]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-thin.c
Merge remote-tracking branch 'input-current/for-linus'
[karo-tx-linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203         PM_READ_ONLY,           /* metadata may not be changed */
204         PM_FAIL,                /* all I/O fails */
205 };
206
207 struct pool_features {
208         enum pool_mode mode;
209
210         bool zero_new_blocks:1;
211         bool discard_enabled:1;
212         bool discard_passdown:1;
213         bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224         struct list_head list;
225         struct dm_target *ti;   /* Only set if a pool target is bound */
226
227         struct mapped_device *pool_md;
228         struct block_device *md_dev;
229         struct dm_pool_metadata *pmd;
230
231         dm_block_t low_water_blocks;
232         uint32_t sectors_per_block;
233         int sectors_per_block_shift;
234
235         struct pool_features pf;
236         bool low_water_triggered:1;     /* A dm event has been sent */
237         bool suspended:1;
238
239         struct dm_bio_prison *prison;
240         struct dm_kcopyd_client *copier;
241
242         struct workqueue_struct *wq;
243         struct throttle throttle;
244         struct work_struct worker;
245         struct delayed_work waker;
246         struct delayed_work no_space_timeout;
247
248         unsigned long last_commit_jiffies;
249         unsigned ref_count;
250
251         spinlock_t lock;
252         struct bio_list deferred_flush_bios;
253         struct list_head prepared_mappings;
254         struct list_head prepared_discards;
255         struct list_head active_thins;
256
257         struct dm_deferred_set *shared_read_ds;
258         struct dm_deferred_set *all_io_ds;
259
260         struct dm_thin_new_mapping *next_mapping;
261         mempool_t *mapping_pool;
262
263         process_bio_fn process_bio;
264         process_bio_fn process_discard;
265
266         process_cell_fn process_cell;
267         process_cell_fn process_discard_cell;
268
269         process_mapping_fn process_prepared_mapping;
270         process_mapping_fn process_prepared_discard;
271
272         struct dm_bio_prison_cell **cell_sort_array;
273 };
274
275 static enum pool_mode get_pool_mode(struct pool *pool);
276 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
277
278 /*
279  * Target context for a pool.
280  */
281 struct pool_c {
282         struct dm_target *ti;
283         struct pool *pool;
284         struct dm_dev *data_dev;
285         struct dm_dev *metadata_dev;
286         struct dm_target_callbacks callbacks;
287
288         dm_block_t low_water_blocks;
289         struct pool_features requested_pf; /* Features requested during table load */
290         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
291 };
292
293 /*
294  * Target context for a thin.
295  */
296 struct thin_c {
297         struct list_head list;
298         struct dm_dev *pool_dev;
299         struct dm_dev *origin_dev;
300         sector_t origin_size;
301         dm_thin_id dev_id;
302
303         struct pool *pool;
304         struct dm_thin_device *td;
305         struct mapped_device *thin_md;
306
307         bool requeue_mode:1;
308         spinlock_t lock;
309         struct list_head deferred_cells;
310         struct bio_list deferred_bio_list;
311         struct bio_list retry_on_resume_list;
312         struct rb_root sort_bio_list; /* sorted list of deferred bios */
313
314         /*
315          * Ensures the thin is not destroyed until the worker has finished
316          * iterating the active_thins list.
317          */
318         atomic_t refcount;
319         struct completion can_destroy;
320 };
321
322 /*----------------------------------------------------------------*/
323
324 /**
325  * __blkdev_issue_discard_async - queue a discard with async completion
326  * @bdev:       blockdev to issue discard for
327  * @sector:     start sector
328  * @nr_sects:   number of sectors to discard
329  * @gfp_mask:   memory allocation flags (for bio_alloc)
330  * @flags:      BLKDEV_IFL_* flags to control behaviour
331  * @parent_bio: parent discard bio that all sub discards get chained to
332  *
333  * Description:
334  *    Asynchronously issue a discard request for the sectors in question.
335  */
336 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
337                                         sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
338                                         struct bio *parent_bio)
339 {
340         struct request_queue *q = bdev_get_queue(bdev);
341         int type = REQ_WRITE | REQ_DISCARD;
342         struct bio *bio;
343
344         if (!q || !nr_sects)
345                 return -ENXIO;
346
347         if (!blk_queue_discard(q))
348                 return -EOPNOTSUPP;
349
350         if (flags & BLKDEV_DISCARD_SECURE) {
351                 if (!blk_queue_secdiscard(q))
352                         return -EOPNOTSUPP;
353                 type |= REQ_SECURE;
354         }
355
356         /*
357          * Required bio_put occurs in bio_endio thanks to bio_chain below
358          */
359         bio = bio_alloc(gfp_mask, 1);
360         if (!bio)
361                 return -ENOMEM;
362
363         bio_chain(bio, parent_bio);
364
365         bio->bi_iter.bi_sector = sector;
366         bio->bi_bdev = bdev;
367         bio->bi_iter.bi_size = nr_sects << 9;
368
369         submit_bio(type, bio);
370
371         return 0;
372 }
373
374 static bool block_size_is_power_of_two(struct pool *pool)
375 {
376         return pool->sectors_per_block_shift >= 0;
377 }
378
379 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
380 {
381         return block_size_is_power_of_two(pool) ?
382                 (b << pool->sectors_per_block_shift) :
383                 (b * pool->sectors_per_block);
384 }
385
386 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
387                          struct bio *parent_bio)
388 {
389         sector_t s = block_to_sectors(tc->pool, data_b);
390         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
391
392         return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
393                                             GFP_NOWAIT, 0, parent_bio);
394 }
395
396 /*----------------------------------------------------------------*/
397
398 /*
399  * wake_worker() is used when new work is queued and when pool_resume is
400  * ready to continue deferred IO processing.
401  */
402 static void wake_worker(struct pool *pool)
403 {
404         queue_work(pool->wq, &pool->worker);
405 }
406
407 /*----------------------------------------------------------------*/
408
409 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
410                       struct dm_bio_prison_cell **cell_result)
411 {
412         int r;
413         struct dm_bio_prison_cell *cell_prealloc;
414
415         /*
416          * Allocate a cell from the prison's mempool.
417          * This might block but it can't fail.
418          */
419         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
420
421         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
422         if (r)
423                 /*
424                  * We reused an old cell; we can get rid of
425                  * the new one.
426                  */
427                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
428
429         return r;
430 }
431
432 static void cell_release(struct pool *pool,
433                          struct dm_bio_prison_cell *cell,
434                          struct bio_list *bios)
435 {
436         dm_cell_release(pool->prison, cell, bios);
437         dm_bio_prison_free_cell(pool->prison, cell);
438 }
439
440 static void cell_visit_release(struct pool *pool,
441                                void (*fn)(void *, struct dm_bio_prison_cell *),
442                                void *context,
443                                struct dm_bio_prison_cell *cell)
444 {
445         dm_cell_visit_release(pool->prison, fn, context, cell);
446         dm_bio_prison_free_cell(pool->prison, cell);
447 }
448
449 static void cell_release_no_holder(struct pool *pool,
450                                    struct dm_bio_prison_cell *cell,
451                                    struct bio_list *bios)
452 {
453         dm_cell_release_no_holder(pool->prison, cell, bios);
454         dm_bio_prison_free_cell(pool->prison, cell);
455 }
456
457 static void cell_error_with_code(struct pool *pool,
458                                  struct dm_bio_prison_cell *cell, int error_code)
459 {
460         dm_cell_error(pool->prison, cell, error_code);
461         dm_bio_prison_free_cell(pool->prison, cell);
462 }
463
464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465 {
466         cell_error_with_code(pool, cell, -EIO);
467 }
468
469 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
470 {
471         cell_error_with_code(pool, cell, 0);
472 }
473
474 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
475 {
476         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
477 }
478
479 /*----------------------------------------------------------------*/
480
481 /*
482  * A global list of pools that uses a struct mapped_device as a key.
483  */
484 static struct dm_thin_pool_table {
485         struct mutex mutex;
486         struct list_head pools;
487 } dm_thin_pool_table;
488
489 static void pool_table_init(void)
490 {
491         mutex_init(&dm_thin_pool_table.mutex);
492         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
493 }
494
495 static void __pool_table_insert(struct pool *pool)
496 {
497         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
498         list_add(&pool->list, &dm_thin_pool_table.pools);
499 }
500
501 static void __pool_table_remove(struct pool *pool)
502 {
503         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504         list_del(&pool->list);
505 }
506
507 static struct pool *__pool_table_lookup(struct mapped_device *md)
508 {
509         struct pool *pool = NULL, *tmp;
510
511         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
512
513         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
514                 if (tmp->pool_md == md) {
515                         pool = tmp;
516                         break;
517                 }
518         }
519
520         return pool;
521 }
522
523 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
524 {
525         struct pool *pool = NULL, *tmp;
526
527         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
528
529         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
530                 if (tmp->md_dev == md_dev) {
531                         pool = tmp;
532                         break;
533                 }
534         }
535
536         return pool;
537 }
538
539 /*----------------------------------------------------------------*/
540
541 struct dm_thin_endio_hook {
542         struct thin_c *tc;
543         struct dm_deferred_entry *shared_read_entry;
544         struct dm_deferred_entry *all_io_entry;
545         struct dm_thin_new_mapping *overwrite_mapping;
546         struct rb_node rb_node;
547         struct dm_bio_prison_cell *cell;
548 };
549
550 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
551 {
552         bio_list_merge(bios, master);
553         bio_list_init(master);
554 }
555
556 static void error_bio_list(struct bio_list *bios, int error)
557 {
558         struct bio *bio;
559
560         while ((bio = bio_list_pop(bios))) {
561                 bio->bi_error = error;
562                 bio_endio(bio);
563         }
564 }
565
566 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
567 {
568         struct bio_list bios;
569         unsigned long flags;
570
571         bio_list_init(&bios);
572
573         spin_lock_irqsave(&tc->lock, flags);
574         __merge_bio_list(&bios, master);
575         spin_unlock_irqrestore(&tc->lock, flags);
576
577         error_bio_list(&bios, error);
578 }
579
580 static void requeue_deferred_cells(struct thin_c *tc)
581 {
582         struct pool *pool = tc->pool;
583         unsigned long flags;
584         struct list_head cells;
585         struct dm_bio_prison_cell *cell, *tmp;
586
587         INIT_LIST_HEAD(&cells);
588
589         spin_lock_irqsave(&tc->lock, flags);
590         list_splice_init(&tc->deferred_cells, &cells);
591         spin_unlock_irqrestore(&tc->lock, flags);
592
593         list_for_each_entry_safe(cell, tmp, &cells, user_list)
594                 cell_requeue(pool, cell);
595 }
596
597 static void requeue_io(struct thin_c *tc)
598 {
599         struct bio_list bios;
600         unsigned long flags;
601
602         bio_list_init(&bios);
603
604         spin_lock_irqsave(&tc->lock, flags);
605         __merge_bio_list(&bios, &tc->deferred_bio_list);
606         __merge_bio_list(&bios, &tc->retry_on_resume_list);
607         spin_unlock_irqrestore(&tc->lock, flags);
608
609         error_bio_list(&bios, DM_ENDIO_REQUEUE);
610         requeue_deferred_cells(tc);
611 }
612
613 static void error_retry_list_with_code(struct pool *pool, int error)
614 {
615         struct thin_c *tc;
616
617         rcu_read_lock();
618         list_for_each_entry_rcu(tc, &pool->active_thins, list)
619                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
620         rcu_read_unlock();
621 }
622
623 static void error_retry_list(struct pool *pool)
624 {
625         return error_retry_list_with_code(pool, -EIO);
626 }
627
628 /*
629  * This section of code contains the logic for processing a thin device's IO.
630  * Much of the code depends on pool object resources (lists, workqueues, etc)
631  * but most is exclusively called from the thin target rather than the thin-pool
632  * target.
633  */
634
635 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
636 {
637         struct pool *pool = tc->pool;
638         sector_t block_nr = bio->bi_iter.bi_sector;
639
640         if (block_size_is_power_of_two(pool))
641                 block_nr >>= pool->sectors_per_block_shift;
642         else
643                 (void) sector_div(block_nr, pool->sectors_per_block);
644
645         return block_nr;
646 }
647
648 /*
649  * Returns the _complete_ blocks that this bio covers.
650  */
651 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
652                                 dm_block_t *begin, dm_block_t *end)
653 {
654         struct pool *pool = tc->pool;
655         sector_t b = bio->bi_iter.bi_sector;
656         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
657
658         b += pool->sectors_per_block - 1ull; /* so we round up */
659
660         if (block_size_is_power_of_two(pool)) {
661                 b >>= pool->sectors_per_block_shift;
662                 e >>= pool->sectors_per_block_shift;
663         } else {
664                 (void) sector_div(b, pool->sectors_per_block);
665                 (void) sector_div(e, pool->sectors_per_block);
666         }
667
668         if (e < b)
669                 /* Can happen if the bio is within a single block. */
670                 e = b;
671
672         *begin = b;
673         *end = e;
674 }
675
676 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
677 {
678         struct pool *pool = tc->pool;
679         sector_t bi_sector = bio->bi_iter.bi_sector;
680
681         bio->bi_bdev = tc->pool_dev->bdev;
682         if (block_size_is_power_of_two(pool))
683                 bio->bi_iter.bi_sector =
684                         (block << pool->sectors_per_block_shift) |
685                         (bi_sector & (pool->sectors_per_block - 1));
686         else
687                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
688                                  sector_div(bi_sector, pool->sectors_per_block);
689 }
690
691 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
692 {
693         bio->bi_bdev = tc->origin_dev->bdev;
694 }
695
696 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
697 {
698         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
699                 dm_thin_changed_this_transaction(tc->td);
700 }
701
702 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
703 {
704         struct dm_thin_endio_hook *h;
705
706         if (bio->bi_rw & REQ_DISCARD)
707                 return;
708
709         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
710         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
711 }
712
713 static void issue(struct thin_c *tc, struct bio *bio)
714 {
715         struct pool *pool = tc->pool;
716         unsigned long flags;
717
718         if (!bio_triggers_commit(tc, bio)) {
719                 generic_make_request(bio);
720                 return;
721         }
722
723         /*
724          * Complete bio with an error if earlier I/O caused changes to
725          * the metadata that can't be committed e.g, due to I/O errors
726          * on the metadata device.
727          */
728         if (dm_thin_aborted_changes(tc->td)) {
729                 bio_io_error(bio);
730                 return;
731         }
732
733         /*
734          * Batch together any bios that trigger commits and then issue a
735          * single commit for them in process_deferred_bios().
