]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/iommu/arm-smmu.c
iommu: Move default domain allocation to iommu_group_get_for_dev()
[karo-tx-linux.git] / drivers / iommu / arm-smmu.c
1 /*
2  * IOMMU API for ARM architected SMMU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16  *
17  * Copyright (C) 2013 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  *
21  * This driver currently supports:
22  *      - SMMUv1 and v2 implementations
23  *      - Stream-matching and stream-indexing
24  *      - v7/v8 long-descriptor format
25  *      - Non-secure access to the SMMU
26  *      - Context fault reporting
27  */
28
29 #define pr_fmt(fmt) "arm-smmu: " fmt
30
31 #include <linux/delay.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/io.h>
36 #include <linux/iommu.h>
37 #include <linux/iopoll.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/of_address.h>
41 #include <linux/pci.h>
42 #include <linux/platform_device.h>
43 #include <linux/slab.h>
44 #include <linux/spinlock.h>
45
46 #include <linux/amba/bus.h>
47
48 #include "io-pgtable.h"
49
50 /* Maximum number of stream IDs assigned to a single device */
51 #define MAX_MASTER_STREAMIDS            MAX_PHANDLE_ARGS
52
53 /* Maximum number of context banks per SMMU */
54 #define ARM_SMMU_MAX_CBS                128
55
56 /* Maximum number of mapping groups per SMMU */
57 #define ARM_SMMU_MAX_SMRS               128
58
59 /* SMMU global address space */
60 #define ARM_SMMU_GR0(smmu)              ((smmu)->base)
61 #define ARM_SMMU_GR1(smmu)              ((smmu)->base + (1 << (smmu)->pgshift))
62
63 /*
64  * SMMU global address space with conditional offset to access secure
65  * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
66  * nsGFSYNR0: 0x450)
67  */
68 #define ARM_SMMU_GR0_NS(smmu)                                           \
69         ((smmu)->base +                                                 \
70                 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)       \
71                         ? 0x400 : 0))
72
73 /* Configuration registers */
74 #define ARM_SMMU_GR0_sCR0               0x0
75 #define sCR0_CLIENTPD                   (1 << 0)
76 #define sCR0_GFRE                       (1 << 1)
77 #define sCR0_GFIE                       (1 << 2)
78 #define sCR0_GCFGFRE                    (1 << 4)
79 #define sCR0_GCFGFIE                    (1 << 5)
80 #define sCR0_USFCFG                     (1 << 10)
81 #define sCR0_VMIDPNE                    (1 << 11)
82 #define sCR0_PTM                        (1 << 12)
83 #define sCR0_FB                         (1 << 13)
84 #define sCR0_BSU_SHIFT                  14
85 #define sCR0_BSU_MASK                   0x3
86
87 /* Identification registers */
88 #define ARM_SMMU_GR0_ID0                0x20
89 #define ARM_SMMU_GR0_ID1                0x24
90 #define ARM_SMMU_GR0_ID2                0x28
91 #define ARM_SMMU_GR0_ID3                0x2c
92 #define ARM_SMMU_GR0_ID4                0x30
93 #define ARM_SMMU_GR0_ID5                0x34
94 #define ARM_SMMU_GR0_ID6                0x38
95 #define ARM_SMMU_GR0_ID7                0x3c
96 #define ARM_SMMU_GR0_sGFSR              0x48
97 #define ARM_SMMU_GR0_sGFSYNR0           0x50
98 #define ARM_SMMU_GR0_sGFSYNR1           0x54
99 #define ARM_SMMU_GR0_sGFSYNR2           0x58
100
101 #define ID0_S1TS                        (1 << 30)
102 #define ID0_S2TS                        (1 << 29)
103 #define ID0_NTS                         (1 << 28)
104 #define ID0_SMS                         (1 << 27)
105 #define ID0_ATOSNS                      (1 << 26)
106 #define ID0_CTTW                        (1 << 14)
107 #define ID0_NUMIRPT_SHIFT               16
108 #define ID0_NUMIRPT_MASK                0xff
109 #define ID0_NUMSIDB_SHIFT               9
110 #define ID0_NUMSIDB_MASK                0xf
111 #define ID0_NUMSMRG_SHIFT               0
112 #define ID0_NUMSMRG_MASK                0xff
113
114 #define ID1_PAGESIZE                    (1 << 31)
115 #define ID1_NUMPAGENDXB_SHIFT           28
116 #define ID1_NUMPAGENDXB_MASK            7
117 #define ID1_NUMS2CB_SHIFT               16
118 #define ID1_NUMS2CB_MASK                0xff
119 #define ID1_NUMCB_SHIFT                 0
120 #define ID1_NUMCB_MASK                  0xff
121
122 #define ID2_OAS_SHIFT                   4
123 #define ID2_OAS_MASK                    0xf
124 #define ID2_IAS_SHIFT                   0
125 #define ID2_IAS_MASK                    0xf
126 #define ID2_UBS_SHIFT                   8
127 #define ID2_UBS_MASK                    0xf
128 #define ID2_PTFS_4K                     (1 << 12)
129 #define ID2_PTFS_16K                    (1 << 13)
130 #define ID2_PTFS_64K                    (1 << 14)
131
132 /* Global TLB invalidation */
133 #define ARM_SMMU_GR0_TLBIVMID           0x64
134 #define ARM_SMMU_GR0_TLBIALLNSNH        0x68
135 #define ARM_SMMU_GR0_TLBIALLH           0x6c
136 #define ARM_SMMU_GR0_sTLBGSYNC          0x70
137 #define ARM_SMMU_GR0_sTLBGSTATUS        0x74
138 #define sTLBGSTATUS_GSACTIVE            (1 << 0)
139 #define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
140
141 /* Stream mapping registers */
142 #define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
143 #define SMR_VALID                       (1 << 31)
144 #define SMR_MASK_SHIFT                  16
145 #define SMR_MASK_MASK                   0x7fff
146 #define SMR_ID_SHIFT                    0
147 #define SMR_ID_MASK                     0x7fff
148
149 #define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
150 #define S2CR_CBNDX_SHIFT                0
151 #define S2CR_CBNDX_MASK                 0xff
152 #define S2CR_TYPE_SHIFT                 16
153 #define S2CR_TYPE_MASK                  0x3
154 #define S2CR_TYPE_TRANS                 (0 << S2CR_TYPE_SHIFT)
155 #define S2CR_TYPE_BYPASS                (1 << S2CR_TYPE_SHIFT)
156 #define S2CR_TYPE_FAULT                 (2 << S2CR_TYPE_SHIFT)
157
158 /* Context bank attribute registers */
159 #define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
160 #define CBAR_VMID_SHIFT                 0
161 #define CBAR_VMID_MASK                  0xff
162 #define CBAR_S1_BPSHCFG_SHIFT           8
163 #define CBAR_S1_BPSHCFG_MASK            3
164 #define CBAR_S1_BPSHCFG_NSH             3
165 #define CBAR_S1_MEMATTR_SHIFT           12
166 #define CBAR_S1_MEMATTR_MASK            0xf
167 #define CBAR_S1_MEMATTR_WB              0xf
168 #define CBAR_TYPE_SHIFT                 16
169 #define CBAR_TYPE_MASK                  0x3
170 #define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
171 #define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
172 #define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
173 #define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
174 #define CBAR_IRPTNDX_SHIFT              24
175 #define CBAR_IRPTNDX_MASK               0xff
176
177 #define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
178 #define CBA2R_RW64_32BIT                (0 << 0)
179 #define CBA2R_RW64_64BIT                (1 << 0)
180
181 /* Translation context bank */
182 #define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
183 #define ARM_SMMU_CB(smmu, n)            ((n) * (1 << (smmu)->pgshift))
184
185 #define ARM_SMMU_CB_SCTLR               0x0
186 #define ARM_SMMU_CB_RESUME              0x8
187 #define ARM_SMMU_CB_TTBCR2              0x10
188 #define ARM_SMMU_CB_TTBR0_LO            0x20
189 #define ARM_SMMU_CB_TTBR0_HI            0x24
190 #define ARM_SMMU_CB_TTBR1_LO            0x28
191 #define ARM_SMMU_CB_TTBR1_HI            0x2c
192 #define ARM_SMMU_CB_TTBCR               0x30
193 #define ARM_SMMU_CB_S1_MAIR0            0x38
194 #define ARM_SMMU_CB_S1_MAIR1            0x3c
195 #define ARM_SMMU_CB_PAR_LO              0x50
196 #define ARM_SMMU_CB_PAR_HI              0x54
197 #define ARM_SMMU_CB_FSR                 0x58
198 #define ARM_SMMU_CB_FAR_LO              0x60
199 #define ARM_SMMU_CB_FAR_HI              0x64
200 #define ARM_SMMU_CB_FSYNR0              0x68
201 #define ARM_SMMU_CB_S1_TLBIVA           0x600
202 #define ARM_SMMU_CB_S1_TLBIASID         0x610
203 #define ARM_SMMU_CB_S1_TLBIVAL          0x620
204 #define ARM_SMMU_CB_S2_TLBIIPAS2        0x630
205 #define ARM_SMMU_CB_S2_TLBIIPAS2L       0x638
206 #define ARM_SMMU_CB_ATS1PR              0x800
207 #define ARM_SMMU_CB_ATSR                0x8f0
208
209 #define SCTLR_S1_ASIDPNE                (1 << 12)
210 #define SCTLR_CFCFG                     (1 << 7)
211 #define SCTLR_CFIE                      (1 << 6)
212 #define SCTLR_CFRE                      (1 << 5)
213 #define SCTLR_E                         (1 << 4)
214 #define SCTLR_AFE                       (1 << 2)
215 #define SCTLR_TRE                       (1 << 1)
216 #define SCTLR_M                         (1 << 0)
217 #define SCTLR_EAE_SBOP                  (SCTLR_AFE | SCTLR_TRE)
218
219 #define CB_PAR_F                        (1 << 0)
