]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/md.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76                                  struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103         return mddev->sync_speed_min ?
104                 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109         return mddev->sync_speed_max ?
110                 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static struct ctl_table raid_table[] = {
116         {
117                 .procname       = "speed_limit_min",
118                 .data           = &sysctl_speed_limit_min,
119                 .maxlen         = sizeof(int),
120                 .mode           = S_IRUGO|S_IWUSR,
121                 .proc_handler   = proc_dointvec,
122         },
123         {
124                 .procname       = "speed_limit_max",
125                 .data           = &sysctl_speed_limit_max,
126                 .maxlen         = sizeof(int),
127                 .mode           = S_IRUGO|S_IWUSR,
128                 .proc_handler   = proc_dointvec,
129         },
130         { }
131 };
132
133 static struct ctl_table raid_dir_table[] = {
134         {
135                 .procname       = "raid",
136                 .maxlen         = 0,
137                 .mode           = S_IRUGO|S_IXUGO,
138                 .child          = raid_table,
139         },
140         { }
141 };
142
143 static struct ctl_table raid_root_table[] = {
144         {
145                 .procname       = "dev",
146                 .maxlen         = 0,
147                 .mode           = 0555,
148                 .child          = raid_dir_table,
149         },
150         {  }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162                             struct mddev *mddev)
163 {
164         struct bio *b;
165
166         if (!mddev || !mddev->bio_set)
167                 return bio_alloc(gfp_mask, nr_iovecs);
168
169         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170         if (!b)
171                 return NULL;
172         return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177                             struct mddev *mddev)
178 {
179         if (!mddev || !mddev->bio_set)
180                 return bio_clone(bio, gfp_mask);
181
182         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 void md_trim_bio(struct bio *bio, int offset, int size)
187 {
188         /* 'bio' is a cloned bio which we need to trim to match
189          * the given offset and size.
190          * This requires adjusting bi_sector, bi_size, and bi_io_vec
191          */
192         int i;
193         struct bio_vec *bvec;
194         int sofar = 0;
195
196         size <<= 9;
197         if (offset == 0 && size == bio->bi_size)
198                 return;
199
200         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202         bio_advance(bio, offset << 9);
203
204         bio->bi_size = size;
205
206         /* avoid any complications with bi_idx being non-zero*/
207         if (bio->bi_idx) {
208                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
209                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
210                 bio->bi_vcnt -= bio->bi_idx;
211                 bio->bi_idx = 0;
212         }
213         /* Make sure vcnt and last bv are not too big */
214         bio_for_each_segment(bvec, bio, i) {
215                 if (sofar + bvec->bv_len > size)
216                         bvec->bv_len = size - sofar;
217                 if (bvec->bv_len == 0) {
218                         bio->bi_vcnt = i;
219                         break;
220                 }
221                 sofar += bvec->bv_len;
222         }
223 }
224 EXPORT_SYMBOL_GPL(md_trim_bio);
225
226 /*
227  * We have a system wide 'event count' that is incremented
228  * on any 'interesting' event, and readers of /proc/mdstat
229  * can use 'poll' or 'select' to find out when the event
230  * count increases.
231  *
232  * Events are:
233  *  start array, stop array, error, add device, remove device,
234  *  start build, activate spare
235  */
236 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
237 static atomic_t md_event_count;
238 void md_new_event(struct mddev *mddev)
239 {
240         atomic_inc(&md_event_count);
241         wake_up(&md_event_waiters);
242 }
243 EXPORT_SYMBOL_GPL(md_new_event);
244
245 /* Alternate version that can be called from interrupts
246  * when calling sysfs_notify isn't needed.
247  */
248 static void md_new_event_inintr(struct mddev *mddev)
249 {
250         atomic_inc(&md_event_count);
251         wake_up(&md_event_waiters);
252 }
253
254 /*
255  * Enables to iterate over all existing md arrays
256  * all_mddevs_lock protects this list.
257  */
258 static LIST_HEAD(all_mddevs);
259 static DEFINE_SPINLOCK(all_mddevs_lock);
260
261
262 /*
263  * iterates through all used mddevs in the system.
264  * We take care to grab the all_mddevs_lock whenever navigating
265  * the list, and to always hold a refcount when unlocked.
266  * Any code which breaks out of this loop while own
267  * a reference to the current mddev and must mddev_put it.
268  */
269 #define for_each_mddev(_mddev,_tmp)                                     \
270                                                                         \
271         for (({ spin_lock(&all_mddevs_lock);                            \
272                 _tmp = all_mddevs.next;                                 \
273                 _mddev = NULL;});                                       \
274              ({ if (_tmp != &all_mddevs)                                \
275                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
276                 spin_unlock(&all_mddevs_lock);                          \
277                 if (_mddev) mddev_put(_mddev);                          \
278                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
279                 _tmp != &all_mddevs;});                                 \
280              ({ spin_lock(&all_mddevs_lock);                            \
281                 _tmp = _tmp->next;})                                    \
282                 )
283
284
285 /* Rather than calling directly into the personality make_request function,
286  * IO requests come here first so that we can check if the device is
287  * being suspended pending a reconfiguration.
288  * We hold a refcount over the call to ->make_request.  By the time that
289  * call has finished, the bio has been linked into some internal structure
290  * and so is visible to ->quiesce(), so we don't need the refcount any more.
291  */
292 static void md_make_request(struct request_queue *q, struct bio *bio)
293 {
294         const int rw = bio_data_dir(bio);
295         struct mddev *mddev = q->queuedata;
296         int cpu;
297         unsigned int sectors;
298
299         if (mddev == NULL || mddev->pers == NULL
300             || !mddev->ready) {
301                 bio_io_error(bio);
302                 return;
303         }
304         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
305                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
306                 return;
307         }
308         smp_rmb(); /* Ensure implications of  'active' are visible */
309         rcu_read_lock();
310         if (mddev->suspended) {
311                 DEFINE_WAIT(__wait);
312                 for (;;) {
313                         prepare_to_wait(&mddev->sb_wait, &__wait,
314                                         TASK_UNINTERRUPTIBLE);
315                         if (!mddev->suspended)
316                                 break;
317                         rcu_read_unlock();
318                         schedule();
319                         rcu_read_lock();
320                 }
321                 finish_wait(&mddev->sb_wait, &__wait);
322         }
323         atomic_inc(&mddev->active_io);
324         rcu_read_unlock();
325
326         /*
327          * save the sectors now since our bio can
328          * go away inside make_request
329          */
330         sectors = bio_sectors(bio);
331         mddev->pers->make_request(mddev, bio);
332
333         cpu = part_stat_lock();
334         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
335         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
336         part_stat_unlock();
337
338         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
339                 wake_up(&mddev->sb_wait);
340 }
341
342 /* mddev_suspend makes sure no new requests are submitted
343  * to the device, and that any requests that have been submitted
344  * are completely handled.
345  * Once ->stop is called and completes, the module will be completely
346  * unused.
347  */
348 void mddev_suspend(struct mddev *mddev)
349 {
350         BUG_ON(mddev->suspended);
351         mddev->suspended = 1;
352         synchronize_rcu();
353         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
354         mddev->pers->quiesce(mddev, 1);
355
356         del_timer_sync(&mddev->safemode_timer);
357 }
358 EXPORT_SYMBOL_GPL(mddev_suspend);
359
360 void mddev_resume(struct mddev *mddev)
361 {
362         mddev->suspended = 0;
363         wake_up(&mddev->sb_wait);
364         mddev->pers->quiesce(mddev, 0);
365
366         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
367         md_wakeup_thread(mddev->thread);
368         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
369 }
370 EXPORT_SYMBOL_GPL(mddev_resume);
371
372 int mddev_congested(struct mddev *mddev, int bits)
373 {
374         return mddev->suspended;
375 }
376 EXPORT_SYMBOL(mddev_congested);
377
378 /*
379  * Generic flush handling for md
380  */
381
382 static void md_end_flush(struct bio *bio, int err)
383 {
384         struct md_rdev *rdev = bio->bi_private;
385         struct mddev *mddev = rdev->mddev;
386
387         rdev_dec_pending(rdev, mddev);
388
389         if (atomic_dec_and_test(&mddev->flush_pending)) {
390                 /* The pre-request flush has finished */
391                 queue_work(md_wq, &mddev->flush_work);
392         }
393         bio_put(bio);
394 }
395
396 static void md_submit_flush_data(struct work_struct *ws);
397
398 static void submit_flushes(struct work_struct *ws)
399 {
400         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
401         struct md_rdev *rdev;
402
403         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
404         atomic_set(&mddev->flush_pending, 1);
405         rcu_read_lock();
406         rdev_for_each_rcu(rdev, mddev)
407                 if (rdev->raid_disk >= 0 &&
408                     !test_bit(Faulty, &rdev->flags)) {
409                         /* Take two references, one is dropped
410                          * when request finishes, one after
411                          * we reclaim rcu_read_lock
412                          */
413                         struct bio *bi;
414                         atomic_inc(&rdev->nr_pending);
415                         atomic_inc(&rdev->nr_pending);
416                         rcu_read_unlock();
417                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
418                         bi->bi_end_io = md_end_flush;
419                         bi->bi_private = rdev;
420                         bi->bi_bdev = rdev->bdev;
421                         atomic_inc(&mddev->flush_pending);
422                         submit_bio(WRITE_FLUSH, bi);
423                         rcu_read_lock();
424                         rdev_dec_pending(rdev, mddev);
425                 }
426         rcu_read_unlock();
427         if (atomic_dec_and_test(&mddev->flush_pending))
428                 queue_work(md_wq, &mddev->flush_work);
429 }
430
431 static void md_submit_flush_data(struct work_struct *ws)
432 {
433         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
434         struct bio *bio = mddev->flush_bio;
435
436         if (bio->bi_size == 0)
437                 /* an empty barrier - all done */
438                 bio_endio(bio, 0);
439         else {
440                 bio->bi_rw &= ~REQ_FLUSH;
441                 mddev->pers->make_request(mddev, bio);
442         }
443
444         mddev->flush_bio = NULL;
445         wake_up(&mddev->sb_wait);
446 }
447
448 void md_flush_request(struct mddev *mddev, struct bio *bio)
449 {
450         spin_lock_irq(&mddev->write_lock);
451         wait_event_lock_irq(mddev->sb_wait,
452                             !mddev->flush_bio,
453                             mddev->write_lock);
454         mddev->flush_bio = bio;
455         spin_unlock_irq(&mddev->write_lock);
456
457         INIT_WORK(&mddev->flush_work, submit_flushes);
458         queue_work(md_wq, &mddev->flush_work);
459 }
460 EXPORT_SYMBOL(md_flush_request);
461
462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
463 {
464         struct mddev *mddev = cb->data;
465         md_wakeup_thread(mddev->thread);
466         kfree(cb);
467 }
468 EXPORT_SYMBOL(md_unplug);
469
470 static inline struct mddev *mddev_get(struct mddev *mddev)
471 {
472         atomic_inc(&mddev->active);
473         return mddev;
474 }
475
476 static void mddev_delayed_delete(struct work_struct *ws);
477
478 static void mddev_put(struct mddev *mddev)
479 {
480         struct bio_set *bs = NULL;
481
482         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
483                 return;
484         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
485             mddev->ctime == 0 && !mddev->hold_active) {
486                 /* Array is not configured at all, and not held active,
487                  * so destroy it */
488                 list_del_init(&mddev->all_mddevs);
489                 bs = mddev->bio_set;
490                 mddev->bio_set = NULL;
491                 if (mddev->gendisk) {
492                         /* We did a probe so need to clean up.  Call
493                          * queue_work inside the spinlock so that
494                          * flush_workqueue() after mddev_find will
495                          * succeed in waiting for the work to be done.
496                          */
497                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498                         queue_work(md_misc_wq, &mddev->del_work);
499                 } else
500                         kfree(mddev);
501         }
502         spin_unlock(&all_mddevs_lock);
503         if (bs)
504                 bioset_free(bs);
505 }
506
507 void mddev_init(struct mddev *mddev)
508 {
509         mutex_init(&mddev->open_mutex);
510         mutex_init(&mddev->reconfig_mutex);
511         mutex_init(&mddev->bitmap_info.mutex);
512         INIT_LIST_HEAD(&mddev->disks);
513         INIT_LIST_HEAD(&mddev->all_mddevs);
514         init_timer(&mddev->safemode_timer);
515         atomic_set(&mddev->active, 1);
516         atomic_set(&mddev->openers, 0);
517         atomic_set(&mddev->active_io, 0);
518         spin_lock_init(&mddev->write_lock);
519         atomic_set(&mddev->flush_pending, 0);
520         init_waitqueue_head(&mddev->sb_wait);
521         init_waitqueue_head(&mddev->recovery_wait);
522         mddev->reshape_position = MaxSector;
523         mddev->reshape_backwards = 0;
524         mddev->last_sync_action = "none";
525         mddev->resync_min = 0;
526         mddev->resync_max = MaxSector;
527         mddev->level = LEVEL_NONE;
528 }
529 EXPORT_SYMBOL_GPL(mddev_init);
530
531 static struct mddev * mddev_find(dev_t unit)
532 {
533         struct mddev *mddev, *new = NULL;
534
535         if (unit && MAJOR(unit) != MD_MAJOR)
536                 unit &= ~((1<<MdpMinorShift)-1);
537
538  retry:
539         spin_lock(&all_mddevs_lock);
540
541         if (unit) {
542                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
543                         if (mddev->unit == unit) {
544                                 mddev_get(mddev);
545                                 spin_unlock(&all_mddevs_lock);
546                                 kfree(new);
547                                 return mddev;
548                         }
549
550                 if (new) {
551                         list_add(&new->all_mddevs, &all_mddevs);
552                         spin_unlock(&all_mddevs_lock);
553                         new->hold_active = UNTIL_IOCTL;
554                         return new;
555                 }
556         } else if (new) {
557                 /* find an unused unit number */
558                 static int next_minor = 512;
559                 int start = next_minor;
560                 int is_free = 0;
561                 int dev = 0;
562                 while (!is_free) {
563                         dev = MKDEV(MD_MAJOR, next_minor);
564                         next_minor++;
565                         if (next_minor > MINORMASK)
566                                 next_minor = 0;
567                         if (next_minor == start) {
568                                 /* Oh dear, all in use. */
569                                 spin_unlock(&all_mddevs_lock);
570                                 kfree(new);
571                                 return NULL;
572                         }
573                                 
574                         is_free = 1;
575                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
576                                 if (mddev->unit == dev) {
577                                         is_free = 0;
578                                         break;
579                                 }
580                 }
581                 new->unit = dev;
582                 new->md_minor = MINOR(dev);
583                 new->hold_active = UNTIL_STOP;
584                 list_add(&new->all_mddevs, &all_mddevs);
585                 spin_unlock(&all_mddevs_lock);
586                 return new;
587         }
588         spin_unlock(&all_mddevs_lock);
589
590         new = kzalloc(sizeof(*new), GFP_KERNEL);
591         if (!new)
592                 return NULL;
593
594         new->unit = unit;
595         if (MAJOR(unit) == MD_MAJOR)
596                 new->md_minor = MINOR(unit);
597         else
598                 new->md_minor = MINOR(unit) >> MdpMinorShift;
599
600         mddev_init(new);
601
602         goto retry;
603 }
604
605 static inline int mddev_lock(struct mddev * mddev)
606 {
607         return mutex_lock_interruptible(&mddev->reconfig_mutex);
608 }
609
610 static inline int mddev_is_locked(struct mddev *mddev)
611 {
612         return mutex_is_locked(&mddev->reconfig_mutex);
613 }
614
615 static inline int mddev_trylock(struct mddev * mddev)
616 {
617         return mutex_trylock(&mddev->reconfig_mutex);
618 }
619
620 static struct attribute_group md_redundancy_group;
621
622 static void mddev_unlock(struct mddev * mddev)
623 {
624         if (mddev->to_remove) {
625                 /* These cannot be removed under reconfig_mutex as
626                  * an access to the files will try to take reconfig_mutex
627                  * while holding the file unremovable, which leads to
628                  * a deadlock.
629                  * So hold set sysfs_active while the remove in happeing,
630                  * and anything else which might set ->to_remove or my
631                  * otherwise change the sysfs namespace will fail with
632                  * -EBUSY if sysfs_active is still set.
633                  * We set sysfs_active under reconfig_mutex and elsewhere
634                  * test it under the same mutex to ensure its correct value
635                  * is seen.
