]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/iommu/arm-smmu-v3.c
Merge branches 'x86/vt-d', 'arm/omap', 'arm/smmu', 's390', 'core' and 'x86/amd' into...
[karo-tx-linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/iommu.h>
27 #include <linux/iopoll.h>
28 #include <linux/module.h>
29 #include <linux/msi.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_platform.h>
33 #include <linux/pci.h>
34 #include <linux/platform_device.h>
35
36 #include "io-pgtable.h"
37
38 /* MMIO registers */
39 #define ARM_SMMU_IDR0                   0x0
40 #define IDR0_ST_LVL_SHIFT               27
41 #define IDR0_ST_LVL_MASK                0x3
42 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
43 #define IDR0_STALL_MODEL                (3 << 24)
44 #define IDR0_TTENDIAN_SHIFT             21
45 #define IDR0_TTENDIAN_MASK              0x3
46 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
47 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
48 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
49 #define IDR0_CD2L                       (1 << 19)
50 #define IDR0_VMID16                     (1 << 18)
51 #define IDR0_PRI                        (1 << 16)
52 #define IDR0_SEV                        (1 << 14)
53 #define IDR0_MSI                        (1 << 13)
54 #define IDR0_ASID16                     (1 << 12)
55 #define IDR0_ATS                        (1 << 10)
56 #define IDR0_HYP                        (1 << 9)
57 #define IDR0_COHACC                     (1 << 4)
58 #define IDR0_TTF_SHIFT                  2
59 #define IDR0_TTF_MASK                   0x3
60 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
61 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
62 #define IDR0_S1P                        (1 << 1)
63 #define IDR0_S2P                        (1 << 0)
64
65 #define ARM_SMMU_IDR1                   0x4
66 #define IDR1_TABLES_PRESET              (1 << 30)
67 #define IDR1_QUEUES_PRESET              (1 << 29)
68 #define IDR1_REL                        (1 << 28)
69 #define IDR1_CMDQ_SHIFT                 21
70 #define IDR1_CMDQ_MASK                  0x1f
71 #define IDR1_EVTQ_SHIFT                 16
72 #define IDR1_EVTQ_MASK                  0x1f
73 #define IDR1_PRIQ_SHIFT                 11
74 #define IDR1_PRIQ_MASK                  0x1f
75 #define IDR1_SSID_SHIFT                 6
76 #define IDR1_SSID_MASK                  0x1f
77 #define IDR1_SID_SHIFT                  0
78 #define IDR1_SID_MASK                   0x3f
79
80 #define ARM_SMMU_IDR5                   0x14
81 #define IDR5_STALL_MAX_SHIFT            16
82 #define IDR5_STALL_MAX_MASK             0xffff
83 #define IDR5_GRAN64K                    (1 << 6)
84 #define IDR5_GRAN16K                    (1 << 5)
85 #define IDR5_GRAN4K                     (1 << 4)
86 #define IDR5_OAS_SHIFT                  0
87 #define IDR5_OAS_MASK                   0x7
88 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
89 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
90 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
91 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
92 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
93 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
94
95 #define ARM_SMMU_CR0                    0x20
96 #define CR0_CMDQEN                      (1 << 3)
97 #define CR0_EVTQEN                      (1 << 2)
98 #define CR0_PRIQEN                      (1 << 1)
99 #define CR0_SMMUEN                      (1 << 0)
100
101 #define ARM_SMMU_CR0ACK                 0x24
102
103 #define ARM_SMMU_CR1                    0x28
104 #define CR1_SH_NSH                      0
105 #define CR1_SH_OSH                      2
106 #define CR1_SH_ISH                      3
107 #define CR1_CACHE_NC                    0
108 #define CR1_CACHE_WB                    1
109 #define CR1_CACHE_WT                    2
110 #define CR1_TABLE_SH_SHIFT              10
111 #define CR1_TABLE_OC_SHIFT              8
112 #define CR1_TABLE_IC_SHIFT              6
113 #define CR1_QUEUE_SH_SHIFT              4
114 #define CR1_QUEUE_OC_SHIFT              2
115 #define CR1_QUEUE_IC_SHIFT              0
116
117 #define ARM_SMMU_CR2                    0x2c
118 #define CR2_PTM                         (1 << 2)
119 #define CR2_RECINVSID                   (1 << 1)
120 #define CR2_E2H                         (1 << 0)
121
122 #define ARM_SMMU_IRQ_CTRL               0x50
123 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
124 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
125 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
126
127 #define ARM_SMMU_IRQ_CTRLACK            0x54
128
129 #define ARM_SMMU_GERROR                 0x60
130 #define GERROR_SFM_ERR                  (1 << 8)
131 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
132 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
133 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
134 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
135 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
136 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
137 #define GERROR_CMDQ_ERR                 (1 << 0)
138 #define GERROR_ERR_MASK                 0xfd
139
140 #define ARM_SMMU_GERRORN                0x64
141
142 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
143 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
144 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
145
146 #define ARM_SMMU_STRTAB_BASE            0x80
147 #define STRTAB_BASE_RA                  (1UL << 62)
148 #define STRTAB_BASE_ADDR_SHIFT          6
149 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
150
151 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
152 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
153 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
154 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
155 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
156 #define STRTAB_BASE_CFG_FMT_SHIFT       16
157 #define STRTAB_BASE_CFG_FMT_MASK        0x3
158 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
159 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
160
161 #define ARM_SMMU_CMDQ_BASE              0x90
162 #define ARM_SMMU_CMDQ_PROD              0x98
163 #define ARM_SMMU_CMDQ_CONS              0x9c
164
165 #define ARM_SMMU_EVTQ_BASE              0xa0
166 #define ARM_SMMU_EVTQ_PROD              0x100a8
167 #define ARM_SMMU_EVTQ_CONS              0x100ac
168 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
169 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
170 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
171
172 #define ARM_SMMU_PRIQ_BASE              0xc0
173 #define ARM_SMMU_PRIQ_PROD              0x100c8
174 #define ARM_SMMU_PRIQ_CONS              0x100cc
175 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
176 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
177 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
178
179 /* Common MSI config fields */
180 #define MSI_CFG0_ADDR_SHIFT             2
181 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
182 #define MSI_CFG2_SH_SHIFT               4
183 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
184 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
185 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
186 #define MSI_CFG2_MEMATTR_SHIFT          0
187 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
188
189 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
190 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
191 #define Q_OVERFLOW_FLAG                 (1 << 31)
192 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
193 #define Q_ENT(q, p)                     ((q)->base +                    \
194                                          Q_IDX(q, p) * (q)->ent_dwords)
195
196 #define Q_BASE_RWA                      (1UL << 62)
197 #define Q_BASE_ADDR_SHIFT               5
198 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
199 #define Q_BASE_LOG2SIZE_SHIFT           0
200 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
201
202 /*
203  * Stream table.
204  *
205  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
206  * 2lvl: 128k L1 entries,
207  *       256 lazy entries per table (each table covers a PCI bus)
208  */
209 #define STRTAB_L1_SZ_SHIFT              20
210 #define STRTAB_SPLIT                    8
211
212 #define STRTAB_L1_DESC_DWORDS           1
213 #define STRTAB_L1_DESC_SPAN_SHIFT       0
214 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
215 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
216 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
217
218 #define STRTAB_STE_DWORDS               8
219 #define STRTAB_STE_0_V                  (1UL << 0)
220 #define STRTAB_STE_0_CFG_SHIFT          1
221 #define STRTAB_STE_0_CFG_MASK           0x7UL
222 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
223 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
224 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
225 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
226
227 #define STRTAB_STE_0_S1FMT_SHIFT        4
228 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
229 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
230 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
231 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
232 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
233
234 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
235 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
236 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
237 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
238 #define STRTAB_STE_1_S1C_SH_NSH         0UL
239 #define STRTAB_STE_1_S1C_SH_OSH         2UL
240 #define STRTAB_STE_1_S1C_SH_ISH         3UL
241 #define STRTAB_STE_1_S1CIR_SHIFT        2
242 #define STRTAB_STE_1_S1COR_SHIFT        4
243 #define STRTAB_STE_1_S1CSH_SHIFT        6
244
245 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
246
247 #define STRTAB_STE_1_EATS_ABT           0UL
248 #define STRTAB_STE_1_EATS_TRANS         1UL
249 #define STRTAB_STE_1_EATS_S1CHK         2UL
250 #define STRTAB_STE_1_EATS_SHIFT         28
251
252 #define STRTAB_STE_1_STRW_NSEL1         0UL
253 #define STRTAB_STE_1_STRW_EL2           2UL
254 #define STRTAB_STE_1_STRW_SHIFT         30
255
256 #define STRTAB_STE_2_S2VMID_SHIFT       0
257 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
258 #define STRTAB_STE_2_VTCR_SHIFT         32
259 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
260 #define STRTAB_STE_2_S2AA64             (1UL << 51)
261 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
262 #define STRTAB_STE_2_S2PTW              (1UL << 54)
263 #define STRTAB_STE_2_S2R                (1UL << 58)
264
265 #define STRTAB_STE_3_S2TTB_SHIFT        4
266 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
267
268 /* Context descriptor (stage-1 only) */
269 #define CTXDESC_CD_DWORDS               8
270 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
271 #define ARM64_TCR_T0SZ_SHIFT            0
272 #define ARM64_TCR_T0SZ_MASK             0x1fUL
273 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
274 #define ARM64_TCR_TG0_SHIFT             14
275 #define ARM64_TCR_TG0_MASK              0x3UL
276 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
277 #define ARM64_TCR_IRGN0_SHIFT           8
278 #define ARM64_TCR_IRGN0_MASK            0x3UL
279 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
280 #define ARM64_TCR_ORGN0_SHIFT           10
281 #define ARM64_TCR_ORGN0_MASK            0x3UL
282 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
283 #define ARM64_TCR_SH0_SHIFT             12
284 #define ARM64_TCR_SH0_MASK              0x3UL
285 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
286 #define ARM64_TCR_EPD0_SHIFT            7
287 #define ARM64_TCR_EPD0_MASK             0x1UL
288 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
289 #define ARM64_TCR_EPD1_SHIFT            23
290 #define ARM64_TCR_EPD1_MASK             0x1UL
291
292 #define CTXDESC_CD_0_ENDI               (1UL << 15)
293 #define CTXDESC_CD_0_V                  (1UL << 31)
294