220
221 #define ATSR_ACTIVE                     (1 << 0)
222
223 #define RESUME_RETRY                    (0 << 0)
224 #define RESUME_TERMINATE                (1 << 0)
225
226 #define TTBCR2_SEP_SHIFT                15
227 #define TTBCR2_SEP_UPSTREAM             (0x7 << TTBCR2_SEP_SHIFT)
228
229 #define TTBRn_HI_ASID_SHIFT            16
230
231 #define FSR_MULTI                       (1 << 31)
232 #define FSR_SS                          (1 << 30)
233 #define FSR_UUT                         (1 << 8)
234 #define FSR_ASF                         (1 << 7)
235 #define FSR_TLBLKF                      (1 << 6)
236 #define FSR_TLBMCF                      (1 << 5)
237 #define FSR_EF                          (1 << 4)
238 #define FSR_PF                          (1 << 3)
239 #define FSR_AFF                         (1 << 2)
240 #define FSR_TF                          (1 << 1)
241
242 #define FSR_IGN                         (FSR_AFF | FSR_ASF | \
243                                          FSR_TLBMCF | FSR_TLBLKF)
244 #define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT | \
245                                          FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
246
247 #define FSYNR0_WNR                      (1 << 4)
248
249 static int force_stage;
250 module_param_named(force_stage, force_stage, int, S_IRUGO);
251 MODULE_PARM_DESC(force_stage,
252         "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
253
254 enum arm_smmu_arch_version {
255         ARM_SMMU_V1 = 1,
256         ARM_SMMU_V2,
257 };
258
259 struct arm_smmu_smr {
260         u8                              idx;
261         u16                             mask;
262         u16                             id;
263 };
264
265 struct arm_smmu_master_cfg {
266         int                             num_streamids;
267         u16                             streamids[MAX_MASTER_STREAMIDS];
268         struct arm_smmu_smr             *smrs;
269 };
270
271 struct arm_smmu_master {
272         struct device_node              *of_node;
273         struct rb_node                  node;
274         struct arm_smmu_master_cfg      cfg;
275 };
276
277 struct arm_smmu_device {
278         struct device                   *dev;
279
280         void __iomem                    *base;
281         unsigned long                   size;
282         unsigned long                   pgshift;
283
284 #define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
285 #define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
286 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
287 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
288 #define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
289 #define ARM_SMMU_FEAT_TRANS_OPS         (1 << 5)
290         u32                             features;
291
292 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
293         u32                             options;
294         enum arm_smmu_arch_version      version;
295
296         u32                             num_context_banks;
297         u32                             num_s2_context_banks;
298         DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
299         atomic_t                        irptndx;
300
301         u32                             num_mapping_groups;
302         DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
303
304         unsigned long                   va_size;
305         unsigned long                   ipa_size;
306         unsigned long                   pa_size;
307
308         u32                             num_global_irqs;
309         u32                             num_context_irqs;
310         unsigned int                    *irqs;
311
312         struct list_head                list;
313         struct rb_root                  masters;
314 };
315
316 struct arm_smmu_cfg {
317         u8                              cbndx;
318         u8                              irptndx;
319         u32                             cbar;
320 };
321 #define INVALID_IRPTNDX                 0xff
322
323 #define ARM_SMMU_CB_ASID(cfg)           ((cfg)->cbndx)
324 #define ARM_SMMU_CB_VMID(cfg)           ((cfg)->cbndx + 1)
325
326 enum arm_smmu_domain_stage {
327         ARM_SMMU_DOMAIN_S1 = 0,
328         ARM_SMMU_DOMAIN_S2,
329         ARM_SMMU_DOMAIN_NESTED,
330 };
331
332 struct arm_smmu_domain {
333         struct arm_smmu_device          *smmu;
334         struct io_pgtable_ops           *pgtbl_ops;
335         spinlock_t                      pgtbl_lock;
336         struct arm_smmu_cfg             cfg;
337         enum arm_smmu_domain_stage      stage;
338         struct mutex                    init_mutex; /* Protects smmu pointer */
339         struct iommu_domain             domain;
340 };
341
342 static struct iommu_ops arm_smmu_ops;
343
344 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
345 static LIST_HEAD(arm_smmu_devices);
346
347 struct arm_smmu_option_prop {
348         u32 opt;
349         const char *prop;
350 };
351
352 static struct arm_smmu_option_prop arm_smmu_options[] = {
353         { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
354         { 0, NULL},
355 };
356
357 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
358 {
359         return container_of(dom, struct arm_smmu_domain, domain);
360 }
361
362 static void parse_driver_options(struct arm_smmu_device *smmu)
363 {
364         int i = 0;
365
366         do {
367                 if (of_property_read_bool(smmu->dev->of_node,
368                                                 arm_smmu_options[i].prop)) {
369                         smmu->options |= arm_smmu_options[i].opt;
370                         dev_notice(smmu->dev, "option %s\n",
371                                 arm_smmu_options[i].prop);
372                 }
373         } while (arm_smmu_options[++i].opt);
374 }
375
376 static struct device_node *dev_get_dev_node(struct device *dev)
377 {
378         if (dev_is_pci(dev)) {
379                 struct pci_bus *bus = to_pci_dev(dev)->bus;
380
381                 while (!pci_is_root_bus(bus))
382                         bus = bus->parent;
383                 return bus->bridge->parent->of_node;
384         }
385
386         return dev->of_node;
387 }
388
389 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
390                                                 struct device_node *dev_node)
391 {
392         struct rb_node *node = smmu->masters.rb_node;
393
394         while (node) {
395                 struct arm_smmu_master *master;
396
397                 master = container_of(node, struct arm_smmu_master, node);
398
399                 if (dev_node < master->of_node)
400                         node = node->rb_left;
401                 else if (dev_node > master->of_node)
402                         node = node->rb_right;
403                 else
404                         return master;
405         }
406
407         return NULL;
408 }
409
410 static struct arm_smmu_master_cfg *
411 find_smmu_master_cfg(struct device *dev)
412 {
413         struct arm_smmu_master_cfg *cfg = NULL;
414         struct iommu_group *group = iommu_group_get(dev);
415
416         if (group) {
417                 cfg = iommu_group_get_iommudata(group);
418                 iommu_group_put(group);
419         }
420
421         return cfg;
422 }
423
424 static int insert_smmu_master(struct arm_smmu_device *smmu,
425                               struct arm_smmu_master *master)
426 {
427         struct rb_node **new, *parent;
428
429         new = &smmu->masters.rb_node;
430         parent = NULL;
431         while (*new) {
432                 struct arm_smmu_master *this
433                         = container_of(*new, struct arm_smmu_master, node);
434
435                 parent = *new;
436                 if (master->of_node < this->of_node)
437                         new = &((*new)->rb_left);
438                 else if (master->of_node > this->of_node)
439                         new = &((*new)->rb_right);
440                 else
441                         return -EEXIST;
442         }
443
444         rb_link_node(&master->node, parent, new);
445         rb_insert_color(&master->node, &smmu->masters);
446         return 0;
447 }
448
449 static int register_smmu_master(struct arm_smmu_device *smmu,
450                                 struct device *dev,
451                                 struct of_phandle_args *masterspec)
452 {
453         int i;
454         struct arm_smmu_master *master;
455
456         master = find_smmu_master(smmu, masterspec->np);
457         if (master) {
458                 dev_err(dev,
459                         "rejecting multiple registrations for master device %s\n",
460                         masterspec->np->name);
461                 return -EBUSY;
462         }
463
