct intel_engine_cs *useless;
1272         int i, ret, num_rings;
1273
1274 #define MBOX_UPDATE_DWORDS 3
1275         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1276         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1277 #undef MBOX_UPDATE_DWORDS
1278
1279         ret = intel_ring_begin(signaller_req, num_dwords);
1280         if (ret)
1281                 return ret;
1282
1283         for_each_ring(useless, dev_priv, i) {
1284                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1285                 if (mbox_reg != GEN6_NOSYNC) {
1286                         u32 seqno = i915_gem_request_get_seqno(signaller_req);
1287                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1288                         intel_ring_emit(signaller, mbox_reg);
1289                         intel_ring_emit(signaller, seqno);
1290                 }
1291         }
1292
1293         /* If num_dwords was rounded, make sure the tail pointer is correct */
1294         if (num_rings % 2 == 0)
1295                 intel_ring_emit(signaller, MI_NOOP);
1296
1297         return 0;
1298 }
1299
1300 /**
1301  * gen6_add_request - Update the semaphore mailbox registers
1302  *
1303  * @request - request to write to the ring
1304  *
1305  * Update the mailbox registers in the *other* rings with the current seqno.
1306  * This acts like a signal in the canonical semaphore.
1307  */
1308 static int
1309 gen6_add_request(struct drm_i915_gem_request *req)
1310 {
1311         struct intel_engine_cs *ring = req->ring;
1312         int ret;
1313
1314         if (ring->semaphore.signal)
1315                 ret = ring->semaphore.signal(req, 4);
1316         else
1317                 ret = intel_ring_begin(req, 4);
1318
1319         if (ret)
1320                 return ret;
1321
1322         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1323         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1324         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1325         intel_ring_emit(ring, MI_USER_INTERRUPT);
1326         __intel_ring_advance(ring);
1327
1328         return 0;
1329 }
1330
1331 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1332                                               u32 seqno)
1333 {
1334         struct drm_i915_private *dev_priv = dev->dev_private;
1335         return dev_priv->last_seqno < seqno;
1336 }
1337
1338 /**
1339  * intel_ring_sync - sync the waiter to the signaller on seqno
1340  *
1341  * @waiter - ring that is waiting
1342  * @signaller - ring which has, or will signal
1343  * @seqno - seqno which the waiter will block on
1344  */
1345
1346 static int
1347 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1348                struct intel_engine_cs *signaller,
1349                u32 seqno)
1350 {
1351         struct intel_engine_cs *waiter = waiter_req->ring;
1352         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1353         int ret;
1354
1355         ret = intel_ring_begin(waiter_req, 4);
1356         if (ret)
1357                 return ret;
1358
1359         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1360                                 MI_SEMAPHORE_GLOBAL_GTT |
1361                                 MI_SEMAPHORE_POLL |
1362                                 MI_SEMAPHORE_SAD_GTE_SDD);
1363         intel_ring_emit(waiter, seqno);
1364         intel_ring_emit(waiter,
1365                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1366         intel_ring_emit(waiter,
1367                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1368         intel_ring_advance(waiter);
1369         return 0;
1370 }
1371
1372 static int
1373 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1374                struct intel_engine_cs *signaller,
1375                u32 seqno)
1376 {
1377         struct intel_engine_cs *waiter = waiter_req->ring;
1378         u32 dw1 = MI_SEMAPHORE_MBOX |
1379                   MI_SEMAPHORE_COMPARE |
1380                   MI_SEMAPHORE_REGISTER;
1381         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1382         int ret;
1383
1384         /* Throughout all of the GEM code, seqno passed implies our current
1385          * seqno is >= the last seqno executed. However for hardware the
1386          * comparison is strictly greater than.
1387          */
1388         seqno -= 1;
1389
1390         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1391
1392         ret = intel_ring_begin(waiter_req, 4);
1393         if (ret)
1394                 return ret;
1395
1396         /* If seqno wrap happened, omit the wait with no-ops */
1397         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1398                 intel_ring_emit(waiter, dw1 | wait_mbox);
1399                 intel_ring_emit(waiter, seqno);
1400                 intel_ring_emit(waiter, 0);
1401                 intel_ring_emit(waiter, MI_NOOP);
1402         } else {
1403                 intel_ring_emit(waiter, MI_NOOP);
1404                 intel_ring_emit(waiter, MI_NOOP);
1405                 intel_ring_emit(waiter, MI_NOOP);
1406                 intel_ring_emit(waiter, MI_NOOP);
1407         }
1408         intel_ring_advance(waiter);
1409
1410         return 0;
1411 }
1412
1413 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1414 do {                                                                    \
1415         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1416                  PIPE_CONTROL_DEPTH_STALL);                             \
1417         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1418         intel_ring_emit(ring__, 0);                                                     \
1419         intel_ring_emit(ring__, 0);                                                     \
1420 } while (0)
1421
1422 static int
1423 pc_render_add_request(struct drm_i915_gem_request *req)
1424 {
1425         struct intel_engine_cs *ring = req->ring;
1426         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1427         int ret;
1428
1429         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1430          * incoherent with writes to memory, i.e. completely fubar,
1431          * so we need to use PIPE_NOTIFY instead.
1432          *
1433          * However, we also need to workaround the qword write
1434          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1435          * memory before requesting an interrupt.