736          */
737         spin_lock_irqsave(&pool->lock, flags);
738         bio_list_add(&pool->deferred_flush_bios, bio);
739         spin_unlock_irqrestore(&pool->lock, flags);
740 }
741
742 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
743 {
744         remap_to_origin(tc, bio);
745         issue(tc, bio);
746 }
747
748 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
749                             dm_block_t block)
750 {
751         remap(tc, bio, block);
752         issue(tc, bio);
753 }
754
755 /*----------------------------------------------------------------*/
756
757 /*
758  * Bio endio functions.
759  */
760 struct dm_thin_new_mapping {
761         struct list_head list;
762
763         bool pass_discard:1;
764         bool maybe_shared:1;
765
766         /*
767          * Track quiescing, copying and zeroing preparation actions.  When this
768          * counter hits zero the block is prepared and can be inserted into the
769          * btree.
770          */
771         atomic_t prepare_actions;
772
773         int err;
774         struct thin_c *tc;
775         dm_block_t virt_begin, virt_end;
776         dm_block_t data_block;
777         struct dm_bio_prison_cell *cell;
778
779         /*
780          * If the bio covers the whole area of a block then we can avoid
781          * zeroing or copying.  Instead this bio is hooked.  The bio will
782          * still be in the cell, so care has to be taken to avoid issuing
783          * the bio twice.
784          */
785         struct bio *bio;
786         bio_end_io_t *saved_bi_end_io;
787 };
788
789 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
790 {
791         struct pool *pool = m->tc->pool;
792
793         if (atomic_dec_and_test(&m->prepare_actions)) {
794                 list_add_tail(&m->list, &pool->prepared_mappings);
795                 wake_worker(pool);
796         }
797 }
798
799 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
800 {
801         unsigned long flags;
802         struct pool *pool = m->tc->pool;
803
804         spin_lock_irqsave(&pool->lock, flags);
805         __complete_mapping_preparation(m);
806         spin_unlock_irqrestore(&pool->lock, flags);
807 }
808
809 static void copy_complete(int read_err, unsigned long write_err, void *context)
810 {
811         struct dm_thin_new_mapping *m = context;
812
813         m->err = read_err || write_err ? -EIO : 0;
814         complete_mapping_preparation(m);
815 }
816
817 static void overwrite_endio(struct bio *bio)
818 {
819         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
820         struct dm_thin_new_mapping *m = h->overwrite_mapping;
821
822         bio->bi_end_io = m->saved_bi_end_io;
823
824         m->err = bio->bi_error;
825         complete_mapping_preparation(m);
826 }
827
828 /*----------------------------------------------------------------*/
829
830 /*
831  * Workqueue.
832  */
833
834 /*
835  * Prepared mapping jobs.
836  */
837
838 /*
839  * This sends the bios in the cell, except the original holder, back
840  * to the deferred_bios list.
841  */
842 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
843 {
844         struct pool *pool = tc->pool;
845         unsigned long flags;
846
847         spin_lock_irqsave(&tc->lock, flags);
848         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
849         spin_unlock_irqrestore(&tc->lock, flags);
850
851         wake_worker(pool);
852 }
853
854 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
855
856 struct remap_info {
857         struct thin_c *tc;
858         struct bio_list defer_bios;
859         struct bio_list issue_bios;
860 };
861
862 static void __inc_remap_and_issue_cell(void *context,
863                                        struct dm_bio_prison_cell *cell)
864 {
865         struct remap_info *info = context;
866         struct bio *bio;
867
868         while ((bio = bio_list_pop(&cell->bios))) {
869                 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
870                         bio_list_add(&info->defer_bios, bio);
871                 else {
872                         inc_all_io_entry(info->tc->pool, bio);
873
874                         /*
875                          * We can't issue the bios with the bio prison lock
876                          * held, so we add them to a list to issue on
877                          * return from this function.
878                          */
879                         bio_list_add(&info->issue_bios, bio);
880                 }
881         }
882 }
883
884 static void inc_remap_and_issue_cell(struct thin_c *tc,
885                                      struct dm_bio_prison_cell *cell,
886                                      dm_block_t block)
887 {
888         struct bio *bio;
889         struct remap_info info;
890
891         info.tc = tc;
892         bio_list_init(&info.defer_bios);
893         bio_list_init(&info.issue_bios);
894
895         /*
896          * We have to be careful to inc any bios we're about to issue
897          * before the cell is released, and avoid a race with new bios
898          * being added to the cell.
899          */
900         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
901                            &info, cell);
902
903         while ((bio = bio_list_pop(&info.defer_bios)))
904                 thin_defer_bio(tc, bio);
905
906         while ((bio = bio_list_pop(&info.issue_bios)))
907                 remap_and_issue(info.tc, bio, block);
908 }
909
910 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
911 {
912         cell_error(m->tc->pool, m->cell);
913         list_del(&m->list);
914         mempool_free(m, m->tc->pool->mapping_pool);
915 }
916
917 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
918 {
919         struct thin_c *tc = m->tc;
920         struct pool *pool = tc->pool;
921         struct bio *bio = m->bio;
922         int r;
923
924         if (m->err) {
925                 cell_error(pool, m->cell);
926                 goto out;
927         }
928
929         /*
930          * Commit the prepared block into the mapping btree.
931          * Any I/O for this block arriving after this point will get
932          * remapped to it directly.
933          */
934         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
935         if (r) {
936                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
937                 cell_error(pool, m->cell);
938                 goto out;
939         }
940
941         /*
942          * Release any bios held while the block was being provisioned.
943          * If we are processing a write bio that completely covers the block,
944          * we already processed it so can ignore it now when processing
945          * the bios in the cell.
946          */
947         if (bio) {
948                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
949                 bio_endio(bio);
950         } else {
951                 inc_all_io_entry(tc->pool, m->cell->holder);
952                 remap_and_issue(tc, m->cell->holder, m->data_block);
953                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
954         }
955
956 out:
957         list_del(&m->list);
958         mempool_free(m, pool->mapping_pool);
959 }
960
961 /*----------------------------------------------------------------*/
962
963 static void free_discard_mapping(struct dm_thin_new_mapping *m)
964 {
965         struct thin_c *tc = m->tc;
966         if (m->cell)
967                 cell_defer_no_holder(tc, m->cell);
968         mempool_free(m, tc->pool->mapping_pool);
969 }
970
971 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
972 {
973         bio_io_error(m->bio);
974         free_discard_mapping(m);
975 }
976
977 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
978 {
979         bio_endio(m->bio);
980         free_discard_mapping(m);
981 }
982
983 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
984 {
985         int r;
986         struct thin_c *tc = m->tc;
987
988         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
989         if (r) {
990                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
991                 bio_io_error(m->bio);
992         } else
993                 bio_endio(m->bio);
994
995         cell_defer_no_holder(tc, m->cell);
996         mempool_free(m, tc->pool->mapping_pool);
997 }
998
999 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1000 {
1001         /*
1002          * We've already unmapped this range of blocks, but before we
1003          * passdown we have to check that these blocks are now unused.
1004          */
1005         int r;
1006         bool used = true;
1007         struct thin_c *tc = m->tc;
1008         struct pool *pool = tc->pool;
1009         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1010
1011         while (b != end) {
1012                 /* find start of unmapped run */
1013                 for (; b < end; b++) {
1014                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1015                         if (r)
1016                                 return r;
1017
1018                         if (!used)
1019                                 break;
1020                 }
1021
1022                 if (b == end)
1023                         break;
1024
1025                 /* find end of run */
1026                 for (e = b + 1; e != end; e++) {
1027                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1028                         if (r)
1029                                 return r;
1030
1031                         if (used)
1032                                 break;
1033                 }
1034
1035                 r = issue_discard(tc, b, e, m->bio);
1036                 if (r)
1037                         return r;
1038
1039                 b = e;
1040         }
1041
1042         return 0;
1043 }
1044
1045 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1046 {
1047         int r;
1048         struct thin_c *tc = m->tc;
1049         struct pool *pool = tc->pool;
1050
1051         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1052         if (r)
1053                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1054
1055         else if (m->maybe_shared)
1056                 r = passdown_double_checking_shared_status(m);
1057         else
1058                 r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1059
1060         /*
1061          * Even if r is set, there could be sub discards in flight that we
1062          * need to wait for.
1063          */
1064         m->bio->bi_error = r;
1065         bio_endio(m->bio);
1066         cell_defer_no_holder(tc, m->cell);
1067         mempool_free(m, pool->mapping_pool);
1068 }
1069
1070 static void process_prepared(struct pool *pool, struct list_head *head,
1071                              process_mapping_fn *fn)
1072 {
1073         unsigned long flags;
1074         struct list_head maps;
1075         struct dm_thin_new_mapping *m, *tmp;
1076
1077         INIT_LIST_HEAD(&maps);
1078         spin_lock_irqsave(&pool->lock, flags);
1079         list_splice_init(head, &maps);
1080         spin_unlock_irqrestore(&pool->lock, flags);
1081
1082         list_for_each_entry_safe(m, tmp, &maps, list)
1083                 (*fn)(m);
1084 }
1085
1086 /*
1087  * Deferred bio jobs.
1088  */
1089 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1090 {
1091         return bio->bi_iter.bi_size ==
1092                 (pool->sectors_per_block << SECTOR_SHIFT);
1093 }
1094
1095 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1096 {
1097         return (bio_data_dir(bio) == WRITE) &&
1098                 io_overlaps_block(pool, bio);
1099 }
1100
1101 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1102                                bio_end_io_t *fn)
1103 {
1104         *save = bio->bi_end_io;
1105         bio->bi_end_io = fn;
1106 }
1107
1108 static int ensure_next_mapping(struct pool *pool)
1109 {
1110         if (pool->next_mapping)
1111                 return 0;
1112
1113         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1114
1115         return pool->next_mapping ? 0 : -ENOMEM;
1116 }
1117
1118 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1119 {
1120         struct dm_thin_new_mapping *m = pool->next_mapping;
1121
1122         BUG_ON(!pool->next_mapping);
1123
1124         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1125         INIT_LIST_HEAD(&m->list);
1126         m->bio = NULL;
1127
1128         pool->next_mapping = NULL;
1129
1130         return m;
1131 }
1132
1133 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1134                     sector_t begin, sector_t end)
1135 {
1136         int r;
1137         struct dm_io_region to;
1138
1139         to.bdev = tc->pool_dev->bdev;
1140         to.sector = begin;
1141         to.count = end - begin;
1142
1143         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1144         if (r < 0) {
1145                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1146                 copy_complete(1, 1, m);
1147         }
1148 }
1149
1150 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1151                                       dm_block_t data_begin,
1152                                       struct dm_thin_new_mapping *m)
1153 {
1154         struct pool *pool = tc->pool;
1155         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1156
1157         h->overwrite_mapping = m;
1158         m->bio = bio;
1159         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1160         inc_all_io_entry(pool, bio);
1161         remap_and_issue(tc, bio, data_begin);
1162 }
1163
1164 /*
1165  * A partial copy also needs to zero the uncopied region.
1166  */
1167 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1168                           struct dm_dev *origin, dm_block_t data_origin,
1169                           dm_block_t data_dest,
1170                           struct dm_bio_prison_cell *cell, struct bio *bio,
1171                           sector_t len)
1172 {
1173         int r;
1174         struct pool *pool = tc->pool;
1175         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1176
1177         m->tc = tc;
1178         m->virt_begin = virt_block;
1179         m->virt_end = virt_block + 1u;
1180         m->data_block = data_dest;
1181         m->cell = cell;
1182
1183         /*
1184          * quiesce action + copy action + an extra reference held for the
1185          * duration of this function (we may need to inc later for a
1186          * partial zero).
1187          */
1188         atomic_set(&m->prepare_actions, 3);
1189
1190         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1191                 complete_mapping_preparation(m); /* already quiesced */
1192
1193         /*
1194          * IO to pool_dev remaps to the pool target's data_dev.
1195          *
1196          * If the whole block of data is being overwritten, we can issue the
1197          * bio immediately. Otherwise we use kcopyd to clone the data first.
1198          */
1199         if (io_overwrites_block(pool, bio))
1200                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1201         else {
1202                 struct dm_io_region from, to;
1203
1204                 from.bdev = origin->bdev;
1205                 from.sector = data_origin * pool->sectors_per_block;
1206                 from.count = len;
1207
1208                 to.bdev = tc->pool_dev->bdev;
1209                 to.sector = data_dest * pool->sectors_per_block;
1210                 to.count = len;
1211
1212                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1213                                    0, copy_complete, m);
1214                 if (r < 0) {
1215                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1216                         copy_complete(1, 1, m);
1217
1218                         /*
1219                          * We allow the zero to be issued, to simplify the
1220                          * error path.  Otherwise we'd need to start
1221                          * worrying about decrementing the prepare_actions
1222                          * counter.
1223                          */
1224                 }
1225
1226                 /*
1227                  * Do we need to zero a tail region?
1228                  */
1229                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1230                         atomic_inc(&m->prepare_actions);
1231                         ll_zero(tc, m,
1232                                 data_dest * pool->sectors_per_block + len,
1233                                 (data_dest + 1) * pool->sectors_per_block);
1234                 }
1235         }
1236
1237         complete_mapping_preparation(m); /* drop our ref */
1238 }
1239
1240 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1241                                    dm_block_t data_origin, dm_block_t data_dest,
1242                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1243 {
1244         schedule_copy(tc, virt_block, tc->pool_dev,
1245                       data_origin, data_dest, cell, bio,
1246                       tc->pool->sectors_per_block);
1247 }
1248
1249 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1250                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1251                           struct bio *bio)
1252 {
1253         struct pool *pool = tc->pool;
1254         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1255
1256         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1257         m->tc = tc;
1258         m->virt_begin = virt_block;
1259         m->virt_end = virt_block + 1u;
1260         m->data_block = data_block;
1261         m->cell = cell;
1262
1263         /*
1264          * If the whole block of data is being overwritten or we are not
1265          * zeroing pre-existing data, we can issue the bio immediately.
1266          * Otherwise we use kcopyd to zero the data first.
1267          */
1268         if (pool->pf.zero_new_blocks) {
1269                 if (io_overwrites_block(pool, bio))
1270                         remap_and_issue_overwrite(tc, bio, data_block, m);
1271                 else
1272                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1273                                 (data_block + 1) * pool->sectors_per_block);
1274         } else
1275                 process_prepared_mapping(m);
1276 }
1277
1278 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1279                                    dm_block_t data_dest,
1280                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1281 {
1282         struct pool *pool = tc->pool;
1283         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1284         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1285
1286         if (virt_block_end <= tc->origin_size)
1287                 schedule_copy(tc, virt_block, tc->origin_dev,
1288                               virt_block, data_dest, cell, bio,
1289                               pool->sectors_per_block);
1290
1291         else if (virt_block_begin < tc->origin_size)
1292                 schedule_copy(tc, virt_block, tc->origin_dev,
1293                               virt_block, data_dest, cell, bio,
1294                               tc->origin_size - virt_block_begin);
1295
1296         else
1297                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1298 }
1299
1300 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1301
1302 static void check_for_space(struct pool *pool)
1303 {
1304         int r;
1305         dm_block_t nr_free;
1306
1307         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1308                 return;
1309
1310         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1311         if (r)
1312                 return;
1313
1314         if (nr_free)
1315                 set_pool_mode(pool, PM_WRITE);
1316 }
1317
1318 /*
1319  * A non-zero return indicates read_only or fail_io mode.