464         if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
465                 dev_err(dev,
466                         "reached maximum number (%d) of stream IDs for master device %s\n",
467                         MAX_MASTER_STREAMIDS, masterspec->np->name);
468                 return -ENOSPC;
469         }
470
471         master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
472         if (!master)
473                 return -ENOMEM;
474
475         master->of_node                 = masterspec->np;
476         master->cfg.num_streamids       = masterspec->args_count;
477
478         for (i = 0; i < master->cfg.num_streamids; ++i) {
479                 u16 streamid = masterspec->args[i];
480
481                 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
482                      (streamid >= smmu->num_mapping_groups)) {
483                         dev_err(dev,
484                                 "stream ID for master device %s greater than maximum allowed (%d)\n",
485                                 masterspec->np->name, smmu->num_mapping_groups);
486                         return -ERANGE;
487                 }
488                 master->cfg.streamids[i] = streamid;
489         }
490         return insert_smmu_master(smmu, master);
491 }
492
493 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
494 {
495         struct arm_smmu_device *smmu;
496         struct arm_smmu_master *master = NULL;
497         struct device_node *dev_node = dev_get_dev_node(dev);
498
499         spin_lock(&arm_smmu_devices_lock);
500         list_for_each_entry(smmu, &arm_smmu_devices, list) {
501                 master = find_smmu_master(smmu, dev_node);
502                 if (master)
503                         break;
504         }
505         spin_unlock(&arm_smmu_devices_lock);
506
507         return master ? smmu : NULL;
508 }
509
510 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
511 {
512         int idx;
513
514         do {
515                 idx = find_next_zero_bit(map, end, start);
516                 if (idx == end)
517                         return -ENOSPC;
518         } while (test_and_set_bit(idx, map));
519
520         return idx;
521 }
522
523 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
524 {
525         clear_bit(idx, map);
526 }
527
528 /* Wait for any pending TLB invalidations to complete */
529 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
530 {
531         int count = 0;
532         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
533
534         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
535         while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
536                & sTLBGSTATUS_GSACTIVE) {
537                 cpu_relax();
538                 if (++count == TLB_LOOP_TIMEOUT) {
539                         dev_err_ratelimited(smmu->dev,
540                         "TLB sync timed out -- SMMU may be deadlocked\n");
541                         return;
542                 }
543                 udelay(1);
544         }
545 }
546
547 static void arm_smmu_tlb_sync(void *cookie)
548 {
549         struct arm_smmu_domain *smmu_domain = cookie;
550         __arm_smmu_tlb_sync(smmu_domain->smmu);
551 }
552
553 static void arm_smmu_tlb_inv_context(void *cookie)
554 {
555         struct arm_smmu_domain *smmu_domain = cookie;
556         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
557         struct arm_smmu_device *smmu = smmu_domain->smmu;
558         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
559         void __iomem *base;
560
561         if (stage1) {
562                 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
563                 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
564                                base + ARM_SMMU_CB_S1_TLBIASID);
565         } else {
566                 base = ARM_SMMU_GR0(smmu);
567                 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
568                                base + ARM_SMMU_GR0_TLBIVMID);
569         }
570
571         __arm_smmu_tlb_sync(smmu);
572 }
573
574 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
575                                           bool leaf, void *cookie)
576 {
577         struct arm_smmu_domain *smmu_domain = cookie;
578         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
579         struct arm_smmu_device *smmu = smmu_domain->smmu;
580         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
581         void __iomem *reg;
582
583         if (stage1) {
584                 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
585                 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
586
587                 if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
588                         iova &= ~12UL;
589                         iova |= ARM_SMMU_CB_ASID(cfg);
590                         writel_relaxed(iova, reg);
591 #ifdef CONFIG_64BIT
592                 } else {
593                         iova >>= 12;
594                         iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
595                         writeq_relaxed(iova, reg);
596 #endif
597                 }
598 #ifdef CONFIG_64BIT
599         } else if (smmu->version == ARM_SMMU_V2) {
600                 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
601                 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
602                               ARM_SMMU_CB_S2_TLBIIPAS2;
603                 writeq_relaxed(iova >> 12, reg);
604 #endif
605         } else {
606                 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
607                 writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
608         }
609 }
610
611 static struct iommu_gather_ops arm_smmu_gather_ops = {
612         .tlb_flush_all  = arm_smmu_tlb_inv_context,
613         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
614         .tlb_sync       = arm_smmu_tlb_sync,
615 };
616
617 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
618 {
619         int flags, ret;
620         u32 fsr, far, fsynr, resume;
621         unsigned long iova;
622         struct iommu_domain *domain = dev;
623         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
624         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
625         struct arm_smmu_device *smmu = smmu_domain->smmu;
626         void __iomem *cb_base;
627
628         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
629         fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
630
631         if (!(fsr & FSR_FAULT))
632                 return IRQ_NONE;
633
634         if (fsr & FSR_IGN)
635                 dev_err_ratelimited(smmu->dev,
636                                     "Unexpected context fault (fsr 0x%x)\n",
637                                     fsr);
638
639         fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
640         flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
641
642         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
643         iova = far;
644 #ifdef CONFIG_64BIT
645         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
646         iova |= ((unsigned long)far << 32);
647 #endif
648
649         if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
650                 ret = IRQ_HANDLED;
651                 resume = RESUME_RETRY;
652         } else {
653                 dev_err_ratelimited(smmu->dev,
654                     "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
655                     iova, fsynr, cfg->cbndx);
656                 ret = IRQ_NONE;
657                 resume = RESUME_TERMINATE;
658         }
659
660         /* Clear the faulting FSR */
661         writel(fsr, cb_base + ARM_SMMU_CB_FSR);
662
663         /* Retry or terminate any stalled transactions */
664         if (fsr & FSR_SS)
665                 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
666
667         return ret;
668 }
669
670 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
671 {
672         u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
673         struct arm_smmu_device *smmu = dev;
674         void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
675
676         gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
677         gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
678         gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
679         gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
680
681         if (!gfsr)
682                 return IRQ_NONE;
683
684         dev_err_ratelimited(smmu->dev,
685                 "Unexpected global fault, this could be serious\n");
686         dev_err_ratelimited(smmu->dev,
687                 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
688                 gfsr, gfsynr0, gfsynr1, gfsynr2);
689