1436          */
1437         ret = intel_ring_begin(req, 32);
1438         if (ret)
1439                 return ret;
1440
1441         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1442                         PIPE_CONTROL_WRITE_FLUSH |
1443                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1444         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1445         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1446         intel_ring_emit(ring, 0);
1447         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1448         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1449         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1450         scratch_addr += 2 * CACHELINE_BYTES;
1451         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1452         scratch_addr += 2 * CACHELINE_BYTES;
1453         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1454         scratch_addr += 2 * CACHELINE_BYTES;
1455         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1456         scratch_addr += 2 * CACHELINE_BYTES;
1457         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1458
1459         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1460                         PIPE_CONTROL_WRITE_FLUSH |
1461                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1462                         PIPE_CONTROL_NOTIFY);
1463         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1464         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1465         intel_ring_emit(ring, 0);
1466         __intel_ring_advance(ring);
1467
1468         return 0;
1469 }
1470
1471 static u32
1472 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1473 {
1474         /* Workaround to force correct ordering between irq and seqno writes on
1475          * ivb (and maybe also on snb) by reading from a CS register (like
1476          * ACTHD) before reading the status page. */
1477         if (!lazy_coherency) {
1478                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1479                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1480         }
1481
1482         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1483 }
1484
1485 static u32
1486 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1487 {
1488         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1489 }
1490
1491 static void
1492 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1493 {
1494         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1495 }
1496
1497 static u32
1498 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1499 {
1500         return ring->scratch.cpu_page[0];
1501 }
1502
1503 static void
1504 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1505 {
1506         ring->scratch.cpu_page[0] = seqno;
1507 }
1508
1509 static bool
1510 gen5_ring_get_irq(struct intel_engine_cs *ring)
1511 {
1512         struct drm_device *dev = ring->dev;
1513         struct drm_i915_private *dev_priv = dev->dev_private;
1514         unsigned long flags;
1515
1516         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1517                 return false;
1518
1519         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1520         if (ring->irq_refcount++ == 0)
1521                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1522         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1523
1524         return true;
1525 }
1526
1527 static void
1528 gen5_ring_put_irq(struct intel_engine_cs *ring)
1529 {
1530         struct drm_device *dev = ring->dev;
1531         struct drm_i915_private *dev_priv = dev->dev_private;
1532         unsigned long flags;
1533
1534         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1535         if (--ring->irq_refcount == 0)
1536                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1537         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1538 }
1539
1540 static bool
1541 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1542 {
1543         struct drm_device *dev = ring->dev;
1544         struct drm_i915_private *dev_priv = dev->dev_private;
1545         unsigned long flags;
1546
1547         if (!intel_irqs_enabled(dev_priv))
1548                 return false;
1549
1550         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551         if (ring->irq_refcount++ == 0) {
1552                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1553                 I915_WRITE(IMR, dev_priv->irq_mask);
1554                 POSTING_READ(IMR);
1555         }
1556         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1557
1558         return true;
1559 }
1560
1561 static void
1562 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1563 {
1564         struct drm_device *dev = ring->dev;
1565         struct drm_i915_private *dev_priv = dev->dev_private;
1566         unsigned long flags;
1567
1568         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1569         if (--ring->irq_refcount == 0) {
1570                 dev_priv->irq_mask |= ring->irq_enable_mask;
1571                 I915_WRITE(IMR, dev_priv->irq_mask);
1572                 POSTING_READ(IMR);
1573         }
1574         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1575 }
1576
1577 static bool
1578 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1579 {
1580         struct drm_device *dev = ring->dev;
1581         struct drm_i915_private *dev_priv = dev->dev_private;
1582         unsigned long flags;
1583
1584         if (!intel_irqs_enabled(dev_priv))
1585                 return false;
1586
1587         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1588         if (ring->irq_refcount++ == 0) {
1589                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1590                 I915_WRITE16(IMR, dev_priv->irq_mask);
1591                 POSTING_READ16(IMR);
1592         }
1593         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1594
1595         return true;
1596 }
1597
1598 static void
1599 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1600 {
1601         struct drm_device *dev = ring->dev;
1602         struct drm_i915_private *dev_priv = dev->dev_private;
1603         unsigned long flags;
1604
1605         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1606         if (--ring->irq_refcount == 0) {
1607                 dev_priv->irq_mask |= ring->irq_enable_mask;
1608                 I915_WRITE16(IMR, dev_priv->irq_mask);
1609                 POSTING_READ16(IMR);
1610         }
1611         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1612 }
1613
1614 static int
1615 bsd_ring_flush(struct drm_i915_gem_request *req,
1616                u32     invalidate_domains,
1617                u32     flush_domains)
1618 {
1619         struct intel_engine_cs *ring = req->ring;
1620         int ret;
1621
1622         ret = intel_ring_begin(req, 2);
1623         if (ret)
1624                 return ret;
1625
1626         intel_ring_emit(ring, MI_FLUSH);
1627         intel_ring_emit(ring, MI_NOOP);
1628         intel_ring_advance(ring);
1629         return 0;
1630 }
1631
1632 static int
1633 i9xx_add_request(struct drm_i915_gem_request *req)
1634 {
1635         struct intel_engine_cs *ring = req->ring;
1636         int ret;
1637
1638         ret = intel_ring_begin(req, 4);
1639         if (ret)
1640                 return ret;
1641
1642         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1643         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1644         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1645         intel_ring_emit(ring, MI_USER_INTERRUPT);
1646         __intel_ring_advance(ring);
1647
1648         return 0;
1649 }
1650
1651 static bool
1652 gen6_ring_get_irq(struct intel_engine_cs *ring)
1653 {
1654         struct drm_device *dev = ring->dev;
1655         struct drm_i915_private *dev_priv = dev->dev_private;
1656         unsigned long flags;
1657
1658         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1659                 return false;
1660
1661         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1662         if (ring->irq_refcount++ == 0) {
1663                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1664                         I915_WRITE_IMR(ring,
1665                                        ~(ring->irq_enable_mask |
1666                                          GT_PARITY_ERROR(dev)));
1667                 else
1668                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1669                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1670         }
1671         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1672
1673         return true;
1674 }
1675
1676 static void
1677 gen6_ring_put_irq(struct intel_engine_cs *ring)
1678 {
1679         struct drm_device *dev = ring->dev;
1680         struct drm_i915_private *dev_priv = dev->dev_private;
1681         unsigned long flags;
1682
1683         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1684         if (--ring->irq_refcount == 0) {
1685                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1686                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1687                 else
1688                         I915_WRITE_IMR(ring, ~0);
1689                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1690         }
1691         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1692 }
1693
1694 static bool
1695 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1696 {
1697         struct drm_device *dev = ring->dev;
1698         struct drm_i915_private *dev_priv = dev->dev_private;
1699         unsigned long flags;
1700
1701         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1702                 return false;
1703
1704         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1705         if (ring->irq_refcount++ == 0) {
1706                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1707                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1708         }
1709         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1710
1711         return true;
1712 }
1713
1714 static void
1715 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1716 {
1717         struct drm_device *dev = ring->dev;
1718         struct drm_i915_private *dev_priv = dev->dev_private;
1719         unsigned long flags;
1720
1721         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1722         if (--ring->irq_refcount == 0) {
1723                 I915_WRITE_IMR(ring, ~0);
1724                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1725         }
1726         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1727 }
1728
1729 static bool
1730 gen8_ring_get_irq(struct intel_engine_cs *ring)
1731 {
1732         struct drm_device *dev = ring->dev;
1733         struct drm_i915_private *dev_priv = dev->dev_private;
1734         unsigned long flags;
1735
1736         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1737                 return false;
1738
1739         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1740         if (ring->irq_refcount++ == 0) {
1741                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1742                         I915_WRITE_IMR(ring,
1743                                        ~(ring->irq_enable_mask |
1744                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1745                 } else {
1746                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1747                 }
1748                 POSTING_READ(RING_IMR(ring->mmio_base));
1749         }
1750         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1751
1752         return true;
1753 }
1754
1755 static void
1756 gen8_ring_put_irq(struct intel_engine_cs *ring)
1757 {
1758         struct drm_device *dev = ring->dev;
1759         struct drm_i915_private *dev_priv = dev->dev_private;
1760         unsigned long flags;
1761
1762         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1763         if (--ring->irq_refcount == 0) {
1764                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1765                         I915_WRITE_IMR(ring,
1766                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1767                 } else {
1768                         I915_WRITE_IMR(ring, ~0);
1769                 }
1770                 POSTING_READ(RING_IMR(ring->mmio_base));
1771         }
1772         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1773 }
1774
1775 static int
1776 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1777                          u64 offset, u32 length,
1778                          unsigned dispatch_flags)
1779 {
1780         struct intel_engine_cs *ring = req->ring;
1781         int ret;
1782
1783         ret = intel_ring_begin(req, 2);
1784         if (ret)
1785                 return ret;
1786
1787         intel_ring_emit(ring,
1788                         MI_BATCH_BUFFER_START |
1789                         MI_BATCH_GTT |
1790                         (dispatch_flags & I915_DISPATCH_SECURE ?
