]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/tegra/dc.c
Merge branch 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[karo-tx-linux.git] / drivers / gpu / drm / tegra / dc.c
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/reset.h>
14
15 #include <soc/tegra/pmc.h>
16
17 #include "dc.h"
18 #include "drm.h"
19 #include "gem.h"
20
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_plane_helper.h>
24
25 struct tegra_dc_soc_info {
26         bool supports_border_color;
27         bool supports_interlacing;
28         bool supports_cursor;
29         bool supports_block_linear;
30         unsigned int pitch_align;
31         bool has_powergate;
32 };
33
34 struct tegra_plane {
35         struct drm_plane base;
36         unsigned int index;
37 };
38
39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
40 {
41         return container_of(plane, struct tegra_plane, base);
42 }
43
44 struct tegra_dc_state {
45         struct drm_crtc_state base;
46
47         struct clk *clk;
48         unsigned long pclk;
49         unsigned int div;
50
51         u32 planes;
52 };
53
54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
55 {
56         if (state)
57                 return container_of(state, struct tegra_dc_state, base);
58
59         return NULL;
60 }
61
62 struct tegra_plane_state {
63         struct drm_plane_state base;
64
65         struct tegra_bo_tiling tiling;
66         u32 format;
67         u32 swap;
68 };
69
70 static inline struct tegra_plane_state *
71 to_tegra_plane_state(struct drm_plane_state *state)
72 {
73         if (state)
74                 return container_of(state, struct tegra_plane_state, base);
75
76         return NULL;
77 }
78
79 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
80 {
81         stats->frames = 0;
82         stats->vblank = 0;
83         stats->underflow = 0;
84         stats->overflow = 0;
85 }
86
87 /*
88  * Reads the active copy of a register. This takes the dc->lock spinlock to
89  * prevent races with the VBLANK processing which also needs access to the
90  * active copy of some registers.
91  */
92 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
93 {
94         unsigned long flags;
95         u32 value;
96
97         spin_lock_irqsave(&dc->lock, flags);
98
99         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
100         value = tegra_dc_readl(dc, offset);
101         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
102
103         spin_unlock_irqrestore(&dc->lock, flags);
104         return value;
105 }
106
107 /*
108  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
109  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
110  * Latching happens mmediately if the display controller is in STOP mode or
111  * on the next frame boundary otherwise.
112  *
113  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
114  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
115  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
116  * into the ACTIVE copy, either immediately if the display controller is in
117  * STOP mode, or at the next frame boundary otherwise.
118  */
119 void tegra_dc_commit(struct tegra_dc *dc)
120 {
121         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
122         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
123 }
124
125 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
126 {
127         /* assume no swapping of fetched data */
128         if (swap)
129                 *swap = BYTE_SWAP_NOSWAP;
130
131         switch (fourcc) {
132         case DRM_FORMAT_XBGR8888:
133                 *format = WIN_COLOR_DEPTH_R8G8B8A8;
134                 break;
135
136         case DRM_FORMAT_XRGB8888:
137                 *format = WIN_COLOR_DEPTH_B8G8R8A8;
138                 break;
139
140         case DRM_FORMAT_RGB565:
141                 *format = WIN_COLOR_DEPTH_B5G6R5;
142                 break;
143
144         case DRM_FORMAT_UYVY:
145                 *format = WIN_COLOR_DEPTH_YCbCr422;
146                 break;
147
148         case DRM_FORMAT_YUYV:
149                 if (swap)
150                         *swap = BYTE_SWAP_SWAP2;
151
152                 *format = WIN_COLOR_DEPTH_YCbCr422;
153                 break;
154
155         case DRM_FORMAT_YUV420:
156                 *format = WIN_COLOR_DEPTH_YCbCr420P;
157                 break;
158
159         case DRM_FORMAT_YUV422:
160                 *format = WIN_COLOR_DEPTH_YCbCr422P;
161                 break;
162
163         default:
164                 return -EINVAL;
165         }
166
167         return 0;
168 }
169
170 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
171 {
172         switch (format) {
173         case WIN_COLOR_DEPTH_YCbCr422:
174         case WIN_COLOR_DEPTH_YUV422:
175                 if (planar)
176                         *planar = false;
177
178                 return true;
179
180         case WIN_COLOR_DEPTH_YCbCr420P:
181         case WIN_COLOR_DEPTH_YUV420P:
182         case WIN_COLOR_DEPTH_YCbCr422P:
183         case WIN_COLOR_DEPTH_YUV422P:
184         case WIN_COLOR_DEPTH_YCbCr422R:
185         case WIN_COLOR_DEPTH_YUV422R:
186         case WIN_COLOR_DEPTH_YCbCr422RA:
187         case WIN_COLOR_DEPTH_YUV422RA:
188                 if (planar)
189                         *planar = true;
190
191                 return true;
192         }
193
194         if (planar)
195                 *planar = false;
196
197         return false;
198 }
199
200 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
201                                   unsigned int bpp)
202 {
203         fixed20_12 outf = dfixed_init(out);
204         fixed20_12 inf = dfixed_init(in);
205         u32 dda_inc;
206         int max;
207
208         if (v)
209                 max = 15;
210         else {
211                 switch (bpp) {
212                 case 2:
213                         max = 8;
214                         break;
215
216                 default:
217                         WARN_ON_ONCE(1);
218                         /* fallthrough */
219                 case 4:
220                         max = 4;
221                         break;
222                 }
223         }
224
225         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
226         inf.full -= dfixed_const(1);
227
228         dda_inc = dfixed_div(inf, outf);
229         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
230
231         return dda_inc;
232 }
233
234 static inline u32 compute_initial_dda(unsigned int in)
235 {
236         fixed20_12 inf = dfixed_init(in);
237         return dfixed_frac(inf);
238 }
239
240 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
241                                   const struct tegra_dc_window *window)
242 {
243         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
244         unsigned long value, flags;
245         bool yuv, planar;
246
247         /*
248          * For YUV planar modes, the number of bytes per pixel takes into
249          * account only the luma component and therefore is 1.
250          */
251         yuv = tegra_dc_format_is_yuv(window->format, &planar);
252         if (!yuv)
253                 bpp = window->bits_per_pixel / 8;
254         else
255                 bpp = planar ? 1 : 2;
256
257         spin_lock_irqsave(&dc->lock, flags);
258
259         value = WINDOW_A_SELECT << index;
260         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
261
262         tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
263         tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
264
265         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
266         tegra_dc_writel(dc, value, DC_WIN_POSITION);
267
268         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
269         tegra_dc_writel(dc, value, DC_WIN_SIZE);
270
271         h_offset = window->src.x * bpp;
272         v_offset = window->src.y;
273         h_size = window->src.w * bpp;
274         v_size = window->src.h;
275
276         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
277         tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
278
279         /*
280          * For DDA computations the number of bytes per pixel for YUV planar
281          * modes needs to take into account all Y, U and V components.