636                  */
637                 struct attribute_group *to_remove = mddev->to_remove;
638                 mddev->to_remove = NULL;
639                 mddev->sysfs_active = 1;
640                 mutex_unlock(&mddev->reconfig_mutex);
641
642                 if (mddev->kobj.sd) {
643                         if (to_remove != &md_redundancy_group)
644                                 sysfs_remove_group(&mddev->kobj, to_remove);
645                         if (mddev->pers == NULL ||
646                             mddev->pers->sync_request == NULL) {
647                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
648                                 if (mddev->sysfs_action)
649                                         sysfs_put(mddev->sysfs_action);
650                                 mddev->sysfs_action = NULL;
651                         }
652                 }
653                 mddev->sysfs_active = 0;
654         } else
655                 mutex_unlock(&mddev->reconfig_mutex);
656
657         /* As we've dropped the mutex we need a spinlock to
658          * make sure the thread doesn't disappear
659          */
660         spin_lock(&pers_lock);
661         md_wakeup_thread(mddev->thread);
662         spin_unlock(&pers_lock);
663 }
664
665 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
666 {
667         struct md_rdev *rdev;
668
669         rdev_for_each(rdev, mddev)
670                 if (rdev->desc_nr == nr)
671                         return rdev;
672
673         return NULL;
674 }
675
676 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
677 {
678         struct md_rdev *rdev;
679
680         rdev_for_each_rcu(rdev, mddev)
681                 if (rdev->desc_nr == nr)
682                         return rdev;
683
684         return NULL;
685 }
686
687 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
688 {
689         struct md_rdev *rdev;
690
691         rdev_for_each(rdev, mddev)
692                 if (rdev->bdev->bd_dev == dev)
693                         return rdev;
694
695         return NULL;
696 }
697
698 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
699 {
700         struct md_rdev *rdev;
701
702         rdev_for_each_rcu(rdev, mddev)
703                 if (rdev->bdev->bd_dev == dev)
704                         return rdev;
705
706         return NULL;
707 }
708
709 static struct md_personality *find_pers(int level, char *clevel)
710 {
711         struct md_personality *pers;
712         list_for_each_entry(pers, &pers_list, list) {
713                 if (level != LEVEL_NONE && pers->level == level)
714                         return pers;
715                 if (strcmp(pers->name, clevel)==0)
716                         return pers;
717         }
718         return NULL;
719 }
720
721 /* return the offset of the super block in 512byte sectors */
722 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
723 {
724         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
725         return MD_NEW_SIZE_SECTORS(num_sectors);
726 }
727
728 static int alloc_disk_sb(struct md_rdev * rdev)
729 {
730         if (rdev->sb_page)
731                 MD_BUG();
732
733         rdev->sb_page = alloc_page(GFP_KERNEL);
734         if (!rdev->sb_page) {
735                 printk(KERN_ALERT "md: out of memory.\n");
736                 return -ENOMEM;
737         }
738
739         return 0;
740 }
741
742 void md_rdev_clear(struct md_rdev *rdev)
743 {
744         if (rdev->sb_page) {
745                 put_page(rdev->sb_page);
746                 rdev->sb_loaded = 0;
747                 rdev->sb_page = NULL;
748                 rdev->sb_start = 0;
749                 rdev->sectors = 0;
750         }
751         if (rdev->bb_page) {
752                 put_page(rdev->bb_page);
753                 rdev->bb_page = NULL;
754         }
755         kfree(rdev->badblocks.page);
756         rdev->badblocks.page = NULL;
757 }
758 EXPORT_SYMBOL_GPL(md_rdev_clear);
759
760 static void super_written(struct bio *bio, int error)
761 {
762         struct md_rdev *rdev = bio->bi_private;
763         struct mddev *mddev = rdev->mddev;
764
765         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
766                 printk("md: super_written gets error=%d, uptodate=%d\n",
767                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
768                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
769                 md_error(mddev, rdev);
770         }
771
772         if (atomic_dec_and_test(&mddev->pending_writes))
773                 wake_up(&mddev->sb_wait);
774         bio_put(bio);
775 }
776
777 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
778                    sector_t sector, int size, struct page *page)
779 {
780         /* write first size bytes of page to sector of rdev
781          * Increment mddev->pending_writes before returning
782          * and decrement it on completion, waking up sb_wait
783          * if zero is reached.
784          * If an error occurred, call md_error
785          */
786         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
787
788         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
789         bio->bi_sector = sector;
790         bio_add_page(bio, page, size, 0);
791         bio->bi_private = rdev;
792         bio->bi_end_io = super_written;
793
794         atomic_inc(&mddev->pending_writes);
795         submit_bio(WRITE_FLUSH_FUA, bio);
796 }
797
798 void md_super_wait(struct mddev *mddev)
799 {
800         /* wait for all superblock writes that were scheduled to complete */
801         DEFINE_WAIT(wq);
802         for(;;) {
803                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
804                 if (atomic_read(&mddev->pending_writes)==0)
805                         break;
806                 schedule();
807         }
808         finish_wait(&mddev->sb_wait, &wq);
809 }
810
811 static void bi_complete(struct bio *bio, int error)
812 {
813         complete((struct completion*)bio->bi_private);
814 }
815
816 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
817                  struct page *page, int rw, bool metadata_op)
818 {
819         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
820         struct completion event;
821         int ret;
822
823         rw |= REQ_SYNC;
824
825         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
826                 rdev->meta_bdev : rdev->bdev;
827         if (metadata_op)
828                 bio->bi_sector = sector + rdev->sb_start;
829         else if (rdev->mddev->reshape_position != MaxSector &&
830                  (rdev->mddev->reshape_backwards ==
831                   (sector >= rdev->mddev->reshape_position)))
832                 bio->bi_sector = sector + rdev->new_data_offset;
833         else
834                 bio->bi_sector = sector + rdev->data_offset;
835         bio_add_page(bio, page, size, 0);
836         init_completion(&event);
837         bio->bi_private = &event;
838         bio->bi_end_io = bi_complete;
839         submit_bio(rw, bio);
840         wait_for_completion(&event);
841
842         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
843         bio_put(bio);
844         return ret;
845 }
846 EXPORT_SYMBOL_GPL(sync_page_io);
847
848 static int read_disk_sb(struct md_rdev * rdev, int size)
849 {
850         char b[BDEVNAME_SIZE];
851         if (!rdev->sb_page) {
852                 MD_BUG();
853                 return -EINVAL;
854         }
855         if (rdev->sb_loaded)
856                 return 0;
857
858
859         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
860                 goto fail;
861         rdev->sb_loaded = 1;
862         return 0;
863
864 fail:
865         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
866                 bdevname(rdev->bdev,b));
867         return -EINVAL;
868 }
869
870 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
871 {
872         return  sb1->set_uuid0 == sb2->set_uuid0 &&
873                 sb1->set_uuid1 == sb2->set_uuid1 &&
874                 sb1->set_uuid2 == sb2->set_uuid2 &&
875                 sb1->set_uuid3 == sb2->set_uuid3;
876 }
877
878 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
879 {
880         int ret;
881         mdp_super_t *tmp1, *tmp2;
882
883         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
884         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
885
886         if (!tmp1 || !tmp2) {
887                 ret = 0;
888                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
889                 goto abort;
890         }
891
892         *tmp1 = *sb1;
893         *tmp2 = *sb2;
894
895         /*
896          * nr_disks is not constant
897          */
898         tmp1->nr_disks = 0;
899         tmp2->nr_disks = 0;
900
901         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
902 abort:
903         kfree(tmp1);
904         kfree(tmp2);
905         return ret;
906 }
907
908
909 static u32 md_csum_fold(u32 csum)
910 {
911         csum = (csum & 0xffff) + (csum >> 16);
912         return (csum & 0xffff) + (csum >> 16);
913 }
914
915 static unsigned int calc_sb_csum(mdp_super_t * sb)
916 {
917         u64 newcsum = 0;
918         u32 *sb32 = (u32*)sb;
919         int i;
920         unsigned int disk_csum, csum;
921
922         disk_csum = sb->sb_csum;
923         sb->sb_csum = 0;
924
925         for (i = 0; i < MD_SB_BYTES/4 ; i++)
926                 newcsum += sb32[i];
927         csum = (newcsum & 0xffffffff) + (newcsum>>32);
928
929
930 #ifdef CONFIG_ALPHA
931         /* This used to use csum_partial, which was wrong for several
932          * reasons including that different results are returned on
933          * different architectures.  It isn't critical that we get exactly
934          * the same return value as before (we always csum_fold before
935          * testing, and that removes any differences).  However as we
936          * know that csum_partial always returned a 16bit value on
937          * alphas, do a fold to maximise conformity to previous behaviour.
938          */
939         sb->sb_csum = md_csum_fold(disk_csum);
940 #else
941         sb->sb_csum = disk_csum;
942 #endif
943         return csum;
944 }
945
946
947 /*
948  * Handle superblock details.
949  * We want to be able to handle multiple superblock formats
950  * so we have a common interface to them all, and an array of
951  * different handlers.
952  * We rely on user-space to write the initial superblock, and support
953  * reading and updating of superblocks.
954  * Interface methods are:
955  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
956  *      loads and validates a superblock on dev.
957  *      if refdev != NULL, compare superblocks on both devices
958  *    Return:
959  *      0 - dev has a superblock that is compatible with refdev
960  *      1 - dev has a superblock that is compatible and newer than refdev
961  *          so dev should be used as the refdev in future
962  *     -EINVAL superblock incompatible or invalid
963  *     -othererror e.g. -EIO
964  *
965  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
966  *      Verify that dev is acceptable into mddev.
967  *       The first time, mddev->raid_disks will be 0, and data from
968  *       dev should be merged in.  Subsequent calls check that dev
969  *       is new enough.  Return 0 or -EINVAL
970  *
971  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
972  *     Update the superblock for rdev with data in mddev
973  *     This does not write to disc.
974  *
975  */
976
977 struct super_type  {
978         char                *name;
979         struct module       *owner;
980         int                 (*load_super)(struct md_rdev *rdev,
981                                           struct md_rdev *refdev,
982                                           int minor_version);
983         int                 (*validate_super)(struct mddev *mddev,
984                                               struct md_rdev *rdev);
985         void                (*sync_super)(struct mddev *mddev,
986                                           struct md_rdev *rdev);
987         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
988                                                 sector_t num_sectors);
989         int                 (*allow_new_offset)(struct md_rdev *rdev,
990                                                 unsigned long long new_offset);
991 };
992
993 /*
994  * Check that the given mddev has no bitmap.
995  *
996  * This function is called from the run method of all personalities that do not
997  * support bitmaps. It prints an error message and returns non-zero if mddev
998  * has a bitmap. Otherwise, it returns 0.
999  *
1000  */
1001 int md_check_no_bitmap(struct mddev *mddev)
1002 {
1003         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1004                 return 0;
1005         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1006                 mdname(mddev), mddev->pers->name);
1007         return 1;
1008 }
1009 EXPORT_SYMBOL(md_check_no_bitmap);
1010
1011 /*
1012  * load_super for 0.90.0 
1013  */
1014 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1015 {
1016         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1017         mdp_super_t *sb;
1018         int ret;
1019
1020         /*
1021          * Calculate the position of the superblock (512byte sectors),
1022          * it's at the end of the disk.
1023          *
1024          * It also happens to be a multiple of 4Kb.
1025          */
1026         rdev->sb_start = calc_dev_sboffset(rdev);
1027
1028         ret = read_disk_sb(rdev, MD_SB_BYTES);
1029         if (ret) return ret;
1030
1031         ret = -EINVAL;
1032
1033         bdevname(rdev->bdev, b);
1034         sb = page_address(rdev->sb_page);
1035
1036         if (sb->md_magic != MD_SB_MAGIC) {
1037                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1038                        b);
1039                 goto abort;
1040         }
1041
1042         if (sb->major_version != 0 ||
1043             sb->minor_version < 90 ||
1044             sb->minor_version > 91) {
1045                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1046                         sb->major_version, sb->minor_version,
1047                         b);
1048                 goto abort;
1049         }
1050
1051         if (sb->raid_disks <= 0)
1052                 goto abort;
1053
1054         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1055                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1056                         b);
1057                 goto abort;
1058         }
1059
1060         rdev->preferred_minor = sb->md_minor;
1061         rdev->data_offset = 0;
1062         rdev->new_data_offset = 0;
1063         rdev->sb_size = MD_SB_BYTES;
1064         rdev->badblocks.shift = -1;
1065
1066         if (sb->level == LEVEL_MULTIPATH)
1067                 rdev->desc_nr = -1;
1068         else
1069                 rdev->desc_nr = sb->this_disk.number;
1070
1071         if (!refdev) {
1072                 ret = 1;
1073         } else {
1074                 __u64 ev1, ev2;
1075                 mdp_super_t *refsb = page_address(refdev->sb_page);
1076                 if (!uuid_equal(refsb, sb)) {
1077                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1078                                 b, bdevname(refdev->bdev,b2));
1079                         goto abort;
1080                 }
1081                 if (!sb_equal(refsb, sb)) {
1082                         printk(KERN_WARNING "md: %s has same UUID"
1083                                " but different superblock to %s\n",
1084                                b, bdevname(refdev->bdev, b2));
1085                         goto abort;
1086                 }
1087                 ev1 = md_event(sb);
1088                 ev2 = md_event(refsb);
1089                 if (ev1 > ev2)
1090                         ret = 1;
1091                 else 
1092                         ret = 0;
1093         }
1094         rdev->sectors = rdev->sb_start;
1095         /* Limit to 4TB as metadata cannot record more than that.
1096          * (not needed for Linear and RAID0 as metadata doesn't
1097          * record this size)
1098          */
1099         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1100                 rdev->sectors = (2ULL << 32) - 2;
1101
1102         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1103                 /* "this cannot possibly happen" ... */
1104                 ret = -EINVAL;
1105
1106  abort:
1107         return ret;
1108 }
1109
1110 /*
1111  * validate_super for 0.90.0
1112  */
1113 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1114 {
1115         mdp_disk_t *desc;
1116         mdp_super_t *sb = page_address(rdev->sb_page);
1117         __u64 ev1 = md_event(sb);
1118
1119         rdev->raid_disk = -1;
1120         clear_bit(Faulty, &rdev->flags);
1121         clear_bit(In_sync, &rdev->flags);
1122         clear_bit(WriteMostly, &rdev->flags);
1123
1124         if (mddev->raid_disks == 0) {
1125                 mddev->major_version = 0;
1126                 mddev->minor_version = sb->minor_version;
1127                 mddev->patch_version = sb->patch_version;
1128                 mddev->external = 0;
1129                 mddev->chunk_sectors = sb->chunk_size >> 9;
1130                 mddev->ctime = sb->ctime;
1131                 mddev->utime = sb->utime;
1132                 mddev->level = sb->level;
1133                 mddev->clevel[0] = 0;
1134                 mddev->layout = sb->layout;
1135                 mddev->raid_disks = sb->raid_disks;
1136                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1137                 mddev->events = ev1;
1138                 mddev->bitmap_info.offset = 0;
1139                 mddev->bitmap_info.space = 0;
1140                 /* bitmap can use 60 K after the 4K superblocks */
1141                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1142                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1143                 mddev->reshape_backwards = 0;
1144
1145                 if (mddev->minor_version >= 91) {
1146                         mddev->reshape_position = sb->reshape_position;
1147                         mddev->delta_disks = sb->delta_disks;
1148                         mddev->new_level = sb->new_level;
1149                         mddev->new_layout = sb->new_layout;
1150                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1151                         if (mddev->delta_disks < 0)
1152                                 mddev->reshape_backwards = 1;
1153                 } else {
1154                         mddev->reshape_position = MaxSector;
1155                         mddev->delta_disks = 0;
1156                         mddev->new_level = mddev->level;
1157                         mddev->new_layout = mddev->layout;
1158                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1159                 }
1160
1161                 if (sb->state & (1<<MD_SB_CLEAN))
1162                         mddev->recovery_cp = MaxSector;
1163                 else {
1164                         if (sb->events_hi == sb->cp_events_hi && 
1165                                 sb->events_lo == sb->cp_events_lo) {
1166                                 mddev->recovery_cp = sb->recovery_cp;
1167                         } else
1168                                 mddev->recovery_cp = 0;
1169                 }
1170
1171                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1172                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1173                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1174                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1175
1176                 mddev->max_disks = MD_SB_DISKS;
1177
1178                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1179                     mddev->bitmap_info.file == NULL) {
1180                         mddev->bitmap_info.offset =
1181                                 mddev->bitmap_info.default_offset;
1182                         mddev->bitmap_info.space =
1183                                 mddev->bitmap_info.default_space;
1184                 }
1185
1186         } else if (mddev->pers == NULL) {
1187                 /* Insist on good event counter while assembling, except
1188                  * for spares (which don't need an event count) */
1189                 ++ev1;
1190                 if (sb->disks[rdev->desc_nr].state & (
1191                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1192                         if (ev1 < mddev->events) 
1193                                 return -EINVAL;
1194         } else if (mddev->bitmap) {
1195                 /* if adding to array with a bitmap, then we can accept an
1196                  * older device ... but not too old.
1197                  */
1198                 if (ev1 < mddev->bitmap->events_cleared)
1199                         return 0;
1200         } else {
1201                 if (ev1 < mddev->events)
1202                         /* just a hot-add of a new device, leave raid_disk at -1 */
1203                         return 0;
1204         }
1205
1206         if (mddev->level != LEVEL_MULTIPATH) {
1207                 desc = sb->disks + rdev->desc_nr;
1208
1209                 if (desc->state & (1<<MD_DISK_FAULTY))
1210                         set_bit(Faulty, &rdev->flags);
1211                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1212                             desc->raid_disk < mddev->raid_disks */) {
1213                         set_bit(In_sync, &rdev->flags);
1214                         rdev->raid_disk = desc->raid_disk;
1215                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1216                         /* active but not in sync implies recovery up to
1217                          * reshape position.  We don't know exactly where
1218                          * that is, so set to zero for now */
1219                         if (mddev->minor_version >= 91) {
1220                                 rdev->recovery_offset = 0;
1221                                 rdev->raid_disk = desc->raid_disk;
1222                         }
1223                 }
1224                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1225                         set_bit(WriteMostly, &rdev->flags);
1226         } else /* MULTIPATH are always insync */
1227                 set_bit(In_sync, &rdev->flags);
1228         return 0;
1229 }
1230
1231 /*
1232  * sync_super for 0.90.0
1233  */
1234 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1235 {
1236         mdp_super_t *sb;
1237         struct md_rdev *rdev2;
1238         int next_spare = mddev->raid_disks;
1239
1240
1241         /* make rdev->sb match mddev data..
1242          *
1243          * 1/ zero out disks
1244          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1245          * 3/ any empty disks < next_spare become removed
1246          *
1247          * disks[0] gets initialised to REMOVED because
1248          * we cannot be sure from other fields if it has
1249          * been initialised or not.