1320  * Many callers don't care about the return value.
1321  */
1322 static int commit(struct pool *pool)
1323 {
1324         int r;
1325
1326         if (get_pool_mode(pool) >= PM_READ_ONLY)
1327                 return -EINVAL;
1328
1329         r = dm_pool_commit_metadata(pool->pmd);
1330         if (r)
1331                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1332         else
1333                 check_for_space(pool);
1334
1335         return r;
1336 }
1337
1338 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1339 {
1340         unsigned long flags;
1341
1342         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1343                 DMWARN("%s: reached low water mark for data device: sending event.",
1344                        dm_device_name(pool->pool_md));
1345                 spin_lock_irqsave(&pool->lock, flags);
1346                 pool->low_water_triggered = true;
1347                 spin_unlock_irqrestore(&pool->lock, flags);
1348                 dm_table_event(pool->ti->table);
1349         }
1350 }
1351
1352 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1353 {
1354         int r;
1355         dm_block_t free_blocks;
1356         struct pool *pool = tc->pool;
1357
1358         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1359                 return -EINVAL;
1360
1361         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1362         if (r) {
1363                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1364                 return r;
1365         }
1366
1367         check_low_water_mark(pool, free_blocks);
1368
1369         if (!free_blocks) {
1370                 /*
1371                  * Try to commit to see if that will free up some
1372                  * more space.
1373                  */
1374                 r = commit(pool);
1375                 if (r)
1376                         return r;
1377
1378                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1379                 if (r) {
1380                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1381                         return r;
1382                 }
1383
1384                 if (!free_blocks) {
1385                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1386                         return -ENOSPC;
1387                 }
1388         }
1389
1390         r = dm_pool_alloc_data_block(pool->pmd, result);
1391         if (r) {
1392                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1393                 return r;
1394         }
1395
1396         return 0;
1397 }
1398
1399 /*
1400  * If we have run out of space, queue bios until the device is
1401  * resumed, presumably after having been reloaded with more space.
1402  */
1403 static void retry_on_resume(struct bio *bio)
1404 {
1405         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1406         struct thin_c *tc = h->tc;
1407         unsigned long flags;
1408
1409         spin_lock_irqsave(&tc->lock, flags);
1410         bio_list_add(&tc->retry_on_resume_list, bio);
1411         spin_unlock_irqrestore(&tc->lock, flags);
1412 }
1413
1414 static int should_error_unserviceable_bio(struct pool *pool)
1415 {
1416         enum pool_mode m = get_pool_mode(pool);
1417
1418         switch (m) {
1419         case PM_WRITE:
1420                 /* Shouldn't get here */
1421                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1422                 return -EIO;
1423
1424         case PM_OUT_OF_DATA_SPACE:
1425                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1426
1427         case PM_READ_ONLY:
1428         case PM_FAIL:
1429                 return -EIO;
1430         default:
1431                 /* Shouldn't get here */
1432                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1433                 return -EIO;
1434         }
1435 }
1436
1437 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1438 {
1439         int error = should_error_unserviceable_bio(pool);
1440
1441         if (error) {
1442                 bio->bi_error = error;
1443                 bio_endio(bio);
1444         } else
1445                 retry_on_resume(bio);
1446 }
1447
1448 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1449 {
1450         struct bio *bio;
1451         struct bio_list bios;
1452         int error;
1453
1454         error = should_error_unserviceable_bio(pool);
1455         if (error) {
1456                 cell_error_with_code(pool, cell, error);
1457                 return;
1458         }
1459
1460         bio_list_init(&bios);
1461         cell_release(pool, cell, &bios);
1462
1463         while ((bio = bio_list_pop(&bios)))
1464                 retry_on_resume(bio);
1465 }
1466
1467 static void process_discard_cell_no_passdown(struct thin_c *tc,
1468                                              struct dm_bio_prison_cell *virt_cell)
1469 {
1470         struct pool *pool = tc->pool;
1471         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1472
1473         /*
1474          * We don't need to lock the data blocks, since there's no
1475          * passdown.  We only lock data blocks for allocation and breaking sharing.
1476          */
1477         m->tc = tc;
1478         m->virt_begin = virt_cell->key.block_begin;
1479         m->virt_end = virt_cell->key.block_end;
1480         m->cell = virt_cell;
1481         m->bio = virt_cell->holder;
1482
1483         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1484                 pool->process_prepared_discard(m);
1485 }
1486
1487 /*
1488  * __bio_inc_remaining() is used to defer parent bios's end_io until
1489  * we _know_ all chained sub range discard bios have completed.
1490  */
1491 static inline void __bio_inc_remaining(struct bio *bio)
1492 {
1493         bio->bi_flags |= (1 << BIO_CHAIN);
1494         smp_mb__before_atomic();
1495         atomic_inc(&bio->__bi_remaining);
1496 }
1497
1498 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1499                                  struct bio *bio)
1500 {
1501         struct pool *pool = tc->pool;
1502
1503         int r;
1504         bool maybe_shared;
1505         struct dm_cell_key data_key;
1506         struct dm_bio_prison_cell *data_cell;
1507         struct dm_thin_new_mapping *m;
1508         dm_block_t virt_begin, virt_end, data_begin;
1509
1510         while (begin != end) {
1511                 r = ensure_next_mapping(pool);
1512                 if (r)
1513                         /* we did our best */
1514                         return;
1515
1516                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1517                                               &data_begin, &maybe_shared);
1518                 if (r)
1519                         /*
1520                          * Silently fail, letting any mappings we've
1521                          * created complete.
1522                          */
1523                         break;
1524
1525                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1526                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1527                         /* contention, we'll give up with this range */
1528                         begin = virt_end;
1529                         continue;
1530                 }
1531
1532                 /*
1533                  * IO may still be going to the destination block.  We must
1534                  * quiesce before we can do the removal.
1535                  */
1536                 m = get_next_mapping(pool);
1537                 m->tc = tc;
1538                 m->maybe_shared = maybe_shared;
1539                 m->virt_begin = virt_begin;
1540                 m->virt_end = virt_end;
1541                 m->data_block = data_begin;
1542                 m->cell = data_cell;
1543                 m->bio = bio;
1544
1545                 /*
1546                  * The parent bio must not complete before sub discard bios are
1547                  * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1548                  *
1549                  * This per-mapping bi_remaining increment is paired with
1550                  * the implicit decrement that occurs via bio_endio() in
1551                  * process_prepared_discard_{passdown,no_passdown}.
1552                  */
1553                 __bio_inc_remaining(bio);
1554                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1555                         pool->process_prepared_discard(m);
1556
1557                 begin = virt_end;
1558         }
1559 }
1560
1561 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1562 {
1563         struct bio *bio = virt_cell->holder;
1564         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1565
1566         /*
1567          * The virt_cell will only get freed once the origin bio completes.
1568          * This means it will remain locked while all the individual
1569          * passdown bios are in flight.
1570          */
1571         h->cell = virt_cell;
1572         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1573
1574         /*
1575          * We complete the bio now, knowing that the bi_remaining field
1576          * will prevent completion until the sub range discards have
1577          * completed.
1578          */
1579         bio_endio(bio);
1580 }
1581
1582 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1583 {
1584         dm_block_t begin, end;
1585         struct dm_cell_key virt_key;
1586         struct dm_bio_prison_cell *virt_cell;
1587
1588         get_bio_block_range(tc, bio, &begin, &end);
1589         if (begin == end) {
1590                 /*
1591                  * The discard covers less than a block.
1592                  */
1593                 bio_endio(bio);
1594                 return;
1595         }
1596
1597         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1598         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1599                 /*
1600                  * Potential starvation issue: We're relying on the
1601                  * fs/application being well behaved, and not trying to
1602                  * send IO to a region at the same time as discarding it.
1603                  * If they do this persistently then it's possible this
1604                  * cell will never be granted.
1605                  */
1606                 return;
1607
1608         tc->pool->process_discard_cell(tc, virt_cell);
1609 }
1610
1611 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1612                           struct dm_cell_key *key,
1613                           struct dm_thin_lookup_result *lookup_result,
1614                           struct dm_bio_prison_cell *cell)
1615 {
1616         int r;
1617         dm_block_t data_block;
1618         struct pool *pool = tc->pool;
1619
1620         r = alloc_data_block(tc, &data_block);
1621         switch (r) {
1622         case 0:
1623                 schedule_internal_copy(tc, block, lookup_result->block,
1624                                        data_block, cell, bio);
1625                 break;
1626
1627         case -ENOSPC:
1628                 retry_bios_on_resume(pool, cell);
1629                 break;
1630
1631         default:
1632                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1633                             __func__, r);
1634                 cell_error(pool, cell);
1635                 break;
1636         }
1637 }
1638
1639 static void __remap_and_issue_shared_cell(void *context,
1640                                           struct dm_bio_prison_cell *cell)
1641 {
1642         struct remap_info *info = context;
1643         struct bio *bio;
1644
1645         while ((bio = bio_list_pop(&cell->bios))) {
1646                 if ((bio_data_dir(bio) == WRITE) ||
1647                     (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1648                         bio_list_add(&info->defer_bios, bio);
1649                 else {
1650                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1651
1652                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1653                         inc_all_io_entry(info->tc->pool, bio);
1654                         bio_list_add(&info->issue_bios, bio);
1655                 }
1656         }
1657 }
1658
1659 static void remap_and_issue_shared_cell(struct thin_c *tc,
1660                                         struct dm_bio_prison_cell *cell,
1661                                         dm_block_t block)
1662 {
1663         struct bio *bio;
1664         struct remap_info info;
1665
1666         info.tc = tc;
1667         bio_list_init(&info.defer_bios);
1668         bio_list_init(&info.issue_bios);
1669
1670         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1671                            &info, cell);
1672
1673         while ((bio = bio_list_pop(&info.defer_bios)))
1674                 thin_defer_bio(tc, bio);
1675
1676         while ((bio = bio_list_pop(&info.issue_bios)))
1677                 remap_and_issue(tc, bio, block);
1678 }
1679
1680 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1681                                dm_block_t block,
1682                                struct dm_thin_lookup_result *lookup_result,
1683                                struct dm_bio_prison_cell *virt_cell)
1684 {
1685         struct dm_bio_prison_cell *data_cell;
1686         struct pool *pool = tc->pool;
1687         struct dm_cell_key key;
1688
1689         /*
1690          * If cell is already occupied, then sharing is already in the process
1691          * of being broken so we have nothing further to do here.
1692          */
1693         build_data_key(tc->td, lookup_result->block, &key);
1694         if (bio_detain(pool, &key, bio, &data_cell)) {
1695                 cell_defer_no_holder(tc, virt_cell);
1696                 return;
1697         }
1698
1699         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1700                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1701                 cell_defer_no_holder(tc, virt_cell);
1702         } else {
1703                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1704
1705                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1706                 inc_all_io_entry(pool, bio);
1707                 remap_and_issue(tc, bio, lookup_result->block);
1708
1709                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1710                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1711         }
1712 }
1713
1714 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1715                             struct dm_bio_prison_cell *cell)
1716 {
1717         int r;
1718         dm_block_t data_block;
1719         struct pool *pool = tc->pool;
1720
1721         /*
1722          * Remap empty bios (flushes) immediately, without provisioning.
1723          */
1724         if (!bio->bi_iter.bi_size) {
1725                 inc_all_io_entry(pool, bio);
1726                 cell_defer_no_holder(tc, cell);
1727
1728                 remap_and_issue(tc, bio, 0);
1729                 return;
1730         }
1731
1732         /*
1733          * Fill read bios with zeroes and complete them immediately.
1734          */
1735         if (bio_data_dir(bio) == READ) {
1736                 zero_fill_bio(bio);
1737                 cell_defer_no_holder(tc, cell);
1738                 bio_endio(bio);
1739                 return;
1740         }
1741
1742         r = alloc_data_block(tc, &data_block);
1743         switch (r) {
1744         case 0:
1745                 if (tc->origin_dev)
1746                         schedule_external_copy(tc, block, data_block, cell, bio);
1747                 else
1748                         schedule_zero(tc, block, data_block, cell, bio);
1749                 break;
1750
1751         case -ENOSPC:
1752                 retry_bios_on_resume(pool, cell);
1753                 break;
1754
1755         default:
1756                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1757                             __func__, r);
1758                 cell_error(pool, cell);
1759                 break;
1760         }
1761 }
1762
1763 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1764 {
1765         int r;
1766         struct pool *pool = tc->pool;
1767         struct bio *bio = cell->holder;
1768         dm_block_t block = get_bio_block(tc, bio);
1769         struct dm_thin_lookup_result lookup_result;
1770
1771         if (tc->requeue_mode) {
1772                 cell_requeue(pool, cell);
1773                 return;
1774         }
1775
1776         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1777         switch (r) {
1778         case 0:
1779                 if (lookup_result.shared)
1780                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1781                 else {
1782                         inc_all_io_entry(pool, bio);
1783                         remap_and_issue(tc, bio, lookup_result.block);
1784                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1785                 }
1786                 break;
1787
1788         case -ENODATA:
1789                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1790                         inc_all_io_entry(pool, bio);
1791                         cell_defer_no_holder(tc, cell);
1792
1793                         if (bio_end_sector(bio) <= tc->origin_size)
1794                                 remap_to_origin_and_issue(tc, bio);
1795
1796                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1797                                 zero_fill_bio(bio);
1798                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1799                                 remap_to_origin_and_issue(tc, bio);
1800
1801                         } else {
1802                                 zero_fill_bio(bio);
1803                                 bio_endio(bio);
1804                         }
1805                 } else
1806                         provision_block(tc, bio, block, cell);
1807                 break;
1808
1809         default:
1810                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1811                             __func__, r);
1812                 cell_defer_no_holder(tc, cell);
1813                 bio_io_error(bio);
1814                 break;
1815         }
1816 }
1817
1818 static void process_bio(struct thin_c *tc, struct bio *bio)
1819 {
1820         struct pool *pool = tc->pool;
1821         dm_block_t block = get_bio_block(tc, bio);
1822         struct dm_bio_prison_cell *cell;
1823         struct dm_cell_key key;
1824
1825         /*
1826          * If cell is already occupied, then the block is already
1827          * being provisioned so we have nothing further to do here.