295 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
296 #define ARM64_TCR_IPS_SHIFT             32
297 #define ARM64_TCR_IPS_MASK              0x7UL
298 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
299 #define ARM64_TCR_TBI0_SHIFT            37
300 #define ARM64_TCR_TBI0_MASK             0x1UL
301
302 #define CTXDESC_CD_0_AA64               (1UL << 41)
303 #define CTXDESC_CD_0_R                  (1UL << 45)
304 #define CTXDESC_CD_0_A                  (1UL << 46)
305 #define CTXDESC_CD_0_ASET_SHIFT         47
306 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
307 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
308 #define CTXDESC_CD_0_ASID_SHIFT         48
309 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
310
311 #define CTXDESC_CD_1_TTB0_SHIFT         4
312 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
313
314 #define CTXDESC_CD_3_MAIR_SHIFT         0
315
316 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
317 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
318         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
319          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
320
321 /* Command queue */
322 #define CMDQ_ENT_DWORDS                 2
323 #define CMDQ_MAX_SZ_SHIFT               8
324
325 #define CMDQ_ERR_SHIFT                  24
326 #define CMDQ_ERR_MASK                   0x7f
327 #define CMDQ_ERR_CERROR_NONE_IDX        0
328 #define CMDQ_ERR_CERROR_ILL_IDX         1
329 #define CMDQ_ERR_CERROR_ABT_IDX         2
330
331 #define CMDQ_0_OP_SHIFT                 0
332 #define CMDQ_0_OP_MASK                  0xffUL
333 #define CMDQ_0_SSV                      (1UL << 11)
334
335 #define CMDQ_PREFETCH_0_SID_SHIFT       32
336 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
337 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
338
339 #define CMDQ_CFGI_0_SID_SHIFT           32
340 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
341 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
342 #define CMDQ_CFGI_1_RANGE_SHIFT         0
343 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
344
345 #define CMDQ_TLBI_0_VMID_SHIFT          32
346 #define CMDQ_TLBI_0_ASID_SHIFT          48
347 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
348 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
349 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
350
351 #define CMDQ_PRI_0_SSID_SHIFT           12
352 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
353 #define CMDQ_PRI_0_SID_SHIFT            32
354 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
355 #define CMDQ_PRI_1_GRPID_SHIFT          0
356 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
357 #define CMDQ_PRI_1_RESP_SHIFT           12
358 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
359 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
360 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
361
362 #define CMDQ_SYNC_0_CS_SHIFT            12
363 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
364 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
365
366 /* Event queue */
367 #define EVTQ_ENT_DWORDS                 4
368 #define EVTQ_MAX_SZ_SHIFT               7
369
370 #define EVTQ_0_ID_SHIFT                 0
371 #define EVTQ_0_ID_MASK                  0xffUL
372
373 /* PRI queue */
374 #define PRIQ_ENT_DWORDS                 2
375 #define PRIQ_MAX_SZ_SHIFT               8
376
377 #define PRIQ_0_SID_SHIFT                0
378 #define PRIQ_0_SID_MASK                 0xffffffffUL
379 #define PRIQ_0_SSID_SHIFT               32
380 #define PRIQ_0_SSID_MASK                0xfffffUL
381 #define PRIQ_0_OF                       (1UL << 57)
382 #define PRIQ_0_PERM_PRIV                (1UL << 58)
383 #define PRIQ_0_PERM_EXEC                (1UL << 59)
384 #define PRIQ_0_PERM_READ                (1UL << 60)
385 #define PRIQ_0_PERM_WRITE               (1UL << 61)
386 #define PRIQ_0_PRG_LAST                 (1UL << 62)
387 #define PRIQ_0_SSID_V                   (1UL << 63)
388
389 #define PRIQ_1_PRG_IDX_SHIFT            0
390 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
391 #define PRIQ_1_ADDR_SHIFT               12
392 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
393
394 /* High-level queue structures */
395 #define ARM_SMMU_POLL_TIMEOUT_US        100
396
397 static bool disable_bypass;
398 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
399 MODULE_PARM_DESC(disable_bypass,
400         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
401
402 enum pri_resp {
403         PRI_RESP_DENY,
404         PRI_RESP_FAIL,
405         PRI_RESP_SUCC,
406 };
407
408 enum arm_smmu_msi_index {
409         EVTQ_MSI_INDEX,
410         GERROR_MSI_INDEX,
411         PRIQ_MSI_INDEX,
412         ARM_SMMU_MAX_MSIS,
413 };
414
415 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
416         [EVTQ_MSI_INDEX] = {
417                 ARM_SMMU_EVTQ_IRQ_CFG0,
418                 ARM_SMMU_EVTQ_IRQ_CFG1,
419                 ARM_SMMU_EVTQ_IRQ_CFG2,
420         },
421         [GERROR_MSI_INDEX] = {
422                 ARM_SMMU_GERROR_IRQ_CFG0,
423                 ARM_SMMU_GERROR_IRQ_CFG1,
424                 ARM_SMMU_GERROR_IRQ_CFG2,
425         },
426         [PRIQ_MSI_INDEX] = {
427                 ARM_SMMU_PRIQ_IRQ_CFG0,
428                 ARM_SMMU_PRIQ_IRQ_CFG1,
429                 ARM_SMMU_PRIQ_IRQ_CFG2,
430         },
431 };
432
433 struct arm_smmu_cmdq_ent {
434         /* Common fields */
435         u8                              opcode;
436         bool                            substream_valid;
437
438         /* Command-specific fields */
439         union {
440                 #define CMDQ_OP_PREFETCH_CFG    0x1
441                 struct {
442                         u32                     sid;
443                         u8                      size;
444                         u64                     addr;
445                 } prefetch;
446
447                 #define CMDQ_OP_CFGI_STE        0x3
448                 #define CMDQ_OP_CFGI_ALL        0x4
449                 struct {
450                         u32                     sid;
451                         union {
452                                 bool            leaf;
453                                 u8              span;
454                         };
455                 } cfgi;
456
457                 #define CMDQ_OP_TLBI_NH_ASID    0x11
458                 #define CMDQ_OP_TLBI_NH_VA      0x12
459                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
460                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
461                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
462                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
463                 struct {
464                         u16                     asid;
465                         u16                     vmid;
466                         bool                    leaf;
467                         u64                     addr;
468                 } tlbi;
469
470                 #define CMDQ_OP_PRI_RESP        0x41
471                 struct {
472                         u32                     sid;
473                         u32                     ssid;
474                         u16                     grpid;
475                         enum pri_resp           resp;
476                 } pri;
477
478                 #define CMDQ_OP_CMD_SYNC        0x46
479         };
480 };
481
482 struct arm_smmu_queue {
483         int                             irq; /* Wired interrupt */
484
485         __le64                          *base;
486         dma_addr_t                      base_dma;
487         u64                             q_base;
488
489         size_t                          ent_dwords;
490         u32                             max_n_shift;
491         u32                             prod;
492         u32                             cons;
493
494         u32 __iomem                     *prod_reg;
495         u32 __iomem                     *cons_reg;
496 };
497
498 struct arm_smmu_cmdq {
499         struct arm_smmu_queue           q;
500         spinlock_t                      lock;
501 };
502
503 struct arm_smmu_evtq {
504         struct arm_smmu_queue           q;
505         u32                             max_stalls;
506 };
507
508 struct arm_smmu_priq {
509         struct arm_smmu_queue           q;
510 };
511
512 /* High-level stream table and context descriptor structures */
513 struct arm_smmu_strtab_l1_desc {
514         u8                              span;
515
516         __le64                          *l2ptr;
517         dma_addr_t                      l2ptr_dma;
518 };
519
520 struct arm_smmu_s1_cfg {
521         __le64                          *cdptr;
522         dma_addr_t                      cdptr_dma;
523
524         struct arm_smmu_ctx_desc {
525                 u16     asid;
526                 u64     ttbr;
527                 u64     tcr;
528                 u64     mair;
529         }                               cd;
530 };
531
532 struct arm_smmu_s2_cfg {
533         u16                             vmid;
534         u64                             vttbr;
535         u64                             vtcr;
536 };
537
538 struct arm_smmu_strtab_ent {
539         bool                            valid;
540
541         bool                            bypass; /* Overrides s1/s2 config */
542         struct arm_smmu_s1_cfg          *s1_cfg;
543         struct arm_smmu_s2_cfg          *s2_cfg;
544 };
545
546 struct arm_smmu_strtab_cfg {
547         __le64                          *strtab;
548         dma_addr_t                      strtab_dma;
549         struct arm_smmu_strtab_l1_desc  *l1_desc;
550         unsigned int                    num_l1_ents;
551
552         u64                             strtab_base;
553         u32                             strtab_base_cfg;
554 };
555
556 /* An SMMUv3 instance */
557 struct arm_smmu_device {
558         struct device                   *dev;
559         void __iomem                    *base;
560
561 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
562 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
563 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
564 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
565 #define ARM_SMMU_FEAT_PRI               (1 << 4)
566 #define ARM_SMMU_FEAT_ATS               (1 << 5)
567 #define ARM_SMMU_FEAT_SEV               (1 << 6)
568 #define ARM_SMMU_FEAT_MSI               (1 << 7)
569 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
570 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
571 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
572 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
573 #define ARM_SMMU_FEAT_HYP               (1 << 12)
574         u32                             features;
575
576 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
577         u32                             options;
578
579         struct arm_smmu_cmdq            cmdq;
580         struct arm_smmu_evtq            evtq;
581         struct arm_smmu_priq            priq;
582
583         int                             gerr_irq;
584
585         unsigned long                   ias; /* IPA */
586         unsigned long                   oas; /* PA */
587
588 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
589         unsigned int                    asid_bits;
590         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
591
592 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
593         unsigned int                    vmid_bits;
594         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
595
596         unsigned int                    ssid_bits;
597         unsigned int                    sid_bits;
598
599         struct arm_smmu_strtab_cfg      strtab_cfg;
600 };
601
602 /* SMMU private data for an IOMMU group */
603 struct arm_smmu_group {
604         struct arm_smmu_device          *smmu;
605         struct arm_smmu_domain          *domain;
606         int                             num_sids;
607         u32                             *sids;