1250          */
1251         int i;
1252         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1253
1254         rdev->sb_size = MD_SB_BYTES;
1255
1256         sb = page_address(rdev->sb_page);
1257
1258         memset(sb, 0, sizeof(*sb));
1259
1260         sb->md_magic = MD_SB_MAGIC;
1261         sb->major_version = mddev->major_version;
1262         sb->patch_version = mddev->patch_version;
1263         sb->gvalid_words  = 0; /* ignored */
1264         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1265         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1266         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1267         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1268
1269         sb->ctime = mddev->ctime;
1270         sb->level = mddev->level;
1271         sb->size = mddev->dev_sectors / 2;
1272         sb->raid_disks = mddev->raid_disks;
1273         sb->md_minor = mddev->md_minor;
1274         sb->not_persistent = 0;
1275         sb->utime = mddev->utime;
1276         sb->state = 0;
1277         sb->events_hi = (mddev->events>>32);
1278         sb->events_lo = (u32)mddev->events;
1279
1280         if (mddev->reshape_position == MaxSector)
1281                 sb->minor_version = 90;
1282         else {
1283                 sb->minor_version = 91;
1284                 sb->reshape_position = mddev->reshape_position;
1285                 sb->new_level = mddev->new_level;
1286                 sb->delta_disks = mddev->delta_disks;
1287                 sb->new_layout = mddev->new_layout;
1288                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1289         }
1290         mddev->minor_version = sb->minor_version;
1291         if (mddev->in_sync)
1292         {
1293                 sb->recovery_cp = mddev->recovery_cp;
1294                 sb->cp_events_hi = (mddev->events>>32);
1295                 sb->cp_events_lo = (u32)mddev->events;
1296                 if (mddev->recovery_cp == MaxSector)
1297                         sb->state = (1<< MD_SB_CLEAN);
1298         } else
1299                 sb->recovery_cp = 0;
1300
1301         sb->layout = mddev->layout;
1302         sb->chunk_size = mddev->chunk_sectors << 9;
1303
1304         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1305                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1306
1307         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1308         rdev_for_each(rdev2, mddev) {
1309                 mdp_disk_t *d;
1310                 int desc_nr;
1311                 int is_active = test_bit(In_sync, &rdev2->flags);
1312
1313                 if (rdev2->raid_disk >= 0 &&
1314                     sb->minor_version >= 91)
1315                         /* we have nowhere to store the recovery_offset,
1316                          * but if it is not below the reshape_position,
1317                          * we can piggy-back on that.
1318                          */
1319                         is_active = 1;
1320                 if (rdev2->raid_disk < 0 ||
1321                     test_bit(Faulty, &rdev2->flags))
1322                         is_active = 0;
1323                 if (is_active)
1324                         desc_nr = rdev2->raid_disk;
1325                 else
1326                         desc_nr = next_spare++;
1327                 rdev2->desc_nr = desc_nr;
1328                 d = &sb->disks[rdev2->desc_nr];
1329                 nr_disks++;
1330                 d->number = rdev2->desc_nr;
1331                 d->major = MAJOR(rdev2->bdev->bd_dev);
1332                 d->minor = MINOR(rdev2->bdev->bd_dev);
1333                 if (is_active)
1334                         d->raid_disk = rdev2->raid_disk;
1335                 else
1336                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1337                 if (test_bit(Faulty, &rdev2->flags))
1338                         d->state = (1<<MD_DISK_FAULTY);
1339                 else if (is_active) {
1340                         d->state = (1<<MD_DISK_ACTIVE);
1341                         if (test_bit(In_sync, &rdev2->flags))
1342                                 d->state |= (1<<MD_DISK_SYNC);
1343                         active++;
1344                         working++;
1345                 } else {
1346                         d->state = 0;
1347                         spare++;
1348                         working++;
1349                 }
1350                 if (test_bit(WriteMostly, &rdev2->flags))
1351                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1352         }
1353         /* now set the "removed" and "faulty" bits on any missing devices */
1354         for (i=0 ; i < mddev->raid_disks ; i++) {
1355                 mdp_disk_t *d = &sb->disks[i];
1356                 if (d->state == 0 && d->number == 0) {
1357                         d->number = i;
1358                         d->raid_disk = i;
1359                         d->state = (1<<MD_DISK_REMOVED);
1360                         d->state |= (1<<MD_DISK_FAULTY);
1361                         failed++;
1362                 }
1363         }
1364         sb->nr_disks = nr_disks;
1365         sb->active_disks = active;
1366         sb->working_disks = working;
1367         sb->failed_disks = failed;
1368         sb->spare_disks = spare;
1369
1370         sb->this_disk = sb->disks[rdev->desc_nr];
1371         sb->sb_csum = calc_sb_csum(sb);
1372 }
1373
1374 /*
1375  * rdev_size_change for 0.90.0
1376  */
1377 static unsigned long long
1378 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1379 {
1380         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1381                 return 0; /* component must fit device */
1382         if (rdev->mddev->bitmap_info.offset)
1383                 return 0; /* can't move bitmap */
1384         rdev->sb_start = calc_dev_sboffset(rdev);
1385         if (!num_sectors || num_sectors > rdev->sb_start)
1386                 num_sectors = rdev->sb_start;
1387         /* Limit to 4TB as metadata cannot record more than that.
1388          * 4TB == 2^32 KB, or 2*2^32 sectors.
1389          */
1390         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1391                 num_sectors = (2ULL << 32) - 2;
1392         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1393                        rdev->sb_page);
1394         md_super_wait(rdev->mddev);
1395         return num_sectors;
1396 }
1397
1398 static int
1399 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1400 {
1401         /* non-zero offset changes not possible with v0.90 */
1402         return new_offset == 0;
1403 }
1404
1405 /*
1406  * version 1 superblock
1407  */
1408
1409 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1410 {
1411         __le32 disk_csum;
1412         u32 csum;
1413         unsigned long long newcsum;
1414         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1415         __le32 *isuper = (__le32*)sb;
1416
1417         disk_csum = sb->sb_csum;
1418         sb->sb_csum = 0;
1419         newcsum = 0;
1420         for (; size >= 4; size -= 4)
1421                 newcsum += le32_to_cpu(*isuper++);
1422
1423         if (size == 2)
1424                 newcsum += le16_to_cpu(*(__le16*) isuper);
1425
1426         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1427         sb->sb_csum = disk_csum;
1428         return cpu_to_le32(csum);
1429 }
1430
1431 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1432                             int acknowledged);
1433 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1434 {
1435         struct mdp_superblock_1 *sb;
1436         int ret;
1437         sector_t sb_start;
1438         sector_t sectors;
1439         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1440         int bmask;
1441
1442         /*
1443          * Calculate the position of the superblock in 512byte sectors.
1444          * It is always aligned to a 4K boundary and
1445          * depeding on minor_version, it can be:
1446          * 0: At least 8K, but less than 12K, from end of device
1447          * 1: At start of device
1448          * 2: 4K from start of device.
1449          */
1450         switch(minor_version) {
1451         case 0:
1452                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1453                 sb_start -= 8*2;
1454                 sb_start &= ~(sector_t)(4*2-1);
1455                 break;
1456         case 1:
1457                 sb_start = 0;
1458                 break;
1459         case 2:
1460                 sb_start = 8;
1461                 break;
1462         default:
1463                 return -EINVAL;
1464         }
1465         rdev->sb_start = sb_start;
1466
1467         /* superblock is rarely larger than 1K, but it can be larger,
1468          * and it is safe to read 4k, so we do that
1469          */
1470         ret = read_disk_sb(rdev, 4096);
1471         if (ret) return ret;
1472
1473
1474         sb = page_address(rdev->sb_page);
1475
1476         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1477             sb->major_version != cpu_to_le32(1) ||
1478             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1479             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1480             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1481                 return -EINVAL;
1482
1483         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1484                 printk("md: invalid superblock checksum on %s\n",
1485                         bdevname(rdev->bdev,b));
1486                 return -EINVAL;
1487         }
1488         if (le64_to_cpu(sb->data_size) < 10) {
1489                 printk("md: data_size too small on %s\n",
1490                        bdevname(rdev->bdev,b));
1491                 return -EINVAL;
1492         }
1493         if (sb->pad0 ||
1494             sb->pad3[0] ||
1495             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1496                 /* Some padding is non-zero, might be a new feature */
1497                 return -EINVAL;
1498
1499         rdev->preferred_minor = 0xffff;
1500         rdev->data_offset = le64_to_cpu(sb->data_offset);
1501         rdev->new_data_offset = rdev->data_offset;
1502         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1503             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1504                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1505         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1506
1507         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1508         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1509         if (rdev->sb_size & bmask)
1510                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1511
1512         if (minor_version
1513             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1514                 return -EINVAL;
1515         if (minor_version
1516             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1517                 return -EINVAL;
1518
1519         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1520                 rdev->desc_nr = -1;
1521         else
1522                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1523
1524         if (!rdev->bb_page) {
1525                 rdev->bb_page = alloc_page(GFP_KERNEL);
1526                 if (!rdev->bb_page)
1527                         return -ENOMEM;
1528         }
1529         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1530             rdev->badblocks.count == 0) {
1531                 /* need to load the bad block list.
1532                  * Currently we limit it to one page.
1533                  */
1534                 s32 offset;
1535                 sector_t bb_sector;
1536                 u64 *bbp;
1537                 int i;
1538                 int sectors = le16_to_cpu(sb->bblog_size);
1539                 if (sectors > (PAGE_SIZE / 512))
1540                         return -EINVAL;
1541                 offset = le32_to_cpu(sb->bblog_offset);
1542                 if (offset == 0)
1543                         return -EINVAL;
1544                 bb_sector = (long long)offset;
1545                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1546                                   rdev->bb_page, READ, true))
1547                         return -EIO;
1548                 bbp = (u64 *)page_address(rdev->bb_page);
1549                 rdev->badblocks.shift = sb->bblog_shift;
1550                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1551                         u64 bb = le64_to_cpu(*bbp);
1552                         int count = bb & (0x3ff);
1553                         u64 sector = bb >> 10;
1554                         sector <<= sb->bblog_shift;
1555                         count <<= sb->bblog_shift;
1556                         if (bb + 1 == 0)
1557                                 break;
1558                         if (md_set_badblocks(&rdev->badblocks,
1559                                              sector, count, 1) == 0)
1560                                 return -EINVAL;
1561                 }
1562         } else if (sb->bblog_offset != 0)
1563                 rdev->badblocks.shift = 0;
1564
1565         if (!refdev) {
1566                 ret = 1;
1567         } else {
1568                 __u64 ev1, ev2;
1569                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1570
1571                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1572                     sb->level != refsb->level ||
1573                     sb->layout != refsb->layout ||
1574                     sb->chunksize != refsb->chunksize) {
1575                         printk(KERN_WARNING "md: %s has strangely different"
1576                                 " superblock to %s\n",
1577                                 bdevname(rdev->bdev,b),
1578                                 bdevname(refdev->bdev,b2));
1579                         return -EINVAL;
1580                 }
1581                 ev1 = le64_to_cpu(sb->events);
1582                 ev2 = le64_to_cpu(refsb->events);
1583
1584                 if (ev1 > ev2)
1585                         ret = 1;
1586                 else
1587                         ret = 0;
1588         }
1589         if (minor_version) {
1590                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1591                 sectors -= rdev->data_offset;
1592         } else
1593                 sectors = rdev->sb_start;
1594         if (sectors < le64_to_cpu(sb->data_size))
1595                 return -EINVAL;
1596         rdev->sectors = le64_to_cpu(sb->data_size);
1597         return ret;
1598 }
1599
1600 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1601 {
1602         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1603         __u64 ev1 = le64_to_cpu(sb->events);
1604
1605         rdev->raid_disk = -1;
1606         clear_bit(Faulty, &rdev->flags);
1607         clear_bit(In_sync, &rdev->flags);
1608         clear_bit(WriteMostly, &rdev->flags);
1609
1610         if (mddev->raid_disks == 0) {
1611                 mddev->major_version = 1;
1612                 mddev->patch_version = 0;
1613                 mddev->external = 0;
1614                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1615                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1616                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1617                 mddev->level = le32_to_cpu(sb->level);
1618                 mddev->clevel[0] = 0;
1619                 mddev->layout = le32_to_cpu(sb->layout);
1620                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1621                 mddev->dev_sectors = le64_to_cpu(sb->size);
1622                 mddev->events = ev1;
1623                 mddev->bitmap_info.offset = 0;
1624                 mddev->bitmap_info.space = 0;
1625                 /* Default location for bitmap is 1K after superblock
1626                  * using 3K - total of 4K
1627                  */
1628                 mddev->bitmap_info.default_offset = 1024 >> 9;
1629                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1630                 mddev->reshape_backwards = 0;
1631
1632                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1633                 memcpy(mddev->uuid, sb->set_uuid, 16);
1634
1635                 mddev->max_disks =  (4096-256)/2;
1636
1637                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1638                     mddev->bitmap_info.file == NULL) {
1639                         mddev->bitmap_info.offset =
1640                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1641                         /* Metadata doesn't record how much space is available.
1642                          * For 1.0, we assume we can use up to the superblock
1643                          * if before, else to 4K beyond superblock.
1644                          * For others, assume no change is possible.
1645                          */
1646                         if (mddev->minor_version > 0)
1647                                 mddev->bitmap_info.space = 0;
1648                         else if (mddev->bitmap_info.offset > 0)
1649                                 mddev->bitmap_info.space =
1650                                         8 - mddev->bitmap_info.offset;
1651                         else
1652                                 mddev->bitmap_info.space =
1653                                         -mddev->bitmap_info.offset;
1654                 }
1655
1656                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1657                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1658                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1659                         mddev->new_level = le32_to_cpu(sb->new_level);
1660                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1661                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1662                         if (mddev->delta_disks < 0 ||
1663                             (mddev->delta_disks == 0 &&
1664                              (le32_to_cpu(sb->feature_map)
1665                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1666                                 mddev->reshape_backwards = 1;
1667                 } else {
1668                         mddev->reshape_position = MaxSector;
1669                         mddev->delta_disks = 0;
1670                         mddev->new_level = mddev->level;
1671                         mddev->new_layout = mddev->layout;
1672                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1673                 }
1674
1675         } else if (mddev->pers == NULL) {
1676                 /* Insist of good event counter while assembling, except for
1677                  * spares (which don't need an event count) */
1678                 ++ev1;
1679                 if (rdev->desc_nr >= 0 &&
1680                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1681                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1682                         if (ev1 < mddev->events)
1683                                 return -EINVAL;
1684         } else if (mddev->bitmap) {
1685                 /* If adding to array with a bitmap, then we can accept an
1686                  * older device, but not too old.