282          */
283         if (yuv && planar)
284                 bpp = 2;
285
286         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
287         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
288
289         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
290         tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
291
292         h_dda = compute_initial_dda(window->src.x);
293         v_dda = compute_initial_dda(window->src.y);
294
295         tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
296         tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
297
298         tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
299         tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
300
301         tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
302
303         if (yuv && planar) {
304                 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
305                 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
306                 value = window->stride[1] << 16 | window->stride[0];
307                 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
308         } else {
309                 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
310         }
311
312         if (window->bottom_up)
313                 v_offset += window->src.h - 1;
314
315         tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
316         tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
317
318         if (dc->soc->supports_block_linear) {
319                 unsigned long height = window->tiling.value;
320
321                 switch (window->tiling.mode) {
322                 case TEGRA_BO_TILING_MODE_PITCH:
323                         value = DC_WINBUF_SURFACE_KIND_PITCH;
324                         break;
325
326                 case TEGRA_BO_TILING_MODE_TILED:
327                         value = DC_WINBUF_SURFACE_KIND_TILED;
328                         break;
329
330                 case TEGRA_BO_TILING_MODE_BLOCK:
331                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
332                                 DC_WINBUF_SURFACE_KIND_BLOCK;
333                         break;
334                 }
335
336                 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
337         } else {
338                 switch (window->tiling.mode) {
339                 case TEGRA_BO_TILING_MODE_PITCH:
340                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
341                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
342                         break;
343
344                 case TEGRA_BO_TILING_MODE_TILED:
345                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
346                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
347                         break;
348
349                 case TEGRA_BO_TILING_MODE_BLOCK:
350                         /*
351                          * No need to handle this here because ->atomic_check
352                          * will already have filtered it out.
353                          */
354                         break;
355                 }
356
357                 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
358         }
359
360         value = WIN_ENABLE;
361
362         if (yuv) {
363                 /* setup default colorspace conversion coefficients */
364                 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
365                 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
366                 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
367                 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
368                 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
369                 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
370                 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
371                 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
372
373                 value |= CSC_ENABLE;
374         } else if (window->bits_per_pixel < 24) {
375                 value |= COLOR_EXPAND;
376         }
377
378         if (window->bottom_up)
379                 value |= V_DIRECTION;
380
381         tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
382
383         /*
384          * Disable blending and assume Window A is the bottom-most window,
385          * Window C is the top-most window and Window B is in the middle.
386          */
387         tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
388         tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
389
390         switch (index) {
391         case 0:
392                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
393                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
394                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
395                 break;
396
397         case 1:
398                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
399                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
400                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
401                 break;
402
403         case 2:
404                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
405                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
406                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
407                 break;
408         }
409
410         spin_unlock_irqrestore(&dc->lock, flags);
411 }
412
413 static void tegra_plane_destroy(struct drm_plane *plane)
414 {
415         struct tegra_plane *p = to_tegra_plane(plane);
416
417         drm_plane_cleanup(plane);
418         kfree(p);
419 }
420
421 static const u32 tegra_primary_plane_formats[] = {
422         DRM_FORMAT_XBGR8888,
423         DRM_FORMAT_XRGB8888,
424         DRM_FORMAT_RGB565,
425 };
426
427 static void tegra_primary_plane_destroy(struct drm_plane *plane)
428 {
429         tegra_plane_destroy(plane);
430 }
431
432 static void tegra_plane_reset(struct drm_plane *plane)
433 {
434         struct tegra_plane_state *state;
435
436         if (plane->state)
437                 __drm_atomic_helper_plane_destroy_state(plane, plane->state);
438
439         kfree(plane->state);
440         plane->state = NULL;
441
442         state = kzalloc(sizeof(*state), GFP_KERNEL);
443         if (state) {
444                 plane->state = &state->base;
445                 plane->state->plane = plane;
446         }
447 }
448
449 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
450 {
451         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
452         struct tegra_plane_state *copy;
453
454         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
455         if (!copy)
456                 return NULL;
457
458         __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
459         copy->tiling = state->tiling;
460         copy->format = state->format;
461         copy->swap = state->swap;
462
463         return &copy->base;
464 }
465
466 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
467                                              struct drm_plane_state *state)
468 {
469         __drm_atomic_helper_plane_destroy_state(plane, state);
470         kfree(state);
471 }
472
473 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
474         .update_plane = drm_atomic_helper_update_plane,
475         .disable_plane = drm_atomic_helper_disable_plane,
476         .destroy = tegra_primary_plane_destroy,
477         .reset = tegra_plane_reset,
478         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
479         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
480 };
481
482 static int tegra_plane_prepare_fb(struct drm_plane *plane,
483                                   struct drm_framebuffer *fb,
484                                   const struct drm_plane_state *new_state)
485 {
486         return 0;
487 }
488
489 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
490                                    struct drm_framebuffer *fb,
491                                    const struct drm_plane_state *old_fb)
492 {
493 }
494
495 static int tegra_plane_state_add(struct tegra_plane *plane,
496                                  struct drm_plane_state *state)
497 {
498         struct drm_crtc_state *crtc_state;
499         struct tegra_dc_state *tegra;
500
501         /* Propagate errors from allocation or locking failures. */
502         crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
503         if (IS_ERR(crtc_state))
504                 return PTR_ERR(crtc_state);
505
506         tegra = to_dc_state(crtc_state);
507
508         tegra->planes |= WIN_A_ACT_REQ << plane->index;
509
510         return 0;
511 }
512
513 static int tegra_plane_atomic_check(struct drm_plane *plane,
514                                     struct drm_plane_state *state)
515 {
516         struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
517         struct tegra_bo_tiling *tiling = &plane_state->tiling;
518         struct tegra_plane *tegra = to_tegra_plane(plane);
519         struct tegra_dc *dc = to_tegra_dc(state->crtc);
520         int err;
521
522         /* no need for further checks if the plane is being disabled */
523         if (!state->crtc)
524                 return 0;
525
526         err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
527                               &plane_state->swap);
528         if (err < 0)
529                 return err;
530
531         err = tegra_fb_get_tiling(state->fb, tiling);
532         if (err < 0)
533                 return err;
534
535         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
536             !dc->soc->supports_block_linear) {
537                 DRM_ERROR("hardware doesn't support block linear mode\n");
538                 return -EINVAL;
539         }
540
541         /*
542          * Tegra doesn't support different strides for U and V planes so we
543          * error out if the user tries to display a framebuffer with such a
544          * configuration.