608         struct arm_smmu_strtab_ent      ste;
609 };
610
611 /* SMMU private data for an IOMMU domain */
612 enum arm_smmu_domain_stage {
613         ARM_SMMU_DOMAIN_S1 = 0,
614         ARM_SMMU_DOMAIN_S2,
615         ARM_SMMU_DOMAIN_NESTED,
616 };
617
618 struct arm_smmu_domain {
619         struct arm_smmu_device          *smmu;
620         struct mutex                    init_mutex; /* Protects smmu pointer */
621
622         struct io_pgtable_ops           *pgtbl_ops;
623         spinlock_t                      pgtbl_lock;
624
625         enum arm_smmu_domain_stage      stage;
626         union {
627                 struct arm_smmu_s1_cfg  s1_cfg;
628                 struct arm_smmu_s2_cfg  s2_cfg;
629         };
630
631         struct iommu_domain             domain;
632 };
633
634 struct arm_smmu_option_prop {
635         u32 opt;
636         const char *prop;
637 };
638
639 static struct arm_smmu_option_prop arm_smmu_options[] = {
640         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
641         { 0, NULL},
642 };
643
644 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
645 {
646         return container_of(dom, struct arm_smmu_domain, domain);
647 }
648
649 static void parse_driver_options(struct arm_smmu_device *smmu)
650 {
651         int i = 0;
652
653         do {
654                 if (of_property_read_bool(smmu->dev->of_node,
655                                                 arm_smmu_options[i].prop)) {
656                         smmu->options |= arm_smmu_options[i].opt;
657                         dev_notice(smmu->dev, "option %s\n",
658                                 arm_smmu_options[i].prop);
659                 }
660         } while (arm_smmu_options[++i].opt);
661 }
662
663 /* Low-level queue manipulation functions */
664 static bool queue_full(struct arm_smmu_queue *q)
665 {
666         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
667                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
668 }
669
670 static bool queue_empty(struct arm_smmu_queue *q)
671 {
672         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
673                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
674 }
675
676 static void queue_sync_cons(struct arm_smmu_queue *q)
677 {
678         q->cons = readl_relaxed(q->cons_reg);
679 }
680
681 static void queue_inc_cons(struct arm_smmu_queue *q)
682 {
683         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
684
685         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
686         writel(q->cons, q->cons_reg);
687 }
688
689 static int queue_sync_prod(struct arm_smmu_queue *q)
690 {
691         int ret = 0;
692         u32 prod = readl_relaxed(q->prod_reg);
693
694         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
695                 ret = -EOVERFLOW;
696
697         q->prod = prod;
698         return ret;
699 }
700
701 static void queue_inc_prod(struct arm_smmu_queue *q)
702 {
703         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
704
705         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
706         writel(q->prod, q->prod_reg);
707 }
708
709 static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
710 {
711         if (Q_WRP(q, q->cons) == Q_WRP(q, until))
712                 return Q_IDX(q, q->cons) < Q_IDX(q, until);
713
714         return Q_IDX(q, q->cons) >= Q_IDX(q, until);
715 }
716
717 static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
718 {
719         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
720
721         while (queue_sync_cons(q), __queue_cons_before(q, until)) {
722                 if (ktime_compare(ktime_get(), timeout) > 0)
723                         return -ETIMEDOUT;
724
725                 if (wfe) {
726                         wfe();
727                 } else {
728                         cpu_relax();
729                         udelay(1);
730                 }
731         }
732
733         return 0;
734 }
735
736 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
737 {
738         int i;
739
740         for (i = 0; i < n_dwords; ++i)
741                 *dst++ = cpu_to_le64(*src++);
742 }
743
744 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
745 {
746         if (queue_full(q))
747                 return -ENOSPC;
748
749         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
750         queue_inc_prod(q);
751         return 0;
752 }
753
754 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
755 {
756         int i;
757
758         for (i = 0; i < n_dwords; ++i)
759                 *dst++ = le64_to_cpu(*src++);
760 }
761
762 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
763 {
764         if (queue_empty(q))
765                 return -EAGAIN;
766
767         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
768         queue_inc_cons(q);
769         return 0;
770 }
771
772 /* High-level queue accessors */
773 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
774 {
775         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
776         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
777
778         switch (ent->opcode) {
779         case CMDQ_OP_TLBI_EL2_ALL:
780         case CMDQ_OP_TLBI_NSNH_ALL:
781                 break;
782         case CMDQ_OP_PREFETCH_CFG:
783                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
784                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
785                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
786                 break;
787         case CMDQ_OP_CFGI_STE:
788                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
789                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
790                 break;
791         case CMDQ_OP_CFGI_ALL:
792                 /* Cover the entire SID range */
793                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
794                 break;
795         case CMDQ_OP_TLBI_NH_VA:
796                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
797                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
798                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
799                 break;
800         case CMDQ_OP_TLBI_S2_IPA:
801                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
802                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
803                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
804                 break;
805         case CMDQ_OP_TLBI_NH_ASID:
806                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
807                 /* Fallthrough */
808         case CMDQ_OP_TLBI_S12_VMALL:
809                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
810                 break;
811         case CMDQ_OP_PRI_RESP:
812                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
813                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
814                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
815                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
816                 switch (ent->pri.resp) {
817                 case PRI_RESP_DENY:
818                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
819                         break;
820                 case PRI_RESP_FAIL:
821                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
822                         break;
823                 case PRI_RESP_SUCC:
824                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
825                         break;
826                 default:
827                         return -EINVAL;
828                 }
829                 break;
830         case CMDQ_OP_CMD_SYNC:
831                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
832                 break;
833         default:
834                 return -ENOENT;
835         }
836
837         return 0;
838 }
839
840 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
841 {
842         static const char *cerror_str[] = {
843                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
844                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
845                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
846         };
847
848         int i;
849         u64 cmd[CMDQ_ENT_DWORDS];
850         struct arm_smmu_queue *q = &smmu->cmdq.q;
851         u32 cons = readl_relaxed(q->cons_reg);
852         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
853         struct arm_smmu_cmdq_ent cmd_sync = {
854                 .opcode = CMDQ_OP_CMD_SYNC,
855         };
856
857         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
858                 cerror_str[idx]);
859
860         switch (idx) {
861         case CMDQ_ERR_CERROR_ILL_IDX:
862                 break;
863         case CMDQ_ERR_CERROR_ABT_IDX:
864                 dev_err(smmu->dev, "retrying command fetch\n");
865         case CMDQ_ERR_CERROR_NONE_IDX:
866                 return;
867         }
868
869         /*
870          * We may have concurrent producers, so we need to be careful
871          * not to touch any of the shadow cmdq state.
872          */
873         queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
874         dev_err(smmu->dev, "skipping command in error state:\n");
875         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
876                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
877
878         /* Convert the erroneous command into a CMD_SYNC */
879         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
880                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
881                 return;
882         }
883
884         queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
885 }
886
887 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
888                                     struct arm_smmu_cmdq_ent *ent)
889 {
890         u32 until;
891         u64 cmd[CMDQ_ENT_DWORDS];
892         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
893         struct arm_smmu_queue *q = &smmu->cmdq.q;
894
895         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
896                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
897                          ent->opcode);
898                 return;
899         }
900
901         spin_lock(&smmu->cmdq.lock);
902         while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
903                 /*
904                  * Keep the queue locked, otherwise the producer could wrap
905                  * twice and we could see a future consumer pointer that looks
906                  * like it's behind us.
907                  */
908                 if (queue_poll_cons(q, until, wfe))
909                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
910         }
911
912         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
913                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
914         spin_unlock(&smmu->cmdq.lock);
915 }
916
917 /* Context descriptor manipulation functions */
918 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
919 {
920         u64 val = 0;
921
922         /* Repack the TCR. Just care about TTBR0 for now */
923         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
924         val |= ARM_SMMU_TCR2CD(tcr, TG0);
925         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
926         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
927         val |= ARM_SMMU_TCR2CD(tcr, SH0);
928         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
929         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
930         val |= ARM_SMMU_TCR2CD(tcr, IPS);
931         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
932
933         return val;
934 }
935
936 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
937                                     struct arm_smmu_s1_cfg *cfg)
938 {
939         u64 val;
940
941         /*
942          * We don't need to issue any invalidation here, as we'll invalidate
943          * the STE when installing the new entry anyway.