1687                  */
1688                 if (ev1 < mddev->bitmap->events_cleared)
1689                         return 0;
1690         } else {
1691                 if (ev1 < mddev->events)
1692                         /* just a hot-add of a new device, leave raid_disk at -1 */
1693                         return 0;
1694         }
1695         if (mddev->level != LEVEL_MULTIPATH) {
1696                 int role;
1697                 if (rdev->desc_nr < 0 ||
1698                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1699                         role = 0xffff;
1700                         rdev->desc_nr = -1;
1701                 } else
1702                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1703                 switch(role) {
1704                 case 0xffff: /* spare */
1705                         break;
1706                 case 0xfffe: /* faulty */
1707                         set_bit(Faulty, &rdev->flags);
1708                         break;
1709                 default:
1710                         if ((le32_to_cpu(sb->feature_map) &
1711                              MD_FEATURE_RECOVERY_OFFSET))
1712                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1713                         else
1714                                 set_bit(In_sync, &rdev->flags);
1715                         rdev->raid_disk = role;
1716                         break;
1717                 }
1718                 if (sb->devflags & WriteMostly1)
1719                         set_bit(WriteMostly, &rdev->flags);
1720                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1721                         set_bit(Replacement, &rdev->flags);
1722         } else /* MULTIPATH are always insync */
1723                 set_bit(In_sync, &rdev->flags);
1724
1725         return 0;
1726 }
1727
1728 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1729 {
1730         struct mdp_superblock_1 *sb;
1731         struct md_rdev *rdev2;
1732         int max_dev, i;
1733         /* make rdev->sb match mddev and rdev data. */
1734
1735         sb = page_address(rdev->sb_page);
1736
1737         sb->feature_map = 0;
1738         sb->pad0 = 0;
1739         sb->recovery_offset = cpu_to_le64(0);
1740         memset(sb->pad3, 0, sizeof(sb->pad3));
1741
1742         sb->utime = cpu_to_le64((__u64)mddev->utime);
1743         sb->events = cpu_to_le64(mddev->events);
1744         if (mddev->in_sync)
1745                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1746         else
1747                 sb->resync_offset = cpu_to_le64(0);
1748
1749         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1750
1751         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1752         sb->size = cpu_to_le64(mddev->dev_sectors);
1753         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1754         sb->level = cpu_to_le32(mddev->level);
1755         sb->layout = cpu_to_le32(mddev->layout);
1756
1757         if (test_bit(WriteMostly, &rdev->flags))
1758                 sb->devflags |= WriteMostly1;
1759         else
1760                 sb->devflags &= ~WriteMostly1;
1761         sb->data_offset = cpu_to_le64(rdev->data_offset);
1762         sb->data_size = cpu_to_le64(rdev->sectors);
1763
1764         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1765                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1766                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1767         }
1768
1769         if (rdev->raid_disk >= 0 &&
1770             !test_bit(In_sync, &rdev->flags)) {
1771                 sb->feature_map |=
1772                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1773                 sb->recovery_offset =
1774                         cpu_to_le64(rdev->recovery_offset);
1775         }
1776         if (test_bit(Replacement, &rdev->flags))
1777                 sb->feature_map |=
1778                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1779
1780         if (mddev->reshape_position != MaxSector) {
1781                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1782                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1783                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1784                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1785                 sb->new_level = cpu_to_le32(mddev->new_level);
1786                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1787                 if (mddev->delta_disks == 0 &&
1788                     mddev->reshape_backwards)
1789                         sb->feature_map
1790                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1791                 if (rdev->new_data_offset != rdev->data_offset) {
1792                         sb->feature_map
1793                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1794                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1795                                                              - rdev->data_offset));
1796                 }
1797         }
1798
1799         if (rdev->badblocks.count == 0)
1800                 /* Nothing to do for bad blocks*/ ;
1801         else if (sb->bblog_offset == 0)
1802                 /* Cannot record bad blocks on this device */
1803                 md_error(mddev, rdev);
1804         else {
1805                 struct badblocks *bb = &rdev->badblocks;
1806                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1807                 u64 *p = bb->page;
1808                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1809                 if (bb->changed) {
1810                         unsigned seq;
1811
1812 retry:
1813                         seq = read_seqbegin(&bb->lock);
1814
1815                         memset(bbp, 0xff, PAGE_SIZE);
1816
1817                         for (i = 0 ; i < bb->count ; i++) {
1818                                 u64 internal_bb = p[i];
1819                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1820                                                 | BB_LEN(internal_bb));
1821                                 bbp[i] = cpu_to_le64(store_bb);
1822                         }
1823                         bb->changed = 0;
1824                         if (read_seqretry(&bb->lock, seq))
1825                                 goto retry;
1826
1827                         bb->sector = (rdev->sb_start +
1828                                       (int)le32_to_cpu(sb->bblog_offset));
1829                         bb->size = le16_to_cpu(sb->bblog_size);
1830                 }
1831         }
1832
1833         max_dev = 0;
1834         rdev_for_each(rdev2, mddev)
1835                 if (rdev2->desc_nr+1 > max_dev)
1836                         max_dev = rdev2->desc_nr+1;
1837
1838         if (max_dev > le32_to_cpu(sb->max_dev)) {
1839                 int bmask;
1840                 sb->max_dev = cpu_to_le32(max_dev);
1841                 rdev->sb_size = max_dev * 2 + 256;
1842                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1843                 if (rdev->sb_size & bmask)
1844                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1845         } else
1846                 max_dev = le32_to_cpu(sb->max_dev);
1847
1848         for (i=0; i<max_dev;i++)
1849                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1850         
1851         rdev_for_each(rdev2, mddev) {
1852                 i = rdev2->desc_nr;
1853                 if (test_bit(Faulty, &rdev2->flags))
1854                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1855                 else if (test_bit(In_sync, &rdev2->flags))
1856                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1857                 else if (rdev2->raid_disk >= 0)
1858                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1859                 else
1860                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1861         }
1862
1863         sb->sb_csum = calc_sb_1_csum(sb);
1864 }
1865
1866 static unsigned long long
1867 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1868 {
1869         struct mdp_superblock_1 *sb;
1870         sector_t max_sectors;
1871         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1872                 return 0; /* component must fit device */
1873         if (rdev->data_offset != rdev->new_data_offset)
1874                 return 0; /* too confusing */
1875         if (rdev->sb_start < rdev->data_offset) {
1876                 /* minor versions 1 and 2; superblock before data */
1877                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1878                 max_sectors -= rdev->data_offset;
1879                 if (!num_sectors || num_sectors > max_sectors)
1880                         num_sectors = max_sectors;
1881         } else if (rdev->mddev->bitmap_info.offset) {
1882                 /* minor version 0 with bitmap we can't move */
1883                 return 0;
1884         } else {
1885                 /* minor version 0; superblock after data */
1886                 sector_t sb_start;
1887                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1888                 sb_start &= ~(sector_t)(4*2 - 1);
1889                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1890                 if (!num_sectors || num_sectors > max_sectors)
1891                         num_sectors = max_sectors;
1892                 rdev->sb_start = sb_start;
1893         }
1894         sb = page_address(rdev->sb_page);
1895         sb->data_size = cpu_to_le64(num_sectors);
1896         sb->super_offset = rdev->sb_start;
1897         sb->sb_csum = calc_sb_1_csum(sb);
1898         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1899                        rdev->sb_page);
1900         md_super_wait(rdev->mddev);
1901         return num_sectors;
1902
1903 }
1904
1905 static int
1906 super_1_allow_new_offset(struct md_rdev *rdev,
1907                          unsigned long long new_offset)
1908 {
1909         /* All necessary checks on new >= old have been done */
1910         struct bitmap *bitmap;
1911         if (new_offset >= rdev->data_offset)
1912                 return 1;
1913
1914         /* with 1.0 metadata, there is no metadata to tread on
1915          * so we can always move back */
1916         if (rdev->mddev->minor_version == 0)
1917                 return 1;
1918
1919         /* otherwise we must be sure not to step on
1920          * any metadata, so stay:
1921          * 36K beyond start of superblock
1922          * beyond end of badblocks
1923          * beyond write-intent bitmap
1924          */
1925         if (rdev->sb_start + (32+4)*2 > new_offset)
1926                 return 0;
1927         bitmap = rdev->mddev->bitmap;
1928         if (bitmap && !rdev->mddev->bitmap_info.file &&
1929             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1930             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1931                 return 0;
1932         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1933                 return 0;
1934
1935         return 1;
1936 }
1937
1938 static struct super_type super_types[] = {
1939         [0] = {
1940                 .name   = "0.90.0",
1941                 .owner  = THIS_MODULE,
1942                 .load_super         = super_90_load,
1943                 .validate_super     = super_90_validate,
1944                 .sync_super         = super_90_sync,
1945                 .rdev_size_change   = super_90_rdev_size_change,
1946                 .allow_new_offset   = super_90_allow_new_offset,
1947         },
1948         [1] = {
1949                 .name   = "md-1",
1950                 .owner  = THIS_MODULE,
1951                 .load_super         = super_1_load,
1952                 .validate_super     = super_1_validate,
1953                 .sync_super         = super_1_sync,
1954                 .rdev_size_change   = super_1_rdev_size_change,
1955                 .allow_new_offset   = super_1_allow_new_offset,
1956         },
1957 };
1958
1959 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1960 {
1961         if (mddev->sync_super) {
1962                 mddev->sync_super(mddev, rdev);
1963                 return;
1964         }
1965
1966         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1967
1968         super_types[mddev->major_version].sync_super(mddev, rdev);
1969 }
1970
1971 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1972 {
1973         struct md_rdev *rdev, *rdev2;
1974
1975         rcu_read_lock();
1976         rdev_for_each_rcu(rdev, mddev1)
1977                 rdev_for_each_rcu(rdev2, mddev2)
1978                         if (rdev->bdev->bd_contains ==
1979                             rdev2->bdev->bd_contains) {
1980                                 rcu_read_unlock();
1981                                 return 1;
1982                         }
1983         rcu_read_unlock();
1984         return 0;
1985 }
1986
1987 static LIST_HEAD(pending_raid_disks);
1988
1989 /*
1990  * Try to register data integrity profile for an mddev
1991  *
1992  * This is called when an array is started and after a disk has been kicked
1993  * from the array. It only succeeds if all working and active component devices
1994  * are integrity capable with matching profiles.
1995  */
1996 int md_integrity_register(struct mddev *mddev)
1997 {
1998         struct md_rdev *rdev, *reference = NULL;
1999
2000         if (list_empty(&mddev->disks))
2001                 return 0; /* nothing to do */
2002         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2003                 return 0; /* shouldn't register, or already is */
2004         rdev_for_each(rdev, mddev) {
2005                 /* skip spares and non-functional disks */
2006                 if (test_bit(Faulty, &rdev->flags))
2007                         continue;
2008                 if (rdev->raid_disk < 0)
2009                         continue;
2010                 if (!reference) {
2011                         /* Use the first rdev as the reference */
2012                         reference = rdev;
2013                         continue;
2014                 }
2015                 /* does this rdev's profile match the reference profile? */
2016                 if (blk_integrity_compare(reference->bdev->bd_disk,
2017                                 rdev->bdev->bd_disk) < 0)
2018                         return -EINVAL;
2019         }
2020         if (!reference || !bdev_get_integrity(reference->bdev))
2021                 return 0;
2022         /*
2023          * All component devices are integrity capable and have matching
2024          * profiles, register the common profile for the md device.
2025          */
2026         if (blk_integrity_register(mddev->gendisk,
2027                         bdev_get_integrity(reference->bdev)) != 0) {
2028                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2029                         mdname(mddev));
2030                 return -EINVAL;
2031         }
2032         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2033         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2034                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2035                        mdname(mddev));
2036                 return -EINVAL;
2037         }
2038         return 0;
2039 }
2040 EXPORT_SYMBOL(md_integrity_register);
2041
2042 /* Disable data integrity if non-capable/non-matching disk is being added */
2043 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2044 {
2045         struct blk_integrity *bi_rdev;
2046         struct blk_integrity *bi_mddev;
2047
2048         if (!mddev->gendisk)
2049                 return;
2050
2051         bi_rdev = bdev_get_integrity(rdev->bdev);
2052         bi_mddev = blk_get_integrity(mddev->gendisk);
2053
2054         if (!bi_mddev) /* nothing to do */
2055                 return;
2056         if (rdev->raid_disk < 0) /* skip spares */
2057                 return;
2058         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2059                                              rdev->bdev->bd_disk) >= 0)
2060                 return;
2061         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2062         blk_integrity_unregister(mddev->gendisk);
2063 }
2064 EXPORT_SYMBOL(md_integrity_add_rdev);
2065
2066 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2067 {
2068         char b[BDEVNAME_SIZE];
2069         struct kobject *ko;
2070         char *s;
2071         int err;
2072
2073         if (rdev->mddev) {
2074                 MD_BUG();
2075                 return -EINVAL;
2076         }
2077
2078         /* prevent duplicates */
2079         if (find_rdev(mddev, rdev->bdev->bd_dev))
2080                 return -EEXIST;
2081
2082         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2083         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2084                         rdev->sectors < mddev->dev_sectors)) {
2085                 if (mddev->pers) {
2086                         /* Cannot change size, so fail
2087                          * If mddev->level <= 0, then we don't care
2088                          * about aligning sizes (e.g. linear)
2089                          */
2090                         if (mddev->level > 0)
2091                                 return -ENOSPC;
2092                 } else
2093                         mddev->dev_sectors = rdev->sectors;
2094         }
2095
2096         /* Verify rdev->desc_nr is unique.
2097          * If it is -1, assign a free number, else
2098          * check number is not in use
2099          */
2100         if (rdev->desc_nr < 0) {
2101                 int choice = 0;
2102                 if (mddev->pers) choice = mddev->raid_disks;
2103                 while (find_rdev_nr(mddev, choice))
2104                         choice++;
2105                 rdev->desc_nr = choice;
2106         } else {
2107                 if (find_rdev_nr(mddev, rdev->desc_nr))
2108                         return -EBUSY;
2109         }
2110         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2111                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2112                        mdname(mddev), mddev->max_disks);
2113                 return -EBUSY;
2114         }
2115         bdevname(rdev->bdev,b);
2116         while ( (s=strchr(b, '/')) != NULL)
2117                 *s = '!';
2118
2119         rdev->mddev = mddev;
2120         printk(KERN_INFO "md: bind<%s>\n", b);
2121
2122         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2123                 goto fail;
2124
2125         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2126         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2127                 /* failure here is OK */;
2128         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2129
2130         list_add_rcu(&rdev->same_set, &mddev->disks);
2131         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2132
2133         /* May as well allow recovery to be retried once */
2134         mddev->recovery_disabled++;
2135
2136         return 0;
2137
2138  fail:
2139         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2140                b, mdname(mddev));
2141         return err;
2142 }
2143
2144 static void md_delayed_delete(struct work_struct *ws)
2145 {
2146         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2147         kobject_del(&rdev->kobj);
2148         kobject_put(&rdev->kobj);
2149 }
2150
2151 static void unbind_rdev_from_array(struct md_rdev * rdev)
2152 {
2153         char b[BDEVNAME_SIZE];
2154         if (!rdev->mddev) {
2155                 MD_BUG();
2156                 return;
2157         }
2158         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2159         list_del_rcu(&rdev->same_set);
2160         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2161         rdev->mddev = NULL;
2162         sysfs_remove_link(&rdev->kobj, "block");
2163         sysfs_put(rdev->sysfs_state);
2164         rdev->sysfs_state = NULL;
2165         rdev->badblocks.count = 0;
2166         /* We need to delay this, otherwise we can deadlock when
2167          * writing to 'remove' to "dev/state".  We also need
2168          * to delay it due to rcu usage.
2169          */
2170         synchronize_rcu();
2171         INIT_WORK(&rdev->del_work, md_delayed_delete);
2172         kobject_get(&rdev->kobj);
2173         queue_work(md_misc_wq, &rdev->del_work);
2174 }
2175
2176 /*
2177  * prevent the device from being mounted, repartitioned or
2178  * otherwise reused by a RAID array (or any other kernel
2179  * subsystem), by bd_claiming the device.
2180  */
2181 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2182 {
2183         int err = 0;
2184         struct block_device *bdev;
2185         char b[BDEVNAME_SIZE];
2186
2187         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2188                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2189         if (IS_ERR(bdev)) {
2190                 printk(KERN_ERR "md: could not open %s.\n",
2191                         __bdevname(dev, b));
2192                 return PTR_ERR(bdev);
2193         }
2194         rdev->bdev = bdev;
2195         return err;
2196 }
2197
2198 static void unlock_rdev(struct md_rdev *rdev)
2199 {
2200         struct block_device *bdev = rdev->bdev;
2201         rdev->bdev = NULL;
2202         if (!bdev)
2203                 MD_BUG();
2204         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2205 }
2206
2207 void md_autodetect_dev(dev_t dev);
2208
2209 static void export_rdev(struct md_rdev * rdev)
2210 {
2211         char b[BDEVNAME_SIZE];
2212         printk(KERN_INFO "md: export_rdev(%s)\n",
2213                 bdevname(rdev->bdev,b));
2214         if (rdev->mddev)
2215                 MD_BUG();
2216         md_rdev_clear(rdev);
2217 #ifndef MODULE
2218         if (test_bit(AutoDetected, &rdev->flags))
2219                 md_autodetect_dev(rdev->bdev->bd_dev);
2220 #endif
2221         unlock_rdev(rdev);
2222         kobject_put(&rdev->kobj);
2223 }
2224
2225 static void kick_rdev_from_array(struct md_rdev * rdev)
2226 {
2227         unbind_rdev_from_array(rdev);
2228         export_rdev(rdev);
2229 }
2230
2231 static void export_array(struct mddev *mddev)
2232 {
2233         struct md_rdev *rdev, *tmp;
2234
2235         rdev_for_each_safe(rdev, tmp, mddev) {
2236                 if (!rdev->mddev) {
2237                         MD_BUG();
2238                         continue;
2239                 }
2240                 kick_rdev_from_array(rdev);
2241         }
2242         if (!list_empty(&mddev->disks))
2243                 MD_BUG();
2244         mddev->raid_disks = 0;
2245         mddev->major_version = 0;
2246 }
2247
2248 static void print_desc(mdp_disk_t *desc)
2249 {
2250         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2251                 desc->major,desc->minor,desc->raid_disk,desc->state);
2252 }
2253
2254 static void print_sb_90(mdp_super_t *sb)
2255 {
2256         int i;
2257
2258         printk(KERN_INFO 
2259                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2260                 sb->major_version, sb->minor_version, sb->patch_version,
2261                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2262                 sb->ctime);
2263         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2264                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2265                 sb->md_minor, sb->layout, sb->chunk_size);
2266         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2267                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2268                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2269                 sb->failed_disks, sb->spare_disks,
2270                 sb->sb_csum, (unsigned long)sb->events_lo);
2271
2272         printk(KERN_INFO);
2273         for (i = 0; i < MD_SB_DISKS; i++) {
2274                 mdp_disk_t *desc;
2275
2276                 desc = sb->disks + i;
2277                 if (desc->number || desc->major || desc->minor ||
2278                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2279                         printk("     D %2d: ", i);
2280                         print_desc(desc);
2281                 }
2282         }
2283         printk(KERN_INFO "md:     THIS: ");
2284         print_desc(&sb->this_disk);
2285 }
2286
2287 static void print_sb_1(struct mdp_superblock_1 *sb)
2288 {
2289         __u8 *uuid;
2290
2291         uuid = sb->set_uuid;
2292         printk(KERN_INFO
2293                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2294                "md:    Name: \"%s\" CT:%llu\n",
2295                 le32_to_cpu(sb->major_version),
2296                 le32_to_cpu(sb->feature_map),
2297                 uuid,
2298                 sb->set_name,
2299                 (unsigned long long)le64_to_cpu(sb->ctime)
2300                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2301
2302         uuid = sb->device_uuid;
2303         printk(KERN_INFO
2304                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2305                         " RO:%llu\n"
2306                "md:     Dev:%08x UUID: %pU\n"
2307                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2308                "md:         (MaxDev:%u) \n",
2309                 le32_to_cpu(sb->level),
2310                 (unsigned long long)le64_to_cpu(sb->size),
2311                 le32_to_cpu(sb->raid_disks),
2312                 le32_to_cpu(sb->layout),
2313                 le32_to_cpu(sb->chunksize),
2314                 (unsigned long long)le64_to_cpu(sb->data_offset),
2315                 (unsigned long long)le64_to_cpu(sb->data_size),
2316                 (unsigned long long)le64_to_cpu(sb->super_offset),
2317                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2318                 le32_to_cpu(sb->dev_number),
2319                 uuid,
2320                 sb->devflags,
2321                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2322                 (unsigned long long)le64_to_cpu(sb->events),
2323                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2324                 le32_to_cpu(sb->sb_csum),
2325                 le32_to_cpu(sb->max_dev)
2326                 );
2327 }
2328
2329 static void print_rdev(struct md_rdev *rdev, int major_version)
2330 {
2331         char b[BDEVNAME_SIZE];
2332         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2333                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2334                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2335                 rdev->desc_nr);
2336         if (rdev->sb_loaded) {
2337                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2338                 switch (major_version) {
2339                 case 0:
2340                         print_sb_90(page_address(rdev->sb_page));
2341                         break;
2342                 case 1:
2343                         print_sb_1(page_address(rdev->sb_page));
2344                         break;
2345                 }
2346         } else
2347                 printk(KERN_INFO "md: no rdev superblock!\n");
2348 }
2349
2350 static void md_print_devices(void)
2351 {
2352         struct list_head *tmp;
2353         struct md_rdev *rdev;
2354         struct mddev *mddev;
2355         char b[BDEVNAME_SIZE];
2356
2357         printk("\n");
2358         printk("md:     **********************************\n");
2359         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2360         printk("md:     **********************************\n");
2361         for_each_mddev(mddev, tmp) {
2362
2363                 if (mddev->bitmap)
2364                         bitmap_print_sb(mddev->bitmap);
2365                 else
2366                         printk("%s: ", mdname(mddev));
2367                 rdev_for_each(rdev, mddev)
2368                         printk("<%s>", bdevname(rdev->bdev,b));
2369                 printk("\n");
2370
2371                 rdev_for_each(rdev, mddev)
2372                         print_rdev(rdev, mddev->major_version);
2373         }
2374         printk("md:     **********************************\n");
2375         printk("\n");
2376 }
2377
2378
2379 static void sync_sbs(struct mddev * mddev, int nospares)
2380 {
2381         /* Update each superblock (in-memory image), but
2382          * if we are allowed to, skip spares which already
2383          * have the right event counter, or have one earlier
2384          * (which would mean they aren't being marked as dirty
2385          * with the rest of the array)
2386          */
2387         struct md_rdev *rdev;
2388         rdev_for_each(rdev, mddev) {
2389                 if (rdev->sb_events == mddev->events ||
2390                     (nospares &&
2391                      rdev->raid_disk < 0 &&
2392                      rdev->sb_events+1 == mddev->events)) {
2393                         /* Don't update this superblock */
2394                         rdev->sb_loaded = 2;
2395                 } else {
2396                         sync_super(mddev, rdev);
2397                         rdev->sb_loaded = 1;
2398                 }
2399         }
2400 }
2401
2402 static void md_update_sb(struct mddev * mddev, int force_change)
2403 {
2404         struct md_rdev *rdev;
2405         int sync_req;
2406         int nospares = 0;
2407         int any_badblocks_changed = 0;
2408
2409         if (mddev->ro) {
2410                 if (force_change)
2411                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2412                 return;
2413         }
2414 repeat:
2415         /* First make sure individual recovery_offsets are correct */
2416         rdev_for_each(rdev, mddev) {
2417                 if (rdev->raid_disk >= 0 &&
2418                     mddev->delta_disks >= 0 &&
2419                     !test_bit(In_sync, &rdev->flags) &&
2420                     mddev->curr_resync_completed > rdev->recovery_offset)
2421                                 rdev->recovery_offset = mddev->curr_resync_completed;
2422
2423         }       
2424         if (!mddev->persistent) {
2425                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2426                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2427                 if (!mddev->external) {
2428                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2429                         rdev_for_each(rdev, mddev) {
2430                                 if (rdev->badblocks.changed) {
2431                                         rdev->badblocks.changed = 0;
2432                                         md_ack_all_badblocks(&rdev->badblocks);
2433                                         md_error(mddev, rdev);
2434                                 }
2435                                 clear_bit(Blocked, &rdev->flags);
2436                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2437                                 wake_up(&rdev->blocked_wait);
2438                         }
2439                 }
2440                 wake_up(&mddev->sb_wait);
2441                 return;
2442         }
2443
2444         spin_lock_irq(&mddev->write_lock);
2445
2446         mddev->utime = get_seconds();
2447
2448         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2449                 force_change = 1;
2450         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2451                 /* just a clean<-> dirty transition, possibly leave spares alone,
2452                  * though if events isn't the right even/odd, we will have to do
2453                  * spares after all
2454                  */
2455                 nospares = 1;
2456         if (force_change)
2457                 nospares = 0;
2458         if (mddev->degraded)
2459                 /* If the array is degraded, then skipping spares is both
2460                  * dangerous and fairly pointless.