1791                          0 : MI_BATCH_NON_SECURE_I965));
1792         intel_ring_emit(ring, offset);
1793         intel_ring_advance(ring);
1794
1795         return 0;
1796 }
1797
1798 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1799 #define I830_BATCH_LIMIT (256*1024)
1800 #define I830_TLB_ENTRIES (2)
1801 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1802 static int
1803 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1804                          u64 offset, u32 len,
1805                          unsigned dispatch_flags)
1806 {
1807         struct intel_engine_cs *ring = req->ring;
1808         u32 cs_offset = ring->scratch.gtt_offset;
1809         int ret;
1810
1811         ret = intel_ring_begin(req, 6);
1812         if (ret)
1813                 return ret;
1814
1815         /* Evict the invalid PTE TLBs */
1816         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1817         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1818         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1819         intel_ring_emit(ring, cs_offset);
1820         intel_ring_emit(ring, 0xdeadbeef);
1821         intel_ring_emit(ring, MI_NOOP);
1822         intel_ring_advance(ring);
1823
1824         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1825                 if (len > I830_BATCH_LIMIT)
1826                         return -ENOSPC;
1827
1828                 ret = intel_ring_begin(req, 6 + 2);
1829                 if (ret)
1830                         return ret;
1831
1832                 /* Blit the batch (which has now all relocs applied) to the
1833                  * stable batch scratch bo area (so that the CS never
1834                  * stumbles over its tlb invalidation bug) ...
1835                  */
1836                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1837                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1838                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1839                 intel_ring_emit(ring, cs_offset);
1840                 intel_ring_emit(ring, 4096);
1841                 intel_ring_emit(ring, offset);
1842
1843                 intel_ring_emit(ring, MI_FLUSH);
1844                 intel_ring_emit(ring, MI_NOOP);
1845                 intel_ring_advance(ring);
1846
1847                 /* ... and execute it. */
1848                 offset = cs_offset;
1849         }
1850
1851         ret = intel_ring_begin(req, 4);
1852         if (ret)
1853                 return ret;
1854
1855         intel_ring_emit(ring, MI_BATCH_BUFFER);
1856         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1857                                         0 : MI_BATCH_NON_SECURE));
1858         intel_ring_emit(ring, offset + len - 8);
1859         intel_ring_emit(ring, MI_NOOP);
1860         intel_ring_advance(ring);
1861
1862         return 0;
1863 }
1864
1865 static int
1866 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1867                          u64 offset, u32 len,
1868                          unsigned dispatch_flags)
1869 {
1870         struct intel_engine_cs *ring = req->ring;
1871         int ret;
1872
1873         ret = intel_ring_begin(req, 2);
1874         if (ret)
1875                 return ret;
1876
1877         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1878         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1879                                         0 : MI_BATCH_NON_SECURE));
1880         intel_ring_advance(ring);
1881
1882         return 0;
1883 }
1884
1885 static void cleanup_status_page(struct intel_engine_cs *ring)
1886 {
1887         struct drm_i915_gem_object *obj;
1888
1889         obj = ring->status_page.obj;
1890         if (obj == NULL)
1891                 return;
1892
1893         kunmap(sg_page(obj->pages->sgl));
1894         i915_gem_object_ggtt_unpin(obj);
1895         drm_gem_object_unreference(&obj->base);
1896         ring->status_page.obj = NULL;
1897 }
1898
1899 static int init_status_page(struct intel_engine_cs *ring)
1900 {
1901         struct drm_i915_gem_object *obj;
1902
1903         if ((obj = ring->status_page.obj) == NULL) {
1904                 unsigned flags;
1905                 int ret;
1906
1907                 obj = i915_gem_alloc_object(ring->dev, 4096);
1908                 if (obj == NULL) {
1909                         DRM_ERROR("Failed to allocate status page\n");
1910                         return -ENOMEM;
1911                 }
1912
1913                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1914                 if (ret)
1915                         goto err_unref;
1916
1917                 flags = 0;
1918                 if (!HAS_LLC(ring->dev))
1919                         /* On g33, we cannot place HWS above 256MiB, so
1920                          * restrict its pinning to the low mappable arena.
1921                          * Though this restriction is not documented for
1922                          * gen4, gen5, or byt, they also behave similarly
1923                          * and hang if the HWS is placed at the top of the
1924                          * GTT. To generalise, it appears that all !llc
1925                          * platforms have issues with us placing the HWS
1926                          * above the mappable region (even though we never
1927                          * actualy map it).