944          */
945         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
946 #ifdef __BIG_ENDIAN
947               CTXDESC_CD_0_ENDI |
948 #endif
949               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
950               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
951               CTXDESC_CD_0_V;
952         cfg->cdptr[0] = cpu_to_le64(val);
953
954         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
955         cfg->cdptr[1] = cpu_to_le64(val);
956
957         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
958 }
959
960 /* Stream table manipulation functions */
961 static void
962 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
963 {
964         u64 val = 0;
965
966         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
967                 << STRTAB_L1_DESC_SPAN_SHIFT;
968         val |= desc->l2ptr_dma &
969                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
970
971         *dst = cpu_to_le64(val);
972 }
973
974 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
975 {
976         struct arm_smmu_cmdq_ent cmd = {
977                 .opcode = CMDQ_OP_CFGI_STE,
978                 .cfgi   = {
979                         .sid    = sid,
980                         .leaf   = true,
981                 },
982         };
983
984         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
985         cmd.opcode = CMDQ_OP_CMD_SYNC;
986         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
987 }
988
989 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
990                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
991 {
992         /*
993          * This is hideously complicated, but we only really care about
994          * three cases at the moment:
995          *
996          * 1. Invalid (all zero) -> bypass  (init)
997          * 2. Bypass -> translation (attach)
998          * 3. Translation -> bypass (detach)
999          *
1000          * Given that we can't update the STE atomically and the SMMU
1001          * doesn't read the thing in a defined order, that leaves us
1002          * with the following maintenance requirements:
1003          *
1004          * 1. Update Config, return (init time STEs aren't live)
1005          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1006          * 3. Update Config, sync
1007          */
1008         u64 val = le64_to_cpu(dst[0]);
1009         bool ste_live = false;
1010         struct arm_smmu_cmdq_ent prefetch_cmd = {
1011                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1012                 .prefetch       = {
1013                         .sid    = sid,
1014                 },
1015         };
1016
1017         if (val & STRTAB_STE_0_V) {
1018                 u64 cfg;
1019
1020                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1021                 switch (cfg) {
1022                 case STRTAB_STE_0_CFG_BYPASS:
1023                         break;
1024                 case STRTAB_STE_0_CFG_S1_TRANS:
1025                 case STRTAB_STE_0_CFG_S2_TRANS:
1026                         ste_live = true;
1027                         break;
1028                 default:
1029                         BUG(); /* STE corruption */
1030                 }
1031         }
1032
1033         /* Nuke the existing Config, as we're going to rewrite it */
1034         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1035
1036         if (ste->valid)
1037                 val |= STRTAB_STE_0_V;
1038         else
1039                 val &= ~STRTAB_STE_0_V;
1040
1041         if (ste->bypass) {
1042                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1043                                       : STRTAB_STE_0_CFG_BYPASS;
1044                 dst[0] = cpu_to_le64(val);
1045                 dst[2] = 0; /* Nuke the VMID */
1046                 if (ste_live)
1047                         arm_smmu_sync_ste_for_sid(smmu, sid);
1048                 return;
1049         }
1050
1051         if (ste->s1_cfg) {
1052                 BUG_ON(ste_live);
1053                 dst[1] = cpu_to_le64(
1054                          STRTAB_STE_1_S1C_CACHE_WBRA
1055                          << STRTAB_STE_1_S1CIR_SHIFT |
1056                          STRTAB_STE_1_S1C_CACHE_WBRA
1057                          << STRTAB_STE_1_S1COR_SHIFT |
1058                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1059                          STRTAB_STE_1_S1STALLD |
1060 #ifdef CONFIG_PCI_ATS
1061                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1062 #endif
1063                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1064
1065                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1066                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1067                         STRTAB_STE_0_CFG_S1_TRANS;
1068
1069         }
1070
1071         if (ste->s2_cfg) {
1072                 BUG_ON(ste_live);
1073                 dst[2] = cpu_to_le64(
1074                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1075                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1076                           << STRTAB_STE_2_VTCR_SHIFT |
1077 #ifdef __BIG_ENDIAN
1078                          STRTAB_STE_2_S2ENDI |
1079 #endif
1080                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1081                          STRTAB_STE_2_S2R);
1082
1083                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1084                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1085
1086                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1087         }
1088
1089         arm_smmu_sync_ste_for_sid(smmu, sid);
1090         dst[0] = cpu_to_le64(val);
1091         arm_smmu_sync_ste_for_sid(smmu, sid);
1092
1093         /* It's likely that we'll want to use the new STE soon */
1094         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1095                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1096 }
1097
1098 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1099 {
1100         unsigned int i;
1101         struct arm_smmu_strtab_ent ste = {
1102                 .valid  = true,
1103                 .bypass = true,
1104         };
1105
1106         for (i = 0; i < nent; ++i) {
1107                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1108                 strtab += STRTAB_STE_DWORDS;
1109         }
1110 }
1111
1112 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1113 {
1114         size_t size;
1115         void *strtab;
1116         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1117         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1118
1119         if (desc->l2ptr)
1120                 return 0;
1121
1122         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1123         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1124
1125         desc->span = STRTAB_SPLIT + 1;
1126         desc->l2ptr = dma_zalloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1127                                           GFP_KERNEL);
1128         if (!desc->l2ptr) {
1129                 dev_err(smmu->dev,
1130                         "failed to allocate l2 stream table for SID %u\n",
1131                         sid);
1132                 return -ENOMEM;
1133         }
1134
1135         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1136         arm_smmu_write_strtab_l1_desc(strtab, desc);
1137         return 0;
1138 }
1139
1140 /* IRQ and event handlers */
1141 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1142 {
1143         int i;
1144         struct arm_smmu_device *smmu = dev;
1145         struct arm_smmu_queue *q = &smmu->evtq.q;
1146         u64 evt[EVTQ_ENT_DWORDS];
1147
1148         while (!queue_remove_raw(q, evt)) {
1149                 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1150
1151                 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1152                 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1153                         dev_info(smmu->dev, "\t0x%016llx\n",
1154                                  (unsigned long long)evt[i]);
1155         }
1156
1157         /* Sync our overflow flag, as we believe we're up to speed */
1158         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1159         return IRQ_HANDLED;
1160 }
1161
1162 static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1163 {
1164         irqreturn_t ret = IRQ_WAKE_THREAD;
1165         struct arm_smmu_device *smmu = dev;
1166         struct arm_smmu_queue *q = &smmu->evtq.q;
1167
1168         /*
1169          * Not much we can do on overflow, so scream and pretend we're
1170          * trying harder.
1171          */
1172         if (queue_sync_prod(q) == -EOVERFLOW)
1173                 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1174         else if (queue_empty(q))
1175                 ret = IRQ_NONE;
1176
1177         return ret;
1178 }
1179
1180 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1181 {
1182         struct arm_smmu_device *smmu = dev;
1183         struct arm_smmu_queue *q = &smmu->priq.q;
1184         u64 evt[PRIQ_ENT_DWORDS];
1185
1186         while (!queue_remove_raw(q, evt)) {
1187                 u32 sid, ssid;
1188                 u16 grpid;
1189                 bool ssv, last;
1190
1191                 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1192                 ssv = evt[0] & PRIQ_0_SSID_V;
1193                 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1194                 last = evt[0] & PRIQ_0_PRG_LAST;
1195                 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1196
1197                 dev_info(smmu->dev, "unexpected PRI request received:\n");
1198                 dev_info(smmu->dev,
1199                          "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1200                          sid, ssid, grpid, last ? "L" : "",
1201                          evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1202                          evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1203                          evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1204                          evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1205                          evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1206
1207                 if (last) {
1208                         struct arm_smmu_cmdq_ent cmd = {
1209                                 .opcode                 = CMDQ_OP_PRI_RESP,
1210                                 .substream_valid        = ssv,
1211                                 .pri                    = {
1212                                         .sid    = sid,
1213                                         .ssid   = ssid,
1214                                         .grpid  = grpid,
1215                                         .resp   = PRI_RESP_DENY,
1216                                 },
1217                         };
1218
1219                         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1220                 }
1221         }
1222
1223         /* Sync our overflow flag, as we believe we're up to speed */
1224         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1225         return IRQ_HANDLED;
1226 }
1227
1228 static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1229 {
1230         irqreturn_t ret = IRQ_WAKE_THREAD;
1231         struct arm_smmu_device *smmu = dev;
1232         struct arm_smmu_queue *q = &smmu->priq.q;
1233
1234         /* PRIQ overflow indicates a programming error */
1235         if (queue_sync_prod(q) == -EOVERFLOW)
1236                 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1237         else if (queue_empty(q))
1238                 ret = IRQ_NONE;
1239
1240         return ret;
1241 }
1242
1243 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1244 {
1245         /* We don't actually use CMD_SYNC interrupts for anything */
1246         return IRQ_HANDLED;
1247 }
1248
1249 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1250
1251 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1252 {
1253         u32 gerror, gerrorn;
1254         struct arm_smmu_device *smmu = dev;
1255
1256         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1257         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1258
1259         gerror ^= gerrorn;
1260         if (!(gerror & GERROR_ERR_MASK))
1261                 return IRQ_NONE; /* No errors pending */
1262
1263         dev_warn(smmu->dev,
1264                  "unexpected global error reported (0x%08x), this could be serious\n",
1265                  gerror);
1266
1267         if (gerror & GERROR_SFM_ERR) {
1268                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1269                 arm_smmu_device_disable(smmu);
1270         }
1271
1272         if (gerror & GERROR_MSI_GERROR_ABT_ERR)
1273                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1274
1275         if (gerror & GERROR_MSI_PRIQ_ABT_ERR) {
1276                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1277                 arm_smmu_priq_handler(irq, smmu->dev);
1278         }
1279
1280         if (gerror & GERROR_MSI_EVTQ_ABT_ERR) {
1281                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1282                 arm_smmu_evtq_handler(irq, smmu->dev);
1283         }
1284
1285         if (gerror & GERROR_MSI_CMDQ_ABT_ERR) {
1286                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1287                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1288         }
1289
1290         if (gerror & GERROR_PRIQ_ABT_ERR)
1291                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1292
1293         if (gerror & GERROR_EVTQ_ABT_ERR)
1294                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1295
1296         if (gerror & GERROR_CMDQ_ERR)
1297                 arm_smmu_cmdq_skip_err(smmu);
1298
1299         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1300         return IRQ_HANDLED;
1301 }
1302
1303 /* IO_PGTABLE API */
1304 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1305 {
1306         struct arm_smmu_cmdq_ent cmd;
1307
1308         cmd.opcode = CMDQ_OP_CMD_SYNC;
1309         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1310 }
1311
1312 static void arm_smmu_tlb_sync(void *cookie)
1313 {
1314         struct arm_smmu_domain *smmu_domain = cookie;
1315         __arm_smmu_tlb_sync(smmu_domain->smmu);
1316 }
1317
1318 static void arm_smmu_tlb_inv_context(void *cookie)
1319 {
1320         struct arm_smmu_domain *smmu_domain = cookie;
1321         struct arm_smmu_device *smmu = smmu_domain->smmu;
1322         struct arm_smmu_cmdq_ent cmd;
1323
1324         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1325                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1326                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1327                 cmd.tlbi.vmid   = 0;
1328         } else {
1329                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1330                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1331         }
1332
1333         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1334         __arm_smmu_tlb_sync(smmu);
1335 }
1336
1337 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1338                                           bool leaf, void *cookie)
1339 {
1340         struct arm_smmu_domain *smmu_domain = cookie;
1341         struct arm_smmu_device *smmu = smmu_domain->smmu;
1342         struct arm_smmu_cmdq_ent cmd = {
1343                 .tlbi = {
1344                         .leaf   = leaf,
1345                         .addr   = iova,
1346                 },
1347         };
1348
1349         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1350                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1351                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1352         } else {
1353                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1354                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1355         }
1356
1357         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1358 }
1359
1360 static struct iommu_gather_ops arm_smmu_gather_ops = {
1361         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1362         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1363         .tlb_sync       = arm_smmu_tlb_sync,
1364 };
1365
1366 /* IOMMU API */
1367 static bool arm_smmu_capable(enum iommu_cap cap)
1368 {
1369         switch (cap) {
1370         case IOMMU_CAP_CACHE_COHERENCY:
1371                 return true;
1372         case IOMMU_CAP_INTR_REMAP:
1373                 return true; /* MSIs are just memory writes */
1374         case IOMMU_CAP_NOEXEC:
1375                 return true;
1376         default:
1377                 return false;
1378         }
1379 }
1380
1381 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1382 {
1383         struct arm_smmu_domain *smmu_domain;
1384
1385         if (type != IOMMU_DOMAIN_UNMANAGED)
1386                 return NULL;
1387
1388         /*
1389          * Allocate the domain and initialise some of its data structures.