2461                  * Dangerous because a device that was removed from the array
2462                  * might have a event_count that still looks up-to-date,
2463                  * so it can be re-added without a resync.
2464                  * Pointless because if there are any spares to skip,
2465                  * then a recovery will happen and soon that array won't
2466                  * be degraded any more and the spare can go back to sleep then.
2467                  */
2468                 nospares = 0;
2469
2470         sync_req = mddev->in_sync;
2471
2472         /* If this is just a dirty<->clean transition, and the array is clean
2473          * and 'events' is odd, we can roll back to the previous clean state */
2474         if (nospares
2475             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2476             && mddev->can_decrease_events
2477             && mddev->events != 1) {
2478                 mddev->events--;
2479                 mddev->can_decrease_events = 0;
2480         } else {
2481                 /* otherwise we have to go forward and ... */
2482                 mddev->events ++;
2483                 mddev->can_decrease_events = nospares;
2484         }
2485
2486         if (!mddev->events) {
2487                 /*
2488                  * oops, this 64-bit counter should never wrap.
2489                  * Either we are in around ~1 trillion A.C., assuming
2490                  * 1 reboot per second, or we have a bug:
2491                  */
2492                 MD_BUG();
2493                 mddev->events --;
2494         }
2495
2496         rdev_for_each(rdev, mddev) {
2497                 if (rdev->badblocks.changed)
2498                         any_badblocks_changed++;
2499                 if (test_bit(Faulty, &rdev->flags))
2500                         set_bit(FaultRecorded, &rdev->flags);
2501         }
2502
2503         sync_sbs(mddev, nospares);
2504         spin_unlock_irq(&mddev->write_lock);
2505
2506         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2507                  mdname(mddev), mddev->in_sync);
2508
2509         bitmap_update_sb(mddev->bitmap);
2510         rdev_for_each(rdev, mddev) {
2511                 char b[BDEVNAME_SIZE];
2512
2513                 if (rdev->sb_loaded != 1)
2514                         continue; /* no noise on spare devices */
2515
2516                 if (!test_bit(Faulty, &rdev->flags) &&
2517                     rdev->saved_raid_disk == -1) {
2518                         md_super_write(mddev,rdev,
2519                                        rdev->sb_start, rdev->sb_size,
2520                                        rdev->sb_page);
2521                         pr_debug("md: (write) %s's sb offset: %llu\n",
2522                                  bdevname(rdev->bdev, b),
2523                                  (unsigned long long)rdev->sb_start);
2524                         rdev->sb_events = mddev->events;
2525                         if (rdev->badblocks.size) {
2526                                 md_super_write(mddev, rdev,
2527                                                rdev->badblocks.sector,
2528                                                rdev->badblocks.size << 9,
2529                                                rdev->bb_page);
2530                                 rdev->badblocks.size = 0;
2531                         }
2532
2533                 } else if (test_bit(Faulty, &rdev->flags))
2534                         pr_debug("md: %s (skipping faulty)\n",
2535                                  bdevname(rdev->bdev, b));
2536                 else
2537                         pr_debug("(skipping incremental s/r ");
2538
2539                 if (mddev->level == LEVEL_MULTIPATH)
2540                         /* only need to write one superblock... */
2541                         break;
2542         }
2543         md_super_wait(mddev);
2544         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2545
2546         spin_lock_irq(&mddev->write_lock);
2547         if (mddev->in_sync != sync_req ||
2548             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2549                 /* have to write it out again */
2550                 spin_unlock_irq(&mddev->write_lock);
2551                 goto repeat;
2552         }
2553         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2554         spin_unlock_irq(&mddev->write_lock);
2555         wake_up(&mddev->sb_wait);
2556         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2557                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2558
2559         rdev_for_each(rdev, mddev) {
2560                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2561                         clear_bit(Blocked, &rdev->flags);
2562
2563                 if (any_badblocks_changed)
2564                         md_ack_all_badblocks(&rdev->badblocks);
2565                 clear_bit(BlockedBadBlocks, &rdev->flags);
2566                 wake_up(&rdev->blocked_wait);
2567         }
2568 }
2569
2570 /* words written to sysfs files may, or may not, be \n terminated.
2571  * We want to accept with case. For this we use cmd_match.
2572  */
2573 static int cmd_match(const char *cmd, const char *str)
2574 {
2575         /* See if cmd, written into a sysfs file, matches
2576          * str.  They must either be the same, or cmd can
2577          * have a trailing newline
2578          */
2579         while (*cmd && *str && *cmd == *str) {
2580                 cmd++;
2581                 str++;
2582         }
2583         if (*cmd == '\n')
2584                 cmd++;
2585         if (*str || *cmd)
2586                 return 0;
2587         return 1;
2588 }
2589
2590 struct rdev_sysfs_entry {
2591         struct attribute attr;
2592         ssize_t (*show)(struct md_rdev *, char *);
2593         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2594 };
2595
2596 static ssize_t
2597 state_show(struct md_rdev *rdev, char *page)
2598 {
2599         char *sep = "";
2600         size_t len = 0;
2601
2602         if (test_bit(Faulty, &rdev->flags) ||
2603             rdev->badblocks.unacked_exist) {
2604                 len+= sprintf(page+len, "%sfaulty",sep);
2605                 sep = ",";
2606         }
2607         if (test_bit(In_sync, &rdev->flags)) {
2608                 len += sprintf(page+len, "%sin_sync",sep);
2609                 sep = ",";
2610         }
2611         if (test_bit(WriteMostly, &rdev->flags)) {
2612                 len += sprintf(page+len, "%swrite_mostly",sep);
2613                 sep = ",";
2614         }
2615         if (test_bit(Blocked, &rdev->flags) ||
2616             (rdev->badblocks.unacked_exist
2617              && !test_bit(Faulty, &rdev->flags))) {
2618                 len += sprintf(page+len, "%sblocked", sep);
2619                 sep = ",";
2620         }
2621         if (!test_bit(Faulty, &rdev->flags) &&
2622             !test_bit(In_sync, &rdev->flags)) {
2623                 len += sprintf(page+len, "%sspare", sep);
2624                 sep = ",";
2625         }
2626         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2627                 len += sprintf(page+len, "%swrite_error", sep);
2628                 sep = ",";
2629         }
2630         if (test_bit(WantReplacement, &rdev->flags)) {
2631                 len += sprintf(page+len, "%swant_replacement", sep);
2632                 sep = ",";
2633         }
2634         if (test_bit(Replacement, &rdev->flags)) {
2635                 len += sprintf(page+len, "%sreplacement", sep);
2636                 sep = ",";
2637         }
2638
2639         return len+sprintf(page+len, "\n");
2640 }
2641
2642 static ssize_t
2643 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2644 {
2645         /* can write
2646          *  faulty  - simulates an error
2647          *  remove  - disconnects the device
2648          *  writemostly - sets write_mostly
2649          *  -writemostly - clears write_mostly
2650          *  blocked - sets the Blocked flags
2651          *  -blocked - clears the Blocked and possibly simulates an error
2652          *  insync - sets Insync providing device isn't active
2653          *  write_error - sets WriteErrorSeen
2654          *  -write_error - clears WriteErrorSeen
2655          */
2656         int err = -EINVAL;
2657         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2658                 md_error(rdev->mddev, rdev);
2659                 if (test_bit(Faulty, &rdev->flags))
2660                         err = 0;
2661                 else
2662                         err = -EBUSY;
2663         } else if (cmd_match(buf, "remove")) {
2664                 if (rdev->raid_disk >= 0)
2665                         err = -EBUSY;
2666                 else {
2667                         struct mddev *mddev = rdev->mddev;
2668                         kick_rdev_from_array(rdev);
2669                         if (mddev->pers)
2670                                 md_update_sb(mddev, 1);
2671                         md_new_event(mddev);
2672                         err = 0;
2673                 }
2674         } else if (cmd_match(buf, "writemostly")) {
2675                 set_bit(WriteMostly, &rdev->flags);
2676                 err = 0;
2677         } else if (cmd_match(buf, "-writemostly")) {
2678                 clear_bit(WriteMostly, &rdev->flags);
2679                 err = 0;
2680         } else if (cmd_match(buf, "blocked")) {
2681                 set_bit(Blocked, &rdev->flags);
2682                 err = 0;
2683         } else if (cmd_match(buf, "-blocked")) {
2684                 if (!test_bit(Faulty, &rdev->flags) &&
2685                     rdev->badblocks.unacked_exist) {
2686                         /* metadata handler doesn't understand badblocks,
2687                          * so we need to fail the device
2688                          */
2689                         md_error(rdev->mddev, rdev);
2690                 }
2691                 clear_bit(Blocked, &rdev->flags);
2692                 clear_bit(BlockedBadBlocks, &rdev->flags);
2693                 wake_up(&rdev->blocked_wait);
2694                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2695                 md_wakeup_thread(rdev->mddev->thread);
2696
2697                 err = 0;
2698         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2699                 set_bit(In_sync, &rdev->flags);
2700                 err = 0;
2701         } else if (cmd_match(buf, "write_error")) {
2702                 set_bit(WriteErrorSeen, &rdev->flags);
2703                 err = 0;
2704         } else if (cmd_match(buf, "-write_error")) {
2705                 clear_bit(WriteErrorSeen, &rdev->flags);
2706                 err = 0;
2707         } else if (cmd_match(buf, "want_replacement")) {
2708                 /* Any non-spare device that is not a replacement can
2709                  * become want_replacement at any time, but we then need to
2710                  * check if recovery is needed.
2711                  */
2712                 if (rdev->raid_disk >= 0 &&
2713                     !test_bit(Replacement, &rdev->flags))
2714                         set_bit(WantReplacement, &rdev->flags);
2715                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2716                 md_wakeup_thread(rdev->mddev->thread);
2717                 err = 0;
2718         } else if (cmd_match(buf, "-want_replacement")) {
2719                 /* Clearing 'want_replacement' is always allowed.
2720                  * Once replacements starts it is too late though.
2721                  */
2722                 err = 0;
2723                 clear_bit(WantReplacement, &rdev->flags);
2724         } else if (cmd_match(buf, "replacement")) {
2725                 /* Can only set a device as a replacement when array has not
2726                  * yet been started.  Once running, replacement is automatic
2727                  * from spares, or by assigning 'slot'.
2728                  */
2729                 if (rdev->mddev->pers)
2730                         err = -EBUSY;
2731                 else {
2732                         set_bit(Replacement, &rdev->flags);
2733                         err = 0;
2734                 }
2735         } else if (cmd_match(buf, "-replacement")) {
2736                 /* Similarly, can only clear Replacement before start */
2737                 if (rdev->mddev->pers)
2738                         err = -EBUSY;
2739                 else {
2740                         clear_bit(Replacement, &rdev->flags);
2741                         err = 0;
2742                 }
2743         }
2744         if (!err)
2745                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2746         return err ? err : len;
2747 }
2748 static struct rdev_sysfs_entry rdev_state =
2749 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2750
2751 static ssize_t
2752 errors_show(struct md_rdev *rdev, char *page)
2753 {
2754         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2755 }
2756
2757 static ssize_t
2758 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2759 {
2760         char *e;
2761         unsigned long n = simple_strtoul(buf, &e, 10);
2762         if (*buf && (*e == 0 || *e == '\n')) {
2763                 atomic_set(&rdev->corrected_errors, n);
2764                 return len;
2765         }
2766         return -EINVAL;
2767 }
2768 static struct rdev_sysfs_entry rdev_errors =
2769 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2770
2771 static ssize_t
2772 slot_show(struct md_rdev *rdev, char *page)
2773 {
2774         if (rdev->raid_disk < 0)
2775                 return sprintf(page, "none\n");
2776         else
2777                 return sprintf(page, "%d\n", rdev->raid_disk);
2778 }
2779
2780 static ssize_t
2781 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2782 {
2783         char *e;
2784         int err;
2785         int slot = simple_strtoul(buf, &e, 10);
2786         if (strncmp(buf, "none", 4)==0)
2787                 slot = -1;
2788         else if (e==buf || (*e && *e!= '\n'))
2789                 return -EINVAL;
2790         if (rdev->mddev->pers && slot == -1) {
2791                 /* Setting 'slot' on an active array requires also
2792                  * updating the 'rd%d' link, and communicating
2793                  * with the personality with ->hot_*_disk.
2794                  * For now we only support removing
2795                  * failed/spare devices.  This normally happens automatically,
2796                  * but not when the metadata is externally managed.
2797                  */
2798                 if (rdev->raid_disk == -1)
2799                         return -EEXIST;
2800                 /* personality does all needed checks */
2801                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2802                         return -EINVAL;
2803                 clear_bit(Blocked, &rdev->flags);
2804                 remove_and_add_spares(rdev->mddev, rdev);
2805                 if (rdev->raid_disk >= 0)
2806                         return -EBUSY;
2807                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2808                 md_wakeup_thread(rdev->mddev->thread);
2809         } else if (rdev->mddev->pers) {
2810                 /* Activating a spare .. or possibly reactivating
2811                  * if we ever get bitmaps working here.
2812                  */
2813
2814                 if (rdev->raid_disk != -1)
2815                         return -EBUSY;
2816
2817                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2818                         return -EBUSY;
2819
2820                 if (rdev->mddev->pers->hot_add_disk == NULL)
2821                         return -EINVAL;
2822
2823                 if (slot >= rdev->mddev->raid_disks &&
2824                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2825                         return -ENOSPC;
2826
2827                 rdev->raid_disk = slot;
2828                 if (test_bit(In_sync, &rdev->flags))
2829                         rdev->saved_raid_disk = slot;
2830                 else
2831                         rdev->saved_raid_disk = -1;
2832                 clear_bit(In_sync, &rdev->flags);
2833                 err = rdev->mddev->pers->
2834                         hot_add_disk(rdev->mddev, rdev);
2835                 if (err) {
2836                         rdev->raid_disk = -1;
2837                         return err;
2838                 } else
2839                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2840                 if (sysfs_link_rdev(rdev->mddev, rdev))
2841                         /* failure here is OK */;
2842                 /* don't wakeup anyone, leave that to userspace. */
2843         } else {
2844                 if (slot >= rdev->mddev->raid_disks &&
2845                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2846                         return -ENOSPC;
2847                 rdev->raid_disk = slot;
2848                 /* assume it is working */
2849                 clear_bit(Faulty, &rdev->flags);
2850                 clear_bit(WriteMostly, &rdev->flags);
2851                 set_bit(In_sync, &rdev->flags);
2852                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2853         }
2854         return len;
2855 }
2856
2857
2858 static struct rdev_sysfs_entry rdev_slot =
2859 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2860
2861 static ssize_t
2862 offset_show(struct md_rdev *rdev, char *page)
2863 {
2864         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2865 }
2866
2867 static ssize_t
2868 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2869 {
2870         unsigned long long offset;
2871         if (kstrtoull(buf, 10, &offset) < 0)
2872                 return -EINVAL;
2873         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2874                 return -EBUSY;
2875         if (rdev->sectors && rdev->mddev->external)
2876                 /* Must set offset before size, so overlap checks
2877                  * can be sane */
2878                 return -EBUSY;
2879         rdev->data_offset = offset;
2880         rdev->new_data_offset = offset;
2881         return len;
2882 }
2883
2884 static struct rdev_sysfs_entry rdev_offset =
2885 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2886
2887 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2888 {
2889         return sprintf(page, "%llu\n",
2890                        (unsigned long long)rdev->new_data_offset);
2891 }
2892
2893 static ssize_t new_offset_store(struct md_rdev *rdev,
2894                                 const char *buf, size_t len)
2895 {
2896         unsigned long long new_offset;
2897         struct mddev *mddev = rdev->mddev;
2898
2899         if (kstrtoull(buf, 10, &new_offset) < 0)
2900                 return -EINVAL;
2901
2902         if (mddev->sync_thread)
2903                 return -EBUSY;
2904         if (new_offset == rdev->data_offset)
2905                 /* reset is always permitted */
2906                 ;
2907         else if (new_offset > rdev->data_offset) {
2908                 /* must not push array size beyond rdev_sectors */
2909                 if (new_offset - rdev->data_offset
2910                     + mddev->dev_sectors > rdev->sectors)
2911                                 return -E2BIG;
2912         }
2913         /* Metadata worries about other space details. */
2914
2915         /* decreasing the offset is inconsistent with a backwards
2916          * reshape.