1928                          */
1929                         flags |= PIN_MAPPABLE;
1930                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1931                 if (ret) {
1932 err_unref:
1933                         drm_gem_object_unreference(&obj->base);
1934                         return ret;
1935                 }
1936
1937                 ring->status_page.obj = obj;
1938         }
1939
1940         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1941         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1942         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1943
1944         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1945                         ring->name, ring->status_page.gfx_addr);
1946
1947         return 0;
1948 }
1949
1950 static int init_phys_status_page(struct intel_engine_cs *ring)
1951 {
1952         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1953
1954         if (!dev_priv->status_page_dmah) {
1955                 dev_priv->status_page_dmah =
1956                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1957                 if (!dev_priv->status_page_dmah)
1958                         return -ENOMEM;
1959         }
1960
1961         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1962         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1963
1964         return 0;
1965 }
1966
1967 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1968 {
1969         iounmap(ringbuf->virtual_start);
1970         ringbuf->virtual_start = NULL;
1971         i915_gem_object_ggtt_unpin(ringbuf->obj);
1972 }
1973
1974 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1975                                      struct intel_ringbuffer *ringbuf)
1976 {
1977         struct drm_i915_private *dev_priv = to_i915(dev);
1978         struct drm_i915_gem_object *obj = ringbuf->obj;
1979         int ret;
1980
1981         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1982         if (ret)
1983                 return ret;
1984
1985         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1986         if (ret) {
1987                 i915_gem_object_ggtt_unpin(obj);
1988                 return ret;
1989         }
1990
1991         ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1992                         i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1993         if (ringbuf->virtual_start == NULL) {
1994                 i915_gem_object_ggtt_unpin(obj);
1995                 return -EINVAL;
1996         }
1997
1998         return 0;
1999 }
2000
2001 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2002 {
2003         drm_gem_object_unreference(&ringbuf->obj->base);
2004         ringbuf->obj = NULL;
2005 }
2006
2007 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2008                                struct intel_ringbuffer *ringbuf)
2009 {
2010         struct drm_i915_gem_object *obj;
2011
2012         obj = NULL;
2013         if (!HAS_LLC(dev))
2014                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2015         if (obj == NULL)
2016                 obj = i915_gem_alloc_object(dev, ringbuf->size);
2017         if (obj == NULL)
2018                 return -ENOMEM;
2019
2020         /* mark ring buffers as read-only from GPU side by default */
2021         obj->gt_ro = 1;
2022
2023         ringbuf->obj = obj;
2024
2025         return 0;
2026 }
2027
2028 static int intel_init_ring_buffer(struct drm_device *dev,
2029                                   struct intel_engine_cs *ring)
2030 {
2031         struct intel_ringbuffer *ringbuf;
2032         int ret;
2033
2034         WARN_ON(ring->buffer);
2035
2036         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2037         if (!ringbuf)
2038                 return -ENOMEM;
2039         ring->buffer = ringbuf;
2040
2041         ring->dev = dev;
2042         INIT_LIST_HEAD(&ring->active_list);
2043         INIT_LIST_HEAD(&ring->request_list);
2044         INIT_LIST_HEAD(&ring->execlist_queue);
2045         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2046         ringbuf->size = 32 * PAGE_SIZE;
2047         ringbuf->ring = ring;
2048         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2049
2050         init_waitqueue_head(&ring->irq_queue);
2051
2052         if (I915_NEED_GFX_HWS(dev)) {
2053                 ret = init_status_page(ring);
2054                 if (ret)
2055                         goto error;
2056         } else {
2057                 BUG_ON(ring->id != RCS);
2058                 ret = init_phys_status_page(ring);
2059                 if (ret)
2060                         goto error;
2061         }
2062
2063         WARN_ON(ringbuf->obj);
2064
2065         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2066         if (ret) {
2067                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2068                                 ring->name, ret);
2069                 goto error;
2070         }
2071
2072         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2073         if (ret) {
2074                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2075                                 ring->name, ret);
2076                 intel_destroy_ringbuffer_obj(ringbuf);
2077                 goto error;
2078         }
2079
2080         /* Workaround an erratum on the i830 which causes a hang if
2081          * the TAIL pointer points to within the last 2 cachelines
2082          * of the buffer.
2083          */
2084         ringbuf->effective_size = ringbuf->size;
2085         if (IS_I830(dev) || IS_845G(dev))
2086                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2087
2088         ret = i915_cmd_parser_init_ring(ring);
2089         if (ret)
2090                 goto error;
2091
2092         return 0;
2093
2094 error:
2095         kfree(ringbuf);
2096         ring->buffer = NULL;
2097         return ret;
2098 }
2099
2100 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2101 {
2102         struct drm_i915_private *dev_priv;
2103         struct intel_ringbuffer *ringbuf;
2104
2105         if (!intel_ring_initialized(ring))
2106                 return;
2107
2108         dev_priv = to_i915(ring->dev);
2109         ringbuf = ring->buffer;
2110
2111         intel_stop_ring_buffer(ring);
2112         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2113
2114         intel_unpin_ringbuffer_obj(ringbuf);
2115         intel_destroy_ringbuffer_obj(ringbuf);
2116
2117         if (ring->cleanup)
2118                 ring->cleanup(ring);
2119
2120         cleanup_status_page(ring);
2121
2122         i915_cmd_parser_fini_ring(ring);
2123         i915_gem_batch_pool_fini(&ring->batch_pool);
2124
2125         kfree(ringbuf);
2126         ring->buffer = NULL;
2127 }
2128
2129 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2130 {
2131         struct intel_ringbuffer *ringbuf = ring->buffer;
2132         struct drm_i915_gem_request *request;
2133         unsigned space;
2134         int ret;
2135
2136         if (intel_ring_space(ringbuf) >= n)
2137                 return 0;
2138
2139         /* The whole point of reserving space is to not wait! */
2140         WARN_ON(ringbuf->reserved_in_use);
2141
2142         list_for_each_entry(request, &ring->request_list, list) {
2143                 space = __intel_ring_space(request->postfix, ringbuf->tail,
2144                                            ringbuf->size);
2145                 if (space >= n)
2146                         break;
2147         }
2148
2149         if (WARN_ON(&request->list == &ring->request_list))
2150                 return -ENOSPC;
2151
2152         ret = i915_wait_request(request);
2153         if (ret)
2154                 return ret;
2155
2156         ringbuf->space = space;
2157         return 0;
2158 }
2159
2160 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2161 {
2162         uint32_t __iomem *virt;
2163         int rem = ringbuf->size - ringbuf->tail;
2164
2165         virt = ringbuf->virtual_start + ringbuf->tail;
2166         rem /= 4;
2167         while (rem--)
2168                 iowrite32(MI_NOOP, virt++);
2169
2170         ringbuf->tail = 0;
2171         intel_ring_update_space(ringbuf);
2172 }
2173
2174 int intel_ring_idle(struct intel_engine_cs *ring)
2175 {
2176         struct drm_i915_gem_request *req;
2177
2178         /* Wait upon the last request to be completed */
2179         if (list_empty(&ring->request_list))
2180                 return 0;
2181
2182         req = list_entry(ring->request_list.prev,
2183                         struct drm_i915_gem_request,
2184                         list);
2185
2186         /* Make sure we do not trigger any retires */
2187         return __i915_wait_request(req,
2188                                    atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2189                                    to_i915(ring->dev)->mm.interruptible,
2190                                    NULL, NULL);
2191 }
2192
2193 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2194 {
2195         request->ringbuf = request->ring->buffer;
2196         return 0;
2197 }
2198
2199 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2200 {
2201         /*
2202          * The first call merely notes the reserve request and is common for
2203          * all back ends. The subsequent localised _begin() call actually
2204          * ensures that the reservation is available. Without the begin, if
2205          * the request creator immediately submitted the request without
2206          * adding any commands to it then there might not actually be
2207          * sufficient room for the submission commands.