1390          * We can't really do anything meaningful until we've added a
1391          * master.
1392          */
1393         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1394         if (!smmu_domain)
1395                 return NULL;
1396
1397         mutex_init(&smmu_domain->init_mutex);
1398         spin_lock_init(&smmu_domain->pgtbl_lock);
1399         return &smmu_domain->domain;
1400 }
1401
1402 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1403 {
1404         int idx, size = 1 << span;
1405
1406         do {
1407                 idx = find_first_zero_bit(map, size);
1408                 if (idx == size)
1409                         return -ENOSPC;
1410         } while (test_and_set_bit(idx, map));
1411
1412         return idx;
1413 }
1414
1415 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1416 {
1417         clear_bit(idx, map);
1418 }
1419
1420 static void arm_smmu_domain_free(struct iommu_domain *domain)
1421 {
1422         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1423         struct arm_smmu_device *smmu = smmu_domain->smmu;
1424
1425         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1426
1427         /* Free the CD and ASID, if we allocated them */
1428         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1429                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1430
1431                 if (cfg->cdptr) {
1432                         dma_free_coherent(smmu_domain->smmu->dev,
1433                                           CTXDESC_CD_DWORDS << 3,
1434                                           cfg->cdptr,
1435                                           cfg->cdptr_dma);
1436
1437                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1438                 }
1439         } else {
1440                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1441                 if (cfg->vmid)
1442                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1443         }
1444
1445         kfree(smmu_domain);
1446 }
1447
1448 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1449                                        struct io_pgtable_cfg *pgtbl_cfg)
1450 {
1451         int ret;
1452         int asid;
1453         struct arm_smmu_device *smmu = smmu_domain->smmu;
1454         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1455
1456         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1457         if (IS_ERR_VALUE(asid))
1458                 return asid;
1459
1460         cfg->cdptr = dma_zalloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1461                                          &cfg->cdptr_dma, GFP_KERNEL);
1462         if (!cfg->cdptr) {
1463                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1464                 ret = -ENOMEM;
1465                 goto out_free_asid;
1466         }
1467
1468         cfg->cd.asid    = (u16)asid;
1469         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1470         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1471         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1472         return 0;
1473
1474 out_free_asid:
1475         arm_smmu_bitmap_free(smmu->asid_map, asid);
1476         return ret;
1477 }
1478
1479 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1480                                        struct io_pgtable_cfg *pgtbl_cfg)
1481 {
1482         int vmid;
1483         struct arm_smmu_device *smmu = smmu_domain->smmu;
1484         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1485
1486         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1487         if (IS_ERR_VALUE(vmid))
1488                 return vmid;
1489
1490         cfg->vmid       = (u16)vmid;
1491         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1492         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1493         return 0;
1494 }
1495
1496 static struct iommu_ops arm_smmu_ops;
1497
1498 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1499 {
1500         int ret;
1501         unsigned long ias, oas;
1502         enum io_pgtable_fmt fmt;
1503         struct io_pgtable_cfg pgtbl_cfg;
1504         struct io_pgtable_ops *pgtbl_ops;
1505         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1506                                  struct io_pgtable_cfg *);
1507         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1508         struct arm_smmu_device *smmu = smmu_domain->smmu;
1509
1510         /* Restrict the stage to what we can actually support */
1511         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1512                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1513         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1514                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1515
1516         switch (smmu_domain->stage) {
1517         case ARM_SMMU_DOMAIN_S1:
1518                 ias = VA_BITS;
1519                 oas = smmu->ias;
1520                 fmt = ARM_64_LPAE_S1;
1521                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1522                 break;
1523         case ARM_SMMU_DOMAIN_NESTED:
1524         case ARM_SMMU_DOMAIN_S2:
1525                 ias = smmu->ias;
1526                 oas = smmu->oas;
1527                 fmt = ARM_64_LPAE_S2;
1528                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1529                 break;
1530         default:
1531                 return -EINVAL;
1532         }
1533
1534         pgtbl_cfg = (struct io_pgtable_cfg) {
1535                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
1536                 .ias            = ias,
1537                 .oas            = oas,
1538                 .tlb            = &arm_smmu_gather_ops,
1539                 .iommu_dev      = smmu->dev,
1540         };
1541
1542         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1543         if (!pgtbl_ops)
1544                 return -ENOMEM;
1545
1546         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1547         smmu_domain->pgtbl_ops = pgtbl_ops;
1548
1549         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1550         if (IS_ERR_VALUE(ret))
1551                 free_io_pgtable_ops(pgtbl_ops);
1552
1553         return ret;
1554 }
1555
1556 static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1557 {
1558         struct iommu_group *group;
1559         struct arm_smmu_group *smmu_group;
1560
1561         group = iommu_group_get(dev);
1562         if (!group)
1563                 return NULL;
1564
1565         smmu_group = iommu_group_get_iommudata(group);
1566         iommu_group_put(group);
1567         return smmu_group;
1568 }
1569
1570 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1571 {
1572         __le64 *step;
1573         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1574
1575         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1576                 struct arm_smmu_strtab_l1_desc *l1_desc;
1577                 int idx;
1578
1579                 /* Two-level walk */
1580                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1581                 l1_desc = &cfg->l1_desc[idx];
1582                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1583                 step = &l1_desc->l2ptr[idx];
1584         } else {
1585                 /* Simple linear lookup */
1586                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1587         }
1588
1589         return step;
1590 }
1591
1592 static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1593 {
1594         int i;
1595         struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1596         struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1597         struct arm_smmu_device *smmu = smmu_group->smmu;
1598
1599         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1600                 ste->s1_cfg = &smmu_domain->s1_cfg;
1601                 ste->s2_cfg = NULL;
1602                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1603         } else {
1604                 ste->s1_cfg = NULL;
1605                 ste->s2_cfg = &smmu_domain->s2_cfg;
1606         }
1607
1608         for (i = 0; i < smmu_group->num_sids; ++i) {
1609                 u32 sid = smmu_group->sids[i];
1610                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1611
1612                 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1613         }
1614
1615         return 0;
1616 }
1617
1618 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1619 {
1620         int ret = 0;
1621         struct arm_smmu_device *smmu;
1622         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1623         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1624
1625         if (!smmu_group)
1626                 return -ENOENT;
1627
1628         /* Already attached to a different domain? */
1629         if (smmu_group->domain && smmu_group->domain != smmu_domain)
1630                 return -EEXIST;
1631
1632         smmu = smmu_group->smmu;
1633         mutex_lock(&smmu_domain->init_mutex);
1634
1635         if (!smmu_domain->smmu) {
1636                 smmu_domain->smmu = smmu;
1637                 ret = arm_smmu_domain_finalise(domain);
1638                 if (ret) {
1639                         smmu_domain->smmu = NULL;
1640                         goto out_unlock;
1641                 }
1642         } else if (smmu_domain->smmu != smmu) {
1643                 dev_err(dev,
1644                         "cannot attach to SMMU %s (upstream of %s)\n",
1645                         dev_name(smmu_domain->smmu->dev),
1646                         dev_name(smmu->dev));
1647                 ret = -ENXIO;
1648                 goto out_unlock;
1649         }
1650
1651         /* Group already attached to this domain? */
1652         if (smmu_group->domain)
1653                 goto out_unlock;
1654
1655         smmu_group->domain      = smmu_domain;
1656         smmu_group->ste.bypass  = false;
1657
1658         ret = arm_smmu_install_ste_for_group(smmu_group);
1659         if (IS_ERR_VALUE(ret))
1660                 smmu_group->domain = NULL;
1661
1662 out_unlock:
1663         mutex_unlock(&smmu_domain->init_mutex);
1664         return ret;
1665 }
1666
1667 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1668 {
1669         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1670         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1671
1672         BUG_ON(!smmu_domain);
1673         BUG_ON(!smmu_group);
1674
1675         mutex_lock(&smmu_domain->init_mutex);
1676         BUG_ON(smmu_group->domain != smmu_domain);
1677
1678         smmu_group->ste.bypass = true;
1679         if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1680                 dev_warn(dev, "failed to install bypass STE\n");
1681
1682         smmu_group->domain = NULL;
1683         mutex_unlock(&smmu_domain->init_mutex);
1684 }
1685
1686 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1687                         phys_addr_t paddr, size_t size, int prot)
1688 {
1689         int ret;
1690         unsigned long flags;
1691         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1692         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1693
1694         if (!ops)
1695                 return -ENODEV;
1696
1697         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1698         ret = ops->map(ops, iova, paddr, size, prot);
1699         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1700         return ret;
1701 }
1702
1703 static size_t
1704 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1705 {
1706         size_t ret;
1707         unsigned long flags;
1708         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1709         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1710
1711         if (!ops)
1712                 return 0;
1713
1714         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1715         ret = ops->unmap(ops, iova, size);
1716         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1717         return ret;
1718 }
1719
1720 static phys_addr_t
1721 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1722 {