2917          */
2918         if (new_offset < rdev->data_offset &&
2919             mddev->reshape_backwards)
2920                 return -EINVAL;
2921         /* Increasing offset is inconsistent with forwards
2922          * reshape.  reshape_direction should be set to
2923          * 'backwards' first.
2924          */
2925         if (new_offset > rdev->data_offset &&
2926             !mddev->reshape_backwards)
2927                 return -EINVAL;
2928
2929         if (mddev->pers && mddev->persistent &&
2930             !super_types[mddev->major_version]
2931             .allow_new_offset(rdev, new_offset))
2932                 return -E2BIG;
2933         rdev->new_data_offset = new_offset;
2934         if (new_offset > rdev->data_offset)
2935                 mddev->reshape_backwards = 1;
2936         else if (new_offset < rdev->data_offset)
2937                 mddev->reshape_backwards = 0;
2938
2939         return len;
2940 }
2941 static struct rdev_sysfs_entry rdev_new_offset =
2942 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2943
2944 static ssize_t
2945 rdev_size_show(struct md_rdev *rdev, char *page)
2946 {
2947         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2948 }
2949
2950 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2951 {
2952         /* check if two start/length pairs overlap */
2953         if (s1+l1 <= s2)
2954                 return 0;
2955         if (s2+l2 <= s1)
2956                 return 0;
2957         return 1;
2958 }
2959
2960 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2961 {
2962         unsigned long long blocks;
2963         sector_t new;
2964
2965         if (kstrtoull(buf, 10, &blocks) < 0)
2966                 return -EINVAL;
2967
2968         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2969                 return -EINVAL; /* sector conversion overflow */
2970
2971         new = blocks * 2;
2972         if (new != blocks * 2)
2973                 return -EINVAL; /* unsigned long long to sector_t overflow */
2974
2975         *sectors = new;
2976         return 0;
2977 }
2978
2979 static ssize_t
2980 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2981 {
2982         struct mddev *my_mddev = rdev->mddev;
2983         sector_t oldsectors = rdev->sectors;
2984         sector_t sectors;
2985
2986         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2987                 return -EINVAL;
2988         if (rdev->data_offset != rdev->new_data_offset)
2989                 return -EINVAL; /* too confusing */
2990         if (my_mddev->pers && rdev->raid_disk >= 0) {
2991                 if (my_mddev->persistent) {
2992                         sectors = super_types[my_mddev->major_version].
2993                                 rdev_size_change(rdev, sectors);
2994                         if (!sectors)
2995                                 return -EBUSY;
2996                 } else if (!sectors)
2997                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2998                                 rdev->data_offset;
2999                 if (!my_mddev->pers->resize)
3000                         /* Cannot change size for RAID0 or Linear etc */
3001                         return -EINVAL;
3002         }
3003         if (sectors < my_mddev->dev_sectors)
3004                 return -EINVAL; /* component must fit device */
3005
3006         rdev->sectors = sectors;
3007         if (sectors > oldsectors && my_mddev->external) {
3008                 /* need to check that all other rdevs with the same ->bdev
3009                  * do not overlap.  We need to unlock the mddev to avoid
3010                  * a deadlock.  We have already changed rdev->sectors, and if
3011                  * we have to change it back, we will have the lock again.
3012                  */
3013                 struct mddev *mddev;
3014                 int overlap = 0;
3015                 struct list_head *tmp;
3016
3017                 mddev_unlock(my_mddev);
3018                 for_each_mddev(mddev, tmp) {
3019                         struct md_rdev *rdev2;
3020
3021                         mddev_lock(mddev);
3022                         rdev_for_each(rdev2, mddev)
3023                                 if (rdev->bdev == rdev2->bdev &&
3024                                     rdev != rdev2 &&
3025                                     overlaps(rdev->data_offset, rdev->sectors,
3026                                              rdev2->data_offset,
3027                                              rdev2->sectors)) {
3028                                         overlap = 1;
3029                                         break;
3030                                 }
3031                         mddev_unlock(mddev);
3032                         if (overlap) {
3033                                 mddev_put(mddev);
3034                                 break;
3035                         }
3036                 }
3037                 mddev_lock(my_mddev);
3038                 if (overlap) {
3039                         /* Someone else could have slipped in a size
3040                          * change here, but doing so is just silly.
3041                          * We put oldsectors back because we *know* it is
3042                          * safe, and trust userspace not to race with
3043                          * itself
3044                          */
3045                         rdev->sectors = oldsectors;
3046                         return -EBUSY;
3047                 }
3048         }
3049         return len;
3050 }
3051
3052 static struct rdev_sysfs_entry rdev_size =
3053 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3054
3055
3056 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3057 {
3058         unsigned long long recovery_start = rdev->recovery_offset;
3059
3060         if (test_bit(In_sync, &rdev->flags) ||
3061             recovery_start == MaxSector)
3062                 return sprintf(page, "none\n");
3063
3064         return sprintf(page, "%llu\n", recovery_start);
3065 }
3066
3067 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3068 {
3069         unsigned long long recovery_start;
3070
3071         if (cmd_match(buf, "none"))
3072                 recovery_start = MaxSector;
3073         else if (kstrtoull(buf, 10, &recovery_start))
3074                 return -EINVAL;
3075
3076         if (rdev->mddev->pers &&
3077             rdev->raid_disk >= 0)
3078                 return -EBUSY;
3079
3080         rdev->recovery_offset = recovery_start;
3081         if (recovery_start == MaxSector)
3082                 set_bit(In_sync, &rdev->flags);
3083         else
3084                 clear_bit(In_sync, &rdev->flags);
3085         return len;
3086 }
3087
3088 static struct rdev_sysfs_entry rdev_recovery_start =
3089 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3090
3091
3092 static ssize_t
3093 badblocks_show(struct badblocks *bb, char *page, int unack);
3094 static ssize_t
3095 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3096
3097 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3098 {
3099         return badblocks_show(&rdev->badblocks, page, 0);
3100 }
3101 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3102 {
3103         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3104         /* Maybe that ack was all we needed */
3105         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3106                 wake_up(&rdev->blocked_wait);
3107         return rv;
3108 }
3109 static struct rdev_sysfs_entry rdev_bad_blocks =
3110 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3111
3112
3113 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3114 {
3115         return badblocks_show(&rdev->badblocks, page, 1);
3116 }
3117 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3118 {
3119         return badblocks_store(&rdev->badblocks, page, len, 1);
3120 }
3121 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3122 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3123
3124 static struct attribute *rdev_default_attrs[] = {
3125         &rdev_state.attr,
3126         &rdev_errors.attr,
3127         &rdev_slot.attr,
3128         &rdev_offset.attr,
3129         &rdev_new_offset.attr,
3130         &rdev_size.attr,
3131         &rdev_recovery_start.attr,
3132         &rdev_bad_blocks.attr,
3133         &rdev_unack_bad_blocks.attr,
3134         NULL,
3135 };
3136 static ssize_t
3137 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3138 {
3139         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3140         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3141         struct mddev *mddev = rdev->mddev;
3142         ssize_t rv;
3143
3144         if (!entry->show)
3145                 return -EIO;
3146
3147         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3148         if (!rv) {
3149                 if (rdev->mddev == NULL)
3150                         rv = -EBUSY;
3151                 else
3152                         rv = entry->show(rdev, page);
3153                 mddev_unlock(mddev);
3154         }
3155         return rv;
3156 }
3157
3158 static ssize_t
3159 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3160               const char *page, size_t length)
3161 {
3162         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3163         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3164         ssize_t rv;
3165         struct mddev *mddev = rdev->mddev;
3166
3167         if (!entry->store)
3168                 return -EIO;
3169         if (!capable(CAP_SYS_ADMIN))
3170                 return -EACCES;
3171         rv = mddev ? mddev_lock(mddev): -EBUSY;
3172         if (!rv) {
3173                 if (rdev->mddev == NULL)
3174                         rv = -EBUSY;
3175                 else
3176                         rv = entry->store(rdev, page, length);
3177                 mddev_unlock(mddev);
3178         }
3179         return rv;
3180 }
3181
3182 static void rdev_free(struct kobject *ko)
3183 {
3184         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3185         kfree(rdev);
3186 }
3187 static const struct sysfs_ops rdev_sysfs_ops = {
3188         .show           = rdev_attr_show,
3189         .store          = rdev_attr_store,
3190 };
3191 static struct kobj_type rdev_ktype = {
3192         .release        = rdev_free,
3193         .sysfs_ops      = &rdev_sysfs_ops,
3194         .default_attrs  = rdev_default_attrs,
3195 };
3196
3197 int md_rdev_init(struct md_rdev *rdev)
3198 {
3199         rdev->desc_nr = -1;
3200         rdev->saved_raid_disk = -1;
3201         rdev->raid_disk = -1;
3202         rdev->flags = 0;
3203         rdev->data_offset = 0;
3204         rdev->new_data_offset = 0;
3205         rdev->sb_events = 0;
3206         rdev->last_read_error.tv_sec  = 0;
3207         rdev->last_read_error.tv_nsec = 0;
3208         rdev->sb_loaded = 0;
3209         rdev->bb_page = NULL;
3210         atomic_set(&rdev->nr_pending, 0);
3211         atomic_set(&rdev->read_errors, 0);
3212         atomic_set(&rdev->corrected_errors, 0);
3213
3214         INIT_LIST_HEAD(&rdev->same_set);
3215         init_waitqueue_head(&rdev->blocked_wait);
3216
3217         /* Add space to store bad block list.
3218          * This reserves the space even on arrays where it cannot
3219          * be used - I wonder if that matters
3220          */
3221         rdev->badblocks.count = 0;
3222         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3223         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3224         seqlock_init(&rdev->badblocks.lock);
3225         if (rdev->badblocks.page == NULL)
3226                 return -ENOMEM;
3227
3228         return 0;
3229 }
3230 EXPORT_SYMBOL_GPL(md_rdev_init);
3231 /*
3232  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3233  *
3234  * mark the device faulty if:
3235  *
3236  *   - the device is nonexistent (zero size)
3237  *   - the device has no valid superblock
3238  *
3239  * a faulty rdev _never_ has rdev->sb set.
3240  */
3241 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3242 {
3243         char b[BDEVNAME_SIZE];
3244         int err;
3245         struct md_rdev *rdev;
3246         sector_t size;
3247
3248         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3249         if (!rdev) {
3250                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3251                 return ERR_PTR(-ENOMEM);
3252         }
3253
3254         err = md_rdev_init(rdev);
3255         if (err)
3256                 goto abort_free;
3257         err = alloc_disk_sb(rdev);
3258         if (err)
3259                 goto abort_free;
3260
3261         err = lock_rdev(rdev, newdev, super_format == -2);
3262         if (err)
3263                 goto abort_free;
3264
3265         kobject_init(&rdev->kobj, &rdev_ktype);
3266
3267         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3268         if (!size) {
3269                 printk(KERN_WARNING 
3270                         "md: %s has zero or unknown size, marking faulty!\n",
3271                         bdevname(rdev->bdev,b));
3272                 err = -EINVAL;
3273                 goto abort_free;
3274         }
3275
3276         if (super_format >= 0) {
3277                 err = super_types[super_format].
3278                         load_super(rdev, NULL, super_minor);
3279                 if (err == -EINVAL) {
3280                         printk(KERN_WARNING
3281                                 "md: %s does not have a valid v%d.%d "
3282                                "superblock, not importing!\n",
3283                                 bdevname(rdev->bdev,b),
3284                                super_format, super_minor);
3285                         goto abort_free;
3286                 }
3287                 if (err < 0) {
3288                         printk(KERN_WARNING 
3289                                 "md: could not read %s's sb, not importing!\n",
3290                                 bdevname(rdev->bdev,b));
3291                         goto abort_free;
3292                 }
3293         }
3294
3295         return rdev;
3296
3297 abort_free:
3298         if (rdev->bdev)
3299                 unlock_rdev(rdev);
3300         md_rdev_clear(rdev);
3301         kfree(rdev);
3302         return ERR_PTR(err);
3303 }
3304
3305 /*
3306  * Check a full RAID array for plausibility
3307  */
3308
3309
3310 static void analyze_sbs(struct mddev * mddev)
3311 {
3312         int i;
3313         struct md_rdev *rdev, *freshest, *tmp;
3314         char b[BDEVNAME_SIZE];
3315
3316         freshest = NULL;
3317         rdev_for_each_safe(rdev, tmp, mddev)
3318                 switch (super_types[mddev->major_version].
3319                         load_super(rdev, freshest, mddev->minor_version)) {
3320                 case 1:
3321                         freshest = rdev;
3322                         break;
3323                 case 0:
3324                         break;
3325                 default:
3326                         printk( KERN_ERR \
3327                                 "md: fatal superblock inconsistency in %s"
3328                                 " -- removing from array\n", 
3329                                 bdevname(rdev->bdev,b));
3330                         kick_rdev_from_array(rdev);
3331                 }
3332
3333
3334         super_types[mddev->major_version].
3335                 validate_super(mddev, freshest);
3336
3337         i = 0;
3338         rdev_for_each_safe(rdev, tmp, mddev) {
3339                 if (mddev->max_disks &&
3340                     (rdev->desc_nr >= mddev->max_disks ||
3341                      i > mddev->max_disks)) {
3342                         printk(KERN_WARNING
3343                                "md: %s: %s: only %d devices permitted\n",
3344                                mdname(mddev), bdevname(rdev->bdev, b),
3345                                mddev->max_disks);
3346                         kick_rdev_from_array(rdev);
3347                         continue;
3348                 }
3349                 if (rdev != freshest)
3350                         if (super_types[mddev->major_version].
3351                             validate_super(mddev, rdev)) {
3352                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3353                                         " from array!\n",
3354                                         bdevname(rdev->bdev,b));
3355                                 kick_rdev_from_array(rdev);
3356                                 continue;
3357                         }
3358                 if (mddev->level == LEVEL_MULTIPATH) {
3359                         rdev->desc_nr = i++;
3360                         rdev->raid_disk = rdev->desc_nr;
3361                         set_bit(In_sync, &rdev->flags);
3362                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3363                         rdev->raid_disk = -1;
3364                         clear_bit(In_sync, &rdev->flags);
3365                 }
3366         }
3367 }
3368
3369 /* Read a fixed-point number.
3370  * Numbers in sysfs attributes should be in "standard" units where
3371  * possible, so time should be in seconds.
3372  * However we internally use a a much smaller unit such as 
3373  * milliseconds or jiffies.
3374  * This function takes a decimal number with a possible fractional
3375  * component, and produces an integer which is the result of
3376  * multiplying that number by 10^'scale'.
3377  * all without any floating-point arithmetic.
3378  */
3379 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3380 {
3381         unsigned long result = 0;
3382         long decimals = -1;
3383         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3384                 if (*cp == '.')
3385                         decimals = 0;
3386                 else if (decimals < scale) {
3387                         unsigned int value;
3388                         value = *cp - '0';
3389                         result = result * 10 + value;
3390                         if (decimals >= 0)
3391                                 decimals++;
3392                 }
3393                 cp++;
3394         }
3395         if (*cp == '\n')
3396                 cp++;
3397         if (*cp)
3398                 return -EINVAL;
3399         if (decimals < 0)
3400                 decimals = 0;
3401         while (decimals < scale) {
3402                 result *= 10;
3403                 decimals ++;
3404         }
3405         *res = result;
3406         return 0;
3407 }
3408
3409
3410 static void md_safemode_timeout(unsigned long data);
3411
3412 static ssize_t
3413 safe_delay_show(struct mddev *mddev, char *page)
3414 {
3415         int msec = (mddev->safemode_delay*1000)/HZ;
3416         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3417 }
3418 static ssize_t
3419 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3420 {
3421         unsigned long msec;
3422
3423         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3424                 return -EINVAL;
3425         if (msec == 0)
3426                 mddev->safemode_delay = 0;
3427         else {
3428                 unsigned long old_delay = mddev->safemode_delay;
3429                 mddev->safemode_delay = (msec*HZ)/1000;
3430                 if (mddev->safemode_delay == 0)
3431                         mddev->safemode_delay = 1;
3432                 if (mddev->safemode_delay < old_delay || old_delay == 0)
3433                         md_safemode_timeout((unsigned long)mddev);
3434         }
3435         return len;
3436 }
3437 static struct md_sysfs_entry md_safe_delay =
3438 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3439
3440 static ssize_t
3441 level_show(struct mddev *mddev, char *page)
3442 {
3443         struct md_personality *p = mddev->pers;
3444         if (p)
3445                 return sprintf(page, "%s\n", p->name);
3446         else if (mddev->clevel[0])
3447                 return sprintf(page, "%s\n", mddev->clevel);
3448         else if (mddev->level != LEVEL_NONE)
3449                 return sprintf(page, "%d\n", mddev->level);
3450         else
3451                 return 0;
3452 }
3453
3454 static ssize_t
3455 level_store(struct mddev *mddev, const char *buf, size_t len)
3456 {
3457         char clevel[16];
3458         ssize_t rv = len;
3459         struct md_personality *pers;
3460         long level;
3461         void *priv;
3462         struct md_rdev *rdev;
3463
3464         if (mddev->pers == NULL) {
3465                 if (len == 0)
3466                         return 0;
3467                 if (len >= sizeof(mddev->clevel))
3468                         return -ENOSPC;
3469                 strncpy(mddev->clevel, buf, len);
3470                 if (mddev->clevel[len-1] == '\n')
3471                         len--;
3472                 mddev->clevel[len] = 0;
3473                 mddev->level = LEVEL_NONE;
3474                 return rv;
3475         }
3476
3477         /* request to change the personality.  Need to ensure:
3478          *  - array is not engaged in resync/recovery/reshape
3479          *  - old personality can be suspended
3480          *  - new personality will access other array.