545          */
546         if (drm_format_num_planes(state->fb->pixel_format) > 2) {
547                 if (state->fb->pitches[2] != state->fb->pitches[1]) {
548                         DRM_ERROR("unsupported UV-plane configuration\n");
549                         return -EINVAL;
550                 }
551         }
552
553         err = tegra_plane_state_add(tegra, state);
554         if (err < 0)
555                 return err;
556
557         return 0;
558 }
559
560 static void tegra_plane_atomic_update(struct drm_plane *plane,
561                                       struct drm_plane_state *old_state)
562 {
563         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
564         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
565         struct drm_framebuffer *fb = plane->state->fb;
566         struct tegra_plane *p = to_tegra_plane(plane);
567         struct tegra_dc_window window;
568         unsigned int i;
569
570         /* rien ne va plus */
571         if (!plane->state->crtc || !plane->state->fb)
572                 return;
573
574         memset(&window, 0, sizeof(window));
575         window.src.x = plane->state->src_x >> 16;
576         window.src.y = plane->state->src_y >> 16;
577         window.src.w = plane->state->src_w >> 16;
578         window.src.h = plane->state->src_h >> 16;
579         window.dst.x = plane->state->crtc_x;
580         window.dst.y = plane->state->crtc_y;
581         window.dst.w = plane->state->crtc_w;
582         window.dst.h = plane->state->crtc_h;
583         window.bits_per_pixel = fb->bits_per_pixel;
584         window.bottom_up = tegra_fb_is_bottom_up(fb);
585
586         /* copy from state */
587         window.tiling = state->tiling;
588         window.format = state->format;
589         window.swap = state->swap;
590
591         for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
592                 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
593
594                 window.base[i] = bo->paddr + fb->offsets[i];
595                 window.stride[i] = fb->pitches[i];
596         }
597
598         tegra_dc_setup_window(dc, p->index, &window);
599 }
600
601 static void tegra_plane_atomic_disable(struct drm_plane *plane,
602                                        struct drm_plane_state *old_state)
603 {
604         struct tegra_plane *p = to_tegra_plane(plane);
605         struct tegra_dc *dc;
606         unsigned long flags;
607         u32 value;
608
609         /* rien ne va plus */
610         if (!old_state || !old_state->crtc)
611                 return;
612
613         dc = to_tegra_dc(old_state->crtc);
614
615         spin_lock_irqsave(&dc->lock, flags);
616
617         value = WINDOW_A_SELECT << p->index;
618         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
619
620         value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
621         value &= ~WIN_ENABLE;
622         tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
623
624         spin_unlock_irqrestore(&dc->lock, flags);
625 }
626
627 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
628         .prepare_fb = tegra_plane_prepare_fb,
629         .cleanup_fb = tegra_plane_cleanup_fb,
630         .atomic_check = tegra_plane_atomic_check,
631         .atomic_update = tegra_plane_atomic_update,
632         .atomic_disable = tegra_plane_atomic_disable,
633 };
634
635 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
636                                                        struct tegra_dc *dc)
637 {
638         /*
639          * Ideally this would use drm_crtc_mask(), but that would require the
640          * CRTC to already be in the mode_config's list of CRTCs. However, it
641          * will only be added to that list in the drm_crtc_init_with_planes()
642          * (in tegra_dc_init()), which in turn requires registration of these
643          * planes. So we have ourselves a nice little chicken and egg problem
644          * here.
645          *
646          * We work around this by manually creating the mask from the number
647          * of CRTCs that have been registered, and should therefore always be
648          * the same as drm_crtc_index() after registration.
649          */
650         unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
651         struct tegra_plane *plane;
652         unsigned int num_formats;
653         const u32 *formats;
654         int err;
655
656         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
657         if (!plane)
658                 return ERR_PTR(-ENOMEM);
659
660         num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
661         formats = tegra_primary_plane_formats;
662
663         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
664                                        &tegra_primary_plane_funcs, formats,
665                                        num_formats, DRM_PLANE_TYPE_PRIMARY);
666         if (err < 0) {
667                 kfree(plane);
668                 return ERR_PTR(err);
669         }
670
671         drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
672
673         return &plane->base;
674 }
675
676 static const u32 tegra_cursor_plane_formats[] = {
677         DRM_FORMAT_RGBA8888,
678 };
679
680 static int tegra_cursor_atomic_check(struct drm_plane *plane,
681                                      struct drm_plane_state *state)
682 {
683         struct tegra_plane *tegra = to_tegra_plane(plane);
684         int err;
685
686         /* no need for further checks if the plane is being disabled */
687         if (!state->crtc)
688                 return 0;
689
690         /* scaling not supported for cursor */
691         if ((state->src_w >> 16 != state->crtc_w) ||
692             (state->src_h >> 16 != state->crtc_h))
693                 return -EINVAL;
694
695         /* only square cursors supported */
696         if (state->src_w != state->src_h)
697                 return -EINVAL;
698
699         if (state->crtc_w != 32 && state->crtc_w != 64 &&
700             state->crtc_w != 128 && state->crtc_w != 256)
701                 return -EINVAL;
702
703         err = tegra_plane_state_add(tegra, state);
704         if (err < 0)
705                 return err;
706
707         return 0;
708 }
709
710 static void tegra_cursor_atomic_update(struct drm_plane *plane,
711                                        struct drm_plane_state *old_state)
712 {
713         struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
714         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
715         struct drm_plane_state *state = plane->state;
716         u32 value = CURSOR_CLIP_DISPLAY;
717
718         /* rien ne va plus */
719         if (!plane->state->crtc || !plane->state->fb)
720                 return;
721
722         switch (state->crtc_w) {
723         case 32:
724                 value |= CURSOR_SIZE_32x32;
725                 break;
726
727         case 64:
728                 value |= CURSOR_SIZE_64x64;
729                 break;
730
731         case 128:
732                 value |= CURSOR_SIZE_128x128;
733                 break;
734
735         case 256:
736                 value |= CURSOR_SIZE_256x256;
737                 break;
738
739         default:
740                 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
741                      state->crtc_h);
742                 return;
743         }
744
745         value |= (bo->paddr >> 10) & 0x3fffff;
746         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
747
748 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
749         value = (bo->paddr >> 32) & 0x3;
750         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
751 #endif
752
753         /* enable cursor and set blend mode */
754         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
755         value |= CURSOR_ENABLE;
756         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
757
758         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
759         value &= ~CURSOR_DST_BLEND_MASK;
760         value &= ~CURSOR_SRC_BLEND_MASK;
761         value |= CURSOR_MODE_NORMAL;
762         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
763         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
764         value |= CURSOR_ALPHA;
765         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
766
767         /* position the cursor */
768         value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
769         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
770 }
771
772 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
773                                         struct drm_plane_state *old_state)
774 {
775         struct tegra_dc *dc;
776         u32 value;
777
778         /* rien ne va plus */
779         if (!old_state || !old_state->crtc)
780                 return;
781
782         dc = to_tegra_dc(old_state->crtc);
783
784         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
785         value &= ~CURSOR_ENABLE;
786         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
787 }
788
789 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
790         .update_plane = drm_atomic_helper_update_plane,
791         .disable_plane = drm_atomic_helper_disable_plane,
792         .destroy = tegra_plane_destroy,
793         .reset = tegra_plane_reset,
794         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
795         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
796 };
797
798 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
799         .prepare_fb = tegra_plane_prepare_fb,
800         .cleanup_fb = tegra_plane_cleanup_fb,
801         .atomic_check = tegra_cursor_atomic_check,
802         .atomic_update = tegra_cursor_atomic_update,
803         .atomic_disable = tegra_cursor_atomic_disable,
804 };
805
806 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
807                                                       struct tegra_dc *dc)
808 {
809         struct tegra_plane *plane;
810         unsigned int num_formats;
811         const u32 *formats;
812         int err;
813
814         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
815         if (!plane)
816                 return ERR_PTR(-ENOMEM);
817
818         /*
819          * This index is kind of fake. The cursor isn't a regular plane, but
820          * its update and activation request bits in DC_CMD_STATE_CONTROL do
821          * use the same programming. Setting this fake index here allows the
822          * code in tegra_add_plane_state() to do the right thing without the
823          * need to special-casing the cursor plane.