1723         phys_addr_t ret;
1724         unsigned long flags;
1725         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1726         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1727
1728         if (!ops)
1729                 return 0;
1730
1731         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1732         ret = ops->iova_to_phys(ops, iova);
1733         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1734
1735         return ret;
1736 }
1737
1738 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1739 {
1740         *(u32 *)sidp = alias;
1741         return 0; /* Continue walking */
1742 }
1743
1744 static void __arm_smmu_release_pci_iommudata(void *data)
1745 {
1746         kfree(data);
1747 }
1748
1749 static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1750 {
1751         struct device_node *of_node;
1752         struct platform_device *smmu_pdev;
1753         struct arm_smmu_device *smmu = NULL;
1754         struct pci_bus *bus = pdev->bus;
1755
1756         /* Walk up to the root bus */
1757         while (!pci_is_root_bus(bus))
1758                 bus = bus->parent;
1759
1760         /* Follow the "iommus" phandle from the host controller */
1761         of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1762         if (!of_node)
1763                 return NULL;
1764
1765         /* See if we can find an SMMU corresponding to the phandle */
1766         smmu_pdev = of_find_device_by_node(of_node);
1767         if (smmu_pdev)
1768                 smmu = platform_get_drvdata(smmu_pdev);
1769
1770         of_node_put(of_node);
1771         return smmu;
1772 }
1773
1774 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1775 {
1776         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1777
1778         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1779                 limit *= 1UL << STRTAB_SPLIT;
1780
1781         return sid < limit;
1782 }
1783
1784 static int arm_smmu_add_device(struct device *dev)
1785 {
1786         int i, ret;
1787         u32 sid, *sids;
1788         struct pci_dev *pdev;
1789         struct iommu_group *group;
1790         struct arm_smmu_group *smmu_group;
1791         struct arm_smmu_device *smmu;
1792
1793         /* We only support PCI, for now */
1794         if (!dev_is_pci(dev))
1795                 return -ENODEV;
1796
1797         pdev = to_pci_dev(dev);
1798         group = iommu_group_get_for_dev(dev);
1799         if (IS_ERR(group))
1800                 return PTR_ERR(group);
1801
1802         smmu_group = iommu_group_get_iommudata(group);
1803         if (!smmu_group) {
1804                 smmu = arm_smmu_get_for_pci_dev(pdev);
1805                 if (!smmu) {
1806                         ret = -ENOENT;
1807                         goto out_put_group;
1808                 }
1809
1810                 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1811                 if (!smmu_group) {
1812                         ret = -ENOMEM;
1813                         goto out_put_group;
1814                 }
1815
1816                 smmu_group->ste.valid   = true;
1817                 smmu_group->smmu        = smmu;
1818                 iommu_group_set_iommudata(group, smmu_group,
1819                                           __arm_smmu_release_pci_iommudata);
1820         } else {
1821                 smmu = smmu_group->smmu;
1822         }
1823
1824         /* Assume SID == RID until firmware tells us otherwise */
1825         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1826         for (i = 0; i < smmu_group->num_sids; ++i) {
1827                 /* If we already know about this SID, then we're done */
1828                 if (smmu_group->sids[i] == sid)
1829                         return 0;
1830         }
1831
1832         /* Check the SID is in range of the SMMU and our stream table */
1833         if (!arm_smmu_sid_in_range(smmu, sid)) {
1834                 ret = -ERANGE;
1835                 goto out_put_group;
1836         }
1837
1838         /* Ensure l2 strtab is initialised */
1839         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1840                 ret = arm_smmu_init_l2_strtab(smmu, sid);
1841                 if (ret)
1842                         goto out_put_group;
1843         }
1844
1845         /* Resize the SID array for the group */
1846         smmu_group->num_sids++;
1847         sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1848                         GFP_KERNEL);
1849         if (!sids) {
1850                 smmu_group->num_sids--;
1851                 ret = -ENOMEM;
1852                 goto out_put_group;
1853         }
1854
1855         /* Add the new SID */
1856         sids[smmu_group->num_sids - 1] = sid;
1857         smmu_group->sids = sids;
1858         return 0;
1859
1860 out_put_group:
1861         iommu_group_put(group);
1862         return ret;
1863 }
1864
1865 static void arm_smmu_remove_device(struct device *dev)
1866 {
1867         iommu_group_remove_device(dev);
1868 }
1869
1870 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1871                                     enum iommu_attr attr, void *data)
1872 {
1873         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1874
1875         switch (attr) {
1876         case DOMAIN_ATTR_NESTING:
1877                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1878                 return 0;
1879         default:
1880                 return -ENODEV;
1881         }
1882 }
1883
1884 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1885                                     enum iommu_attr attr, void *data)
1886 {
1887         int ret = 0;
1888         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1889
1890         mutex_lock(&smmu_domain->init_mutex);
1891
1892         switch (attr) {
1893         case DOMAIN_ATTR_NESTING:
1894                 if (smmu_domain->smmu) {
1895                         ret = -EPERM;
1896                         goto out_unlock;
1897                 }
1898
1899                 if (*(int *)data)
1900                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1901                 else
1902                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1903
1904                 break;
1905         default:
1906                 ret = -ENODEV;
1907         }
1908
1909 out_unlock:
1910         mutex_unlock(&smmu_domain->init_mutex);
1911         return ret;
1912 }
1913
1914 static struct iommu_ops arm_smmu_ops = {
1915         .capable                = arm_smmu_capable,
1916         .domain_alloc           = arm_smmu_domain_alloc,
1917         .domain_free            = arm_smmu_domain_free,
1918         .attach_dev             = arm_smmu_attach_dev,
1919         .detach_dev             = arm_smmu_detach_dev,
1920         .map                    = arm_smmu_map,
1921         .unmap                  = arm_smmu_unmap,
1922         .iova_to_phys           = arm_smmu_iova_to_phys,
1923         .add_device             = arm_smmu_add_device,
1924         .remove_device          = arm_smmu_remove_device,
1925         .device_group           = pci_device_group,
1926         .domain_get_attr        = arm_smmu_domain_get_attr,
1927         .domain_set_attr        = arm_smmu_domain_set_attr,
1928         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1929 };
1930
1931 /* Probing and initialisation functions */
1932 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1933                                    struct arm_smmu_queue *q,
1934                                    unsigned long prod_off,
1935                                    unsigned long cons_off,
1936                                    size_t dwords)
1937 {
1938         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1939
1940         q->base = dma_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1941         if (!q->base) {
1942                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1943                         qsz);
1944                 return -ENOMEM;
1945         }
1946
1947         q->prod_reg     = smmu->base + prod_off;
1948         q->cons_reg     = smmu->base + cons_off;
1949         q->ent_dwords   = dwords;
1950
1951         q->q_base  = Q_BASE_RWA;
1952         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1953         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1954                      << Q_BASE_LOG2SIZE_SHIFT;
1955
1956         q->prod = q->cons = 0;
1957         return 0;
1958 }
1959
1960 static void arm_smmu_free_one_queue(struct arm_smmu_device *smmu,
1961                                     struct arm_smmu_queue *q)
1962 {
1963         size_t qsz = ((1 << q->max_n_shift) * q->ent_dwords) << 3;
1964
1965         dma_free_coherent(smmu->dev, qsz, q->base, q->base_dma);
1966 }
1967
1968 static void arm_smmu_free_queues(struct arm_smmu_device *smmu)
1969 {
1970         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
1971         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
1972
1973         if (smmu->features & ARM_SMMU_FEAT_PRI)
1974                 arm_smmu_free_one_queue(smmu, &smmu->priq.q);
1975 }
1976
1977 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1978 {
1979         int ret;
1980
1981         /* cmdq */
1982         spin_lock_init(&smmu->cmdq.lock);
1983         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1984                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1985         if (ret)
1986                 goto out;
1987
1988         /* evtq */
1989         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1990                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1991         if (ret)
1992                 goto out_free_cmdq;
1993
1994         /* priq */
1995         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1996                 return 0;
1997
1998         ret = arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1999                                       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2000         if (ret)
2001                 goto out_free_evtq;
2002
2003         return 0;
2004
2005 out_free_evtq:
2006         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
2007 out_free_cmdq:
2008         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
2009 out:
2010         return ret;
2011 }
2012
2013 static void arm_smmu_free_l2_strtab(struct arm_smmu_device *smmu)
2014 {
2015         int i;
2016         size_t size;
2017         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2018
2019         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
2020         for (i = 0; i < cfg->num_l1_ents; ++i) {
2021                 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[i];
2022
2023                 if (!desc->l2ptr)
2024                         continue;
2025
2026                 dma_free_coherent(smmu->dev, size, desc->l2ptr,
2027                                   desc->l2ptr_dma);
2028         }
2029 }
2030
2031 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2032 {
2033         unsigned int i;
2034         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2035         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2036         void *strtab = smmu->strtab_cfg.strtab;
2037
2038         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2039         if (!cfg->l1_desc) {
2040                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2041                 return -ENOMEM;
2042         }
2043
2044         for (i = 0; i < cfg->num_l1_ents; ++i) {
2045                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2046                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2047         }
2048
2049         return 0;
2050 }
2051
2052 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2053 {
2054         void *strtab;
2055         u64 reg;
2056         u32 size, l1size;
2057         int ret;
2058         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2059
2060         /*
2061          * If we can resolve everything with a single L2 table, then we
2062          * just need a single L1 descriptor. Otherwise, calculate the L1
2063          * size, capped to the SIDSIZE.