3481          */
3482
3483         if (mddev->sync_thread ||
3484             mddev->reshape_position != MaxSector ||
3485             mddev->sysfs_active)
3486                 return -EBUSY;
3487
3488         if (!mddev->pers->quiesce) {
3489                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3490                        mdname(mddev), mddev->pers->name);
3491                 return -EINVAL;
3492         }
3493
3494         /* Now find the new personality */
3495         if (len == 0 || len >= sizeof(clevel))
3496                 return -EINVAL;
3497         strncpy(clevel, buf, len);
3498         if (clevel[len-1] == '\n')
3499                 len--;
3500         clevel[len] = 0;
3501         if (kstrtol(clevel, 10, &level))
3502                 level = LEVEL_NONE;
3503
3504         if (request_module("md-%s", clevel) != 0)
3505                 request_module("md-level-%s", clevel);
3506         spin_lock(&pers_lock);
3507         pers = find_pers(level, clevel);
3508         if (!pers || !try_module_get(pers->owner)) {
3509                 spin_unlock(&pers_lock);
3510                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3511                 return -EINVAL;
3512         }
3513         spin_unlock(&pers_lock);
3514
3515         if (pers == mddev->pers) {
3516                 /* Nothing to do! */
3517                 module_put(pers->owner);
3518                 return rv;
3519         }
3520         if (!pers->takeover) {
3521                 module_put(pers->owner);
3522                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3523                        mdname(mddev), clevel);
3524                 return -EINVAL;
3525         }
3526
3527         rdev_for_each(rdev, mddev)
3528                 rdev->new_raid_disk = rdev->raid_disk;
3529
3530         /* ->takeover must set new_* and/or delta_disks
3531          * if it succeeds, and may set them when it fails.
3532          */
3533         priv = pers->takeover(mddev);
3534         if (IS_ERR(priv)) {
3535                 mddev->new_level = mddev->level;
3536                 mddev->new_layout = mddev->layout;
3537                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3538                 mddev->raid_disks -= mddev->delta_disks;
3539                 mddev->delta_disks = 0;
3540                 mddev->reshape_backwards = 0;
3541                 module_put(pers->owner);
3542                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3543                        mdname(mddev), clevel);
3544                 return PTR_ERR(priv);
3545         }
3546
3547         /* Looks like we have a winner */
3548         mddev_suspend(mddev);
3549         mddev->pers->stop(mddev);
3550         
3551         if (mddev->pers->sync_request == NULL &&
3552             pers->sync_request != NULL) {
3553                 /* need to add the md_redundancy_group */
3554                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3555                         printk(KERN_WARNING
3556                                "md: cannot register extra attributes for %s\n",
3557                                mdname(mddev));
3558                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3559         }               
3560         if (mddev->pers->sync_request != NULL &&
3561             pers->sync_request == NULL) {
3562                 /* need to remove the md_redundancy_group */
3563                 if (mddev->to_remove == NULL)
3564                         mddev->to_remove = &md_redundancy_group;
3565         }
3566
3567         if (mddev->pers->sync_request == NULL &&
3568             mddev->external) {
3569                 /* We are converting from a no-redundancy array
3570                  * to a redundancy array and metadata is managed
3571                  * externally so we need to be sure that writes
3572                  * won't block due to a need to transition
3573                  *      clean->dirty
3574                  * until external management is started.
3575                  */
3576                 mddev->in_sync = 0;
3577                 mddev->safemode_delay = 0;
3578                 mddev->safemode = 0;
3579         }
3580
3581         rdev_for_each(rdev, mddev) {
3582                 if (rdev->raid_disk < 0)
3583                         continue;
3584                 if (rdev->new_raid_disk >= mddev->raid_disks)
3585                         rdev->new_raid_disk = -1;
3586                 if (rdev->new_raid_disk == rdev->raid_disk)
3587                         continue;
3588                 sysfs_unlink_rdev(mddev, rdev);
3589         }
3590         rdev_for_each(rdev, mddev) {
3591                 if (rdev->raid_disk < 0)
3592                         continue;
3593                 if (rdev->new_raid_disk == rdev->raid_disk)
3594                         continue;
3595                 rdev->raid_disk = rdev->new_raid_disk;
3596                 if (rdev->raid_disk < 0)
3597                         clear_bit(In_sync, &rdev->flags);
3598                 else {
3599                         if (sysfs_link_rdev(mddev, rdev))
3600                                 printk(KERN_WARNING "md: cannot register rd%d"
3601                                        " for %s after level change\n",
3602                                        rdev->raid_disk, mdname(mddev));
3603                 }
3604         }
3605
3606         module_put(mddev->pers->owner);
3607         mddev->pers = pers;
3608         mddev->private = priv;
3609         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3610         mddev->level = mddev->new_level;
3611         mddev->layout = mddev->new_layout;
3612         mddev->chunk_sectors = mddev->new_chunk_sectors;
3613         mddev->delta_disks = 0;
3614         mddev->reshape_backwards = 0;
3615         mddev->degraded = 0;
3616         if (mddev->pers->sync_request == NULL) {
3617                 /* this is now an array without redundancy, so
3618                  * it must always be in_sync
3619                  */
3620                 mddev->in_sync = 1;
3621                 del_timer_sync(&mddev->safemode_timer);
3622         }
3623         pers->run(mddev);
3624         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3625         mddev_resume(mddev);
3626         sysfs_notify(&mddev->kobj, NULL, "level");
3627         md_new_event(mddev);
3628         return rv;
3629 }
3630
3631 static struct md_sysfs_entry md_level =
3632 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3633
3634
3635 static ssize_t
3636 layout_show(struct mddev *mddev, char *page)
3637 {
3638         /* just a number, not meaningful for all levels */
3639         if (mddev->reshape_position != MaxSector &&
3640             mddev->layout != mddev->new_layout)
3641                 return sprintf(page, "%d (%d)\n",
3642                                mddev->new_layout, mddev->layout);
3643         return sprintf(page, "%d\n", mddev->layout);
3644 }
3645
3646 static ssize_t
3647 layout_store(struct mddev *mddev, const char *buf, size_t len)
3648 {
3649         char *e;
3650         unsigned long n = simple_strtoul(buf, &e, 10);
3651
3652         if (!*buf || (*e && *e != '\n'))
3653                 return -EINVAL;
3654
3655         if (mddev->pers) {
3656                 int err;
3657                 if (mddev->pers->check_reshape == NULL)
3658                         return -EBUSY;
3659                 mddev->new_layout = n;
3660                 err = mddev->pers->check_reshape(mddev);
3661                 if (err) {
3662                         mddev->new_layout = mddev->layout;
3663                         return err;
3664                 }
3665         } else {
3666                 mddev->new_layout = n;
3667                 if (mddev->reshape_position == MaxSector)
3668                         mddev->layout = n;
3669         }
3670         return len;
3671 }
3672 static struct md_sysfs_entry md_layout =
3673 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3674
3675
3676 static ssize_t
3677 raid_disks_show(struct mddev *mddev, char *page)
3678 {
3679         if (mddev->raid_disks == 0)
3680                 return 0;
3681         if (mddev->reshape_position != MaxSector &&
3682             mddev->delta_disks != 0)
3683                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3684                                mddev->raid_disks - mddev->delta_disks);
3685         return sprintf(page, "%d\n", mddev->raid_disks);
3686 }
3687
3688 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3689
3690 static ssize_t
3691 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3692 {
3693         char *e;
3694         int rv = 0;
3695         unsigned long n = simple_strtoul(buf, &e, 10);
3696
3697         if (!*buf || (*e && *e != '\n'))
3698                 return -EINVAL;
3699
3700         if (mddev->pers)
3701                 rv = update_raid_disks(mddev, n);
3702         else if (mddev->reshape_position != MaxSector) {
3703                 struct md_rdev *rdev;
3704                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3705
3706                 rdev_for_each(rdev, mddev) {
3707                         if (olddisks < n &&
3708                             rdev->data_offset < rdev->new_data_offset)
3709                                 return -EINVAL;
3710                         if (olddisks > n &&
3711                             rdev->data_offset > rdev->new_data_offset)
3712                                 return -EINVAL;
3713                 }
3714                 mddev->delta_disks = n - olddisks;
3715                 mddev->raid_disks = n;
3716                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3717         } else
3718                 mddev->raid_disks = n;
3719         return rv ? rv : len;
3720 }
3721 static struct md_sysfs_entry md_raid_disks =
3722 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3723
3724 static ssize_t
3725 chunk_size_show(struct mddev *mddev, char *page)
3726 {
3727         if (mddev->reshape_position != MaxSector &&
3728             mddev->chunk_sectors != mddev->new_chunk_sectors)
3729                 return sprintf(page, "%d (%d)\n",
3730                                mddev->new_chunk_sectors << 9,
3731                                mddev->chunk_sectors << 9);
3732         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3733 }
3734
3735 static ssize_t
3736 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3737 {
3738         char *e;
3739         unsigned long n = simple_strtoul(buf, &e, 10);
3740
3741         if (!*buf || (*e && *e != '\n'))
3742                 return -EINVAL;
3743
3744         if (mddev->pers) {
3745                 int err;
3746                 if (mddev->pers->check_reshape == NULL)
3747                         return -EBUSY;
3748                 mddev->new_chunk_sectors = n >> 9;
3749                 err = mddev->pers->check_reshape(mddev);
3750                 if (err) {
3751                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3752                         return err;
3753                 }
3754         } else {
3755                 mddev->new_chunk_sectors = n >> 9;
3756                 if (mddev->reshape_position == MaxSector)
3757                         mddev->chunk_sectors = n >> 9;
3758         }
3759         return len;
3760 }
3761 static struct md_sysfs_entry md_chunk_size =
3762 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3763
3764 static ssize_t
3765 resync_start_show(struct mddev *mddev, char *page)
3766 {
3767         if (mddev->recovery_cp == MaxSector)
3768                 return sprintf(page, "none\n");
3769         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3770 }
3771
3772 static ssize_t
3773 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3774 {
3775         char *e;
3776         unsigned long long n = simple_strtoull(buf, &e, 10);
3777
3778         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3779                 return -EBUSY;
3780         if (cmd_match(buf, "none"))
3781                 n = MaxSector;
3782         else if (!*buf || (*e && *e != '\n'))
3783                 return -EINVAL;
3784
3785         mddev->recovery_cp = n;
3786         if (mddev->pers)
3787                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3788         return len;
3789 }
3790 static struct md_sysfs_entry md_resync_start =
3791 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3792
3793 /*
3794  * The array state can be:
3795  *
3796  * clear
3797  *     No devices, no size, no level
3798  *     Equivalent to STOP_ARRAY ioctl
3799  * inactive
3800  *     May have some settings, but array is not active
3801  *        all IO results in error
3802  *     When written, doesn't tear down array, but just stops it
3803  * suspended (not supported yet)
3804  *     All IO requests will block. The array can be reconfigured.
3805  *     Writing this, if accepted, will block until array is quiescent
3806  * readonly
3807  *     no resync can happen.  no superblocks get written.
3808  *     write requests fail
3809  * read-auto
3810  *     like readonly, but behaves like 'clean' on a write request.
3811  *
3812  * clean - no pending writes, but otherwise active.
3813  *     When written to inactive array, starts without resync
3814  *     If a write request arrives then
3815  *       if metadata is known, mark 'dirty' and switch to 'active'.
3816  *       if not known, block and switch to write-pending
3817  *     If written to an active array that has pending writes, then fails.
3818  * active
3819  *     fully active: IO and resync can be happening.
3820  *     When written to inactive array, starts with resync
3821  *
3822  * write-pending
3823  *     clean, but writes are blocked waiting for 'active' to be written.
3824  *
3825  * active-idle
3826  *     like active, but no writes have been seen for a while (100msec).
3827  *
3828  */
3829 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3830                    write_pending, active_idle, bad_word};
3831 static char *array_states[] = {
3832         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3833         "write-pending", "active-idle", NULL };
3834
3835 static int match_word(const char *word, char **list)
3836 {
3837         int n;
3838         for (n=0; list[n]; n++)
3839                 if (cmd_match(word, list[n]))
3840                         break;
3841         return n;
3842 }
3843
3844 static ssize_t
3845 array_state_show(struct mddev *mddev, char *page)
3846 {
3847         enum array_state st = inactive;
3848
3849         if (mddev->pers)
3850                 switch(mddev->ro) {
3851                 case 1:
3852                         st = readonly;
3853                         break;
3854                 case 2:
3855                         st = read_auto;
3856                         break;
3857                 case 0:
3858                         if (mddev->in_sync)
3859                                 st = clean;
3860                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3861                                 st = write_pending;
3862                         else if (mddev->safemode)
3863                                 st = active_idle;
3864                         else
3865                                 st = active;
3866                 }
3867         else {
3868                 if (list_empty(&mddev->disks) &&
3869                     mddev->raid_disks == 0 &&
3870                     mddev->dev_sectors == 0)
3871                         st = clear;
3872                 else
3873                         st = inactive;
3874         }
3875         return sprintf(page, "%s\n", array_states[st]);
3876 }
3877
3878 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3879 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3880 static int do_md_run(struct mddev * mddev);
3881 static int restart_array(struct mddev *mddev);
3882
3883 static ssize_t
3884 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3885 {
3886         int err = -EINVAL;
3887         enum array_state st = match_word(buf, array_states);
3888         switch(st) {
3889         case bad_word:
3890                 break;
3891         case clear:
3892                 /* stopping an active array */
3893                 err = do_md_stop(mddev, 0, NULL);
3894                 break;
3895         case inactive:
3896                 /* stopping an active array */
3897                 if (mddev->pers)
3898                         err = do_md_stop(mddev, 2, NULL);
3899                 else
3900                         err = 0; /* already inactive */
3901                 break;
3902         case suspended:
3903                 break; /* not supported yet */
3904         case readonly:
3905                 if (mddev->pers)
3906                         err = md_set_readonly(mddev, NULL);
3907                 else {
3908                         mddev->ro = 1;
3909                         set_disk_ro(mddev->gendisk, 1);
3910                         err = do_md_run(mddev);
3911                 }
3912                 break;
3913         case read_auto:
3914                 if (mddev->pers) {
3915                         if (mddev->ro == 0)
3916                                 err = md_set_readonly(mddev, NULL);
3917                         else if (mddev->ro == 1)
3918                                 err = restart_array(mddev);
3919                         if (err == 0) {
3920                                 mddev->ro = 2;
3921                                 set_disk_ro(mddev->gendisk, 0);
3922                         }
3923                 } else {
3924                         mddev->ro = 2;
3925                         err = do_md_run(mddev);
3926                 }
3927                 break;
3928         case clean:
3929                 if (mddev->pers) {
3930                         restart_array(mddev);
3931                         spin_lock_irq(&mddev->write_lock);
3932                         if (atomic_read(&mddev->writes_pending) == 0) {
3933                                 if (mddev->in_sync == 0) {
3934                                         mddev->in_sync = 1;
3935                                         if (mddev->safemode == 1)
3936                                                 mddev->safemode = 0;
3937                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3938                                 }
3939                                 err = 0;
3940                         } else
3941                                 err = -EBUSY;
3942                         spin_unlock_irq(&mddev->write_lock);
3943                 } else
3944                         err = -EINVAL;
3945                 break;
3946         case active:
3947                 if (mddev->pers) {
3948                         restart_array(mddev);
3949                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3950                         wake_up(&mddev->sb_wait);
3951                         err = 0;
3952                 } else {
3953                         mddev->ro = 0;
3954                         set_disk_ro(mddev->gendisk, 0);
3955                         err = do_md_run(mddev);
3956                 }
3957                 break;
3958         case write_pending:
3959         case active_idle:
3960                 /* these cannot be set */
3961                 break;
3962         }
3963         if (err)
3964                 return err;
3965         else {
3966                 if (mddev->hold_active == UNTIL_IOCTL)
3967                         mddev->hold_active = 0;
3968                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3969                 return len;
3970         }
3971 }
3972 static struct md_sysfs_entry md_array_state =
3973 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3974
3975 static ssize_t
3976 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3977         return sprintf(page, "%d\n",
3978                        atomic_read(&mddev->max_corr_read_errors));
3979 }
3980
3981 static ssize_t
3982 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3983 {
3984         char *e;
3985         unsigned long n = simple_strtoul(buf, &e, 10);
3986
3987         if (*buf && (*e == 0 || *e == '\n')) {
3988                 atomic_set(&mddev->max_corr_read_errors, n);
3989                 return len;
3990         }
3991         return -EINVAL;
3992 }
3993
3994 static struct md_sysfs_entry max_corr_read_errors =
3995 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3996         max_corrected_read_errors_store);
3997
3998 static ssize_t
3999 null_show(struct mddev *mddev, char *page)
4000 {
4001         return -EINVAL;
4002 }
4003
4004 static ssize_t
4005 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4006 {
4007         /* buf must be %d:%d\n? giving major and minor numbers */
4008         /* The new device is added to the array.
4009          * If the array has a persistent superblock, we read the
4010          * superblock to initialise info and check validity.