1828          */
1829         build_virtual_key(tc->td, block, &key);
1830         if (bio_detain(pool, &key, bio, &cell))
1831                 return;
1832
1833         process_cell(tc, cell);
1834 }
1835
1836 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1837                                     struct dm_bio_prison_cell *cell)
1838 {
1839         int r;
1840         int rw = bio_data_dir(bio);
1841         dm_block_t block = get_bio_block(tc, bio);
1842         struct dm_thin_lookup_result lookup_result;
1843
1844         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1845         switch (r) {
1846         case 0:
1847                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1848                         handle_unserviceable_bio(tc->pool, bio);
1849                         if (cell)
1850                                 cell_defer_no_holder(tc, cell);
1851                 } else {
1852                         inc_all_io_entry(tc->pool, bio);
1853                         remap_and_issue(tc, bio, lookup_result.block);
1854                         if (cell)
1855                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1856                 }
1857                 break;
1858
1859         case -ENODATA:
1860                 if (cell)
1861                         cell_defer_no_holder(tc, cell);
1862                 if (rw != READ) {
1863                         handle_unserviceable_bio(tc->pool, bio);
1864                         break;
1865                 }
1866
1867                 if (tc->origin_dev) {
1868                         inc_all_io_entry(tc->pool, bio);
1869                         remap_to_origin_and_issue(tc, bio);
1870                         break;
1871                 }
1872
1873                 zero_fill_bio(bio);
1874                 bio_endio(bio);
1875                 break;
1876
1877         default:
1878                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1879                             __func__, r);
1880                 if (cell)
1881                         cell_defer_no_holder(tc, cell);
1882                 bio_io_error(bio);
1883                 break;
1884         }
1885 }
1886
1887 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1888 {
1889         __process_bio_read_only(tc, bio, NULL);
1890 }
1891
1892 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1893 {
1894         __process_bio_read_only(tc, cell->holder, cell);
1895 }
1896
1897 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1898 {
1899         bio_endio(bio);
1900 }
1901
1902 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1903 {
1904         bio_io_error(bio);
1905 }
1906
1907 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1908 {
1909         cell_success(tc->pool, cell);
1910 }
1911
1912 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1913 {
1914         cell_error(tc->pool, cell);
1915 }
1916
1917 /*
1918  * FIXME: should we also commit due to size of transaction, measured in
1919  * metadata blocks?
1920  */
1921 static int need_commit_due_to_time(struct pool *pool)
1922 {
1923         return !time_in_range(jiffies, pool->last_commit_jiffies,
1924                               pool->last_commit_jiffies + COMMIT_PERIOD);
1925 }
1926
1927 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1928 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1929
1930 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1931 {
1932         struct rb_node **rbp, *parent;
1933         struct dm_thin_endio_hook *pbd;
1934         sector_t bi_sector = bio->bi_iter.bi_sector;
1935
1936         rbp = &tc->sort_bio_list.rb_node;
1937         parent = NULL;
1938         while (*rbp) {
1939                 parent = *rbp;
1940                 pbd = thin_pbd(parent);
1941
1942                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1943                         rbp = &(*rbp)->rb_left;
1944                 else
1945                         rbp = &(*rbp)->rb_right;
1946         }
1947
1948         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1949         rb_link_node(&pbd->rb_node, parent, rbp);
1950         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1951 }
1952
1953 static void __extract_sorted_bios(struct thin_c *tc)
1954 {
1955         struct rb_node *node;
1956         struct dm_thin_endio_hook *pbd;
1957         struct bio *bio;
1958
1959         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1960                 pbd = thin_pbd(node);
1961                 bio = thin_bio(pbd);
1962
1963                 bio_list_add(&tc->deferred_bio_list, bio);
1964                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1965         }
1966
1967         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1968 }
1969
1970 static void __sort_thin_deferred_bios(struct thin_c *tc)
1971 {
1972         struct bio *bio;
1973         struct bio_list bios;
1974
1975         bio_list_init(&bios);
1976         bio_list_merge(&bios, &tc->deferred_bio_list);
1977         bio_list_init(&tc->deferred_bio_list);
1978
1979         /* Sort deferred_bio_list using rb-tree */
1980         while ((bio = bio_list_pop(&bios)))
1981                 __thin_bio_rb_add(tc, bio);
1982
1983         /*
1984          * Transfer the sorted bios in sort_bio_list back to
1985          * deferred_bio_list to allow lockless submission of
1986          * all bios.
1987          */
1988         __extract_sorted_bios(tc);
1989 }
1990
1991 static void process_thin_deferred_bios(struct thin_c *tc)
1992 {
1993         struct pool *pool = tc->pool;
1994         unsigned long flags;
1995         struct bio *bio;
1996         struct bio_list bios;
1997         struct blk_plug plug;
1998         unsigned count = 0;
1999
2000         if (tc->requeue_mode) {
2001                 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2002                 return;
2003         }
2004
2005         bio_list_init(&bios);
2006
2007         spin_lock_irqsave(&tc->lock, flags);
2008
2009         if (bio_list_empty(&tc->deferred_bio_list)) {
2010                 spin_unlock_irqrestore(&tc->lock, flags);
2011                 return;
2012         }
2013
2014         __sort_thin_deferred_bios(tc);
2015
2016         bio_list_merge(&bios, &tc->deferred_bio_list);
2017         bio_list_init(&tc->deferred_bio_list);
2018
2019         spin_unlock_irqrestore(&tc->lock, flags);
2020
2021         blk_start_plug(&plug);
2022         while ((bio = bio_list_pop(&bios))) {
2023                 /*
2024                  * If we've got no free new_mapping structs, and processing
2025                  * this bio might require one, we pause until there are some
2026                  * prepared mappings to process.
2027                  */
2028                 if (ensure_next_mapping(pool)) {
2029                         spin_lock_irqsave(&tc->lock, flags);
2030                         bio_list_add(&tc->deferred_bio_list, bio);
2031                         bio_list_merge(&tc->deferred_bio_list, &bios);
2032                         spin_unlock_irqrestore(&tc->lock, flags);
2033                         break;
2034                 }
2035
2036                 if (bio->bi_rw & REQ_DISCARD)
2037                         pool->process_discard(tc, bio);
2038                 else
2039                         pool->process_bio(tc, bio);
2040
2041                 if ((count++ & 127) == 0) {
2042                         throttle_work_update(&pool->throttle);
2043                         dm_pool_issue_prefetches(pool->pmd);
2044                 }
2045         }
2046         blk_finish_plug(&plug);
2047 }
2048
2049 static int cmp_cells(const void *lhs, const void *rhs)
2050 {
2051         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2052         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2053
2054         BUG_ON(!lhs_cell->holder);
2055         BUG_ON(!rhs_cell->holder);
2056
2057         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2058                 return -1;
2059
2060         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2061                 return 1;
2062
2063         return 0;
2064 }
2065
2066 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2067 {
2068         unsigned count = 0;
2069         struct dm_bio_prison_cell *cell, *tmp;
2070
2071         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2072                 if (count >= CELL_SORT_ARRAY_SIZE)
2073                         break;
2074
2075                 pool->cell_sort_array[count++] = cell;
2076                 list_del(&cell->user_list);
2077         }
2078
2079         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2080
2081         return count;
2082 }
2083
2084 static void process_thin_deferred_cells(struct thin_c *tc)
2085 {
2086         struct pool *pool = tc->pool;
2087         unsigned long flags;
2088         struct list_head cells;
2089         struct dm_bio_prison_cell *cell;
2090         unsigned i, j, count;
2091
2092         INIT_LIST_HEAD(&cells);
2093
2094         spin_lock_irqsave(&tc->lock, flags);
2095         list_splice_init(&tc->deferred_cells, &cells);
2096         spin_unlock_irqrestore(&tc->lock, flags);
2097
2098         if (list_empty(&cells))
2099                 return;
2100
2101         do {
2102                 count = sort_cells(tc->pool, &cells);
2103
2104                 for (i = 0; i < count; i++) {
2105                         cell = pool->cell_sort_array[i];
2106                         BUG_ON(!cell->holder);
2107
2108                         /*
2109                          * If we've got no free new_mapping structs, and processing
2110                          * this bio might require one, we pause until there are some
2111                          * prepared mappings to process.
2112                          */
2113                         if (ensure_next_mapping(pool)) {
2114                                 for (j = i; j < count; j++)
2115                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2116
2117                                 spin_lock_irqsave(&tc->lock, flags);
2118                                 list_splice(&cells, &tc->deferred_cells);
2119                                 spin_unlock_irqrestore(&tc->lock, flags);
2120                                 return;
2121                         }
2122
2123                         if (cell->holder->bi_rw & REQ_DISCARD)
2124                                 pool->process_discard_cell(tc, cell);
2125                         else
2126                                 pool->process_cell(tc, cell);
2127                 }
2128         } while (!list_empty(&cells));
2129 }
2130
2131 static void thin_get(struct thin_c *tc);
2132 static void thin_put(struct thin_c *tc);
2133
2134 /*
2135  * We can't hold rcu_read_lock() around code that can block.  So we
2136  * find a thin with the rcu lock held; bump a refcount; then drop
2137  * the lock.
2138  */
2139 static struct thin_c *get_first_thin(struct pool *pool)
2140 {
2141         struct thin_c *tc = NULL;
2142
2143         rcu_read_lock();
2144         if (!list_empty(&pool->active_thins)) {
2145                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2146                 thin_get(tc);
2147         }
2148         rcu_read_unlock();
2149
2150         return tc;
2151 }
2152
2153 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2154 {
2155         struct thin_c *old_tc = tc;
2156
2157         rcu_read_lock();
2158         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2159                 thin_get(tc);
2160                 thin_put(old_tc);
2161                 rcu_read_unlock();
2162                 return tc;
2163         }
2164         thin_put(old_tc);
2165         rcu_read_unlock();
2166
2167         return NULL;
2168 }
2169
2170 static void process_deferred_bios(struct pool *pool)
2171 {
2172         unsigned long flags;
2173         struct bio *bio;
2174         struct bio_list bios;
2175         struct thin_c *tc;
2176
2177         tc = get_first_thin(pool);
2178         while (tc) {
2179                 process_thin_deferred_cells(tc);
2180                 process_thin_deferred_bios(tc);
2181                 tc = get_next_thin(pool, tc);
2182         }
2183
2184         /*
2185          * If there are any deferred flush bios, we must commit
2186          * the metadata before issuing them.
2187          */
2188         bio_list_init(&bios);
2189         spin_lock_irqsave(&pool->lock, flags);
2190         bio_list_merge(&bios, &pool->deferred_flush_bios);
2191         bio_list_init(&pool->deferred_flush_bios);
2192         spin_unlock_irqrestore(&pool->lock, flags);
2193
2194         if (bio_list_empty(&bios) &&
2195             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2196                 return;
2197
2198         if (commit(pool)) {
2199                 while ((bio = bio_list_pop(&bios)))
2200                         bio_io_error(bio);
2201                 return;
2202         }
2203         pool->last_commit_jiffies = jiffies;
2204
2205         while ((bio = bio_list_pop(&bios)))
2206                 generic_make_request(bio);
2207 }
2208
2209 static void do_worker(struct work_struct *ws)
2210 {
2211         struct pool *pool = container_of(ws, struct pool, worker);
2212
2213         throttle_work_start(&pool->throttle);
2214         dm_pool_issue_prefetches(pool->pmd);
2215         throttle_work_update(&pool->throttle);
2216         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2217         throttle_work_update(&pool->throttle);
2218         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2219         throttle_work_update(&pool->throttle);
2220         process_deferred_bios(pool);
2221         throttle_work_complete(&pool->throttle);
2222 }
2223
2224 /*
2225  * We want to commit periodically so that not too much
2226  * unwritten data builds up.
2227  */
2228 static void do_waker(struct work_struct *ws)
2229 {
2230         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2231         wake_worker(pool);
2232         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2233 }
2234
2235 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2236
2237 /*
2238  * We're holding onto IO to allow userland time to react.  After the
2239  * timeout either the pool will have been resized (and thus back in
2240  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2241  */
2242 static void do_no_space_timeout(struct work_struct *ws)
2243 {
2244         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2245                                          no_space_timeout);
2246
2247         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2248                 pool->pf.error_if_no_space = true;
2249                 notify_of_pool_mode_change_to_oods(pool);
2250                 error_retry_list_with_code(pool, -ENOSPC);
2251         }
2252 }
2253
2254 /*----------------------------------------------------------------*/
2255
2256 struct pool_work {
2257         struct work_struct worker;
2258         struct completion complete;
2259 };
2260
2261 static struct pool_work *to_pool_work(struct work_struct *ws)
2262 {
2263         return container_of(ws, struct pool_work, worker);
2264 }
2265
2266 static void pool_work_complete(struct pool_work *pw)
2267 {
2268         complete(&pw->complete);
2269 }
2270
2271 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2272                            void (*fn)(struct work_struct *))
2273 {
2274         INIT_WORK_ONSTACK(&pw->worker, fn);
2275         init_completion(&pw->complete);
2276         queue_work(pool->wq, &pw->worker);
2277         wait_for_completion(&pw->complete);
2278 }
2279
2280 /*----------------------------------------------------------------*/
2281
2282 struct noflush_work {
2283         struct pool_work pw;
2284         struct thin_c *tc;
2285 };
2286
2287 static struct noflush_work *to_noflush(struct work_struct *ws)
2288 {
2289         return container_of(to_pool_work(ws), struct noflush_work, pw);
2290 }
2291
2292 static void do_noflush_start(struct work_struct *ws)
2293 {
2294         struct noflush_work *w = to_noflush(ws);
2295         w->tc->requeue_mode = true;
2296         requeue_io(w->tc);
2297         pool_work_complete(&w->pw);
2298 }
2299
2300 static void do_noflush_stop(struct work_struct *ws)
2301 {
2302         struct noflush_work *w = to_noflush(ws);
2303         w->tc->requeue_mode = false;
2304         pool_work_complete(&w->pw);
2305 }
2306
2307 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2308 {
2309         struct noflush_work w;
2310
2311         w.tc = tc;
2312         pool_work_wait(&w.pw, tc->pool, fn);
2313 }
2314
2315 /*----------------------------------------------------------------*/
2316
2317 static enum pool_mode get_pool_mode(struct pool *pool)
2318 {
2319         return pool->pf.mode;
2320 }
2321
2322 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2323 {
2324         dm_table_event(pool->ti->table);
2325         DMINFO("%s: switching pool to %s mode",
2326                dm_device_name(pool->pool_md), new_mode);
2327 }
2328
2329 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2330 {
2331         if (!pool->pf.error_if_no_space)
2332                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2333         else
2334                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2335 }
2336
2337 static bool passdown_enabled(struct pool_c *pt)
2338 {
2339         return pt->adjusted_pf.discard_passdown;
2340 }
2341
2342 static void set_discard_callbacks(struct pool *pool)
2343 {
2344         struct pool_c *pt = pool->ti->private;
2345
2346         if (passdown_enabled(pt)) {
2347                 pool->process_discard_cell = process_discard_cell_passdown;
2348                 pool->process_prepared_discard = process_prepared_discard_passdown;
2349         } else {
2350                 pool->process_discard_cell = process_discard_cell_no_passdown;
2351                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2352         }
2353 }
2354
2355 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2356 {
2357         struct pool_c *pt = pool->ti->private;
2358         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2359         enum pool_mode old_mode = get_pool_mode(pool);
2360         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2361
2362         /*
2363          * Never allow the pool to transition to PM_WRITE mode if user
2364          * intervention is required to verify metadata and data consistency.