2064          */
2065         if (smmu->sid_bits < STRTAB_SPLIT) {
2066                 size = 0;
2067         } else {
2068                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2069                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2070         }
2071         cfg->num_l1_ents = 1 << size;
2072
2073         size += STRTAB_SPLIT;
2074         if (size < smmu->sid_bits)
2075                 dev_warn(smmu->dev,
2076                          "2-level strtab only covers %u/%u bits of SID\n",
2077                          size, smmu->sid_bits);
2078
2079         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2080         strtab = dma_zalloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2081                                      GFP_KERNEL);
2082         if (!strtab) {
2083                 dev_err(smmu->dev,
2084                         "failed to allocate l1 stream table (%u bytes)\n",
2085                         size);
2086                 return -ENOMEM;
2087         }
2088         cfg->strtab = strtab;
2089
2090         /* Configure strtab_base_cfg for 2 levels */
2091         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2092         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2093                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2094         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2095                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2096         cfg->strtab_base_cfg = reg;
2097
2098         ret = arm_smmu_init_l1_strtab(smmu);
2099         if (ret)
2100                 dma_free_coherent(smmu->dev,
2101                                   l1size,
2102                                   strtab,
2103                                   cfg->strtab_dma);
2104         return ret;
2105 }
2106
2107 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2108 {
2109         void *strtab;
2110         u64 reg;
2111         u32 size;
2112         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2113
2114         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2115         strtab = dma_zalloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2116                                      GFP_KERNEL);
2117         if (!strtab) {
2118                 dev_err(smmu->dev,
2119                         "failed to allocate linear stream table (%u bytes)\n",
2120                         size);
2121                 return -ENOMEM;
2122         }
2123         cfg->strtab = strtab;
2124         cfg->num_l1_ents = 1 << smmu->sid_bits;
2125
2126         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2127         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2128         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2129                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2130         cfg->strtab_base_cfg = reg;
2131
2132         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2133         return 0;
2134 }
2135
2136 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2137 {
2138         u64 reg;
2139         int ret;
2140
2141         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2142                 ret = arm_smmu_init_strtab_2lvl(smmu);
2143         else
2144                 ret = arm_smmu_init_strtab_linear(smmu);
2145
2146         if (ret)
2147                 return ret;
2148
2149         /* Set the strtab base address */
2150         reg  = smmu->strtab_cfg.strtab_dma &
2151                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2152         reg |= STRTAB_BASE_RA;
2153         smmu->strtab_cfg.strtab_base = reg;
2154
2155         /* Allocate the first VMID for stage-2 bypass STEs */
2156         set_bit(0, smmu->vmid_map);
2157         return 0;
2158 }
2159
2160 static void arm_smmu_free_strtab(struct arm_smmu_device *smmu)
2161 {
2162         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2163         u32 size = cfg->num_l1_ents;
2164
2165         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
2166                 arm_smmu_free_l2_strtab(smmu);
2167                 size *= STRTAB_L1_DESC_DWORDS << 3;
2168         } else {
2169                 size *= STRTAB_STE_DWORDS * 3;
2170         }
2171
2172         dma_free_coherent(smmu->dev, size, cfg->strtab, cfg->strtab_dma);
2173 }
2174
2175 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2176 {
2177         int ret;
2178
2179         ret = arm_smmu_init_queues(smmu);
2180         if (ret)
2181                 return ret;
2182
2183         ret = arm_smmu_init_strtab(smmu);
2184         if (ret)
2185                 goto out_free_queues;
2186
2187         return 0;
2188
2189 out_free_queues:
2190         arm_smmu_free_queues(smmu);
2191         return ret;
2192 }
2193
2194 static void arm_smmu_free_structures(struct arm_smmu_device *smmu)
2195 {
2196         arm_smmu_free_strtab(smmu);
2197         arm_smmu_free_queues(smmu);
2198 }
2199
2200 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2201                                    unsigned int reg_off, unsigned int ack_off)
2202 {
2203         u32 reg;
2204
2205         writel_relaxed(val, smmu->base + reg_off);
2206         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2207                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2208 }
2209
2210 static void arm_smmu_free_msis(void *data)
2211 {
2212         struct device *dev = data;
2213         platform_msi_domain_free_irqs(dev);
2214 }
2215
2216 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2217 {
2218         phys_addr_t doorbell;
2219         struct device *dev = msi_desc_to_dev(desc);
2220         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2221         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2222
2223         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2224         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2225
2226         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2227         writel_relaxed(msg->data, smmu->base + cfg[1]);
2228         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2229 }
2230
2231 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2232 {
2233         struct msi_desc *desc;
2234         int ret, nvec = ARM_SMMU_MAX_MSIS;
2235         struct device *dev = smmu->dev;
2236
2237         /* Clear the MSI address regs */
2238         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2239         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2240
2241         if (smmu->features & ARM_SMMU_FEAT_PRI)
2242                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2243         else
2244                 nvec--;
2245
2246         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2247                 return;
2248
2249         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2250         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2251         if (ret) {
2252                 dev_warn(dev, "failed to allocate MSIs\n");
2253                 return;
2254         }
2255
2256         for_each_msi_entry(desc, dev) {
2257                 switch (desc->platform.msi_index) {
2258                 case EVTQ_MSI_INDEX:
2259                         smmu->evtq.q.irq = desc->irq;
2260                         break;
2261                 case GERROR_MSI_INDEX:
2262                         smmu->gerr_irq = desc->irq;
2263                         break;
2264                 case PRIQ_MSI_INDEX:
2265                         smmu->priq.q.irq = desc->irq;
2266                         break;
2267                 default:        /* Unknown */
2268                         continue;
2269                 }
2270         }
2271
2272         /* Add callback to free MSIs on teardown */
2273         devm_add_action(dev, arm_smmu_free_msis, dev);
2274 }
2275
2276 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2277 {
2278         int ret, irq;
2279         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2280
2281         /* Disable IRQs first */
2282         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2283                                       ARM_SMMU_IRQ_CTRLACK);
2284         if (ret) {
2285                 dev_err(smmu->dev, "failed to disable irqs\n");
2286                 return ret;
2287         }
2288
2289         arm_smmu_setup_msis(smmu);
2290
2291         /* Request interrupt lines */
2292         irq = smmu->evtq.q.irq;
2293         if (irq) {
2294                 ret = devm_request_threaded_irq(smmu->dev, irq,
2295                                                 arm_smmu_evtq_handler,
2296                                                 arm_smmu_evtq_thread,
2297                                                 0, "arm-smmu-v3-evtq", smmu);
2298                 if (IS_ERR_VALUE(ret))
2299                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2300         }
2301
2302         irq = smmu->cmdq.q.irq;
2303         if (irq) {
2304                 ret = devm_request_irq(smmu->dev, irq,
2305                                        arm_smmu_cmdq_sync_handler, 0,
2306                                        "arm-smmu-v3-cmdq-sync", smmu);
2307                 if (IS_ERR_VALUE(ret))
2308                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2309         }
2310
2311         irq = smmu->gerr_irq;
2312         if (irq) {
2313                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2314                                        0, "arm-smmu-v3-gerror", smmu);
2315                 if (IS_ERR_VALUE(ret))
2316                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2317         }
2318
2319         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2320                 irq = smmu->priq.q.irq;
2321                 if (irq) {
2322                         ret = devm_request_threaded_irq(smmu->dev, irq,
2323                                                         arm_smmu_priq_handler,
2324                                                         arm_smmu_priq_thread,
2325                                                         0, "arm-smmu-v3-priq",
2326                                                         smmu);
2327                         if (IS_ERR_VALUE(ret))
2328                                 dev_warn(smmu->dev,
2329                                          "failed to enable priq irq\n");
2330                         else
2331                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2332                 }
2333         }
2334
2335         /* Enable interrupt generation on the SMMU */
2336         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2337                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2338         if (ret)
2339                 dev_warn(smmu->dev, "failed to enable irqs\n");
2340
2341         return 0;
2342 }
2343
2344 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2345 {
2346         int ret;
2347
2348         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2349         if (ret)
2350                 dev_err(smmu->dev, "failed to clear cr0\n");
2351
2352         return ret;
2353 }
2354
2355 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2356 {
2357         int ret;
2358         u32 reg, enables;
2359         struct arm_smmu_cmdq_ent cmd;
2360
2361         /* Clear CR0 and sync (disables SMMU and queue processing) */
2362         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2363         if (reg & CR0_SMMUEN)
2364                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2365
2366         ret = arm_smmu_device_disable(smmu);
2367         if (ret)
2368                 return ret;
2369
2370         /* CR1 (table and queue memory attributes) */
2371         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2372               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2373               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2374               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2375               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2376               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2377         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2378
2379         /* CR2 (random crap) */
2380         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2381         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2382
2383         /* Stream table */
2384         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2385                        smmu->base + ARM_SMMU_STRTAB_BASE);
2386         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2387                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2388
2389         /* Command queue */
2390         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2391         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2392         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2393
2394         enables = CR0_CMDQEN;
2395         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2396                                       ARM_SMMU_CR0ACK);
2397         if (ret) {
2398                 dev_err(smmu->dev, "failed to enable command queue\n");
2399                 return ret;
2400         }
2401
2402         /* Invalidate any cached configuration */
2403         cmd.opcode = CMDQ_OP_CFGI_ALL;
2404         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2405         cmd.opcode = CMDQ_OP_CMD_SYNC;
2406         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2407
2408         /* Invalidate any stale TLB entries */
2409         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2410                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2411                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2412         }
2413
2414         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2415         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2416         cmd.opcode = CMDQ_OP_CMD_SYNC;
2417         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2418
2419         /* Event queue */
2420         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2421         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2422         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2423
2424         enables |= CR0_EVTQEN;
2425         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2426                                       ARM_SMMU_CR0ACK);
2427         if (ret) {
2428                 dev_err(smmu->dev, "failed to enable event queue\n");
2429                 return ret;
2430         }
2431
2432         /* PRI queue */
2433         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2434                 writeq_relaxed(smmu->priq.q.q_base,
2435                                smmu->base + ARM_SMMU_PRIQ_BASE);
2436                 writel_relaxed(smmu->priq.q.prod,
2437                                smmu->base + ARM_SMMU_PRIQ_PROD);
2438                 writel_relaxed(smmu->priq.q.cons,
2439                                smmu->base + ARM_SMMU_PRIQ_CONS);
2440
2441                 enables |= CR0_PRIQEN;
2442                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2443                                               ARM_SMMU_CR0ACK);
2444                 if (ret) {
2445                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2446                         return ret;
2447                 }
2448         }
2449
2450         ret = arm_smmu_setup_irqs(smmu);
2451         if (ret) {
2452                 dev_err(smmu->dev, "failed to setup irqs\n");
2453                 return ret;
2454         }
2455
2456         /* Enable the SMMU interface */
2457         enables |= CR0_SMMUEN;
2458         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2459                                       ARM_SMMU_CR0ACK);
2460         if (ret) {
2461                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2462                 return ret;
2463         }
2464
2465         return 0;
2466 }
2467
2468 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2469 {
2470         u32 reg;
2471         bool coherent;
2472         unsigned long pgsize_bitmap = 0;
2473
2474         /* IDR0 */
2475         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2476
2477         /* 2-level structures */
2478         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2479                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2480
2481         if (reg & IDR0_CD2L)
2482                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2483
2484         /*
2485          * Translation table endianness.