2208          */
2209         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2210
2211         return intel_ring_begin(request, 0);
2212 }
2213
2214 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2215 {
2216         WARN_ON(ringbuf->reserved_size);
2217         WARN_ON(ringbuf->reserved_in_use);
2218
2219         ringbuf->reserved_size = size;
2220 }
2221
2222 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2223 {
2224         WARN_ON(ringbuf->reserved_in_use);
2225
2226         ringbuf->reserved_size   = 0;
2227         ringbuf->reserved_in_use = false;
2228 }
2229
2230 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2231 {
2232         WARN_ON(ringbuf->reserved_in_use);
2233
2234         ringbuf->reserved_in_use = true;
2235         ringbuf->reserved_tail   = ringbuf->tail;
2236 }
2237
2238 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2239 {
2240         WARN_ON(!ringbuf->reserved_in_use);
2241         if (ringbuf->tail > ringbuf->reserved_tail) {
2242                 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2243                      "request reserved size too small: %d vs %d!\n",
2244                      ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2245         } else {
2246                 /*
2247                  * The ring was wrapped while the reserved space was in use.
2248                  * That means that some unknown amount of the ring tail was
2249                  * no-op filled and skipped. Thus simply adding the ring size
2250                  * to the tail and doing the above space check will not work.
2251                  * Rather than attempt to track how much tail was skipped,
2252                  * it is much simpler to say that also skipping the sanity
2253                  * check every once in a while is not a big issue.
2254                  */
2255         }
2256
2257         ringbuf->reserved_size   = 0;
2258         ringbuf->reserved_in_use = false;
2259 }
2260
2261 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2262 {
2263         struct intel_ringbuffer *ringbuf = ring->buffer;
2264         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2265         int remain_actual = ringbuf->size - ringbuf->tail;
2266         int ret, total_bytes, wait_bytes = 0;
2267         bool need_wrap = false;
2268
2269         if (ringbuf->reserved_in_use)
2270                 total_bytes = bytes;
2271         else
2272                 total_bytes = bytes + ringbuf->reserved_size;
2273
2274         if (unlikely(bytes > remain_usable)) {
2275                 /*
2276                  * Not enough space for the basic request. So need to flush
2277                  * out the remainder and then wait for base + reserved.
2278                  */
2279                 wait_bytes = remain_actual + total_bytes;
2280                 need_wrap = true;
2281         } else {
2282                 if (unlikely(total_bytes > remain_usable)) {
2283                         /*
2284                          * The base request will fit but the reserved space
2285                          * falls off the end. So only need to to wait for the
2286                          * reserved size after flushing out the remainder.
2287                          */
2288                         wait_bytes = remain_actual + ringbuf->reserved_size;
2289                         need_wrap = true;
2290                 } else if (total_bytes > ringbuf->space) {
2291                         /* No wrapping required, just waiting. */
2292                         wait_bytes = total_bytes;
2293                 }
2294         }
2295
2296         if (wait_bytes) {
2297                 ret = ring_wait_for_space(ring, wait_bytes);
2298                 if (unlikely(ret))
2299                         return ret;
2300
2301                 if (need_wrap)
2302                         __wrap_ring_buffer(ringbuf);
2303         }
2304
2305         return 0;
2306 }
2307
2308 int intel_ring_begin(struct drm_i915_gem_request *req,
2309                      int num_dwords)
2310 {
2311         struct intel_engine_cs *ring;
2312         struct drm_i915_private *dev_priv;
2313         int ret;
2314
2315         WARN_ON(req == NULL);
2316         ring = req->ring;
2317         dev_priv = ring->dev->dev_private;
2318
2319         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2320                                    dev_priv->mm.interruptible);
2321         if (ret)
2322                 return ret;
2323
2324         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2325         if (ret)
2326                 return ret;
2327
2328         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2329         return 0;
2330 }
2331
2332 /* Align the ring tail to a cacheline boundary */
2333 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2334 {
2335         struct intel_engine_cs *ring = req->ring;
2336         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2337         int ret;
2338
2339         if (num_dwords == 0)
2340                 return 0;
2341
2342         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2343         ret = intel_ring_begin(req, num_dwords);
2344         if (ret)
2345                 return ret;
2346
2347         while (num_dwords--)
2348                 intel_ring_emit(ring, MI_NOOP);
2349
2350         intel_ring_advance(ring);
2351
2352         return 0;
2353 }
2354
2355 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2356 {
2357         struct drm_device *dev = ring->dev;
2358         struct drm_i915_private *dev_priv = dev->dev_private;
2359
2360         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2361                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2362                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2363                 if (HAS_VEBOX(dev))
2364                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2365         }
2366
2367         ring->set_seqno(ring, seqno);
2368         ring->hangcheck.seqno = seqno;
2369 }
2370
2371 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2372                                      u32 value)
2373 {
2374         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2375
2376        /* Every tail move must follow the sequence below */
2377
2378         /* Disable notification that the ring is IDLE. The GT
2379          * will then assume that it is busy and bring it out of rc6.
2380          */
2381         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2382                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2383
2384         /* Clear the context id. Here be magic! */
2385         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2386
2387         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2388         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2389                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2390                      50))
2391                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2392
2393         /* Now that the ring is fully powered up, update the tail */
2394         I915_WRITE_TAIL(ring, value);
2395         POSTING_READ(RING_TAIL(ring->mmio_base));
2396
2397         /* Let the ring send IDLE messages to the GT again,
2398          * and so let it sleep to conserve power when idle.
2399          */
2400         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2401                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2402 }
2403
2404 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2405                                u32 invalidate, u32 flush)
2406 {
2407         struct intel_engine_cs *ring = req->ring;
2408         uint32_t cmd;
2409         int ret;
2410
2411         ret = intel_ring_begin(req, 4);
2412         if (ret)
2413                 return ret;
2414
2415         cmd = MI_FLUSH_DW;
2416         if (INTEL_INFO(ring->dev)->gen >= 8)
2417                 cmd += 1;
2418
2419         /* We always require a command barrier so that subsequent
2420          * commands, such as breadcrumb interrupts, are strictly ordered
2421          * wrt the contents of the write cache being flushed to memory
2422          * (and thus being coherent from the CPU).