690         writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
691         return IRQ_HANDLED;
692 }
693
694 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
695                                        struct io_pgtable_cfg *pgtbl_cfg)
696 {
697         u32 reg;
698         bool stage1;
699         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
700         struct arm_smmu_device *smmu = smmu_domain->smmu;
701         void __iomem *cb_base, *gr0_base, *gr1_base;
702
703         gr0_base = ARM_SMMU_GR0(smmu);
704         gr1_base = ARM_SMMU_GR1(smmu);
705         stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
706         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
707
708         if (smmu->version > ARM_SMMU_V1) {
709                 /*
710                  * CBA2R.
711                  * *Must* be initialised before CBAR thanks to VMID16
712                  * architectural oversight affected some implementations.
713                  */
714 #ifdef CONFIG_64BIT
715                 reg = CBA2R_RW64_64BIT;
716 #else
717                 reg = CBA2R_RW64_32BIT;
718 #endif
719                 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
720         }
721
722         /* CBAR */
723         reg = cfg->cbar;
724         if (smmu->version == ARM_SMMU_V1)
725                 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
726
727         /*
728          * Use the weakest shareability/memory types, so they are
729          * overridden by the ttbcr/pte.
730          */
731         if (stage1) {
732                 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
733                         (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
734         } else {
735                 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
736         }
737         writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
738
739         /* TTBRs */
740         if (stage1) {
741                 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
742                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
743                 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32;
744                 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
745                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
746
747                 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
748                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO);
749                 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32;
750                 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
751                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI);
752         } else {
753                 reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
754                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
755                 reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32;
756                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
757         }
758
759         /* TTBCR */
760         if (stage1) {
761                 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
762                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
763                 if (smmu->version > ARM_SMMU_V1) {
764                         reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
765                         reg |= TTBCR2_SEP_UPSTREAM;
766                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
767                 }
768         } else {
769                 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
770                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
771         }
772
773         /* MAIRs (stage-1 only) */
774         if (stage1) {
775                 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
776                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
777                 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
778                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
779         }
780
781         /* SCTLR */
782         reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
783         if (stage1)
784                 reg |= SCTLR_S1_ASIDPNE;
785 #ifdef __BIG_ENDIAN
786         reg |= SCTLR_E;
787 #endif
788         writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
789 }
790
791 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
792                                         struct arm_smmu_device *smmu)
793 {
794         int irq, start, ret = 0;
795         unsigned long ias, oas;
796         struct io_pgtable_ops *pgtbl_ops;
797         struct io_pgtable_cfg pgtbl_cfg;
798         enum io_pgtable_fmt fmt;
799         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
800         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
801
802         mutex_lock(&smmu_domain->init_mutex);
803         if (smmu_domain->smmu)
804                 goto out_unlock;
805
806         /*
807          * Mapping the requested stage onto what we support is surprisingly
808          * complicated, mainly because the spec allows S1+S2 SMMUs without
809          * support for nested translation. That means we end up with the
810          * following table:
811          *
812          * Requested        Supported        Actual
813          *     S1               N              S1
814          *     S1             S1+S2            S1
815          *     S1               S2             S2
816          *     S1               S1             S1
817          *     N                N              N
818          *     N              S1+S2            S2
819          *     N                S2             S2
820          *     N                S1             S1
821          *
822          * Note that you can't actually request stage-2 mappings.
823          */
824         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
825                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
826         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
827                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
828
829         switch (smmu_domain->stage) {
830         case ARM_SMMU_DOMAIN_S1:
831                 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
832                 start = smmu->num_s2_context_banks;
833                 ias = smmu->va_size;
834                 oas = smmu->ipa_size;
835                 if (IS_ENABLED(CONFIG_64BIT))
836                         fmt = ARM_64_LPAE_S1;
837                 else
838                         fmt = ARM_32_LPAE_S1;
839                 break;
840         case ARM_SMMU_DOMAIN_NESTED:
841                 /*
842                  * We will likely want to change this if/when KVM gets
843                  * involved.
844                  */
845         case ARM_SMMU_DOMAIN_S2:
846                 cfg->cbar = CBAR_TYPE_S2_TRANS;
847                 start = 0;
848                 ias = smmu->ipa_size;
849                 oas = smmu->pa_size;
850                 if (IS_ENABLED(CONFIG_64BIT))
851                         fmt = ARM_64_LPAE_S2;
852                 else
853                         fmt = ARM_32_LPAE_S2;
854                 break;
855         default:
856                 ret = -EINVAL;
857                 goto out_unlock;
858         }
859
860         ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
861                                       smmu->num_context_banks);
862         if (IS_ERR_VALUE(ret))
863                 goto out_unlock;
864
865         cfg->cbndx = ret;
866         if (smmu->version == ARM_SMMU_V1) {
867                 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
868                 cfg->irptndx %= smmu->num_context_irqs;
869         } else {
870                 cfg->irptndx = cfg->cbndx;
871         }
872
873         pgtbl_cfg = (struct io_pgtable_cfg) {
874                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
875                 .ias            = ias,
876                 .oas            = oas,
877                 .tlb            = &arm_smmu_gather_ops,
878                 .iommu_dev      = smmu->dev,
879         };
880
881         smmu_domain->smmu = smmu;
882         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
883         if (!pgtbl_ops) {
884                 ret = -ENOMEM;
885                 goto out_clear_smmu;
886         }
887
888         /* Update our support page sizes to reflect the page table format */
889         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
890
891         /* Initialise the context bank with our page table cfg */
892         arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
893
894         /*
895          * Request context fault interrupt. Do this last to avoid the
896          * handler seeing a half-initialised domain state.