2365          */
2366         if (new_mode == PM_WRITE && needs_check) {
2367                 DMERR("%s: unable to switch pool to write mode until repaired.",
2368                       dm_device_name(pool->pool_md));
2369                 if (old_mode != new_mode)
2370                         new_mode = old_mode;
2371                 else
2372                         new_mode = PM_READ_ONLY;
2373         }
2374         /*
2375          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2376          * not going to recover without a thin_repair.  So we never let the
2377          * pool move out of the old mode.
2378          */
2379         if (old_mode == PM_FAIL)
2380                 new_mode = old_mode;
2381
2382         switch (new_mode) {
2383         case PM_FAIL:
2384                 if (old_mode != new_mode)
2385                         notify_of_pool_mode_change(pool, "failure");
2386                 dm_pool_metadata_read_only(pool->pmd);
2387                 pool->process_bio = process_bio_fail;
2388                 pool->process_discard = process_bio_fail;
2389                 pool->process_cell = process_cell_fail;
2390                 pool->process_discard_cell = process_cell_fail;
2391                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2392                 pool->process_prepared_discard = process_prepared_discard_fail;
2393
2394                 error_retry_list(pool);
2395                 break;
2396
2397         case PM_READ_ONLY:
2398                 if (old_mode != new_mode)
2399                         notify_of_pool_mode_change(pool, "read-only");
2400                 dm_pool_metadata_read_only(pool->pmd);
2401                 pool->process_bio = process_bio_read_only;
2402                 pool->process_discard = process_bio_success;
2403                 pool->process_cell = process_cell_read_only;
2404                 pool->process_discard_cell = process_cell_success;
2405                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2406                 pool->process_prepared_discard = process_prepared_discard_success;
2407
2408                 error_retry_list(pool);
2409                 break;
2410
2411         case PM_OUT_OF_DATA_SPACE:
2412                 /*
2413                  * Ideally we'd never hit this state; the low water mark
2414                  * would trigger userland to extend the pool before we
2415                  * completely run out of data space.  However, many small
2416                  * IOs to unprovisioned space can consume data space at an
2417                  * alarming rate.  Adjust your low water mark if you're
2418                  * frequently seeing this mode.
2419                  */
2420                 if (old_mode != new_mode)
2421                         notify_of_pool_mode_change_to_oods(pool);
2422                 pool->process_bio = process_bio_read_only;
2423                 pool->process_discard = process_discard_bio;
2424                 pool->process_cell = process_cell_read_only;
2425                 pool->process_prepared_mapping = process_prepared_mapping;
2426                 set_discard_callbacks(pool);
2427
2428                 if (!pool->pf.error_if_no_space && no_space_timeout)
2429                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2430                 break;
2431
2432         case PM_WRITE:
2433                 if (old_mode != new_mode)
2434                         notify_of_pool_mode_change(pool, "write");
2435                 dm_pool_metadata_read_write(pool->pmd);
2436                 pool->process_bio = process_bio;
2437                 pool->process_discard = process_discard_bio;
2438                 pool->process_cell = process_cell;
2439                 pool->process_prepared_mapping = process_prepared_mapping;
2440                 set_discard_callbacks(pool);
2441                 break;
2442         }
2443
2444         pool->pf.mode = new_mode;
2445         /*
2446          * The pool mode may have changed, sync it so bind_control_target()
2447          * doesn't cause an unexpected mode transition on resume.
2448          */
2449         pt->adjusted_pf.mode = new_mode;
2450 }
2451
2452 static void abort_transaction(struct pool *pool)
2453 {
2454         const char *dev_name = dm_device_name(pool->pool_md);
2455
2456         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2457         if (dm_pool_abort_metadata(pool->pmd)) {
2458                 DMERR("%s: failed to abort metadata transaction", dev_name);
2459                 set_pool_mode(pool, PM_FAIL);
2460         }
2461
2462         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2463                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2464                 set_pool_mode(pool, PM_FAIL);
2465         }
2466 }
2467
2468 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2469 {
2470         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2471                     dm_device_name(pool->pool_md), op, r);
2472
2473         abort_transaction(pool);
2474         set_pool_mode(pool, PM_READ_ONLY);
2475 }
2476
2477 /*----------------------------------------------------------------*/
2478
2479 /*
2480  * Mapping functions.
2481  */
2482
2483 /*
2484  * Called only while mapping a thin bio to hand it over to the workqueue.
2485  */
2486 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2487 {
2488         unsigned long flags;
2489         struct pool *pool = tc->pool;
2490
2491         spin_lock_irqsave(&tc->lock, flags);
2492         bio_list_add(&tc->deferred_bio_list, bio);
2493         spin_unlock_irqrestore(&tc->lock, flags);
2494
2495         wake_worker(pool);
2496 }
2497
2498 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2499 {
2500         struct pool *pool = tc->pool;
2501
2502         throttle_lock(&pool->throttle);
2503         thin_defer_bio(tc, bio);
2504         throttle_unlock(&pool->throttle);
2505 }
2506
2507 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2508 {
2509         unsigned long flags;
2510         struct pool *pool = tc->pool;
2511
2512         throttle_lock(&pool->throttle);
2513         spin_lock_irqsave(&tc->lock, flags);
2514         list_add_tail(&cell->user_list, &tc->deferred_cells);
2515         spin_unlock_irqrestore(&tc->lock, flags);
2516         throttle_unlock(&pool->throttle);
2517
2518         wake_worker(pool);
2519 }
2520
2521 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2522 {
2523         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2524
2525         h->tc = tc;
2526         h->shared_read_entry = NULL;
2527         h->all_io_entry = NULL;
2528         h->overwrite_mapping = NULL;
2529         h->cell = NULL;
2530 }
2531
2532 /*
2533  * Non-blocking function called from the thin target's map function.
2534  */
2535 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2536 {
2537         int r;
2538         struct thin_c *tc = ti->private;
2539         dm_block_t block = get_bio_block(tc, bio);
2540         struct dm_thin_device *td = tc->td;
2541         struct dm_thin_lookup_result result;
2542         struct dm_bio_prison_cell *virt_cell, *data_cell;
2543         struct dm_cell_key key;
2544
2545         thin_hook_bio(tc, bio);
2546
2547         if (tc->requeue_mode) {
2548                 bio->bi_error = DM_ENDIO_REQUEUE;
2549                 bio_endio(bio);
2550                 return DM_MAPIO_SUBMITTED;
2551         }
2552
2553         if (get_pool_mode(tc->pool) == PM_FAIL) {
2554                 bio_io_error(bio);
2555                 return DM_MAPIO_SUBMITTED;
2556         }
2557
2558         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2559                 thin_defer_bio_with_throttle(tc, bio);
2560                 return DM_MAPIO_SUBMITTED;
2561         }
2562
2563         /*
2564          * We must hold the virtual cell before doing the lookup, otherwise
2565          * there's a race with discard.
2566          */
2567         build_virtual_key(tc->td, block, &key);
2568         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2569                 return DM_MAPIO_SUBMITTED;
2570
2571         r = dm_thin_find_block(td, block, 0, &result);
2572
2573         /*
2574          * Note that we defer readahead too.
2575          */
2576         switch (r) {
2577         case 0:
2578                 if (unlikely(result.shared)) {
2579                         /*
2580                          * We have a race condition here between the
2581                          * result.shared value returned by the lookup and
2582                          * snapshot creation, which may cause new
2583                          * sharing.
2584                          *
2585                          * To avoid this always quiesce the origin before
2586                          * taking the snap.  You want to do this anyway to
2587                          * ensure a consistent application view
2588                          * (i.e. lockfs).
2589                          *
2590                          * More distant ancestors are irrelevant. The
2591                          * shared flag will be set in their case.
2592                          */
2593                         thin_defer_cell(tc, virt_cell);
2594                         return DM_MAPIO_SUBMITTED;
2595                 }
2596
2597                 build_data_key(tc->td, result.block, &key);
2598                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2599                         cell_defer_no_holder(tc, virt_cell);
2600                         return DM_MAPIO_SUBMITTED;
2601                 }
2602
2603                 inc_all_io_entry(tc->pool, bio);
2604                 cell_defer_no_holder(tc, data_cell);
2605                 cell_defer_no_holder(tc, virt_cell);
2606
2607                 remap(tc, bio, result.block);
2608                 return DM_MAPIO_REMAPPED;
2609
2610         case -ENODATA:
2611         case -EWOULDBLOCK:
2612                 thin_defer_cell(tc, virt_cell);
2613                 return DM_MAPIO_SUBMITTED;
2614
2615         default:
2616                 /*
2617                  * Must always call bio_io_error on failure.
2618                  * dm_thin_find_block can fail with -EINVAL if the
2619                  * pool is switched to fail-io mode.
2620                  */
2621                 bio_io_error(bio);
2622                 cell_defer_no_holder(tc, virt_cell);
2623                 return DM_MAPIO_SUBMITTED;
2624         }
2625 }
2626
2627 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2628 {
2629         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2630         struct request_queue *q;
2631
2632         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2633                 return 1;
2634
2635         q = bdev_get_queue(pt->data_dev->bdev);
2636         return bdi_congested(&q->backing_dev_info, bdi_bits);
2637 }
2638
2639 static void requeue_bios(struct pool *pool)
2640 {
2641         unsigned long flags;
2642         struct thin_c *tc;
2643
2644         rcu_read_lock();
2645         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2646                 spin_lock_irqsave(&tc->lock, flags);
2647                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2648                 bio_list_init(&tc->retry_on_resume_list);
2649                 spin_unlock_irqrestore(&tc->lock, flags);
2650         }
2651         rcu_read_unlock();
2652 }
2653
2654 /*----------------------------------------------------------------
2655  * Binding of control targets to a pool object
2656  *--------------------------------------------------------------*/
2657 static bool data_dev_supports_discard(struct pool_c *pt)
2658 {
2659         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2660
2661         return q && blk_queue_discard(q);
2662 }
2663
2664 static bool is_factor(sector_t block_size, uint32_t n)
2665 {
2666         return !sector_div(block_size, n);
2667 }
2668
2669 /*
2670  * If discard_passdown was enabled verify that the data device
2671  * supports discards.  Disable discard_passdown if not.
2672  */
2673 static void disable_passdown_if_not_supported(struct pool_c *pt)
2674 {
2675         struct pool *pool = pt->pool;
2676         struct block_device *data_bdev = pt->data_dev->bdev;
2677         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2678         const char *reason = NULL;
2679         char buf[BDEVNAME_SIZE];
2680
2681         if (!pt->adjusted_pf.discard_passdown)
2682                 return;
2683
2684         if (!data_dev_supports_discard(pt))
2685                 reason = "discard unsupported";
2686
2687         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2688                 reason = "max discard sectors smaller than a block";
2689
2690         if (reason) {
2691                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2692                 pt->adjusted_pf.discard_passdown = false;
2693         }
2694 }
2695
2696 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2697 {
2698         struct pool_c *pt = ti->private;
2699
2700         /*
2701          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2702          */
2703         enum pool_mode old_mode = get_pool_mode(pool);
2704         enum pool_mode new_mode = pt->adjusted_pf.mode;
2705
2706         /*
2707          * Don't change the pool's mode until set_pool_mode() below.
2708          * Otherwise the pool's process_* function pointers may
2709          * not match the desired pool mode.
2710          */
2711         pt->adjusted_pf.mode = old_mode;
2712
2713         pool->ti = ti;
2714         pool->pf = pt->adjusted_pf;
2715         pool->low_water_blocks = pt->low_water_blocks;
2716
2717         set_pool_mode(pool, new_mode);
2718
2719         return 0;
2720 }
2721
2722 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2723 {
2724         if (pool->ti == ti)
2725                 pool->ti = NULL;
2726 }
2727
2728 /*----------------------------------------------------------------
2729  * Pool creation
2730  *--------------------------------------------------------------*/
2731 /* Initialize pool features. */
2732 static void pool_features_init(struct pool_features *pf)
2733 {
2734         pf->mode = PM_WRITE;
2735         pf->zero_new_blocks = true;
2736         pf->discard_enabled = true;
2737         pf->discard_passdown = true;
2738         pf->error_if_no_space = false;
2739 }
2740
2741 static void __pool_destroy(struct pool *pool)
2742 {
2743         __pool_table_remove(pool);
2744
2745         vfree(pool->cell_sort_array);
2746         if (dm_pool_metadata_close(pool->pmd) < 0)
2747                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2748
2749         dm_bio_prison_destroy(pool->prison);
2750         dm_kcopyd_client_destroy(pool->copier);
2751
2752         if (pool->wq)
2753                 destroy_workqueue(pool->wq);
2754
2755         if (pool->next_mapping)
2756                 mempool_free(pool->next_mapping, pool->mapping_pool);
2757         mempool_destroy(pool->mapping_pool);
2758         dm_deferred_set_destroy(pool->shared_read_ds);
2759         dm_deferred_set_destroy(pool->all_io_ds);
2760         kfree(pool);
2761 }
2762
2763 static struct kmem_cache *_new_mapping_cache;
2764
2765 static struct pool *pool_create(struct mapped_device *pool_md,
2766                                 struct block_device *metadata_dev,
2767                                 unsigned long block_size,
2768                                 int read_only, char **error)
2769 {
2770         int r;
2771         void *err_p;
2772         struct pool *pool;
2773         struct dm_pool_metadata *pmd;
2774         bool format_device = read_only ? false : true;
2775
2776         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2777         if (IS_ERR(pmd)) {
2778                 *error = "Error creating metadata object";
2779                 return (struct pool *)pmd;
2780         }
2781
2782         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2783         if (!pool) {
2784                 *error = "Error allocating memory for pool";
2785                 err_p = ERR_PTR(-ENOMEM);
2786                 goto bad_pool;
2787         }
2788
2789         pool->pmd = pmd;
2790         pool->sectors_per_block = block_size;
2791         if (block_size & (block_size - 1))
2792                 pool->sectors_per_block_shift = -1;
2793         else
2794                 pool->sectors_per_block_shift = __ffs(block_size);
2795         pool->low_water_blocks = 0;
2796         pool_features_init(&pool->pf);
2797         pool->prison = dm_bio_prison_create();
2798         if (!pool->prison) {
2799                 *error = "Error creating pool's bio prison";
2800                 err_p = ERR_PTR(-ENOMEM);
2801                 goto bad_prison;
2802         }
2803
2804         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2805         if (IS_ERR(pool->copier)) {
2806                 r = PTR_ERR(pool->copier);
2807                 *error = "Error creating pool's kcopyd client";
2808                 err_p = ERR_PTR(r);
2809                 goto bad_kcopyd_client;
2810         }
2811
2812         /*
2813          * Create singlethreaded workqueue that will service all devices
2814          * that use this metadata.