2423          */
2424         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2425
2426         /*
2427          * Bspec vol 1c.5 - video engine command streamer:
2428          * "If ENABLED, all TLBs will be invalidated once the flush
2429          * operation is complete. This bit is only valid when the
2430          * Post-Sync Operation field is a value of 1h or 3h."
2431          */
2432         if (invalidate & I915_GEM_GPU_DOMAINS)
2433                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2434
2435         intel_ring_emit(ring, cmd);
2436         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2437         if (INTEL_INFO(ring->dev)->gen >= 8) {
2438                 intel_ring_emit(ring, 0); /* upper addr */
2439                 intel_ring_emit(ring, 0); /* value */
2440         } else  {
2441                 intel_ring_emit(ring, 0);
2442                 intel_ring_emit(ring, MI_NOOP);
2443         }
2444         intel_ring_advance(ring);
2445         return 0;
2446 }
2447
2448 static int
2449 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2450                               u64 offset, u32 len,
2451                               unsigned dispatch_flags)
2452 {
2453         struct intel_engine_cs *ring = req->ring;
2454         bool ppgtt = USES_PPGTT(ring->dev) &&
2455                         !(dispatch_flags & I915_DISPATCH_SECURE);
2456         int ret;
2457
2458         ret = intel_ring_begin(req, 4);
2459         if (ret)
2460                 return ret;
2461
2462         /* FIXME(BDW): Address space and security selectors. */
2463         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2464                         (dispatch_flags & I915_DISPATCH_RS ?
2465                          MI_BATCH_RESOURCE_STREAMER : 0));
2466         intel_ring_emit(ring, lower_32_bits(offset));
2467         intel_ring_emit(ring, upper_32_bits(offset));
2468         intel_ring_emit(ring, MI_NOOP);
2469         intel_ring_advance(ring);
2470
2471         return 0;
2472 }
2473
2474 static int
2475 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2476                              u64 offset, u32 len,
2477                              unsigned dispatch_flags)
2478 {
2479         struct intel_engine_cs *ring = req->ring;
2480         int ret;
2481
2482         ret = intel_ring_begin(req, 2);
2483         if (ret)
2484                 return ret;
2485
2486         intel_ring_emit(ring,
2487                         MI_BATCH_BUFFER_START |
2488                         (dispatch_flags & I915_DISPATCH_SECURE ?
2489                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2490                         (dispatch_flags & I915_DISPATCH_RS ?
2491                          MI_BATCH_RESOURCE_STREAMER : 0));
2492         /* bit0-7 is the length on GEN6+ */
2493         intel_ring_emit(ring, offset);
2494         intel_ring_advance(ring);
2495
2496         return 0;
2497 }
2498
2499 static int
2500 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2501                               u64 offset, u32 len,
2502                               unsigned dispatch_flags)
2503 {
2504         struct intel_engine_cs *ring = req->ring;
2505         int ret;
2506
2507         ret = intel_ring_begin(req, 2);
2508         if (ret)
2509                 return ret;
2510
2511         intel_ring_emit(ring,
2512                         MI_BATCH_BUFFER_START |
2513                         (dispatch_flags & I915_DISPATCH_SECURE ?
2514                          0 : MI_BATCH_NON_SECURE_I965));
2515         /* bit0-7 is the length on GEN6+ */
2516         intel_ring_emit(ring, offset);
2517         intel_ring_advance(ring);
2518
2519         return 0;
2520 }
2521
2522 /* Blitter support (SandyBridge+) */
2523
2524 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2525                            u32 invalidate, u32 flush)
2526 {
2527         struct intel_engine_cs *ring = req->ring;
2528         struct drm_device *dev = ring->dev;
2529         uint32_t cmd;
2530         int ret;
2531
2532         ret = intel_ring_begin(req, 4);
2533         if (ret)
2534                 return ret;
2535
2536         cmd = MI_FLUSH_DW;
2537         if (INTEL_INFO(dev)->gen >= 8)
2538                 cmd += 1;
2539
2540         /* We always require a command barrier so that subsequent
2541          * commands, such as breadcrumb interrupts, are strictly ordered
2542          * wrt the contents of the write cache being flushed to memory
2543          * (and thus being coherent from the CPU).
2544          */
2545         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2546
2547         /*
2548          * Bspec vol 1c.3 - blitter engine command streamer:
2549          * "If ENABLED, all TLBs will be invalidated once the flush
2550          * operation is complete. This bit is only valid when the
2551          * Post-Sync Operation field is a value of 1h or 3h."
2552          */
2553         if (invalidate & I915_GEM_DOMAIN_RENDER)
2554                 cmd |= MI_INVALIDATE_TLB;
2555         intel_ring_emit(ring, cmd);
2556         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2557         if (INTEL_INFO(dev)->gen >= 8) {
2558                 intel_ring_emit(ring, 0); /* upper addr */
2559                 intel_ring_emit(ring, 0); /* value */
2560         } else  {
2561                 intel_ring_emit(ring, 0);
2562                 intel_ring_emit(ring, MI_NOOP);
2563         }
2564         intel_ring_advance(ring);
2565
2566         return 0;
2567 }
2568
2569 int intel_init_render_ring_buffer(struct drm_device *dev)
2570 {
2571         struct drm_i915_private *dev_priv = dev->dev_private;
2572         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2573         struct drm_i915_gem_object *obj;
2574         int ret;
2575
2576         ring->name = "render ring";
2577         ring->id = RCS;
2578         ring->mmio_base = RENDER_RING_BASE;
2579
2580         if (INTEL_INFO(dev)->gen >= 8) {
2581                 if (i915_semaphore_is_enabled(dev)) {
2582                         obj = i915_gem_alloc_object(dev, 4096);
2583                         if (obj == NULL) {
2584                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2585                                 i915.semaphores = 0;
2586                         } else {
2587                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2588                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2589                                 if (ret != 0) {
2590                                         drm_gem_object_unreference(&obj->base);
2591                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2592                                         i915.semaphores = 0;
2593                                 } else
2594                                         dev_priv->semaphore_obj = obj;
2595                         }
2596                 }
2597
2598                 ring->init_context = intel_rcs_ctx_init;
2599                 ring->add_request = gen6_add_request;
2600                 ring->flush = gen8_render_ring_flush;
2601                 ring->irq_get = gen8_ring_get_irq;
2602                 ring->irq_put = gen8_ring_put_irq;
2603                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2604                 ring->get_seqno = gen6_ring_get_seqno;
2605                 ring->set_seqno = ring_set_seqno;
2606                 if (i915_semaphore_is_enabled(dev)) {
2607                         WARN_ON(!dev_priv->semaphore_obj);
2608                         ring->semaphore.sync_to = gen8_ring_sync;
2609                         ring->semaphore.signal = gen8_rcs_signal;
2610                         GEN8_RING_SEMAPHORE_INIT;
2611                 }
2612         } else if (INTEL_INFO(dev)->gen >= 6) {
2613                 ring->add_request = gen6_add_request;
2614                 ring->flush = gen7_render_ring_flush;
2615                 if (INTEL_INFO(dev)->gen == 6)
2616                         ring->flush = gen6_render_ring_flush;
2617                 ring->irq_get = gen6_ring_get_irq;
2618                 ring->irq_put = gen6_ring_put_irq;
2619                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2620                 ring->get_seqno = gen6_ring_get_seqno;
2621                 ring->set_seqno = ring_set_seqno;
2622                 if (i915_semaphore_is_enabled(dev)) {
2623                         ring->semaphore.sync_to = gen6_ring_sync;
2624                         ring->semaphore.signal = gen6_signal;
2625                         /*
2626                          * The current semaphore is only applied on pre-gen8
2627                          * platform.  And there is no VCS2 ring on the pre-gen8
2628                          * platform. So the semaphore between RCS and VCS2 is
2629                          * initialized as INVALID.  Gen8 will initialize the
2630                          * sema between VCS2 and RCS later.