824          */
825         plane->index = 6;
826
827         num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
828         formats = tegra_cursor_plane_formats;
829
830         err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
831                                        &tegra_cursor_plane_funcs, formats,
832                                        num_formats, DRM_PLANE_TYPE_CURSOR);
833         if (err < 0) {
834                 kfree(plane);
835                 return ERR_PTR(err);
836         }
837
838         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
839
840         return &plane->base;
841 }
842
843 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
844 {
845         tegra_plane_destroy(plane);
846 }
847
848 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
849         .update_plane = drm_atomic_helper_update_plane,
850         .disable_plane = drm_atomic_helper_disable_plane,
851         .destroy = tegra_overlay_plane_destroy,
852         .reset = tegra_plane_reset,
853         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
854         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
855 };
856
857 static const uint32_t tegra_overlay_plane_formats[] = {
858         DRM_FORMAT_XBGR8888,
859         DRM_FORMAT_XRGB8888,
860         DRM_FORMAT_RGB565,
861         DRM_FORMAT_UYVY,
862         DRM_FORMAT_YUYV,
863         DRM_FORMAT_YUV420,
864         DRM_FORMAT_YUV422,
865 };
866
867 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
868         .prepare_fb = tegra_plane_prepare_fb,
869         .cleanup_fb = tegra_plane_cleanup_fb,
870         .atomic_check = tegra_plane_atomic_check,
871         .atomic_update = tegra_plane_atomic_update,
872         .atomic_disable = tegra_plane_atomic_disable,
873 };
874
875 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
876                                                        struct tegra_dc *dc,
877                                                        unsigned int index)
878 {
879         struct tegra_plane *plane;
880         unsigned int num_formats;
881         const u32 *formats;
882         int err;
883
884         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
885         if (!plane)
886                 return ERR_PTR(-ENOMEM);
887
888         plane->index = index;
889
890         num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
891         formats = tegra_overlay_plane_formats;
892
893         err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
894                                        &tegra_overlay_plane_funcs, formats,
895                                        num_formats, DRM_PLANE_TYPE_OVERLAY);
896         if (err < 0) {
897                 kfree(plane);
898                 return ERR_PTR(err);
899         }
900
901         drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
902
903         return &plane->base;
904 }
905
906 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
907 {
908         struct drm_plane *plane;
909         unsigned int i;
910
911         for (i = 0; i < 2; i++) {
912                 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
913                 if (IS_ERR(plane))
914                         return PTR_ERR(plane);
915         }
916
917         return 0;
918 }
919
920 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
921 {
922         if (dc->syncpt)
923                 return host1x_syncpt_read(dc->syncpt);
924
925         /* fallback to software emulated VBLANK counter */
926         return drm_crtc_vblank_count(&dc->base);
927 }
928
929 void tegra_dc_enable_vblank(struct tegra_dc *dc)
930 {
931         unsigned long value, flags;
932
933         spin_lock_irqsave(&dc->lock, flags);
934
935         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
936         value |= VBLANK_INT;
937         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
938
939         spin_unlock_irqrestore(&dc->lock, flags);
940 }
941
942 void tegra_dc_disable_vblank(struct tegra_dc *dc)
943 {
944         unsigned long value, flags;
945
946         spin_lock_irqsave(&dc->lock, flags);
947
948         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
949         value &= ~VBLANK_INT;
950         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
951
952         spin_unlock_irqrestore(&dc->lock, flags);
953 }
954
955 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
956 {
957         struct drm_device *drm = dc->base.dev;
958         struct drm_crtc *crtc = &dc->base;
959         unsigned long flags, base;
960         struct tegra_bo *bo;
961
962         spin_lock_irqsave(&drm->event_lock, flags);
963
964         if (!dc->event) {
965                 spin_unlock_irqrestore(&drm->event_lock, flags);
966                 return;
967         }
968
969         bo = tegra_fb_get_plane(crtc->primary->fb, 0);
970
971         spin_lock(&dc->lock);
972
973         /* check if new start address has been latched */
974         tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
975         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
976         base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
977         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
978
979         spin_unlock(&dc->lock);
980
981         if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
982                 drm_crtc_send_vblank_event(crtc, dc->event);
983                 drm_crtc_vblank_put(crtc);
984                 dc->event = NULL;
985         }
986
987         spin_unlock_irqrestore(&drm->event_lock, flags);
988 }
989
990 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
991 {
992         struct tegra_dc *dc = to_tegra_dc(crtc);
993         struct drm_device *drm = crtc->dev;
994         unsigned long flags;
995
996         spin_lock_irqsave(&drm->event_lock, flags);
997
998         if (dc->event && dc->event->base.file_priv == file) {
999                 dc->event->base.destroy(&dc->event->base);
1000                 drm_crtc_vblank_put(crtc);
1001                 dc->event = NULL;
1002         }
1003
1004         spin_unlock_irqrestore(&drm->event_lock, flags);
1005 }
1006
1007 static void tegra_dc_destroy(struct drm_crtc *crtc)
1008 {
1009         drm_crtc_cleanup(crtc);
1010 }
1011
1012 static void tegra_crtc_reset(struct drm_crtc *crtc)
1013 {
1014         struct tegra_dc_state *state;
1015
1016         if (crtc->state)
1017                 __drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1018
1019         kfree(crtc->state);
1020         crtc->state = NULL;
1021
1022         state = kzalloc(sizeof(*state), GFP_KERNEL);
1023         if (state) {
1024                 crtc->state = &state->base;
1025                 crtc->state->crtc = crtc;
1026         }
1027
1028         drm_crtc_vblank_reset(crtc);
1029 }
1030
1031 static struct drm_crtc_state *
1032 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1033 {
1034         struct tegra_dc_state *state = to_dc_state(crtc->state);
1035         struct tegra_dc_state *copy;
1036
1037         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1038         if (!copy)
1039                 return NULL;
1040
1041         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1042         copy->clk = state->clk;
1043         copy->pclk = state->pclk;
1044         copy->div = state->div;
1045         copy->planes = state->planes;
1046
1047         return &copy->base;
1048 }
1049
1050 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1051                                             struct drm_crtc_state *state)
1052 {
1053         __drm_atomic_helper_crtc_destroy_state(crtc, state);
1054         kfree(state);
1055 }
1056
1057 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1058         .page_flip = drm_atomic_helper_page_flip,
1059         .set_config = drm_atomic_helper_set_config,
1060         .destroy = tegra_dc_destroy,
1061         .reset = tegra_crtc_reset,
1062         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1063         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1064 };
1065
1066 static int tegra_dc_set_timings(struct tegra_dc *dc,
1067                                 struct drm_display_mode *mode)
1068 {
1069         unsigned int h_ref_to_sync = 1;
1070         unsigned int v_ref_to_sync = 1;
1071         unsigned long value;
1072
1073         tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1074
1075         value = (v_ref_to_sync << 16) | h_ref_to_sync;
1076         tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1077
1078         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1079                 ((mode->hsync_end - mode->hsync_start) <<  0);
1080         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1081
1082         value = ((mode->vtotal - mode->vsync_end) << 16) |
1083                 ((mode->htotal - mode->hsync_end) <<  0);
1084         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1085
1086         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1087                 ((mode->hsync_start - mode->hdisplay) <<  0);
1088         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1089
1090         value = (mode->vdisplay << 16) | mode->hdisplay;
1091         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1092
1093         return 0;
1094 }
1095
1096 /**
1097  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1098  *     state
1099  * @dc: display controller
1100  * @crtc_state: CRTC atomic state
1101  * @clk: parent clock for display controller
1102  * @pclk: pixel clock
1103  * @div: shift clock divider
1104  *
1105  * Returns:
1106  * 0 on success or a negative error-code on failure.