2815          */
2816         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2817         if (!pool->wq) {
2818                 *error = "Error creating pool's workqueue";
2819                 err_p = ERR_PTR(-ENOMEM);
2820                 goto bad_wq;
2821         }
2822
2823         throttle_init(&pool->throttle);
2824         INIT_WORK(&pool->worker, do_worker);
2825         INIT_DELAYED_WORK(&pool->waker, do_waker);
2826         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2827         spin_lock_init(&pool->lock);
2828         bio_list_init(&pool->deferred_flush_bios);
2829         INIT_LIST_HEAD(&pool->prepared_mappings);
2830         INIT_LIST_HEAD(&pool->prepared_discards);
2831         INIT_LIST_HEAD(&pool->active_thins);
2832         pool->low_water_triggered = false;
2833         pool->suspended = true;
2834
2835         pool->shared_read_ds = dm_deferred_set_create();
2836         if (!pool->shared_read_ds) {
2837                 *error = "Error creating pool's shared read deferred set";
2838                 err_p = ERR_PTR(-ENOMEM);
2839                 goto bad_shared_read_ds;
2840         }
2841
2842         pool->all_io_ds = dm_deferred_set_create();
2843         if (!pool->all_io_ds) {
2844                 *error = "Error creating pool's all io deferred set";
2845                 err_p = ERR_PTR(-ENOMEM);
2846                 goto bad_all_io_ds;
2847         }
2848
2849         pool->next_mapping = NULL;
2850         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2851                                                       _new_mapping_cache);
2852         if (!pool->mapping_pool) {
2853                 *error = "Error creating pool's mapping mempool";
2854                 err_p = ERR_PTR(-ENOMEM);
2855                 goto bad_mapping_pool;
2856         }
2857
2858         pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2859         if (!pool->cell_sort_array) {
2860                 *error = "Error allocating cell sort array";
2861                 err_p = ERR_PTR(-ENOMEM);
2862                 goto bad_sort_array;
2863         }
2864
2865         pool->ref_count = 1;
2866         pool->last_commit_jiffies = jiffies;
2867         pool->pool_md = pool_md;
2868         pool->md_dev = metadata_dev;
2869         __pool_table_insert(pool);
2870
2871         return pool;
2872
2873 bad_sort_array:
2874         mempool_destroy(pool->mapping_pool);
2875 bad_mapping_pool:
2876         dm_deferred_set_destroy(pool->all_io_ds);
2877 bad_all_io_ds:
2878         dm_deferred_set_destroy(pool->shared_read_ds);
2879 bad_shared_read_ds:
2880         destroy_workqueue(pool->wq);
2881 bad_wq:
2882         dm_kcopyd_client_destroy(pool->copier);
2883 bad_kcopyd_client:
2884         dm_bio_prison_destroy(pool->prison);
2885 bad_prison:
2886         kfree(pool);
2887 bad_pool:
2888         if (dm_pool_metadata_close(pmd))
2889                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2890
2891         return err_p;
2892 }
2893
2894 static void __pool_inc(struct pool *pool)
2895 {
2896         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2897         pool->ref_count++;
2898 }
2899
2900 static void __pool_dec(struct pool *pool)
2901 {
2902         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2903         BUG_ON(!pool->ref_count);
2904         if (!--pool->ref_count)
2905                 __pool_destroy(pool);
2906 }
2907
2908 static struct pool *__pool_find(struct mapped_device *pool_md,
2909                                 struct block_device *metadata_dev,
2910                                 unsigned long block_size, int read_only,
2911                                 char **error, int *created)
2912 {
2913         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2914
2915         if (pool) {
2916                 if (pool->pool_md != pool_md) {
2917                         *error = "metadata device already in use by a pool";
2918                         return ERR_PTR(-EBUSY);
2919                 }
2920                 __pool_inc(pool);
2921
2922         } else {
2923                 pool = __pool_table_lookup(pool_md);
2924                 if (pool) {
2925                         if (pool->md_dev != metadata_dev) {
2926                                 *error = "different pool cannot replace a pool";
2927                                 return ERR_PTR(-EINVAL);
2928                         }
2929                         __pool_inc(pool);
2930
2931                 } else {
2932                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2933                         *created = 1;
2934                 }
2935         }
2936
2937         return pool;
2938 }
2939
2940 /*----------------------------------------------------------------
2941  * Pool target methods
2942  *--------------------------------------------------------------*/
2943 static void pool_dtr(struct dm_target *ti)
2944 {
2945         struct pool_c *pt = ti->private;
2946
2947         mutex_lock(&dm_thin_pool_table.mutex);
2948
2949         unbind_control_target(pt->pool, ti);
2950         __pool_dec(pt->pool);
2951         dm_put_device(ti, pt->metadata_dev);
2952         dm_put_device(ti, pt->data_dev);
2953         kfree(pt);
2954
2955         mutex_unlock(&dm_thin_pool_table.mutex);
2956 }
2957
2958 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2959                                struct dm_target *ti)
2960 {
2961         int r;
2962         unsigned argc;
2963         const char *arg_name;
2964
2965         static struct dm_arg _args[] = {
2966                 {0, 4, "Invalid number of pool feature arguments"},
2967         };
2968
2969         /*
2970          * No feature arguments supplied.
2971          */
2972         if (!as->argc)
2973                 return 0;
2974
2975         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2976         if (r)
2977                 return -EINVAL;
2978
2979         while (argc && !r) {
2980                 arg_name = dm_shift_arg(as);
2981                 argc--;
2982
2983                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2984                         pf->zero_new_blocks = false;
2985
2986                 else if (!strcasecmp(arg_name, "ignore_discard"))
2987                         pf->discard_enabled = false;
2988
2989                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2990                         pf->discard_passdown = false;
2991
2992                 else if (!strcasecmp(arg_name, "read_only"))
2993                         pf->mode = PM_READ_ONLY;
2994
2995                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2996                         pf->error_if_no_space = true;
2997
2998                 else {
2999                         ti->error = "Unrecognised pool feature requested";
3000                         r = -EINVAL;
3001                         break;
3002                 }
3003         }
3004
3005         return r;
3006 }
3007
3008 static void metadata_low_callback(void *context)
3009 {
3010         struct pool *pool = context;
3011
3012         DMWARN("%s: reached low water mark for metadata device: sending event.",
3013                dm_device_name(pool->pool_md));
3014
3015         dm_table_event(pool->ti->table);
3016 }
3017
3018 static sector_t get_dev_size(struct block_device *bdev)
3019 {
3020         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3021 }
3022
3023 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3024 {
3025         sector_t metadata_dev_size = get_dev_size(bdev);
3026         char buffer[BDEVNAME_SIZE];
3027
3028         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3029                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3030                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3031 }
3032
3033 static sector_t get_metadata_dev_size(struct block_device *bdev)
3034 {
3035         sector_t metadata_dev_size = get_dev_size(bdev);
3036
3037         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3038                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3039
3040         return metadata_dev_size;
3041 }
3042
3043 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3044 {
3045         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3046
3047         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3048
3049         return metadata_dev_size;
3050 }
3051
3052 /*
3053  * When a metadata threshold is crossed a dm event is triggered, and
3054  * userland should respond by growing the metadata device.  We could let
3055  * userland set the threshold, like we do with the data threshold, but I'm
3056  * not sure they know enough to do this well.
3057  */
3058 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3059 {
3060         /*
3061          * 4M is ample for all ops with the possible exception of thin
3062          * device deletion which is harmless if it fails (just retry the
3063          * delete after you've grown the device).
3064          */
3065         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3066         return min((dm_block_t)1024ULL /* 4M */, quarter);
3067 }
3068
3069 /*
3070  * thin-pool <metadata dev> <data dev>
3071  *           <data block size (sectors)>
3072  *           <low water mark (blocks)>
3073  *           [<#feature args> [<arg>]*]
3074  *
3075  * Optional feature arguments are:
3076  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3077  *           ignore_discard: disable discard
3078  *           no_discard_passdown: don't pass discards down to the data device
3079  *           read_only: Don't allow any changes to be made to the pool metadata.
3080  *           error_if_no_space: error IOs, instead of queueing, if no space.
3081  */
3082 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3083 {
3084         int r, pool_created = 0;
3085         struct pool_c *pt;
3086         struct pool *pool;
3087         struct pool_features pf;
3088         struct dm_arg_set as;
3089         struct dm_dev *data_dev;
3090         unsigned long block_size;
3091         dm_block_t low_water_blocks;
3092         struct dm_dev *metadata_dev;
3093         fmode_t metadata_mode;
3094
3095         /*
3096          * FIXME Remove validation from scope of lock.
3097          */
3098         mutex_lock(&dm_thin_pool_table.mutex);
3099
3100         if (argc < 4) {
3101                 ti->error = "Invalid argument count";
3102                 r = -EINVAL;
3103                 goto out_unlock;
3104         }
3105
3106         as.argc = argc;
3107         as.argv = argv;
3108
3109         /*
3110          * Set default pool features.
3111          */
3112         pool_features_init(&pf);
3113
3114         dm_consume_args(&as, 4);
3115         r = parse_pool_features(&as, &pf, ti);
3116         if (r)
3117                 goto out_unlock;
3118
3119         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3120         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3121         if (r) {
3122                 ti->error = "Error opening metadata block device";
3123                 goto out_unlock;
3124         }
3125         warn_if_metadata_device_too_big(metadata_dev->bdev);
3126
3127         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3128         if (r) {
3129                 ti->error = "Error getting data device";
3130                 goto out_metadata;
3131         }
3132
3133         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3134             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3135             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3136             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3137                 ti->error = "Invalid block size";
3138                 r = -EINVAL;
3139                 goto out;
3140         }
3141
3142         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3143                 ti->error = "Invalid low water mark";
3144                 r = -EINVAL;
3145                 goto out;
3146         }
3147
3148         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3149         if (!pt) {
3150                 r = -ENOMEM;
3151                 goto out;
3152         }
3153
3154         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3155                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3156         if (IS_ERR(pool)) {
3157                 r = PTR_ERR(pool);
3158                 goto out_free_pt;
3159         }
3160
3161         /*
3162          * 'pool_created' reflects whether this is the first table load.
3163          * Top level discard support is not allowed to be changed after
3164          * initial load.  This would require a pool reload to trigger thin
3165          * device changes.
3166          */
3167         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3168                 ti->error = "Discard support cannot be disabled once enabled";
3169                 r = -EINVAL;
3170                 goto out_flags_changed;
3171         }
3172
3173         pt->pool = pool;
3174         pt->ti = ti;
3175         pt->metadata_dev = metadata_dev;
3176         pt->data_dev = data_dev;
3177         pt->low_water_blocks = low_water_blocks;
3178         pt->adjusted_pf = pt->requested_pf = pf;
3179         ti->num_flush_bios = 1;
3180
3181         /*
3182          * Only need to enable discards if the pool should pass
3183          * them down to the data device.  The thin device's discard
3184          * processing will cause mappings to be removed from the btree.
3185          */
3186         ti->discard_zeroes_data_unsupported = true;
3187         if (pf.discard_enabled && pf.discard_passdown) {
3188                 ti->num_discard_bios = 1;
3189
3190                 /*
3191                  * Setting 'discards_supported' circumvents the normal
3192                  * stacking of discard limits (this keeps the pool and
3193                  * thin devices' discard limits consistent).
3194                  */
3195                 ti->discards_supported = true;
3196         }
3197         ti->private = pt;
3198
3199         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3200                                                 calc_metadata_threshold(pt),
3201                                                 metadata_low_callback,
3202                                                 pool);
3203         if (r)
3204                 goto out_flags_changed;
3205
3206         pt->callbacks.congested_fn = pool_is_congested;
3207         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3208
3209         mutex_unlock(&dm_thin_pool_table.mutex);
3210
3211         return 0;
3212
3213 out_flags_changed:
3214         __pool_dec(pool);
3215 out_free_pt:
3216         kfree(pt);
3217 out:
3218         dm_put_device(ti, data_dev);
3219 out_metadata:
3220         dm_put_device(ti, metadata_dev);
3221 out_unlock:
3222         mutex_unlock(&dm_thin_pool_table.mutex);
3223
3224         return r;
3225 }
3226
3227 static int pool_map(struct dm_target *ti, struct bio *bio)
3228 {
3229         int r;
3230         struct pool_c *pt = ti->private;
3231         struct pool *pool = pt->pool;
3232         unsigned long flags;
3233
3234         /*
3235          * As this is a singleton target, ti->begin is always zero.
3236          */
3237         spin_lock_irqsave(&pool->lock, flags);
3238         bio->bi_bdev = pt->data_dev->bdev;
3239         r = DM_MAPIO_REMAPPED;
3240         spin_unlock_irqrestore(&pool->lock, flags);
3241
3242         return r;
3243 }
3244
3245 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3246 {
3247         int r;
3248         struct pool_c *pt = ti->private;
3249         struct pool *pool = pt->pool;
3250         sector_t data_size = ti->len;
3251         dm_block_t sb_data_size;
3252
3253         *need_commit = false;
3254
3255         (void) sector_div(data_size, pool->sectors_per_block);
3256
3257         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3258         if (r) {
3259                 DMERR("%s: failed to retrieve data device size",
3260                       dm_device_name(pool->pool_md));
3261                 return r;
3262         }
3263
3264         if (data_size < sb_data_size) {
3265                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3266                       dm_device_name(pool->pool_md),
3267                       (unsigned long long)data_size, sb_data_size);
3268                 return -EINVAL;
3269
3270         } else if (data_size > sb_data_size) {
3271                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3272                         DMERR("%s: unable to grow the data device until repaired.",
3273                               dm_device_name(pool->pool_md));
3274                         return 0;
3275                 }
3276
3277                 if (sb_data_size)
3278                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3279                                dm_device_name(pool->pool_md),
3280                                sb_data_size, (unsigned long long)data_size);
3281                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3282                 if (r) {
3283                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3284                         return r;
3285                 }
3286
3287                 *need_commit = true;
3288         }
3289
3290         return 0;
3291 }
3292
3293 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3294 {
3295         int r;
3296         struct pool_c *pt = ti->private;
3297         struct pool *pool = pt->pool;
3298         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3299
3300         *need_commit = false;
3301
3302         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3303
3304         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3305         if (r) {
3306                 DMERR("%s: failed to retrieve metadata device size",
3307                       dm_device_name(pool->pool_md));
3308                 return r;
3309         }
3310
3311         if (metadata_dev_size < sb_metadata_dev_size) {
3312                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3313                       dm_device_name(pool->pool_md),
3314                       metadata_dev_size, sb_metadata_dev_size);
3315                 return -EINVAL;
3316
3317         } else if (metadata_dev_size > sb_metadata_dev_size) {
3318                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3319                         DMERR("%s: unable to grow the metadata device until repaired.",
3320                               dm_device_name(pool->pool_md));
3321                         return 0;
3322                 }
3323
3324                 warn_if_metadata_device_too_big(pool->md_dev);
3325                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3326                        dm_device_name(pool->pool_md),
3327                        sb_metadata_dev_size, metadata_dev_size);
3328                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3329                 if (r) {
3330                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3331                         return r;
3332                 }
3333
3334                 *need_commit = true;
3335         }
3336
3337         return 0;
3338 }
3339
3340 /*
3341  * Retrieves the number of blocks of the data device from
3342  * the superblock and compares it to the actual device size,
3343  * thus resizing the data device in case it has grown.