897          */
898         irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
899         ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
900                           "arm-smmu-context-fault", domain);
901         if (IS_ERR_VALUE(ret)) {
902                 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
903                         cfg->irptndx, irq);
904                 cfg->irptndx = INVALID_IRPTNDX;
905         }
906
907         mutex_unlock(&smmu_domain->init_mutex);
908
909         /* Publish page table ops for map/unmap */
910         smmu_domain->pgtbl_ops = pgtbl_ops;
911         return 0;
912
913 out_clear_smmu:
914         smmu_domain->smmu = NULL;
915 out_unlock:
916         mutex_unlock(&smmu_domain->init_mutex);
917         return ret;
918 }
919
920 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
921 {
922         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
923         struct arm_smmu_device *smmu = smmu_domain->smmu;
924         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
925         void __iomem *cb_base;
926         int irq;
927
928         if (!smmu)
929                 return;
930
931         /*
932          * Disable the context bank and free the page tables before freeing
933          * it.
934          */
935         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
936         writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
937
938         if (cfg->irptndx != INVALID_IRPTNDX) {
939                 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
940                 free_irq(irq, domain);
941         }
942
943         if (smmu_domain->pgtbl_ops)
944                 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
945
946         __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
947 }
948
949 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
950 {
951         struct arm_smmu_domain *smmu_domain;
952
953         if (type != IOMMU_DOMAIN_UNMANAGED)
954                 return NULL;
955         /*
956          * Allocate the domain and initialise some of its data structures.
957          * We can't really do anything meaningful until we've added a
958          * master.
959          */
960         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
961         if (!smmu_domain)
962                 return NULL;
963
964         mutex_init(&smmu_domain->init_mutex);
965         spin_lock_init(&smmu_domain->pgtbl_lock);
966
967         return &smmu_domain->domain;
968 }
969
970 static void arm_smmu_domain_free(struct iommu_domain *domain)
971 {
972         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
973
974         /*
975          * Free the domain resources. We assume that all devices have
976          * already been detached.
977          */
978         arm_smmu_destroy_domain_context(domain);
979         kfree(smmu_domain);
980 }
981
982 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
983                                           struct arm_smmu_master_cfg *cfg)
984 {
985         int i;
986         struct arm_smmu_smr *smrs;
987         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
988
989         if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
990                 return 0;
991
992         if (cfg->smrs)
993                 return -EEXIST;
994
995         smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
996         if (!smrs) {
997                 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
998                         cfg->num_streamids);
999                 return -ENOMEM;
1000         }
1001
1002         /* Allocate the SMRs on the SMMU */
1003         for (i = 0; i < cfg->num_streamids; ++i) {
1004                 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1005                                                   smmu->num_mapping_groups);
1006                 if (IS_ERR_VALUE(idx)) {
1007                         dev_err(smmu->dev, "failed to allocate free SMR\n");
1008                         goto err_free_smrs;
1009                 }
1010
1011                 smrs[i] = (struct arm_smmu_smr) {
1012                         .idx    = idx,
1013                         .mask   = 0, /* We don't currently share SMRs */
1014                         .id     = cfg->streamids[i],
1015                 };
1016         }
1017
1018         /* It worked! Now, poke the actual hardware */
1019         for (i = 0; i < cfg->num_streamids; ++i) {
1020                 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1021                           smrs[i].mask << SMR_MASK_SHIFT;
1022                 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1023         }
1024
1025         cfg->smrs = smrs;
1026         return 0;
1027
1028 err_free_smrs:
1029         while (--i >= 0)
1030                 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1031         kfree(smrs);
1032         return -ENOSPC;
1033 }
1034
1035 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1036                                       struct arm_smmu_master_cfg *cfg)
1037 {
1038         int i;
1039         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1040         struct arm_smmu_smr *smrs = cfg->smrs;
1041
1042         if (!smrs)
1043                 return;
1044
1045         /* Invalidate the SMRs before freeing back to the allocator */
1046         for (i = 0; i < cfg->num_streamids; ++i) {
1047                 u8 idx = smrs[i].idx;
1048
1049                 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1050                 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1051         }
1052
1053         cfg->smrs = NULL;
1054         kfree(smrs);
1055 }
1056
1057 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1058                                       struct arm_smmu_master_cfg *cfg)
1059 {
1060         int i, ret;
1061         struct arm_smmu_device *smmu = smmu_domain->smmu;
1062         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1063
1064         /* Devices in an IOMMU group may already be configured */
1065         ret = arm_smmu_master_configure_smrs(smmu, cfg);
1066         if (ret)
1067                 return ret == -EEXIST ? 0 : ret;
1068
1069         for (i = 0; i < cfg->num_streamids; ++i) {
1070                 u32 idx, s2cr;
1071
1072                 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1073                 s2cr = S2CR_TYPE_TRANS |
1074                        (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1075                 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1076         }
1077
1078         return 0;
1079 }
1080
1081 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1082                                           struct arm_smmu_master_cfg *cfg)
1083 {
1084         int i;
1085         struct arm_smmu_device *smmu = smmu_domain->smmu;
1086         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1087
1088         /* An IOMMU group is torn down by the first device to be removed */
1089         if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1090                 return;
1091
1092         /*
1093          * We *must* clear the S2CR first, because freeing the SMR means
1094          * that it can be re-allocated immediately.
1095          */
1096         for (i = 0; i < cfg->num_streamids; ++i) {
1097                 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1098
1099                 writel_relaxed(S2CR_TYPE_BYPASS,
1100                                gr0_base + ARM_SMMU_GR0_S2CR(idx));
1101         }
1102
1103         arm_smmu_master_free_smrs(smmu, cfg);
1104 }
1105
1106 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1107 {
1108         int ret;
1109         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1110         struct arm_smmu_device *smmu;
1111         struct arm_smmu_master_cfg *cfg;
1112
1113         smmu = find_smmu_for_device(dev);
1114         if (!smmu) {
1115                 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1116                 return -ENXIO;
1117         }
1118
1119         if (dev->archdata.iommu) {
1120                 dev_err(dev, "already attached to IOMMU domain\n");
1121                 return -EEXIST;
1122         }
1123
1124         /* Ensure that the domain is finalised */
1125         ret = arm_smmu_init_domain_context(domain, smmu);
1126         if (IS_ERR_VALUE(ret))
1127                 return ret;
1128
1129         /*
1130          * Sanity check the domain. We don't support domains across
1131          * different SMMUs.