1107  */
1108 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1109                                struct drm_crtc_state *crtc_state,
1110                                struct clk *clk, unsigned long pclk,
1111                                unsigned int div)
1112 {
1113         struct tegra_dc_state *state = to_dc_state(crtc_state);
1114
1115         if (!clk_has_parent(dc->clk, clk))
1116                 return -EINVAL;
1117
1118         state->clk = clk;
1119         state->pclk = pclk;
1120         state->div = div;
1121
1122         return 0;
1123 }
1124
1125 static void tegra_dc_commit_state(struct tegra_dc *dc,
1126                                   struct tegra_dc_state *state)
1127 {
1128         u32 value;
1129         int err;
1130
1131         err = clk_set_parent(dc->clk, state->clk);
1132         if (err < 0)
1133                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1134
1135         /*
1136          * Outputs may not want to change the parent clock rate. This is only
1137          * relevant to Tegra20 where only a single display PLL is available.
1138          * Since that PLL would typically be used for HDMI, an internal LVDS
1139          * panel would need to be driven by some other clock such as PLL_P
1140          * which is shared with other peripherals. Changing the clock rate
1141          * should therefore be avoided.
1142          */
1143         if (state->pclk > 0) {
1144                 err = clk_set_rate(state->clk, state->pclk);
1145                 if (err < 0)
1146                         dev_err(dc->dev,
1147                                 "failed to set clock rate to %lu Hz\n",
1148                                 state->pclk);
1149         }
1150
1151         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1152                       state->div);
1153         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1154
1155         value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1156         tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1157 }
1158
1159 static void tegra_dc_stop(struct tegra_dc *dc)
1160 {
1161         u32 value;
1162
1163         /* stop the display controller */
1164         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1165         value &= ~DISP_CTRL_MODE_MASK;
1166         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1167
1168         tegra_dc_commit(dc);
1169 }
1170
1171 static bool tegra_dc_idle(struct tegra_dc *dc)
1172 {
1173         u32 value;
1174
1175         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1176
1177         return (value & DISP_CTRL_MODE_MASK) == 0;
1178 }
1179
1180 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1181 {
1182         timeout = jiffies + msecs_to_jiffies(timeout);
1183
1184         while (time_before(jiffies, timeout)) {
1185                 if (tegra_dc_idle(dc))
1186                         return 0;
1187
1188                 usleep_range(1000, 2000);
1189         }
1190
1191         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1192         return -ETIMEDOUT;
1193 }
1194
1195 static void tegra_crtc_disable(struct drm_crtc *crtc)
1196 {
1197         struct tegra_dc *dc = to_tegra_dc(crtc);
1198         u32 value;
1199
1200         if (!tegra_dc_idle(dc)) {
1201                 tegra_dc_stop(dc);
1202
1203                 /*
1204                  * Ignore the return value, there isn't anything useful to do
1205                  * in case this fails.
1206                  */
1207                 tegra_dc_wait_idle(dc, 100);
1208         }
1209
1210         /*
1211          * This should really be part of the RGB encoder driver, but clearing
1212          * these bits has the side-effect of stopping the display controller.
1213          * When that happens no VBLANK interrupts will be raised. At the same
1214          * time the encoder is disabled before the display controller, so the
1215          * above code is always going to timeout waiting for the controller
1216          * to go idle.
1217          *
1218          * Given the close coupling between the RGB encoder and the display
1219          * controller doing it here is still kind of okay. None of the other
1220          * encoder drivers require these bits to be cleared.
1221          *
1222          * XXX: Perhaps given that the display controller is switched off at
1223          * this point anyway maybe clearing these bits isn't even useful for
1224          * the RGB encoder?
1225          */
1226         if (dc->rgb) {
1227                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1228                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1229                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1230                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1231         }
1232
1233         tegra_dc_stats_reset(&dc->stats);
1234         drm_crtc_vblank_off(crtc);
1235 }
1236
1237 static void tegra_crtc_enable(struct drm_crtc *crtc)
1238 {
1239         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1240         struct tegra_dc_state *state = to_dc_state(crtc->state);
1241         struct tegra_dc *dc = to_tegra_dc(crtc);
1242         u32 value;
1243
1244         tegra_dc_commit_state(dc, state);
1245
1246         /* program display mode */
1247         tegra_dc_set_timings(dc, mode);
1248
1249         /* interlacing isn't supported yet, so disable it */
1250         if (dc->soc->supports_interlacing) {
1251                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1252                 value &= ~INTERLACE_ENABLE;
1253                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1254         }
1255
1256         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1257         value &= ~DISP_CTRL_MODE_MASK;
1258         value |= DISP_CTRL_MODE_C_DISPLAY;
1259         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1260
1261         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1262         value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1263                  PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1264         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1265
1266         tegra_dc_commit(dc);
1267
1268         drm_crtc_vblank_on(crtc);
1269 }
1270
1271 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1272                                    struct drm_crtc_state *state)
1273 {
1274         return 0;
1275 }
1276
1277 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1278                                     struct drm_crtc_state *old_crtc_state)
1279 {
1280         struct tegra_dc *dc = to_tegra_dc(crtc);
1281
1282         if (crtc->state->event) {
1283                 crtc->state->event->pipe = drm_crtc_index(crtc);
1284
1285                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1286
1287                 dc->event = crtc->state->event;
1288                 crtc->state->event = NULL;
1289         }
1290 }
1291
1292 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1293                                     struct drm_crtc_state *old_crtc_state)
1294 {
1295         struct tegra_dc_state *state = to_dc_state(crtc->state);
1296         struct tegra_dc *dc = to_tegra_dc(crtc);
1297
1298         tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1299         tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1300 }
1301
1302 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1303         .disable = tegra_crtc_disable,
1304         .enable = tegra_crtc_enable,
1305         .atomic_check = tegra_crtc_atomic_check,
1306         .atomic_begin = tegra_crtc_atomic_begin,
1307         .atomic_flush = tegra_crtc_atomic_flush,
1308 };
1309
1310 static irqreturn_t tegra_dc_irq(int irq, void *data)
1311 {
1312         struct tegra_dc *dc = data;
1313         unsigned long status;
1314
1315         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1316         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1317
1318         if (status & FRAME_END_INT) {
1319                 /*
1320                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1321                 */
1322                 dc->stats.frames++;
1323         }
1324
1325         if (status & VBLANK_INT) {
1326                 /*
1327                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1328                 */
1329                 drm_crtc_handle_vblank(&dc->base);
1330                 tegra_dc_finish_page_flip(dc);
1331                 dc->stats.vblank++;
1332         }
1333
1334         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1335                 /*
1336                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1337                 */
1338                 dc->stats.underflow++;
1339         }
1340
1341         if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1342                 /*
1343                 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1344                 */
1345                 dc->stats.overflow++;
1346         }
1347
1348         return IRQ_HANDLED;
1349 }
1350
1351 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1352 {
1353         struct drm_info_node *node = s->private;
1354         struct tegra_dc *dc = node->info_ent->data;
1355         int err = 0;
1356
1357         drm_modeset_lock_crtc(&dc->base, NULL);
1358
1359         if (!dc->base.state->active) {
1360                 err = -EBUSY;
1361                 goto unlock;
1362         }
1363
1364 #define DUMP_REG(name)                                          \
1365         seq_printf(s, "%-40s %#05x %08x\n", #name, name,        \
1366                    tegra_dc_readl(dc, name))
1367