2631                          */
2632                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2633                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2634                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2635                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2636                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2637                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2638                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2639                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2640                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2641                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2642                 }
2643         } else if (IS_GEN5(dev)) {
2644                 ring->add_request = pc_render_add_request;
2645                 ring->flush = gen4_render_ring_flush;
2646                 ring->get_seqno = pc_render_get_seqno;
2647                 ring->set_seqno = pc_render_set_seqno;
2648                 ring->irq_get = gen5_ring_get_irq;
2649                 ring->irq_put = gen5_ring_put_irq;
2650                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2651                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2652         } else {
2653                 ring->add_request = i9xx_add_request;
2654                 if (INTEL_INFO(dev)->gen < 4)
2655                         ring->flush = gen2_render_ring_flush;
2656                 else
2657                         ring->flush = gen4_render_ring_flush;
2658                 ring->get_seqno = ring_get_seqno;
2659                 ring->set_seqno = ring_set_seqno;
2660                 if (IS_GEN2(dev)) {
2661                         ring->irq_get = i8xx_ring_get_irq;
2662                         ring->irq_put = i8xx_ring_put_irq;
2663                 } else {
2664                         ring->irq_get = i9xx_ring_get_irq;
2665                         ring->irq_put = i9xx_ring_put_irq;
2666                 }
2667                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2668         }
2669         ring->write_tail = ring_write_tail;
2670
2671         if (IS_HASWELL(dev))
2672                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2673         else if (IS_GEN8(dev))
2674                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2675         else if (INTEL_INFO(dev)->gen >= 6)
2676                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2677         else if (INTEL_INFO(dev)->gen >= 4)
2678                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2679         else if (IS_I830(dev) || IS_845G(dev))
2680                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2681         else
2682                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2683         ring->init_hw = init_render_ring;
2684         ring->cleanup = render_ring_cleanup;
2685
2686         /* Workaround batchbuffer to combat CS tlb bug. */
2687         if (HAS_BROKEN_CS_TLB(dev)) {
2688                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2689                 if (obj == NULL) {
2690                         DRM_ERROR("Failed to allocate batch bo\n");
2691                         return -ENOMEM;
2692                 }
2693
2694                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2695                 if (ret != 0) {
2696                         drm_gem_object_unreference(&obj->base);
2697                         DRM_ERROR("Failed to ping batch bo\n");
2698                         return ret;
2699                 }
2700
2701                 ring->scratch.obj = obj;
2702                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2703         }
2704
2705         ret = intel_init_ring_buffer(dev, ring);
2706         if (ret)
2707                 return ret;
2708
2709         if (INTEL_INFO(dev)->gen >= 5) {
2710                 ret = intel_init_pipe_control(ring);
2711                 if (ret)
2712                         return ret;
2713         }
2714
2715         return 0;
2716 }
2717
2718 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2719 {
2720         struct drm_i915_private *dev_priv = dev->dev_private;
2721         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2722
2723         ring->name = "bsd ring";
2724         ring->id = VCS;
2725
2726         ring->write_tail = ring_write_tail;
2727         if (INTEL_INFO(dev)->gen >= 6) {
2728                 ring->mmio_base = GEN6_BSD_RING_BASE;
2729                 /* gen6 bsd needs a special wa for tail updates */
2730                 if (IS_GEN6(dev))
2731                         ring->write_tail = gen6_bsd_ring_write_tail;
2732                 ring->flush = gen6_bsd_ring_flush;
2733                 ring->add_request = gen6_add_request;
2734                 ring->get_seqno = gen6_ring_get_seqno;
2735                 ring->set_seqno = ring_set_seqno;
2736                 if (INTEL_INFO(dev)->gen >= 8) {
2737                         ring->irq_enable_mask =
2738                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2739                         ring->irq_get = gen8_ring_get_irq;
2740                         ring->irq_put = gen8_ring_put_irq;
2741                         ring->dispatch_execbuffer =
2742                                 gen8_ring_dispatch_execbuffer;
2743                         if (i915_semaphore_is_enabled(dev)) {
2744                                 ring->semaphore.sync_to = gen8_ring_sync;
2745                                 ring->semaphore.signal = gen8_xcs_signal;
2746                                 GEN8_RING_SEMAPHORE_INIT;
2747                         }
2748                 } else {
2749                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2750                         ring->irq_get = gen6_ring_get_irq;
2751                         ring->irq_put = gen6_ring_put_irq;
2752                         ring->dispatch_execbuffer =
2753                                 gen6_ring_dispatch_execbuffer;
2754                         if (i915_semaphore_is_enabled(dev)) {
2755                                 ring->semaphore.sync_to = gen6_ring_sync;
2756                                 ring->semaphore.signal = gen6_signal;
2757                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2758                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2759                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2760                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2761                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2762                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2763                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2764                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2765                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2766                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2767                         }
2768                 }
2769         } else {
2770                 ring->mmio_base = BSD_RING_BASE;
2771                 ring->flush = bsd_ring_flush;
2772                 ring->add_request = i9xx_add_request;
2773                 ring->get_seqno = ring_get_seqno;
2774                 ring->set_seqno = ring_set_seqno;
2775                 if (IS_GEN5(dev)) {
2776                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2777                         ring->irq_get = gen5_ring_get_irq;
2778                         ring->irq_put = gen5_ring_put_irq;
2779                 } else {
2780                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2781                         ring->irq_get = i9xx_ring_get_irq;
2782                         ring->irq_put = i9xx_ring_put_irq;
2783                 }
2784                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2785         }
2786         ring->init_hw = init_ring_common;
2787
2788         return intel_init_ring_buffer(dev, ring);
2789 }
2790
2791 /**
2792  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2793  */
2794 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2795 {
2796         struct drm_i915_private *dev_priv = dev->dev_private;