1132          */
1133         if (smmu_domain->smmu != smmu) {
1134                 dev_err(dev,
1135                         "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1136                         dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1137                 return -EINVAL;
1138         }
1139
1140         /* Looks ok, so add the device to the domain */
1141         cfg = find_smmu_master_cfg(dev);
1142         if (!cfg)
1143                 return -ENODEV;
1144
1145         ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1146         if (!ret)
1147                 dev->archdata.iommu = domain;
1148         return ret;
1149 }
1150
1151 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1152 {
1153         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1154         struct arm_smmu_master_cfg *cfg;
1155
1156         cfg = find_smmu_master_cfg(dev);
1157         if (!cfg)
1158                 return;
1159
1160         dev->archdata.iommu = NULL;
1161         arm_smmu_domain_remove_master(smmu_domain, cfg);
1162 }
1163
1164 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1165                         phys_addr_t paddr, size_t size, int prot)
1166 {
1167         int ret;
1168         unsigned long flags;
1169         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1170         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1171
1172         if (!ops)
1173                 return -ENODEV;
1174
1175         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1176         ret = ops->map(ops, iova, paddr, size, prot);
1177         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1178         return ret;
1179 }
1180
1181 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1182                              size_t size)
1183 {
1184         size_t ret;
1185         unsigned long flags;
1186         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1187         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1188
1189         if (!ops)
1190                 return 0;
1191
1192         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1193         ret = ops->unmap(ops, iova, size);
1194         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1195         return ret;
1196 }
1197
1198 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1199                                               dma_addr_t iova)
1200 {
1201         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1202         struct arm_smmu_device *smmu = smmu_domain->smmu;
1203         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1204         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1205         struct device *dev = smmu->dev;
1206         void __iomem *cb_base;
1207         u32 tmp;
1208         u64 phys;
1209         unsigned long va;
1210
1211         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1212
1213         /* ATS1 registers can only be written atomically */
1214         va = iova & ~0xfffUL;
1215 #ifdef CONFIG_64BIT
1216         if (smmu->version == ARM_SMMU_V2)
1217                 writeq_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1218         else
1219 #endif
1220                 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1221
1222         if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1223                                       !(tmp & ATSR_ACTIVE), 5, 50)) {
1224                 dev_err(dev,
1225                         "iova to phys timed out on 0x%pad. Falling back to software table walk.\n",
1226                         &iova);
1227                 return ops->iova_to_phys(ops, iova);
1228         }
1229
1230         phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
1231         phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
1232
1233         if (phys & CB_PAR_F) {
1234                 dev_err(dev, "translation fault!\n");
1235                 dev_err(dev, "PAR = 0x%llx\n", phys);
1236                 return 0;
1237         }
1238
1239         return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1240 }
1241
1242 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1243                                         dma_addr_t iova)
1244 {
1245         phys_addr_t ret;
1246         unsigned long flags;
1247         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1248         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1249
1250         if (!ops)
1251                 return 0;
1252
1253         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1254         if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1255                         smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1256                 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1257         } else {
1258                 ret = ops->iova_to_phys(ops, iova);
1259         }
1260
1261         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1262
1263         return ret;
1264 }
1265
1266 static bool arm_smmu_capable(enum iommu_cap cap)
1267 {
1268         switch (cap) {
1269         case IOMMU_CAP_CACHE_COHERENCY:
1270                 /*
1271                  * Return true here as the SMMU can always send out coherent
1272                  * requests.
1273                  */
1274                 return true;
1275         case IOMMU_CAP_INTR_REMAP:
1276                 return true; /* MSIs are just memory writes */
1277         case IOMMU_CAP_NOEXEC:
1278                 return true;
1279         default:
1280                 return false;
1281         }
1282 }
1283
1284 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1285 {
1286         *((u16 *)data) = alias;
1287         return 0; /* Continue walking */
1288 }
1289
1290 static void __arm_smmu_release_pci_iommudata(void *data)
1291 {
1292         kfree(data);
1293 }
1294
1295 static int arm_smmu_init_pci_device(struct pci_dev *pdev,
1296                                     struct iommu_group *group)
1297 {
1298         struct arm_smmu_master_cfg *cfg;
1299         u16 sid;
1300         int i;
1301
1302         cfg = iommu_group_get_iommudata(group);
1303         if (!cfg) {
1304                 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1305                 if (!cfg)
1306                         return -ENOMEM;
1307
1308                 iommu_group_set_iommudata(group, cfg,
1309                                           __arm_smmu_release_pci_iommudata);
1310         }
1311
1312         if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
1313                 return -ENOSPC;
1314
1315         /*
1316          * Assume Stream ID == Requester ID for now.
1317          * We need a way to describe the ID mappings in FDT.
1318          */
1319         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1320         for (i = 0; i < cfg->num_streamids; ++i)
1321                 if (cfg->streamids[i] == sid)
1322                         break;
1323
1324         /* Avoid duplicate SIDs, as this can lead to SMR conflicts */
1325         if (i == cfg->num_streamids)
1326                 cfg->streamids[cfg->num_streamids++] = sid;
1327
1328         return 0;
1329 }
1330
1331 static int arm_smmu_init_platform_device(struct device *dev,
1332                                          struct iommu_group *group)
1333 {
1334         struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1335         struct arm_smmu_master *master;
1336
1337         if (!smmu)
1338                 return -ENODEV;
1339
1340         master = find_smmu_master(smmu, dev->of_node);
1341         if (!master)
1342                 return -ENODEV;
1343
1344         iommu_group_set_iommudata(group, &master->cfg, NULL);
1345
1346         return 0;
1347 }
1348
1349 static int arm_smmu_add_device(struct device *dev)
1350 {
1351         struct iommu_group *group;
1352
1353         group = iommu_group_get_for_dev(dev);
1354         if (IS_ERR(group))
1355                 return PTR_ERR(group);
1356
1357         return 0;
1358 }
1359
1360 static void arm_smmu_remove_device(struct device *dev)
1361 {
1362         iommu_group_remove_device(dev);
1363 }
1364
1365 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1366 {
1367         struct iommu_group *group;
1368         int ret;
1369
1370         if (dev_is_pci(dev))
1371                 group = pci_device_group(dev);
1372         else
1373                 group = generic_device_group(dev);
1374
1375         if (IS_ERR(group))
1376                 return group;
1377
1378         if (dev_is_pci(dev))
1379                 ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
1380         else
1381                 ret = arm_smmu_init_platform_device(dev, group);
1382
1383         if (ret) {
1384                 iommu_group_put(group);
1385                 group = ERR_PTR(ret);
1386         }
1387
1388         return group;
1389 }
1390
1391 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1392                                     enum iommu_attr attr, void *data)
1393 {
1394         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1395
1396         switch (attr) {
1397         case DOMAIN_ATTR_NESTING:
1398                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1399                 return 0;
1400         default:
1401                 return -ENODEV;
1402         }
1403 }
1404
1405 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1406                                     enum iommu_attr attr, void *data)
1407 {
1408         int ret = 0;
1409         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1410
1411         mutex_lock(&smmu_domain->init_mutex);
1412
1413         switch (attr) {
1414         case DOMAIN_ATTR_NESTING:
1415                 if (smmu_domain->smmu) {
1416                         ret = -EPERM;
1417                         goto out_unlock;
1418                 }
1419
1420                 if (*(int *)data)