1368         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1369         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1370         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1371         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1372         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1373         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1374         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1375         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1376         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1377         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1378         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1379         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1380         DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1381         DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1382         DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1383         DUMP_REG(DC_CMD_SIGNAL_RAISE);
1384         DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1385         DUMP_REG(DC_CMD_INT_STATUS);
1386         DUMP_REG(DC_CMD_INT_MASK);
1387         DUMP_REG(DC_CMD_INT_ENABLE);
1388         DUMP_REG(DC_CMD_INT_TYPE);
1389         DUMP_REG(DC_CMD_INT_POLARITY);
1390         DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1391         DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1392         DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1393         DUMP_REG(DC_CMD_STATE_ACCESS);
1394         DUMP_REG(DC_CMD_STATE_CONTROL);
1395         DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1396         DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1397         DUMP_REG(DC_COM_CRC_CONTROL);
1398         DUMP_REG(DC_COM_CRC_CHECKSUM);
1399         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1400         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1401         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1402         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1403         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1404         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1405         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1406         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1407         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1408         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1409         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1410         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1411         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1412         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1413         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1414         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1415         DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1416         DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1417         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1418         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1419         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1420         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1421         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1422         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1423         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1424         DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1425         DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1426         DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1427         DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1428         DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1429         DUMP_REG(DC_COM_SPI_CONTROL);
1430         DUMP_REG(DC_COM_SPI_START_BYTE);
1431         DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1432         DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1433         DUMP_REG(DC_COM_HSPI_CS_DC);
1434         DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1435         DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1436         DUMP_REG(DC_COM_GPIO_CTRL);
1437         DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1438         DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1439         DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1440         DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1441         DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1442         DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1443         DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1444         DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1445         DUMP_REG(DC_DISP_REF_TO_SYNC);
1446         DUMP_REG(DC_DISP_SYNC_WIDTH);
1447         DUMP_REG(DC_DISP_BACK_PORCH);
1448         DUMP_REG(DC_DISP_ACTIVE);
1449         DUMP_REG(DC_DISP_FRONT_PORCH);
1450         DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1451         DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1452         DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1453         DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1454         DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1455         DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1456         DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1457         DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1458         DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1459         DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1460         DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1461         DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1462         DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1463         DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1464         DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1465         DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1466         DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1467         DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1468         DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1469         DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1470         DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1471         DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1472         DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1473         DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1474         DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1475         DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1476         DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1477         DUMP_REG(DC_DISP_M0_CONTROL);
1478         DUMP_REG(DC_DISP_M1_CONTROL);
1479         DUMP_REG(DC_DISP_DI_CONTROL);
1480         DUMP_REG(DC_DISP_PP_CONTROL);
1481         DUMP_REG(DC_DISP_PP_SELECT_A);
1482         DUMP_REG(DC_DISP_PP_SELECT_B);
1483         DUMP_REG(DC_DISP_PP_SELECT_C);
1484         DUMP_REG(DC_DISP_PP_SELECT_D);
1485         DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1486         DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1487         DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1488         DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1489         DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1490         DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1491         DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1492         DUMP_REG(DC_DISP_BORDER_COLOR);
1493         DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1494         DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1495         DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1496         DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1497         DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1498         DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1499         DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1500         DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1501         DUMP_REG(DC_DISP_CURSOR_POSITION);
1502         DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1503         DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1504         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1505         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1506         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1507         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1508         DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1509         DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1510         DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1511         DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1512         DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1513         DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1514         DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1515         DUMP_REG(DC_DISP_SD_CONTROL);
1516         DUMP_REG(DC_DISP_SD_CSC_COEFF);
1517         DUMP_REG(DC_DISP_SD_LUT(0));
1518         DUMP_REG(DC_DISP_SD_LUT(1));
1519         DUMP_REG(DC_DISP_SD_LUT(2));
1520         DUMP_REG(DC_DISP_SD_LUT(3));
1521         DUMP_REG(DC_DISP_SD_LUT(4));
1522         DUMP_REG(DC_DISP_SD_LUT(5));
1523         DUMP_REG(DC_DISP_SD_LUT(6));
1524         DUMP_REG(DC_DISP_SD_LUT(7));
1525         DUMP_REG(DC_DISP_SD_LUT(8));
1526         DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1527         DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1528         DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1529         DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1530         DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1531         DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1532         DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1533         DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1534         DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1535         DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1536         DUMP_REG(DC_DISP_SD_BL_TF(0));
1537         DUMP_REG(DC_DISP_SD_BL_TF(1));
1538         DUMP_REG(DC_DISP_SD_BL_TF(2));
1539         DUMP_REG(DC_DISP_SD_BL_TF(3));
1540         DUMP_REG(DC_DISP_SD_BL_CONTROL);
1541         DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1542         DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1543         DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1544         DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1545         DUMP_REG(DC_WIN_WIN_OPTIONS);