3344  *
3345  * This both copes with opening preallocated data devices in the ctr
3346  * being followed by a resume
3347  * -and-
3348  * calling the resume method individually after userspace has
3349  * grown the data device in reaction to a table event.
3350  */
3351 static int pool_preresume(struct dm_target *ti)
3352 {
3353         int r;
3354         bool need_commit1, need_commit2;
3355         struct pool_c *pt = ti->private;
3356         struct pool *pool = pt->pool;
3357
3358         /*
3359          * Take control of the pool object.
3360          */
3361         r = bind_control_target(pool, ti);
3362         if (r)
3363                 return r;
3364
3365         r = maybe_resize_data_dev(ti, &need_commit1);
3366         if (r)
3367                 return r;
3368
3369         r = maybe_resize_metadata_dev(ti, &need_commit2);
3370         if (r)
3371                 return r;
3372
3373         if (need_commit1 || need_commit2)
3374                 (void) commit(pool);
3375
3376         return 0;
3377 }
3378
3379 static void pool_suspend_active_thins(struct pool *pool)
3380 {
3381         struct thin_c *tc;
3382
3383         /* Suspend all active thin devices */
3384         tc = get_first_thin(pool);
3385         while (tc) {
3386                 dm_internal_suspend_noflush(tc->thin_md);
3387                 tc = get_next_thin(pool, tc);
3388         }
3389 }
3390
3391 static void pool_resume_active_thins(struct pool *pool)
3392 {
3393         struct thin_c *tc;
3394
3395         /* Resume all active thin devices */
3396         tc = get_first_thin(pool);
3397         while (tc) {
3398                 dm_internal_resume(tc->thin_md);
3399                 tc = get_next_thin(pool, tc);
3400         }
3401 }
3402
3403 static void pool_resume(struct dm_target *ti)
3404 {
3405         struct pool_c *pt = ti->private;
3406         struct pool *pool = pt->pool;
3407         unsigned long flags;
3408
3409         /*
3410          * Must requeue active_thins' bios and then resume
3411          * active_thins _before_ clearing 'suspend' flag.
3412          */
3413         requeue_bios(pool);
3414         pool_resume_active_thins(pool);
3415
3416         spin_lock_irqsave(&pool->lock, flags);
3417         pool->low_water_triggered = false;
3418         pool->suspended = false;
3419         spin_unlock_irqrestore(&pool->lock, flags);
3420
3421         do_waker(&pool->waker.work);
3422 }
3423
3424 static void pool_presuspend(struct dm_target *ti)
3425 {
3426         struct pool_c *pt = ti->private;
3427         struct pool *pool = pt->pool;
3428         unsigned long flags;
3429
3430         spin_lock_irqsave(&pool->lock, flags);
3431         pool->suspended = true;
3432         spin_unlock_irqrestore(&pool->lock, flags);
3433
3434         pool_suspend_active_thins(pool);
3435 }
3436
3437 static void pool_presuspend_undo(struct dm_target *ti)
3438 {
3439         struct pool_c *pt = ti->private;
3440         struct pool *pool = pt->pool;
3441         unsigned long flags;
3442
3443         pool_resume_active_thins(pool);
3444
3445         spin_lock_irqsave(&pool->lock, flags);
3446         pool->suspended = false;
3447         spin_unlock_irqrestore(&pool->lock, flags);
3448 }
3449
3450 static void pool_postsuspend(struct dm_target *ti)
3451 {
3452         struct pool_c *pt = ti->private;
3453         struct pool *pool = pt->pool;
3454
3455         cancel_delayed_work(&pool->waker);
3456         cancel_delayed_work(&pool->no_space_timeout);
3457         flush_workqueue(pool->wq);
3458         (void) commit(pool);
3459 }
3460
3461 static int check_arg_count(unsigned argc, unsigned args_required)
3462 {
3463         if (argc != args_required) {
3464                 DMWARN("Message received with %u arguments instead of %u.",
3465                        argc, args_required);
3466                 return -EINVAL;
3467         }
3468
3469         return 0;
3470 }
3471
3472 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3473 {
3474         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3475             *dev_id <= MAX_DEV_ID)
3476                 return 0;
3477
3478         if (warning)
3479                 DMWARN("Message received with invalid device id: %s", arg);
3480
3481         return -EINVAL;
3482 }
3483
3484 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3485 {
3486         dm_thin_id dev_id;
3487         int r;
3488
3489         r = check_arg_count(argc, 2);
3490         if (r)
3491                 return r;
3492
3493         r = read_dev_id(argv[1], &dev_id, 1);
3494         if (r)
3495                 return r;
3496
3497         r = dm_pool_create_thin(pool->pmd, dev_id);
3498         if (r) {
3499                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3500                        argv[1]);
3501                 return r;
3502         }
3503
3504         return 0;
3505 }
3506
3507 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3508 {
3509         dm_thin_id dev_id;
3510         dm_thin_id origin_dev_id;
3511         int r;
3512
3513         r = check_arg_count(argc, 3);
3514         if (r)
3515                 return r;
3516
3517         r = read_dev_id(argv[1], &dev_id, 1);
3518         if (r)
3519                 return r;
3520
3521         r = read_dev_id(argv[2], &origin_dev_id, 1);
3522         if (r)
3523                 return r;
3524
3525         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3526         if (r) {
3527                 DMWARN("Creation of new snapshot %s of device %s failed.",
3528                        argv[1], argv[2]);
3529                 return r;
3530         }
3531
3532         return 0;
3533 }
3534
3535 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3536 {
3537         dm_thin_id dev_id;
3538         int r;
3539
3540         r = check_arg_count(argc, 2);
3541         if (r)
3542                 return r;
3543
3544         r = read_dev_id(argv[1], &dev_id, 1);
3545         if (r)
3546                 return r;
3547
3548         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3549         if (r)
3550                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3551
3552         return r;
3553 }
3554
3555 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3556 {
3557         dm_thin_id old_id, new_id;
3558         int r;
3559
3560         r = check_arg_count(argc, 3);
3561         if (r)
3562                 return r;
3563
3564         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3565                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3566                 return -EINVAL;
3567         }
3568
3569         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3570                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3571                 return -EINVAL;
3572         }
3573
3574         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3575         if (r) {
3576                 DMWARN("Failed to change transaction id from %s to %s.",
3577                        argv[1], argv[2]);
3578                 return r;
3579         }
3580
3581         return 0;
3582 }
3583
3584 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3585 {
3586         int r;
3587
3588         r = check_arg_count(argc, 1);
3589         if (r)
3590                 return r;
3591
3592         (void) commit(pool);
3593
3594         r = dm_pool_reserve_metadata_snap(pool->pmd);
3595         if (r)
3596                 DMWARN("reserve_metadata_snap message failed.");
3597
3598         return r;
3599 }
3600
3601 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3602 {
3603         int r;
3604
3605         r = check_arg_count(argc, 1);
3606         if (r)
3607                 return r;
3608
3609         r = dm_pool_release_metadata_snap(pool->pmd);
3610         if (r)
3611                 DMWARN("release_metadata_snap message failed.");
3612
3613         return r;
3614 }
3615
3616 /*
3617  * Messages supported:
3618  *   create_thin        <dev_id>
3619  *   create_snap        <dev_id> <origin_id>
3620  *   delete             <dev_id>
3621  *   set_transaction_id <current_trans_id> <new_trans_id>
3622  *   reserve_metadata_snap
3623  *   release_metadata_snap
3624  */
3625 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3626 {
3627         int r = -EINVAL;
3628         struct pool_c *pt = ti->private;
3629         struct pool *pool = pt->pool;
3630
3631         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3632                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3633                       dm_device_name(pool->pool_md));
3634                 return -EOPNOTSUPP;
3635         }
3636
3637         if (!strcasecmp(argv[0], "create_thin"))
3638                 r = process_create_thin_mesg(argc, argv, pool);
3639
3640         else if (!strcasecmp(argv[0], "create_snap"))
3641                 r = process_create_snap_mesg(argc, argv, pool);
3642
3643         else if (!strcasecmp(argv[0], "delete"))
3644                 r = process_delete_mesg(argc, argv, pool);
3645
3646         else if (!strcasecmp(argv[0], "set_transaction_id"))
3647                 r = process_set_transaction_id_mesg(argc, argv, pool);
3648
3649         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3650                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3651
3652         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3653                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3654
3655         else
3656                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3657
3658         if (!r)
3659                 (void) commit(pool);
3660
3661         return r;
3662 }
3663
3664 static void emit_flags(struct pool_features *pf, char *result,
3665                        unsigned sz, unsigned maxlen)
3666 {
3667         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3668                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3669                 pf->error_if_no_space;
3670         DMEMIT("%u ", count);
3671
3672         if (!pf->zero_new_blocks)
3673                 DMEMIT("skip_block_zeroing ");
3674
3675         if (!pf->discard_enabled)
3676                 DMEMIT("ignore_discard ");
3677
3678         if (!pf->discard_passdown)
3679                 DMEMIT("no_discard_passdown ");
3680
3681         if (pf->mode == PM_READ_ONLY)
3682                 DMEMIT("read_only ");
3683
3684         if (pf->error_if_no_space)
3685                 DMEMIT("error_if_no_space ");
3686 }
3687
3688 /*
3689  * Status line is:
3690  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3691  *    <used data sectors>/<total data sectors> <held metadata root>
3692  *    <pool mode> <discard config> <no space config> <needs_check>
3693  */
3694 static void pool_status(struct dm_target *ti, status_type_t type,
3695                         unsigned status_flags, char *result, unsigned maxlen)
3696 {
3697         int r;
3698         unsigned sz = 0;
3699         uint64_t transaction_id;
3700         dm_block_t nr_free_blocks_data;
3701         dm_block_t nr_free_blocks_metadata;
3702         dm_block_t nr_blocks_data;
3703         dm_block_t nr_blocks_metadata;
3704         dm_block_t held_root;
3705         char buf[BDEVNAME_SIZE];
3706         char buf2[BDEVNAME_SIZE];
3707         struct pool_c *pt = ti->private;
3708         struct pool *pool = pt->pool;
3709
3710         switch (type) {
3711         case STATUSTYPE_INFO:
3712                 if (get_pool_mode(pool) == PM_FAIL) {
3713                         DMEMIT("Fail");
3714                         break;
3715                 }
3716
3717                 /* Commit to ensure statistics aren't out-of-date */
3718                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3719                         (void) commit(pool);
3720
3721                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3722                 if (r) {
3723                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3724                               dm_device_name(pool->pool_md), r);
3725                         goto err;
3726                 }
3727
3728                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3729                 if (r) {
3730                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3731                               dm_device_name(pool->pool_md), r);
3732                         goto err;
3733                 }
3734
3735                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3736                 if (r) {
3737                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3738                               dm_device_name(pool->pool_md), r);
3739                         goto err;
3740                 }
3741
3742                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3743                 if (r) {
3744                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3745                               dm_device_name(pool->pool_md), r);
3746                         goto err;
3747                 }
3748
3749                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3750                 if (r) {
3751                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3752                               dm_device_name(pool->pool_md), r);
3753                         goto err;
3754                 }
3755
3756                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3757                 if (r) {
3758                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3759                               dm_device_name(pool->pool_md), r);
3760                         goto err;
3761                 }
3762
3763                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3764                        (unsigned long long)transaction_id,
3765                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3766                        (unsigned long long)nr_blocks_metadata,
3767                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3768                        (unsigned long long)nr_blocks_data);
3769
3770                 if (held_root)
3771                         DMEMIT("%llu ", held_root);
3772                 else
3773                         DMEMIT("- ");
3774
3775                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3776                         DMEMIT("out_of_data_space ");
3777                 else if (pool->pf.mode == PM_READ_ONLY)
3778                         DMEMIT("ro ");
3779                 else
3780                         DMEMIT("rw ");
3781
3782                 if (!pool->pf.discard_enabled)
3783                         DMEMIT("ignore_discard ");
3784                 else if (pool->pf.discard_passdown)
3785                         DMEMIT("discard_passdown ");
3786                 else
3787                         DMEMIT("no_discard_passdown ");
3788
3789                 if (pool->pf.error_if_no_space)
3790                         DMEMIT("error_if_no_space ");
3791                 else
3792                         DMEMIT("queue_if_no_space ");
3793
3794                 if (dm_pool_metadata_needs_check(pool->pmd))
3795                         DMEMIT("needs_check ");
3796                 else
3797                         DMEMIT("- ");
3798
3799                 break;
3800
3801         case STATUSTYPE_TABLE:
3802                 DMEMIT("%s %s %lu %llu ",
3803                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3804                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3805                        (unsigned long)pool->sectors_per_block,
3806                        (unsigned long long)pt->low_water_blocks);
3807                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3808                 break;
3809         }
3810         return;
3811
3812 err:
3813         DMEMIT("Error");
3814 }
3815
3816 static int pool_iterate_devices(struct dm_target *ti,
3817                                 iterate_devices_callout_fn fn, void *data)
3818 {
3819         struct pool_c *pt = ti->private;
3820
3821         return fn(ti, pt->data_dev, 0, ti->len, data);
3822 }
3823
3824 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3825 {
3826         struct pool_c *pt = ti->private;
3827         struct pool *pool = pt->pool;
3828         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3829
3830         /*
3831          * If max_sectors is smaller than pool->sectors_per_block adjust it
3832          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3833          * This is especially beneficial when the pool's data device is a RAID
3834          * device that has a full stripe width that matches pool->sectors_per_block
3835          * -- because even though partial RAID stripe-sized IOs will be issued to a
3836          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3837          *    boundary.. which avoids additional partial RAID stripe writes cascading
3838          */
3839         if (limits->max_sectors < pool->sectors_per_block) {
3840                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3841                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3842                                 limits->max_sectors--;
3843                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3844                 }
3845         }
3846
3847         /*
3848          * If the system-determined stacked limits are compatible with the
3849          * pool's blocksize (io_opt is a factor) do not override them.