1421                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1422                 else
1423                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1424
1425                 break;
1426         default:
1427                 ret = -ENODEV;
1428         }
1429
1430 out_unlock:
1431         mutex_unlock(&smmu_domain->init_mutex);
1432         return ret;
1433 }
1434
1435 static struct iommu_ops arm_smmu_ops = {
1436         .capable                = arm_smmu_capable,
1437         .domain_alloc           = arm_smmu_domain_alloc,
1438         .domain_free            = arm_smmu_domain_free,
1439         .attach_dev             = arm_smmu_attach_dev,
1440         .detach_dev             = arm_smmu_detach_dev,
1441         .map                    = arm_smmu_map,
1442         .unmap                  = arm_smmu_unmap,
1443         .map_sg                 = default_iommu_map_sg,
1444         .iova_to_phys           = arm_smmu_iova_to_phys,
1445         .add_device             = arm_smmu_add_device,
1446         .remove_device          = arm_smmu_remove_device,
1447         .device_group           = arm_smmu_device_group,
1448         .domain_get_attr        = arm_smmu_domain_get_attr,
1449         .domain_set_attr        = arm_smmu_domain_set_attr,
1450         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1451 };
1452
1453 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1454 {
1455         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1456         void __iomem *cb_base;
1457         int i = 0;
1458         u32 reg;
1459
1460         /* clear global FSR */
1461         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1462         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1463
1464         /* Mark all SMRn as invalid and all S2CRn as bypass */
1465         for (i = 0; i < smmu->num_mapping_groups; ++i) {
1466                 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1467                 writel_relaxed(S2CR_TYPE_BYPASS,
1468                         gr0_base + ARM_SMMU_GR0_S2CR(i));
1469         }
1470
1471         /* Make sure all context banks are disabled and clear CB_FSR  */
1472         for (i = 0; i < smmu->num_context_banks; ++i) {
1473                 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1474                 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1475                 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1476         }
1477
1478         /* Invalidate the TLB, just in case */
1479         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1480         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1481
1482         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1483
1484         /* Enable fault reporting */
1485         reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1486
1487         /* Disable TLB broadcasting. */
1488         reg |= (sCR0_VMIDPNE | sCR0_PTM);
1489
1490         /* Enable client access, but bypass when no mapping is found */
1491         reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1492
1493         /* Disable forced broadcasting */
1494         reg &= ~sCR0_FB;
1495
1496         /* Don't upgrade barriers */
1497         reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1498
1499         /* Push the button */
1500         __arm_smmu_tlb_sync(smmu);
1501         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1502 }
1503
1504 static int arm_smmu_id_size_to_bits(int size)
1505 {
1506         switch (size) {
1507         case 0:
1508                 return 32;
1509         case 1:
1510                 return 36;
1511         case 2:
1512                 return 40;
1513         case 3:
1514                 return 42;
1515         case 4:
1516                 return 44;
1517         case 5:
1518         default:
1519                 return 48;
1520         }
1521 }
1522
1523 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1524 {
1525         unsigned long size;
1526         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1527         u32 id;
1528         bool cttw_dt, cttw_reg;
1529
1530         dev_notice(smmu->dev, "probing hardware configuration...\n");
1531         dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1532
1533         /* ID0 */
1534         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1535
1536         /* Restrict available stages based on module parameter */
1537         if (force_stage == 1)
1538                 id &= ~(ID0_S2TS | ID0_NTS);
1539         else if (force_stage == 2)
1540                 id &= ~(ID0_S1TS | ID0_NTS);
1541
1542         if (id & ID0_S1TS) {
1543                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1544                 dev_notice(smmu->dev, "\tstage 1 translation\n");
1545         }
1546
1547         if (id & ID0_S2TS) {
1548                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1549                 dev_notice(smmu->dev, "\tstage 2 translation\n");
1550         }
1551
1552         if (id & ID0_NTS) {
1553                 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1554                 dev_notice(smmu->dev, "\tnested translation\n");
1555         }
1556
1557         if (!(smmu->features &
1558                 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1559                 dev_err(smmu->dev, "\tno translation support!\n");
1560                 return -ENODEV;
1561         }
1562
1563         if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1564                 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1565                 dev_notice(smmu->dev, "\taddress translation ops\n");
1566         }
1567
1568         /*
1569          * In order for DMA API calls to work properly, we must defer to what
1570          * the DT says about coherency, regardless of what the hardware claims.
1571          * Fortunately, this also opens up a workaround for systems where the
1572          * ID register value has ended up configured incorrectly.
1573          */
1574         cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
1575         cttw_reg = !!(id & ID0_CTTW);
1576         if (cttw_dt)
1577                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1578         if (cttw_dt || cttw_reg)
1579                 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1580                            cttw_dt ? "" : "non-");
1581         if (cttw_dt != cttw_reg)
1582                 dev_notice(smmu->dev,
1583                            "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1584
1585         if (id & ID0_SMS) {
1586                 u32 smr, sid, mask;
1587
1588                 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1589                 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1590                                            ID0_NUMSMRG_MASK;
1591                 if (smmu->num_mapping_groups == 0) {
1592                         dev_err(smmu->dev,
1593                                 "stream-matching supported, but no SMRs present!\n");
1594                         return -ENODEV;
1595                 }
1596
1597                 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1598                 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1599                 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1600                 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1601
1602                 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1603                 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1604                 if ((mask & sid) != sid) {
1605                         dev_err(smmu->dev,
1606                                 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1607                                 mask, sid);
1608                         return -ENODEV;
1609                 }
1610
1611                 dev_notice(smmu->dev,
1612                            "\tstream matching with %u register groups, mask 0x%x",
1613                            smmu->num_mapping_groups, mask);
1614         } else {
1615                 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1616                                            ID0_NUMSIDB_MASK;
1617         }
1618
1619         /* ID1 */
1620         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1621         smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1622
1623         /* Check for size mismatch of SMMU address space from mapped region */
1624         size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1625         size *= 2 << smmu->pgshift;
1626         if (smmu->size != size)
1627                 dev_warn(smmu->dev,
1628                         "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1629                         size, smmu->size);
1630
1631         smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1632         smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1633         if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1634                 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1635                 return -ENODEV;
1636         }
1637         dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1638                    smmu->num_context_banks, smmu->num_s2_context_banks);
1639
1640         /* ID2 */
1641         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1642         size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1643         smmu->ipa_size = size;
1644
1645         /* The output mask is also applied for bypass */
1646         size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1647         smmu->pa_size = size;
1648
1649         /*
1650          * What the page table walker can address actually depends on which
1651          * descriptor format is in use, but since a) we don't know that yet,
1652          * and b) it can vary per context bank, this will have to do...