1546         DUMP_REG(DC_WIN_BYTE_SWAP);
1547         DUMP_REG(DC_WIN_BUFFER_CONTROL);
1548         DUMP_REG(DC_WIN_COLOR_DEPTH);
1549         DUMP_REG(DC_WIN_POSITION);
1550         DUMP_REG(DC_WIN_SIZE);
1551         DUMP_REG(DC_WIN_PRESCALED_SIZE);
1552         DUMP_REG(DC_WIN_H_INITIAL_DDA);
1553         DUMP_REG(DC_WIN_V_INITIAL_DDA);
1554         DUMP_REG(DC_WIN_DDA_INC);
1555         DUMP_REG(DC_WIN_LINE_STRIDE);
1556         DUMP_REG(DC_WIN_BUF_STRIDE);
1557         DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1558         DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1559         DUMP_REG(DC_WIN_DV_CONTROL);
1560         DUMP_REG(DC_WIN_BLEND_NOKEY);
1561         DUMP_REG(DC_WIN_BLEND_1WIN);
1562         DUMP_REG(DC_WIN_BLEND_2WIN_X);
1563         DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1564         DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1565         DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1566         DUMP_REG(DC_WINBUF_START_ADDR);
1567         DUMP_REG(DC_WINBUF_START_ADDR_NS);
1568         DUMP_REG(DC_WINBUF_START_ADDR_U);
1569         DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1570         DUMP_REG(DC_WINBUF_START_ADDR_V);
1571         DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1572         DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1573         DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1574         DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1575         DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1576         DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1577         DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1578         DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1579         DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1580
1581 #undef DUMP_REG
1582
1583 unlock:
1584         drm_modeset_unlock_crtc(&dc->base);
1585         return err;
1586 }
1587
1588 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1589 {
1590         struct drm_info_node *node = s->private;
1591         struct tegra_dc *dc = node->info_ent->data;
1592         int err = 0;
1593         u32 value;
1594
1595         drm_modeset_lock_crtc(&dc->base, NULL);
1596
1597         if (!dc->base.state->active) {
1598                 err = -EBUSY;
1599                 goto unlock;
1600         }
1601
1602         value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1603         tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1604         tegra_dc_commit(dc);
1605
1606         drm_crtc_wait_one_vblank(&dc->base);
1607         drm_crtc_wait_one_vblank(&dc->base);
1608
1609         value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1610         seq_printf(s, "%08x\n", value);
1611
1612         tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1613
1614 unlock:
1615         drm_modeset_unlock_crtc(&dc->base);
1616         return err;
1617 }
1618
1619 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1620 {
1621         struct drm_info_node *node = s->private;
1622         struct tegra_dc *dc = node->info_ent->data;
1623
1624         seq_printf(s, "frames: %lu\n", dc->stats.frames);
1625         seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1626         seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1627         seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1628
1629         return 0;
1630 }
1631
1632 static struct drm_info_list debugfs_files[] = {
1633         { "regs", tegra_dc_show_regs, 0, NULL },
1634         { "crc", tegra_dc_show_crc, 0, NULL },
1635         { "stats", tegra_dc_show_stats, 0, NULL },
1636 };
1637
1638 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1639 {
1640         unsigned int i;
1641         char *name;
1642         int err;
1643
1644         name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1645         dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1646         kfree(name);
1647
1648         if (!dc->debugfs)
1649                 return -ENOMEM;
1650
1651         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1652                                     GFP_KERNEL);
1653         if (!dc->debugfs_files) {
1654                 err = -ENOMEM;
1655                 goto remove;
1656         }
1657
1658         for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1659                 dc->debugfs_files[i].data = dc;
1660
1661         err = drm_debugfs_create_files(dc->debugfs_files,
1662                                        ARRAY_SIZE(debugfs_files),
1663                                        dc->debugfs, minor);
1664         if (err < 0)
1665                 goto free;
1666
1667         dc->minor = minor;
1668
1669         return 0;
1670
1671 free:
1672         kfree(dc->debugfs_files);
1673         dc->debugfs_files = NULL;
1674 remove:
1675         debugfs_remove(dc->debugfs);
1676         dc->debugfs = NULL;
1677
1678         return err;
1679 }
1680
1681 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1682 {
1683         drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1684                                  dc->minor);
1685         dc->minor = NULL;
1686
1687         kfree(dc->debugfs_files);
1688         dc->debugfs_files = NULL;
1689
1690         debugfs_remove(dc->debugfs);
1691         dc->debugfs = NULL;
1692
1693         return 0;
1694 }
1695
1696 static int tegra_dc_init(struct host1x_client *client)
1697 {
1698         struct drm_device *drm = dev_get_drvdata(client->parent);
1699         struct tegra_dc *dc = host1x_client_to_dc(client);
1700         struct tegra_drm *tegra = drm->dev_private;
1701         struct drm_plane *primary = NULL;
1702         struct drm_plane *cursor = NULL;
1703         u32 value;
1704         int err;
1705
1706         if (tegra->domain) {
1707                 err = iommu_attach_device(tegra->domain, dc->dev);
1708                 if (err < 0) {
1709                         dev_err(dc->dev, "failed to attach to domain: %d\n",
1710                                 err);
1711                         return err;
1712                 }
1713
1714                 dc->domain = tegra->domain;
1715         }
1716
1717         primary = tegra_dc_primary_plane_create(drm, dc);
1718         if (IS_ERR(primary)) {
1719                 err = PTR_ERR(primary);
1720                 goto cleanup;
1721         }
1722
1723         if (dc->soc->supports_cursor) {
1724                 cursor = tegra_dc_cursor_plane_create(drm, dc);
1725                 if (IS_ERR(cursor)) {
1726                         err = PTR_ERR(cursor);
1727                         goto cleanup;
1728                 }
1729         }
1730
1731         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1732                                         &tegra_crtc_funcs);
1733         if (err < 0)
1734                 goto cleanup;
1735
1736         drm_mode_crtc_set_gamma_size(&dc->base, 256);
1737         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1738
1739         /*
1740          * Keep track of the minimum pitch alignment across all display
1741          * controllers.
1742          */
1743         if (dc->soc->pitch_align > tegra->pitch_align)
1744                 tegra->pitch_align = dc->soc->pitch_align;
1745
1746         err = tegra_dc_rgb_init(drm, dc);
1747         if (err < 0 && err != -ENODEV) {
1748                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1749                 goto cleanup;
1750         }
1751
1752         err = tegra_dc_add_planes(drm, dc);
1753         if (err < 0)
1754                 goto cleanup;
1755
1756         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1757                 err = tegra_dc_debugfs_init(dc, drm->primary);
1758                 if (err < 0)
1759                         dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1760         }
1761
1762         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1763                                dev_name(dc->dev), dc);
1764         if (err < 0) {
1765                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1766                         err);
1767                 goto cleanup;
1768         }
1769
1770         /* initialize display controller */
1771         if (dc->syncpt) {
1772                 u32 syncpt = host1x_syncpt_id(dc->syncpt);
1773
1774                 value = SYNCPT_CNTRL_NO_STALL;
1775                 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1776
1777                 value = SYNCPT_VSYNC_ENABLE | syncpt;
1778                 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1779         }
1780
1781         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1782                 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1783         tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1784
1785         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1786                 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1787         tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1788
1789         /* initialize timer */
1790         value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1791                 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1792         tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1793
1794         value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1795                 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1796         tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1797
1798         value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1799                 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1800         tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1801
1802         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1803                 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1804         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1805
1806         if (dc->soc->supports_border_color)
1807                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1808