2486          * We currently require the same endianness as the CPU, but this
2487          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2488          */
2489         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2490         case IDR0_TTENDIAN_MIXED:
2491                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2492                 break;
2493 #ifdef __BIG_ENDIAN
2494         case IDR0_TTENDIAN_BE:
2495                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2496                 break;
2497 #else
2498         case IDR0_TTENDIAN_LE:
2499                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2500                 break;
2501 #endif
2502         default:
2503                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2504                 return -ENXIO;
2505         }
2506
2507         /* Boolean feature flags */
2508         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2509                 smmu->features |= ARM_SMMU_FEAT_PRI;
2510
2511         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2512                 smmu->features |= ARM_SMMU_FEAT_ATS;
2513
2514         if (reg & IDR0_SEV)
2515                 smmu->features |= ARM_SMMU_FEAT_SEV;
2516
2517         if (reg & IDR0_MSI)
2518                 smmu->features |= ARM_SMMU_FEAT_MSI;
2519
2520         if (reg & IDR0_HYP)
2521                 smmu->features |= ARM_SMMU_FEAT_HYP;
2522
2523         /*
2524          * The dma-coherent property is used in preference to the ID
2525          * register, but warn on mismatch.
2526          */
2527         coherent = of_dma_is_coherent(smmu->dev->of_node);
2528         if (coherent)
2529                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2530
2531         if (!!(reg & IDR0_COHACC) != coherent)
2532                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2533                          coherent ? "true" : "false");
2534
2535         if (reg & IDR0_STALL_MODEL)
2536                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2537
2538         if (reg & IDR0_S1P)
2539                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2540
2541         if (reg & IDR0_S2P)
2542                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2543
2544         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2545                 dev_err(smmu->dev, "no translation support!\n");
2546                 return -ENXIO;
2547         }
2548
2549         /* We only support the AArch64 table format at present */
2550         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2551         case IDR0_TTF_AARCH32_64:
2552                 smmu->ias = 40;
2553                 /* Fallthrough */
2554         case IDR0_TTF_AARCH64:
2555                 break;
2556         default:
2557                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2558                 return -ENXIO;
2559         }
2560
2561         /* ASID/VMID sizes */
2562         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2563         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2564
2565         /* IDR1 */
2566         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2567         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2568                 dev_err(smmu->dev, "embedded implementation not supported\n");
2569                 return -ENXIO;
2570         }
2571
2572         /* Queue sizes, capped at 4k */
2573         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2574                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2575         if (!smmu->cmdq.q.max_n_shift) {
2576                 /* Odd alignment restrictions on the base, so ignore for now */
2577                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2578                 return -ENXIO;
2579         }
2580
2581         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2582                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2583         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2584                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2585
2586         /* SID/SSID sizes */
2587         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2588         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2589
2590         /* IDR5 */
2591         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2592
2593         /* Maximum number of outstanding stalls */
2594         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2595                                 & IDR5_STALL_MAX_MASK;
2596
2597         /* Page sizes */
2598         if (reg & IDR5_GRAN64K)
2599                 pgsize_bitmap |= SZ_64K | SZ_512M;
2600         if (reg & IDR5_GRAN16K)
2601                 pgsize_bitmap |= SZ_16K | SZ_32M;
2602         if (reg & IDR5_GRAN4K)
2603                 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2604
2605         arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2606
2607         /* Output address size */
2608         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2609         case IDR5_OAS_32_BIT:
2610                 smmu->oas = 32;
2611                 break;
2612         case IDR5_OAS_36_BIT:
2613                 smmu->oas = 36;
2614                 break;
2615         case IDR5_OAS_40_BIT:
2616                 smmu->oas = 40;
2617                 break;
2618         case IDR5_OAS_42_BIT:
2619                 smmu->oas = 42;
2620                 break;
2621         case IDR5_OAS_44_BIT:
2622                 smmu->oas = 44;
2623                 break;
2624         default:
2625                 dev_info(smmu->dev,
2626                         "unknown output address size. Truncating to 48-bit\n");
2627                 /* Fallthrough */
2628         case IDR5_OAS_48_BIT:
2629                 smmu->oas = 48;
2630         }
2631
2632         /* Set the DMA mask for our table walker */
2633         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2634                 dev_warn(smmu->dev,
2635                          "failed to set DMA mask for table walker\n");
2636
2637         smmu->ias = max(smmu->ias, smmu->oas);
2638
2639         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2640                  smmu->ias, smmu->oas, smmu->features);
2641         return 0;
2642 }
2643
2644 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2645 {
2646         int irq, ret;
2647         struct resource *res;
2648         struct arm_smmu_device *smmu;
2649         struct device *dev = &pdev->dev;
2650
2651         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2652         if (!smmu) {
2653                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2654                 return -ENOMEM;
2655         }
2656         smmu->dev = dev;
2657
2658         /* Base address */
2659         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2660         if (resource_size(res) + 1 < SZ_128K) {
2661                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2662                 return -EINVAL;
2663         }
2664
2665         smmu->base = devm_ioremap_resource(dev, res);
2666         if (IS_ERR(smmu->base))
2667                 return PTR_ERR(smmu->base);
2668
2669         /* Interrupt lines */
2670         irq = platform_get_irq_byname(pdev, "eventq");
2671         if (irq > 0)
2672                 smmu->evtq.q.irq = irq;
2673
2674         irq = platform_get_irq_byname(pdev, "priq");
2675         if (irq > 0)
2676                 smmu->priq.q.irq = irq;
2677
2678         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2679         if (irq > 0)
2680                 smmu->cmdq.q.irq = irq;
2681
2682         irq = platform_get_irq_byname(pdev, "gerror");
2683         if (irq > 0)
2684                 smmu->gerr_irq = irq;
2685
2686         parse_driver_options(smmu);
2687
2688         /* Probe the h/w */
2689         ret = arm_smmu_device_probe(smmu);
2690         if (ret)
2691                 return ret;
2692
2693         /* Initialise in-memory data structures */
2694         ret = arm_smmu_init_structures(smmu);
2695         if (ret)
2696                 return ret;
2697
2698         /* Record our private device structure */
2699         platform_set_drvdata(pdev, smmu);
2700
2701         /* Reset the device */
2702         ret = arm_smmu_device_reset(smmu);
2703         if (ret)
2704                 goto out_free_structures;
2705
2706         return 0;
2707
2708 out_free_structures:
2709         arm_smmu_free_structures(smmu);
2710         return ret;
2711 }
2712
2713 static int arm_smmu_device_remove(struct platform_device *pdev)
2714 {
2715         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2716
2717         arm_smmu_device_disable(smmu);
2718         arm_smmu_free_structures(smmu);
2719         return 0;
2720 }
2721
2722 static struct of_device_id arm_smmu_of_match[] = {
2723         { .compatible = "arm,smmu-v3", },
2724         { },
2725 };
2726 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2727
2728 static struct platform_driver arm_smmu_driver = {
2729         .driver = {
2730                 .name           = "arm-smmu-v3",
2731                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2732         },
2733         .probe  = arm_smmu_device_dt_probe,
2734         .remove = arm_smmu_device_remove,
2735 };
2736
2737 static int __init arm_smmu_init(void)
2738 {
2739         struct device_node *np;
2740         int ret;
2741
2742         np = of_find_matching_node(NULL, arm_smmu_of_match);
2743         if (!np)
2744                 return 0;
2745
2746         of_node_put(np);
2747
2748         ret = platform_driver_register(&arm_smmu_driver);
2749         if (ret)
2750                 return ret;
2751
2752         return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2753 }
2754
2755 static void __exit arm_smmu_exit(void)
2756 {
2757         return platform_driver_unregister(&arm_smmu_driver);
2758 }
2759
2760 subsys_initcall(arm_smmu_init);
2761 module_exit(arm_smmu_exit);
2762
2763 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2764 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2765 MODULE_LICENSE("GPL v2");