3850          */
3851         if (io_opt_sectors < pool->sectors_per_block ||
3852             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3853                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3854                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3855                 else
3856                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3857                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3858         }
3859
3860         /*
3861          * pt->adjusted_pf is a staging area for the actual features to use.
3862          * They get transferred to the live pool in bind_control_target()
3863          * called from pool_preresume().
3864          */
3865         if (!pt->adjusted_pf.discard_enabled) {
3866                 /*
3867                  * Must explicitly disallow stacking discard limits otherwise the
3868                  * block layer will stack them if pool's data device has support.
3869                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3870                  * user to see that, so make sure to set all discard limits to 0.
3871                  */
3872                 limits->discard_granularity = 0;
3873                 return;
3874         }
3875
3876         disable_passdown_if_not_supported(pt);
3877
3878         /*
3879          * The pool uses the same discard limits as the underlying data
3880          * device.  DM core has already set this up.
3881          */
3882 }
3883
3884 static struct target_type pool_target = {
3885         .name = "thin-pool",
3886         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3887                     DM_TARGET_IMMUTABLE,
3888         .version = {1, 16, 0},
3889         .module = THIS_MODULE,
3890         .ctr = pool_ctr,
3891         .dtr = pool_dtr,
3892         .map = pool_map,
3893         .presuspend = pool_presuspend,
3894         .presuspend_undo = pool_presuspend_undo,
3895         .postsuspend = pool_postsuspend,
3896         .preresume = pool_preresume,
3897         .resume = pool_resume,
3898         .message = pool_message,
3899         .status = pool_status,
3900         .iterate_devices = pool_iterate_devices,
3901         .io_hints = pool_io_hints,
3902 };
3903
3904 /*----------------------------------------------------------------
3905  * Thin target methods
3906  *--------------------------------------------------------------*/
3907 static void thin_get(struct thin_c *tc)
3908 {
3909         atomic_inc(&tc->refcount);
3910 }
3911
3912 static void thin_put(struct thin_c *tc)
3913 {
3914         if (atomic_dec_and_test(&tc->refcount))
3915                 complete(&tc->can_destroy);
3916 }
3917
3918 static void thin_dtr(struct dm_target *ti)
3919 {
3920         struct thin_c *tc = ti->private;
3921         unsigned long flags;
3922
3923         spin_lock_irqsave(&tc->pool->lock, flags);
3924         list_del_rcu(&tc->list);
3925         spin_unlock_irqrestore(&tc->pool->lock, flags);
3926         synchronize_rcu();
3927
3928         thin_put(tc);
3929         wait_for_completion(&tc->can_destroy);
3930
3931         mutex_lock(&dm_thin_pool_table.mutex);
3932
3933         __pool_dec(tc->pool);
3934         dm_pool_close_thin_device(tc->td);
3935         dm_put_device(ti, tc->pool_dev);
3936         if (tc->origin_dev)
3937                 dm_put_device(ti, tc->origin_dev);
3938         kfree(tc);
3939
3940         mutex_unlock(&dm_thin_pool_table.mutex);
3941 }
3942
3943 /*
3944  * Thin target parameters:
3945  *
3946  * <pool_dev> <dev_id> [origin_dev]
3947  *
3948  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3949  * dev_id: the internal device identifier
3950  * origin_dev: a device external to the pool that should act as the origin
3951  *
3952  * If the pool device has discards disabled, they get disabled for the thin
3953  * device as well.
3954  */
3955 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3956 {
3957         int r;
3958         struct thin_c *tc;
3959         struct dm_dev *pool_dev, *origin_dev;
3960         struct mapped_device *pool_md;
3961         unsigned long flags;
3962
3963         mutex_lock(&dm_thin_pool_table.mutex);
3964
3965         if (argc != 2 && argc != 3) {
3966                 ti->error = "Invalid argument count";
3967                 r = -EINVAL;
3968                 goto out_unlock;
3969         }
3970
3971         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3972         if (!tc) {
3973                 ti->error = "Out of memory";
3974                 r = -ENOMEM;
3975                 goto out_unlock;
3976         }
3977         tc->thin_md = dm_table_get_md(ti->table);
3978         spin_lock_init(&tc->lock);
3979         INIT_LIST_HEAD(&tc->deferred_cells);
3980         bio_list_init(&tc->deferred_bio_list);
3981         bio_list_init(&tc->retry_on_resume_list);
3982         tc->sort_bio_list = RB_ROOT;
3983
3984         if (argc == 3) {
3985                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3986                 if (r) {
3987                         ti->error = "Error opening origin device";
3988                         goto bad_origin_dev;
3989                 }
3990                 tc->origin_dev = origin_dev;
3991         }
3992
3993         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3994         if (r) {
3995                 ti->error = "Error opening pool device";
3996                 goto bad_pool_dev;
3997         }
3998         tc->pool_dev = pool_dev;
3999
4000         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4001                 ti->error = "Invalid device id";
4002                 r = -EINVAL;
4003                 goto bad_common;
4004         }
4005
4006         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4007         if (!pool_md) {
4008                 ti->error = "Couldn't get pool mapped device";
4009                 r = -EINVAL;
4010                 goto bad_common;
4011         }
4012
4013         tc->pool = __pool_table_lookup(pool_md);
4014         if (!tc->pool) {
4015                 ti->error = "Couldn't find pool object";
4016                 r = -EINVAL;
4017                 goto bad_pool_lookup;
4018         }
4019         __pool_inc(tc->pool);
4020
4021         if (get_pool_mode(tc->pool) == PM_FAIL) {
4022                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4023                 r = -EINVAL;
4024                 goto bad_pool;
4025         }
4026
4027         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4028         if (r) {
4029                 ti->error = "Couldn't open thin internal device";
4030                 goto bad_pool;
4031         }
4032
4033         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4034         if (r)
4035                 goto bad;
4036
4037         ti->num_flush_bios = 1;
4038         ti->flush_supported = true;
4039         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
4040
4041         /* In case the pool supports discards, pass them on. */
4042         ti->discard_zeroes_data_unsupported = true;
4043         if (tc->pool->pf.discard_enabled) {
4044                 ti->discards_supported = true;
4045                 ti->num_discard_bios = 1;
4046                 ti->split_discard_bios = false;
4047         }
4048
4049         mutex_unlock(&dm_thin_pool_table.mutex);
4050
4051         spin_lock_irqsave(&tc->pool->lock, flags);
4052         if (tc->pool->suspended) {
4053                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4054                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4055                 ti->error = "Unable to activate thin device while pool is suspended";
4056                 r = -EINVAL;
4057                 goto bad;
4058         }
4059         atomic_set(&tc->refcount, 1);
4060         init_completion(&tc->can_destroy);
4061         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4062         spin_unlock_irqrestore(&tc->pool->lock, flags);
4063         /*
4064          * This synchronize_rcu() call is needed here otherwise we risk a
4065          * wake_worker() call finding no bios to process (because the newly
4066          * added tc isn't yet visible).  So this reduces latency since we
4067          * aren't then dependent on the periodic commit to wake_worker().
4068          */
4069         synchronize_rcu();
4070
4071         dm_put(pool_md);
4072
4073         return 0;
4074
4075 bad:
4076         dm_pool_close_thin_device(tc->td);
4077 bad_pool:
4078         __pool_dec(tc->pool);
4079 bad_pool_lookup:
4080         dm_put(pool_md);
4081 bad_common:
4082         dm_put_device(ti, tc->pool_dev);
4083 bad_pool_dev:
4084         if (tc->origin_dev)
4085                 dm_put_device(ti, tc->origin_dev);
4086 bad_origin_dev:
4087         kfree(tc);
4088 out_unlock:
4089         mutex_unlock(&dm_thin_pool_table.mutex);
4090
4091         return r;
4092 }
4093
4094 static int thin_map(struct dm_target *ti, struct bio *bio)
4095 {
4096         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4097
4098         return thin_bio_map(ti, bio);
4099 }
4100
4101 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4102 {
4103         unsigned long flags;
4104         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4105         struct list_head work;
4106         struct dm_thin_new_mapping *m, *tmp;
4107         struct pool *pool = h->tc->pool;
4108
4109         if (h->shared_read_entry) {
4110                 INIT_LIST_HEAD(&work);
4111                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4112
4113                 spin_lock_irqsave(&pool->lock, flags);
4114                 list_for_each_entry_safe(m, tmp, &work, list) {
4115                         list_del(&m->list);
4116                         __complete_mapping_preparation(m);
4117                 }
4118                 spin_unlock_irqrestore(&pool->lock, flags);
4119         }
4120
4121         if (h->all_io_entry) {
4122                 INIT_LIST_HEAD(&work);
4123                 dm_deferred_entry_dec(h->all_io_entry, &work);
4124                 if (!list_empty(&work)) {
4125                         spin_lock_irqsave(&pool->lock, flags);
4126                         list_for_each_entry_safe(m, tmp, &work, list)
4127                                 list_add_tail(&m->list, &pool->prepared_discards);
4128                         spin_unlock_irqrestore(&pool->lock, flags);
4129                         wake_worker(pool);
4130                 }
4131         }
4132
4133         if (h->cell)
4134                 cell_defer_no_holder(h->tc, h->cell);
4135
4136         return 0;
4137 }
4138
4139 static void thin_presuspend(struct dm_target *ti)
4140 {
4141         struct thin_c *tc = ti->private;
4142
4143         if (dm_noflush_suspending(ti))
4144                 noflush_work(tc, do_noflush_start);
4145 }
4146
4147 static void thin_postsuspend(struct dm_target *ti)
4148 {
4149         struct thin_c *tc = ti->private;
4150
4151         /*
4152          * The dm_noflush_suspending flag has been cleared by now, so
4153          * unfortunately we must always run this.
4154          */
4155         noflush_work(tc, do_noflush_stop);
4156 }
4157
4158 static int thin_preresume(struct dm_target *ti)
4159 {
4160         struct thin_c *tc = ti->private;
4161
4162         if (tc->origin_dev)
4163                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4164
4165         return 0;
4166 }
4167
4168 /*
4169  * <nr mapped sectors> <highest mapped sector>
4170  */
4171 static void thin_status(struct dm_target *ti, status_type_t type,
4172                         unsigned status_flags, char *result, unsigned maxlen)
4173 {
4174         int r;
4175         ssize_t sz = 0;
4176         dm_block_t mapped, highest;
4177         char buf[BDEVNAME_SIZE];
4178         struct thin_c *tc = ti->private;
4179
4180         if (get_pool_mode(tc->pool) == PM_FAIL) {
4181                 DMEMIT("Fail");
4182                 return;
4183         }
4184
4185         if (!tc->td)
4186                 DMEMIT("-");
4187         else {
4188                 switch (type) {
4189                 case STATUSTYPE_INFO:
4190                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4191                         if (r) {
4192                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4193                                 goto err;
4194                         }
4195
4196                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4197                         if (r < 0) {
4198                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4199                                 goto err;
4200                         }
4201
4202                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4203                         if (r)
4204                                 DMEMIT("%llu", ((highest + 1) *
4205                                                 tc->pool->sectors_per_block) - 1);
4206                         else
4207                                 DMEMIT("-");
4208                         break;
4209
4210                 case STATUSTYPE_TABLE:
4211                         DMEMIT("%s %lu",
4212                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4213                                (unsigned long) tc->dev_id);
4214                         if (tc->origin_dev)
4215                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4216                         break;
4217                 }
4218         }
4219
4220         return;
4221
4222 err:
4223         DMEMIT("Error");
4224 }
4225
4226 static int thin_iterate_devices(struct dm_target *ti,
4227                                 iterate_devices_callout_fn fn, void *data)
4228 {
4229         sector_t blocks;
4230         struct thin_c *tc = ti->private;
4231         struct pool *pool = tc->pool;
4232
4233         /*
4234          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4235          * we follow a more convoluted path through to the pool's target.
4236          */
4237         if (!pool->ti)
4238                 return 0;       /* nothing is bound */
4239
4240         blocks = pool->ti->len;
4241         (void) sector_div(blocks, pool->sectors_per_block);
4242         if (blocks)
4243                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4244
4245         return 0;
4246 }
4247
4248 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4249 {
4250         struct thin_c *tc = ti->private;
4251         struct pool *pool = tc->pool;
4252         struct queue_limits *pool_limits = dm_get_queue_limits(pool->pool_md);
4253
4254         if (!pool_limits->discard_granularity)
4255                 return; /* pool's discard support is disabled */
4256
4257         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4258         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4259 }
4260
4261 static struct target_type thin_target = {
4262         .name = "thin",
4263         .version = {1, 16, 0},
4264         .module = THIS_MODULE,
4265         .ctr = thin_ctr,
4266         .dtr = thin_dtr,
4267         .map = thin_map,
4268         .end_io = thin_endio,
4269         .preresume = thin_preresume,
4270         .presuspend = thin_presuspend,
4271         .postsuspend = thin_postsuspend,
4272         .status = thin_status,
4273         .iterate_devices = thin_iterate_devices,
4274         .io_hints = thin_io_hints,
4275 };
4276
4277 /*----------------------------------------------------------------*/
4278
4279 static int __init dm_thin_init(void)
4280 {
4281         int r;
4282
4283         pool_table_init();
4284
4285         r = dm_register_target(&thin_target);
4286         if (r)
4287                 return r;
4288
4289         r = dm_register_target(&pool_target);
4290         if (r)
4291                 goto bad_pool_target;
4292
4293         r = -ENOMEM;
4294
4295         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4296         if (!_new_mapping_cache)
4297                 goto bad_new_mapping_cache;
4298
4299         return 0;
4300
4301 bad_new_mapping_cache:
4302         dm_unregister_target(&pool_target);
4303 bad_pool_target:
4304         dm_unregister_target(&thin_target);
4305
4306         return r;
4307 }
4308
4309 static void dm_thin_exit(void)
4310 {
4311         dm_unregister_target(&thin_target);
4312         dm_unregister_target(&pool_target);
4313
4314         kmem_cache_destroy(_new_mapping_cache);
4315 }
4316
4317 module_init(dm_thin_init);
4318 module_exit(dm_thin_exit);
4319
4320 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4321 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4322
4323 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4324 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4325 MODULE_LICENSE("GPL");