1809         tegra_dc_stats_reset(&dc->stats);
1810
1811         return 0;
1812
1813 cleanup:
1814         if (cursor)
1815                 drm_plane_cleanup(cursor);
1816
1817         if (primary)
1818                 drm_plane_cleanup(primary);
1819
1820         if (tegra->domain) {
1821                 iommu_detach_device(tegra->domain, dc->dev);
1822                 dc->domain = NULL;
1823         }
1824
1825         return err;
1826 }
1827
1828 static int tegra_dc_exit(struct host1x_client *client)
1829 {
1830         struct tegra_dc *dc = host1x_client_to_dc(client);
1831         int err;
1832
1833         devm_free_irq(dc->dev, dc->irq, dc);
1834
1835         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1836                 err = tegra_dc_debugfs_exit(dc);
1837                 if (err < 0)
1838                         dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1839         }
1840
1841         err = tegra_dc_rgb_exit(dc);
1842         if (err) {
1843                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1844                 return err;
1845         }
1846
1847         if (dc->domain) {
1848                 iommu_detach_device(dc->domain, dc->dev);
1849                 dc->domain = NULL;
1850         }
1851
1852         return 0;
1853 }
1854
1855 static const struct host1x_client_ops dc_client_ops = {
1856         .init = tegra_dc_init,
1857         .exit = tegra_dc_exit,
1858 };
1859
1860 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1861         .supports_border_color = true,
1862         .supports_interlacing = false,
1863         .supports_cursor = false,
1864         .supports_block_linear = false,
1865         .pitch_align = 8,
1866         .has_powergate = false,
1867 };
1868
1869 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1870         .supports_border_color = true,
1871         .supports_interlacing = false,
1872         .supports_cursor = false,
1873         .supports_block_linear = false,
1874         .pitch_align = 8,
1875         .has_powergate = false,
1876 };
1877
1878 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1879         .supports_border_color = true,
1880         .supports_interlacing = false,
1881         .supports_cursor = false,
1882         .supports_block_linear = false,
1883         .pitch_align = 64,
1884         .has_powergate = true,
1885 };
1886
1887 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1888         .supports_border_color = false,
1889         .supports_interlacing = true,
1890         .supports_cursor = true,
1891         .supports_block_linear = true,
1892         .pitch_align = 64,
1893         .has_powergate = true,
1894 };
1895
1896 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1897         .supports_border_color = false,
1898         .supports_interlacing = true,
1899         .supports_cursor = true,
1900         .supports_block_linear = true,
1901         .pitch_align = 64,
1902         .has_powergate = true,
1903 };
1904
1905 static const struct of_device_id tegra_dc_of_match[] = {
1906         {
1907                 .compatible = "nvidia,tegra210-dc",
1908                 .data = &tegra210_dc_soc_info,
1909         }, {
1910                 .compatible = "nvidia,tegra124-dc",
1911                 .data = &tegra124_dc_soc_info,
1912         }, {
1913                 .compatible = "nvidia,tegra114-dc",
1914                 .data = &tegra114_dc_soc_info,
1915         }, {
1916                 .compatible = "nvidia,tegra30-dc",
1917                 .data = &tegra30_dc_soc_info,
1918         }, {
1919                 .compatible = "nvidia,tegra20-dc",
1920                 .data = &tegra20_dc_soc_info,
1921         }, {
1922                 /* sentinel */
1923         }
1924 };
1925 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1926
1927 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1928 {
1929         struct device_node *np;
1930         u32 value = 0;
1931         int err;
1932
1933         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1934         if (err < 0) {
1935                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1936
1937                 /*
1938                  * If the nvidia,head property isn't present, try to find the
1939                  * correct head number by looking up the position of this
1940                  * display controller's node within the device tree. Assuming
1941                  * that the nodes are ordered properly in the DTS file and
1942                  * that the translation into a flattened device tree blob
1943                  * preserves that ordering this will actually yield the right
1944                  * head number.
1945                  *
1946                  * If those assumptions don't hold, this will still work for
1947                  * cases where only a single display controller is used.
1948                  */
1949                 for_each_matching_node(np, tegra_dc_of_match) {
1950                         if (np == dc->dev->of_node)
1951                                 break;
1952
1953                         value++;
1954                 }
1955         }
1956
1957         dc->pipe = value;
1958
1959         return 0;
1960 }
1961
1962 static int tegra_dc_probe(struct platform_device *pdev)
1963 {
1964         unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1965         const struct of_device_id *id;
1966         struct resource *regs;
1967         struct tegra_dc *dc;
1968         int err;
1969
1970         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1971         if (!dc)
1972                 return -ENOMEM;
1973
1974         id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1975         if (!id)
1976                 return -ENODEV;
1977
1978         spin_lock_init(&dc->lock);
1979         INIT_LIST_HEAD(&dc->list);
1980         dc->dev = &pdev->dev;
1981         dc->soc = id->data;
1982
1983         err = tegra_dc_parse_dt(dc);
1984         if (err < 0)
1985                 return err;
1986
1987         dc->clk = devm_clk_get(&pdev->dev, NULL);
1988         if (IS_ERR(dc->clk)) {
1989                 dev_err(&pdev->dev, "failed to get clock\n");
1990                 return PTR_ERR(dc->clk);
1991         }
1992
1993         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1994         if (IS_ERR(dc->rst)) {
1995                 dev_err(&pdev->dev, "failed to get reset\n");
1996                 return PTR_ERR(dc->rst);
1997         }
1998
1999         if (dc->soc->has_powergate) {
2000                 if (dc->pipe == 0)
2001                         dc->powergate = TEGRA_POWERGATE_DIS;
2002                 else
2003                         dc->powergate = TEGRA_POWERGATE_DISB;
2004
2005                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2006                                                         dc->rst);
2007                 if (err < 0) {
2008                         dev_err(&pdev->dev, "failed to power partition: %d\n",
2009                                 err);
2010                         return err;
2011                 }
2012         } else {
2013                 err = clk_prepare_enable(dc->clk);
2014                 if (err < 0) {
2015                         dev_err(&pdev->dev, "failed to enable clock: %d\n",
2016                                 err);
2017                         return err;
2018                 }
2019
2020                 err = reset_control_deassert(dc->rst);
2021                 if (err < 0) {
2022                         dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2023                                 err);
2024                         return err;
2025                 }
2026         }
2027
2028         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2029         dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2030         if (IS_ERR(dc->regs))
2031                 return PTR_ERR(dc->regs);
2032
2033         dc->irq = platform_get_irq(pdev, 0);
2034         if (dc->irq < 0) {
2035                 dev_err(&pdev->dev, "failed to get IRQ\n");
2036                 return -ENXIO;
2037         }
2038
2039         dc->syncpt = host1x_syncpt_request(&pdev->dev, flags);
2040         if (!dc->syncpt)
2041                 dev_warn(&pdev->dev, "failed to allocate syncpoint\n");
2042
2043         INIT_LIST_HEAD(&dc->client.list);
2044         dc->client.ops = &dc_client_ops;
2045         dc->client.dev = &pdev->dev;
2046
2047         err = tegra_dc_rgb_probe(dc);
2048         if (err < 0 && err != -ENODEV) {
2049                 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2050                 return err;
2051         }
2052
2053         err = host1x_client_register(&dc->client);
2054         if (err < 0) {
2055                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2056                         err);
2057                 return err;
2058         }
2059
2060         platform_set_drvdata(pdev, dc);
2061
2062         return 0;
2063 }
2064
2065 static int tegra_dc_remove(struct platform_device *pdev)
2066 {
2067         struct tegra_dc *dc = platform_get_drvdata(pdev);
2068         int err;
2069
2070         host1x_syncpt_free(dc->syncpt);
2071
2072         err = host1x_client_unregister(&dc->client);
2073         if (err < 0) {
2074                 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2075                         err);
2076                 return err;
2077         }
2078
2079         err = tegra_dc_rgb_remove(dc);
2080         if (err < 0) {
2081                 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2082                 return err;
2083         }
2084
2085         reset_control_assert(dc->rst);
2086
2087         if (dc->soc->has_powergate)
2088                 tegra_powergate_power_off(dc->powergate);
2089
2090         clk_disable_unprepare(dc->clk);
2091
2092         return 0;
2093 }
2094
2095 struct platform_driver tegra_dc_driver = {
2096         .driver = {
2097                 .name = "tegra-dc",
2098                 .of_match_table = tegra_dc_of_match,
2099         },
2100         .probe = tegra_dc_probe,
2101         .remove = tegra_dc_remove,
2102 };