1653          */
1654         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1655                 dev_warn(smmu->dev,
1656                          "failed to set DMA mask for table walker\n");
1657
1658         if (smmu->version == ARM_SMMU_V1) {
1659                 smmu->va_size = smmu->ipa_size;
1660                 size = SZ_4K | SZ_2M | SZ_1G;
1661         } else {
1662                 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1663                 smmu->va_size = arm_smmu_id_size_to_bits(size);
1664 #ifndef CONFIG_64BIT
1665                 smmu->va_size = min(32UL, smmu->va_size);
1666 #endif
1667                 size = 0;
1668                 if (id & ID2_PTFS_4K)
1669                         size |= SZ_4K | SZ_2M | SZ_1G;
1670                 if (id & ID2_PTFS_16K)
1671                         size |= SZ_16K | SZ_32M;
1672                 if (id & ID2_PTFS_64K)
1673                         size |= SZ_64K | SZ_512M;
1674         }
1675
1676         arm_smmu_ops.pgsize_bitmap &= size;
1677         dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
1678
1679         if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1680                 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1681                            smmu->va_size, smmu->ipa_size);
1682
1683         if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1684                 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1685                            smmu->ipa_size, smmu->pa_size);
1686
1687         return 0;
1688 }
1689
1690 static const struct of_device_id arm_smmu_of_match[] = {
1691         { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1692         { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1693         { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1694         { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1695         { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1696         { },
1697 };
1698 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1699
1700 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1701 {
1702         const struct of_device_id *of_id;
1703         struct resource *res;
1704         struct arm_smmu_device *smmu;
1705         struct device *dev = &pdev->dev;
1706         struct rb_node *node;
1707         struct of_phandle_args masterspec;
1708         int num_irqs, i, err;
1709
1710         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1711         if (!smmu) {
1712                 dev_err(dev, "failed to allocate arm_smmu_device\n");
1713                 return -ENOMEM;
1714         }
1715         smmu->dev = dev;
1716
1717         of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1718         smmu->version = (enum arm_smmu_arch_version)of_id->data;
1719
1720         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1721         smmu->base = devm_ioremap_resource(dev, res);
1722         if (IS_ERR(smmu->base))
1723                 return PTR_ERR(smmu->base);
1724         smmu->size = resource_size(res);
1725
1726         if (of_property_read_u32(dev->of_node, "#global-interrupts",
1727                                  &smmu->num_global_irqs)) {
1728                 dev_err(dev, "missing #global-interrupts property\n");
1729                 return -ENODEV;
1730         }
1731
1732         num_irqs = 0;
1733         while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1734                 num_irqs++;
1735                 if (num_irqs > smmu->num_global_irqs)
1736                         smmu->num_context_irqs++;
1737         }
1738
1739         if (!smmu->num_context_irqs) {
1740                 dev_err(dev, "found %d interrupts but expected at least %d\n",
1741                         num_irqs, smmu->num_global_irqs + 1);
1742                 return -ENODEV;
1743         }
1744
1745         smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1746                                   GFP_KERNEL);
1747         if (!smmu->irqs) {
1748                 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1749                 return -ENOMEM;
1750         }
1751
1752         for (i = 0; i < num_irqs; ++i) {
1753                 int irq = platform_get_irq(pdev, i);
1754
1755                 if (irq < 0) {
1756                         dev_err(dev, "failed to get irq index %d\n", i);
1757                         return -ENODEV;
1758                 }
1759                 smmu->irqs[i] = irq;
1760         }
1761
1762         err = arm_smmu_device_cfg_probe(smmu);
1763         if (err)
1764                 return err;
1765
1766         i = 0;
1767         smmu->masters = RB_ROOT;
1768         while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1769                                            "#stream-id-cells", i,
1770                                            &masterspec)) {
1771                 err = register_smmu_master(smmu, dev, &masterspec);
1772                 if (err) {
1773                         dev_err(dev, "failed to add master %s\n",
1774                                 masterspec.np->name);
1775                         goto out_put_masters;
1776                 }
1777
1778                 i++;
1779         }
1780         dev_notice(dev, "registered %d master devices\n", i);
1781
1782         parse_driver_options(smmu);
1783
1784         if (smmu->version > ARM_SMMU_V1 &&
1785             smmu->num_context_banks != smmu->num_context_irqs) {
1786                 dev_err(dev,
1787                         "found only %d context interrupt(s) but %d required\n",
1788                         smmu->num_context_irqs, smmu->num_context_banks);
1789                 err = -ENODEV;
1790                 goto out_put_masters;
1791         }
1792
1793         for (i = 0; i < smmu->num_global_irqs; ++i) {
1794                 err = request_irq(smmu->irqs[i],
1795                                   arm_smmu_global_fault,
1796                                   IRQF_SHARED,
1797                                   "arm-smmu global fault",
1798                                   smmu);
1799                 if (err) {
1800                         dev_err(dev, "failed to request global IRQ %d (%u)\n",
1801                                 i, smmu->irqs[i]);
1802                         goto out_free_irqs;
1803                 }
1804         }
1805
1806         INIT_LIST_HEAD(&smmu->list);
1807         spin_lock(&arm_smmu_devices_lock);
1808         list_add(&smmu->list, &arm_smmu_devices);
1809         spin_unlock(&arm_smmu_devices_lock);
1810
1811         arm_smmu_device_reset(smmu);
1812         return 0;
1813
1814 out_free_irqs:
1815         while (i--)
1816                 free_irq(smmu->irqs[i], smmu);
1817
1818 out_put_masters:
1819         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1820                 struct arm_smmu_master *master
1821                         = container_of(node, struct arm_smmu_master, node);
1822                 of_node_put(master->of_node);
1823         }
1824
1825         return err;
1826 }
1827
1828 static int arm_smmu_device_remove(struct platform_device *pdev)
1829 {
1830         int i;
1831         struct device *dev = &pdev->dev;
1832         struct arm_smmu_device *curr, *smmu = NULL;
1833         struct rb_node *node;
1834
1835         spin_lock(&arm_smmu_devices_lock);
1836         list_for_each_entry(curr, &arm_smmu_devices, list) {
1837                 if (curr->dev == dev) {
1838                         smmu = curr;
1839                         list_del(&smmu->list);
1840                         break;
1841                 }
1842         }
1843         spin_unlock(&arm_smmu_devices_lock);
1844
1845         if (!smmu)
1846                 return -ENODEV;
1847
1848         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1849                 struct arm_smmu_master *master
1850                         = container_of(node, struct arm_smmu_master, node);
1851                 of_node_put(master->of_node);
1852         }
1853
1854         if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1855                 dev_err(dev, "removing device with active domains!\n");
1856
1857         for (i = 0; i < smmu->num_global_irqs; ++i)
1858                 free_irq(smmu->irqs[i], smmu);
1859
1860         /* Turn the thing off */
1861         writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1862         return 0;
1863 }
1864
1865 static struct platform_driver arm_smmu_driver = {
1866         .driver = {
1867                 .name           = "arm-smmu",
1868                 .of_match_table = of_match_ptr(arm_smmu_of_match),
1869         },
1870         .probe  = arm_smmu_device_dt_probe,
1871         .remove = arm_smmu_device_remove,
1872 };
1873
1874 static int __init arm_smmu_init(void)
1875 {
1876         struct device_node *np;
1877         int ret;
1878
1879         /*
1880          * Play nice with systems that don't have an ARM SMMU by checking that
1881          * an ARM SMMU exists in the system before proceeding with the driver
1882          * and IOMMU bus operation registration.
1883          */
1884         np = of_find_matching_node(NULL, arm_smmu_of_match);
1885         if (!np)
1886                 return 0;
1887
1888         of_node_put(np);
1889
1890         ret = platform_driver_register(&arm_smmu_driver);
1891         if (ret)
1892                 return ret;
1893
1894         /* Oh, for a proper bus abstraction */
1895         if (!iommu_present(&platform_bus_type))
1896                 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1897
1898 #ifdef CONFIG_ARM_AMBA
1899         if (!iommu_present(&amba_bustype))
1900                 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1901 #endif
1902
1903 #ifdef CONFIG_PCI
1904         if (!iommu_present(&pci_bus_type))
1905                 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
1906 #endif
1907
1908         return 0;
1909 }
1910
1911 static void __exit arm_smmu_exit(void)
1912 {
1913         return platform_driver_unregister(&arm_smmu_driver);
1914 }
1915
1916 subsys_initcall(arm_smmu_init);
1917 module_exit(arm_smmu_exit);
1918
1919 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1920 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1921 MODULE_LICENSE("GPL v2");