2797         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2798
2799         ring->name = "bsd2 ring";
2800         ring->id = VCS2;
2801
2802         ring->write_tail = ring_write_tail;
2803         ring->mmio_base = GEN8_BSD2_RING_BASE;
2804         ring->flush = gen6_bsd_ring_flush;
2805         ring->add_request = gen6_add_request;
2806         ring->get_seqno = gen6_ring_get_seqno;
2807         ring->set_seqno = ring_set_seqno;
2808         ring->irq_enable_mask =
2809                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2810         ring->irq_get = gen8_ring_get_irq;
2811         ring->irq_put = gen8_ring_put_irq;
2812         ring->dispatch_execbuffer =
2813                         gen8_ring_dispatch_execbuffer;
2814         if (i915_semaphore_is_enabled(dev)) {
2815                 ring->semaphore.sync_to = gen8_ring_sync;
2816                 ring->semaphore.signal = gen8_xcs_signal;
2817                 GEN8_RING_SEMAPHORE_INIT;
2818         }
2819         ring->init_hw = init_ring_common;
2820
2821         return intel_init_ring_buffer(dev, ring);
2822 }
2823
2824 int intel_init_blt_ring_buffer(struct drm_device *dev)
2825 {
2826         struct drm_i915_private *dev_priv = dev->dev_private;
2827         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2828
2829         ring->name = "blitter ring";
2830         ring->id = BCS;
2831
2832         ring->mmio_base = BLT_RING_BASE;
2833         ring->write_tail = ring_write_tail;
2834         ring->flush = gen6_ring_flush;
2835         ring->add_request = gen6_add_request;
2836         ring->get_seqno = gen6_ring_get_seqno;
2837         ring->set_seqno = ring_set_seqno;
2838         if (INTEL_INFO(dev)->gen >= 8) {
2839                 ring->irq_enable_mask =
2840                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2841                 ring->irq_get = gen8_ring_get_irq;
2842                 ring->irq_put = gen8_ring_put_irq;
2843                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2844                 if (i915_semaphore_is_enabled(dev)) {
2845                         ring->semaphore.sync_to = gen8_ring_sync;
2846                         ring->semaphore.signal = gen8_xcs_signal;
2847                         GEN8_RING_SEMAPHORE_INIT;
2848                 }
2849         } else {
2850                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2851                 ring->irq_get = gen6_ring_get_irq;
2852                 ring->irq_put = gen6_ring_put_irq;
2853                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2854                 if (i915_semaphore_is_enabled(dev)) {
2855                         ring->semaphore.signal = gen6_signal;
2856                         ring->semaphore.sync_to = gen6_ring_sync;
2857                         /*
2858                          * The current semaphore is only applied on pre-gen8
2859                          * platform.  And there is no VCS2 ring on the pre-gen8
2860                          * platform. So the semaphore between BCS and VCS2 is
2861                          * initialized as INVALID.  Gen8 will initialize the
2862                          * sema between BCS and VCS2 later.
2863                          */
2864                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2865                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2866                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2867                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2868                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2869                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2870                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2871                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2872                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2873                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2874                 }
2875         }
2876         ring->init_hw = init_ring_common;
2877
2878         return intel_init_ring_buffer(dev, ring);
2879 }
2880
2881 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2882 {
2883         struct drm_i915_private *dev_priv = dev->dev_private;
2884         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2885
2886         ring->name = "video enhancement ring";
2887         ring->id = VECS;
2888
2889         ring->mmio_base = VEBOX_RING_BASE;
2890         ring->write_tail = ring_write_tail;
2891         ring->flush = gen6_ring_flush;
2892         ring->add_request = gen6_add_request;
2893         ring->get_seqno = gen6_ring_get_seqno;
2894         ring->set_seqno = ring_set_seqno;
2895
2896         if (INTEL_INFO(dev)->gen >= 8) {
2897                 ring->irq_enable_mask =
2898                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2899                 ring->irq_get = gen8_ring_get_irq;
2900                 ring->irq_put = gen8_ring_put_irq;
2901                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2902                 if (i915_semaphore_is_enabled(dev)) {
2903                         ring->semaphore.sync_to = gen8_ring_sync;
2904                         ring->semaphore.signal = gen8_xcs_signal;
2905                         GEN8_RING_SEMAPHORE_INIT;
2906                 }
2907         } else {
2908                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2909                 ring->irq_get = hsw_vebox_get_irq;
2910                 ring->irq_put = hsw_vebox_put_irq;
2911                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2912                 if (i915_semaphore_is_enabled(dev)) {
2913                         ring->semaphore.sync_to = gen6_ring_sync;
2914                         ring->semaphore.signal = gen6_signal;
2915                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2916                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2917                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2918                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2919                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2920                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2921                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2922                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2923                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2924                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2925                 }
2926         }
2927         ring->init_hw = init_ring_common;
2928
2929         return intel_init_ring_buffer(dev, ring);
2930 }
2931
2932 int
2933 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2934 {
2935         struct intel_engine_cs *ring = req->ring;
2936         int ret;
2937
2938         if (!ring->gpu_caches_dirty)
2939                 return 0;
2940
2941         ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
2942         if (ret)
2943                 return ret;
2944
2945         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2946
2947         ring->gpu_caches_dirty = false;
2948         return 0;
2949 }
2950
2951 int
2952 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2953 {
2954         struct intel_engine_cs *ring = req->ring;
2955         uint32_t flush_domains;
2956         int ret;
2957
2958         flush_domains = 0;
2959         if (ring->gpu_caches_dirty)
2960                 flush_domains = I915_GEM_GPU_DOMAINS;
2961
2962         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2963         if (ret)
2964                 return ret;
2965
2966         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2967
2968         ring->gpu_caches_dirty = false;
2969         return 0;
2970 }
2971
2972 void
2973 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2974 {
2975         int ret;
2976
2977         if (!intel_ring_initialized(ring))
2978                 return;
2979
2980         ret = intel_ring_idle(ring);
2981         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2982                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2983                           ring->name, ret);
2984
2985         stop_ring(ring);
2986 }