4011          * Otherwise, only checking done is that in bind_rdev_to_array,
4012          * which mainly checks size.
4013          */
4014         char *e;
4015         int major = simple_strtoul(buf, &e, 10);
4016         int minor;
4017         dev_t dev;
4018         struct md_rdev *rdev;
4019         int err;
4020
4021         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4022                 return -EINVAL;
4023         minor = simple_strtoul(e+1, &e, 10);
4024         if (*e && *e != '\n')
4025                 return -EINVAL;
4026         dev = MKDEV(major, minor);
4027         if (major != MAJOR(dev) ||
4028             minor != MINOR(dev))
4029                 return -EOVERFLOW;
4030
4031
4032         if (mddev->persistent) {
4033                 rdev = md_import_device(dev, mddev->major_version,
4034                                         mddev->minor_version);
4035                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4036                         struct md_rdev *rdev0
4037                                 = list_entry(mddev->disks.next,
4038                                              struct md_rdev, same_set);
4039                         err = super_types[mddev->major_version]
4040                                 .load_super(rdev, rdev0, mddev->minor_version);
4041                         if (err < 0)
4042                                 goto out;
4043                 }
4044         } else if (mddev->external)
4045                 rdev = md_import_device(dev, -2, -1);
4046         else
4047                 rdev = md_import_device(dev, -1, -1);
4048
4049         if (IS_ERR(rdev))
4050                 return PTR_ERR(rdev);
4051         err = bind_rdev_to_array(rdev, mddev);
4052  out:
4053         if (err)
4054                 export_rdev(rdev);
4055         return err ? err : len;
4056 }
4057
4058 static struct md_sysfs_entry md_new_device =
4059 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4060
4061 static ssize_t
4062 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4063 {
4064         char *end;
4065         unsigned long chunk, end_chunk;
4066
4067         if (!mddev->bitmap)
4068                 goto out;
4069         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4070         while (*buf) {
4071                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4072                 if (buf == end) break;
4073                 if (*end == '-') { /* range */
4074                         buf = end + 1;
4075                         end_chunk = simple_strtoul(buf, &end, 0);
4076                         if (buf == end) break;
4077                 }
4078                 if (*end && !isspace(*end)) break;
4079                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4080                 buf = skip_spaces(end);
4081         }
4082         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4083 out:
4084         return len;
4085 }
4086
4087 static struct md_sysfs_entry md_bitmap =
4088 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4089
4090 static ssize_t
4091 size_show(struct mddev *mddev, char *page)
4092 {
4093         return sprintf(page, "%llu\n",
4094                 (unsigned long long)mddev->dev_sectors / 2);
4095 }
4096
4097 static int update_size(struct mddev *mddev, sector_t num_sectors);
4098
4099 static ssize_t
4100 size_store(struct mddev *mddev, const char *buf, size_t len)
4101 {
4102         /* If array is inactive, we can reduce the component size, but
4103          * not increase it (except from 0).
4104          * If array is active, we can try an on-line resize
4105          */
4106         sector_t sectors;
4107         int err = strict_blocks_to_sectors(buf, &sectors);
4108
4109         if (err < 0)
4110                 return err;
4111         if (mddev->pers) {
4112                 err = update_size(mddev, sectors);
4113                 md_update_sb(mddev, 1);
4114         } else {
4115                 if (mddev->dev_sectors == 0 ||
4116                     mddev->dev_sectors > sectors)
4117                         mddev->dev_sectors = sectors;
4118                 else
4119                         err = -ENOSPC;
4120         }
4121         return err ? err : len;
4122 }
4123
4124 static struct md_sysfs_entry md_size =
4125 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4126
4127
4128 /* Metadata version.
4129  * This is one of
4130  *   'none' for arrays with no metadata (good luck...)
4131  *   'external' for arrays with externally managed metadata,
4132  * or N.M for internally known formats
4133  */
4134 static ssize_t
4135 metadata_show(struct mddev *mddev, char *page)
4136 {
4137         if (mddev->persistent)
4138                 return sprintf(page, "%d.%d\n",
4139                                mddev->major_version, mddev->minor_version);
4140         else if (mddev->external)
4141                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4142         else
4143                 return sprintf(page, "none\n");
4144 }
4145
4146 static ssize_t
4147 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4148 {
4149         int major, minor;
4150         char *e;
4151         /* Changing the details of 'external' metadata is
4152          * always permitted.  Otherwise there must be
4153          * no devices attached to the array.
4154          */
4155         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4156                 ;
4157         else if (!list_empty(&mddev->disks))
4158                 return -EBUSY;
4159
4160         if (cmd_match(buf, "none")) {
4161                 mddev->persistent = 0;
4162                 mddev->external = 0;
4163                 mddev->major_version = 0;
4164                 mddev->minor_version = 90;
4165                 return len;
4166         }
4167         if (strncmp(buf, "external:", 9) == 0) {
4168                 size_t namelen = len-9;
4169                 if (namelen >= sizeof(mddev->metadata_type))
4170                         namelen = sizeof(mddev->metadata_type)-1;
4171                 strncpy(mddev->metadata_type, buf+9, namelen);
4172                 mddev->metadata_type[namelen] = 0;
4173                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4174                         mddev->metadata_type[--namelen] = 0;
4175                 mddev->persistent = 0;
4176                 mddev->external = 1;
4177                 mddev->major_version = 0;
4178                 mddev->minor_version = 90;
4179                 return len;
4180         }
4181         major = simple_strtoul(buf, &e, 10);
4182         if (e==buf || *e != '.')
4183                 return -EINVAL;
4184         buf = e+1;
4185         minor = simple_strtoul(buf, &e, 10);
4186         if (e==buf || (*e && *e != '\n') )
4187                 return -EINVAL;
4188         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4189                 return -ENOENT;
4190         mddev->major_version = major;
4191         mddev->minor_version = minor;
4192         mddev->persistent = 1;
4193         mddev->external = 0;
4194         return len;
4195 }
4196
4197 static struct md_sysfs_entry md_metadata =
4198 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4199
4200 static ssize_t
4201 action_show(struct mddev *mddev, char *page)
4202 {
4203         char *type = "idle";
4204         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4205                 type = "frozen";
4206         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4207             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4208                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4209                         type = "reshape";
4210                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4211                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4212                                 type = "resync";
4213                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4214                                 type = "check";
4215                         else
4216                                 type = "repair";
4217                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4218                         type = "recover";
4219         }
4220         return sprintf(page, "%s\n", type);
4221 }
4222
4223 static ssize_t
4224 action_store(struct mddev *mddev, const char *page, size_t len)
4225 {
4226         if (!mddev->pers || !mddev->pers->sync_request)
4227                 return -EINVAL;
4228
4229         if (cmd_match(page, "frozen"))
4230                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4231         else
4232                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4233
4234         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4235                 if (mddev->sync_thread) {
4236                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4237                         md_reap_sync_thread(mddev);
4238                 }
4239         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4240                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4241                 return -EBUSY;
4242         else if (cmd_match(page, "resync"))
4243                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4244         else if (cmd_match(page, "recover")) {
4245                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4246                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4247         } else if (cmd_match(page, "reshape")) {
4248                 int err;
4249                 if (mddev->pers->start_reshape == NULL)
4250                         return -EINVAL;
4251                 err = mddev->pers->start_reshape(mddev);
4252                 if (err)
4253                         return err;
4254                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4255         } else {
4256                 if (cmd_match(page, "check"))
4257                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4258                 else if (!cmd_match(page, "repair"))
4259                         return -EINVAL;
4260                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4261                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4262         }
4263         if (mddev->ro == 2) {
4264                 /* A write to sync_action is enough to justify
4265                  * canceling read-auto mode
4266                  */
4267                 mddev->ro = 0;
4268                 md_wakeup_thread(mddev->sync_thread);
4269         }
4270         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4271         md_wakeup_thread(mddev->thread);
4272         sysfs_notify_dirent_safe(mddev->sysfs_action);
4273         return len;
4274 }
4275
4276 static struct md_sysfs_entry md_scan_mode =
4277 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4278
4279 static ssize_t
4280 last_sync_action_show(struct mddev *mddev, char *page)
4281 {
4282         return sprintf(page, "%s\n", mddev->last_sync_action);
4283 }
4284
4285 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4286
4287 static ssize_t
4288 mismatch_cnt_show(struct mddev *mddev, char *page)
4289 {
4290         return sprintf(page, "%llu\n",
4291                        (unsigned long long)
4292                        atomic64_read(&mddev->resync_mismatches));
4293 }
4294
4295 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4296
4297 static ssize_t
4298 sync_min_show(struct mddev *mddev, char *page)
4299 {
4300         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4301                        mddev->sync_speed_min ? "local": "system");
4302 }
4303
4304 static ssize_t
4305 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4306 {
4307         int min;
4308         char *e;
4309         if (strncmp(buf, "system", 6)==0) {
4310                 mddev->sync_speed_min = 0;
4311                 return len;
4312         }
4313         min = simple_strtoul(buf, &e, 10);
4314         if (buf == e || (*e && *e != '\n') || min <= 0)
4315                 return -EINVAL;
4316         mddev->sync_speed_min = min;
4317         return len;
4318 }
4319
4320 static struct md_sysfs_entry md_sync_min =
4321 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4322
4323 static ssize_t
4324 sync_max_show(struct mddev *mddev, char *page)
4325 {
4326         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4327                        mddev->sync_speed_max ? "local": "system");
4328 }
4329
4330 static ssize_t
4331 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4332 {
4333         int max;
4334         char *e;
4335         if (strncmp(buf, "system", 6)==0) {
4336                 mddev->sync_speed_max = 0;
4337                 return len;
4338         }
4339         max = simple_strtoul(buf, &e, 10);
4340         if (buf == e || (*e && *e != '\n') || max <= 0)
4341                 return -EINVAL;
4342         mddev->sync_speed_max = max;
4343         return len;
4344 }
4345
4346 static struct md_sysfs_entry md_sync_max =
4347 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4348
4349 static ssize_t
4350 degraded_show(struct mddev *mddev, char *page)
4351 {
4352         return sprintf(page, "%d\n", mddev->degraded);
4353 }
4354 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4355
4356 static ssize_t
4357 sync_force_parallel_show(struct mddev *mddev, char *page)
4358 {
4359         return sprintf(page, "%d\n", mddev->parallel_resync);
4360 }
4361
4362 static ssize_t
4363 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4364 {
4365         long n;
4366
4367         if (kstrtol(buf, 10, &n))
4368                 return -EINVAL;
4369
4370         if (n != 0 && n != 1)
4371                 return -EINVAL;
4372
4373         mddev->parallel_resync = n;
4374
4375         if (mddev->sync_thread)
4376                 wake_up(&resync_wait);
4377
4378         return len;
4379 }
4380
4381 /* force parallel resync, even with shared block devices */
4382 static struct md_sysfs_entry md_sync_force_parallel =
4383 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4384        sync_force_parallel_show, sync_force_parallel_store);
4385
4386 static ssize_t
4387 sync_speed_show(struct mddev *mddev, char *page)
4388 {
4389         unsigned long resync, dt, db;
4390         if (mddev->curr_resync == 0)
4391                 return sprintf(page, "none\n");
4392         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4393         dt = (jiffies - mddev->resync_mark) / HZ;
4394         if (!dt) dt++;
4395         db = resync - mddev->resync_mark_cnt;
4396         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4397 }
4398
4399 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4400
4401 static ssize_t
4402 sync_completed_show(struct mddev *mddev, char *page)
4403 {
4404         unsigned long long max_sectors, resync;
4405
4406         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4407                 return sprintf(page, "none\n");
4408
4409         if (mddev->curr_resync == 1 ||
4410             mddev->curr_resync == 2)
4411                 return sprintf(page, "delayed\n");
4412
4413         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4414             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4415                 max_sectors = mddev->resync_max_sectors;
4416         else
4417                 max_sectors = mddev->dev_sectors;
4418
4419         resync = mddev->curr_resync_completed;
4420         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4421 }
4422
4423 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4424
4425 static ssize_t
4426 min_sync_show(struct mddev *mddev, char *page)
4427 {
4428         return sprintf(page, "%llu\n",
4429                        (unsigned long long)mddev->resync_min);
4430 }
4431 static ssize_t
4432 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4433 {
4434         unsigned long long min;
4435         if (kstrtoull(buf, 10, &min))
4436                 return -EINVAL;
4437         if (min > mddev->resync_max)
4438                 return -EINVAL;
4439         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4440                 return -EBUSY;
4441
4442         /* Must be a multiple of chunk_size */
4443         if (mddev->chunk_sectors) {
4444                 sector_t temp = min;
4445                 if (sector_div(temp, mddev->chunk_sectors))
4446                         return -EINVAL;
4447         }
4448         mddev->resync_min = min;
4449
4450         return len;
4451 }
4452
4453 static struct md_sysfs_entry md_min_sync =
4454 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4455
4456 static ssize_t
4457 max_sync_show(struct mddev *mddev, char *page)
4458 {
4459         if (mddev->resync_max == MaxSector)
4460                 return sprintf(page, "max\n");
4461         else
4462                 return sprintf(page, "%llu\n",
4463                                (unsigned long long)mddev->resync_max);
4464 }
4465 static ssize_t
4466 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4467 {
4468         if (strncmp(buf, "max", 3) == 0)
4469                 mddev->resync_max = MaxSector;
4470         else {
4471                 unsigned long long max;
4472                 if (kstrtoull(buf, 10, &max))
4473                         return -EINVAL;
4474                 if (max < mddev->resync_min)
4475                         return -EINVAL;
4476                 if (max < mddev->resync_max &&
4477                     mddev->ro == 0 &&
4478                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4479                         return -EBUSY;
4480
4481                 /* Must be a multiple of chunk_size */
4482                 if (mddev->chunk_sectors) {
4483                         sector_t temp = max;
4484                         if (sector_div(temp, mddev->chunk_sectors))
4485                                 return -EINVAL;
4486                 }
4487                 mddev->resync_max = max;
4488         }
4489         wake_up(&mddev->recovery_wait);
4490         return len;
4491 }
4492
4493 static struct md_sysfs_entry md_max_sync =
4494 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4495
4496 static ssize_t
4497 suspend_lo_show(struct mddev *mddev, char *page)
4498 {
4499         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4500 }
4501
4502 static ssize_t
4503 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4504 {
4505         char *e;
4506         unsigned long long new = simple_strtoull(buf, &e, 10);
4507         unsigned long long old = mddev->suspend_lo;
4508
4509         if (mddev->pers == NULL || 
4510             mddev->pers->quiesce == NULL)
4511                 return -EINVAL;
4512         if (buf == e || (*e && *e != '\n'))
4513                 return -EINVAL;
4514
4515         mddev->suspend_lo = new;
4516         if (new >= old)
4517                 /* Shrinking suspended region */
4518                 mddev->pers->quiesce(mddev, 2);
4519         else {
4520                 /* Expanding suspended region - need to wait */
4521                 mddev->pers->quiesce(mddev, 1);
4522                 mddev->pers->quiesce(mddev, 0);
4523         }
4524         return len;
4525 }
4526 static struct md_sysfs_entry md_suspend_lo =
4527 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4528
4529
4530 static ssize_t
4531 suspend_hi_show(struct mddev *mddev, char *page)
4532 {
4533         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4534 }
4535
4536 static ssize_t
4537 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4538 {
4539         char *e;
4540         unsigned long long new = simple_strtoull(buf, &e, 10);
4541         unsigned long long old = mddev->suspend_hi;
4542
4543         if (mddev->pers == NULL ||
4544             mddev->pers->quiesce == NULL)
4545                 return -EINVAL;
4546         if (buf == e || (*e && *e != '\n'))
4547                 return -EINVAL;
4548
4549         mddev->suspend_hi = new;
4550         if (new <= old)
4551                 /* Shrinking suspended region */
4552                 mddev->pers->quiesce(mddev, 2);
4553         else {
4554                 /* Expanding suspended region - need to wait */
4555                 mddev->pers->quiesce(mddev, 1);
4556                 mddev->pers->quiesce(mddev, 0);
4557         }
4558         return len;
4559 }
4560 static struct md_sysfs_entry md_suspend_hi =
4561 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4562
4563 static ssize_t
4564 reshape_position_show(struct mddev *mddev, char *page)
4565 {
4566         if (mddev->reshape_position != MaxSector)
4567                 return sprintf(page, "%llu\n",
4568                                (unsigned long long)mddev->reshape_position);
4569         strcpy(page, "none\n");
4570         return 5;
4571 }
4572
4573 static ssize_t
4574 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4575 {
4576         struct md_rdev *rdev;
4577         char *e;
4578         unsigned long long new = simple_strtoull(buf, &e, 10);
4579         if (mddev->pers)
4580                 return -EBUSY;
4581         if (buf == e || (*e && *e != '\n'))
4582                 return -EINVAL;
4583         mddev->reshape_position = new;
4584         mddev->delta_disks = 0;
4585         mddev->reshape_backwards = 0;
4586         mddev->new_level = mddev->level;
4587         mddev->new_layout = mddev->layout;
4588         mddev->new_chunk_sectors = mddev->chunk_sectors;
4589         rdev_for_each(rdev, mddev)
4590                 rdev->new_data_offset = rdev->data_offset;
4591         return len;
4592 }
4593
4594 static struct md_sysfs_entry md_reshape_position =
4595 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4596        reshape_position_store);
4597
4598 static ssize_t
4599 reshape_direction_show(struct mddev *mddev, char *page)
4600 {
4601         return sprintf(page, "%s\n",
4602                        mddev->reshape_backwards ? "backwards" : "forwards");
4603 }
4604
4605 static ssize_t
4606 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4607 {
4608         int backwards = 0;
4609         if (cmd_match(buf, "forwards"))
4610                 backwards = 0;
4611         else if (cmd_match(buf, "backwards"))
4612                 backwards = 1;
4613         else
4614                 return -EINVAL;
4615         if (mddev->reshape_backwards == backwards)
4616                 return len;
4617
4618         /* check if we are allowed to change */
4619         if (mddev->delta_disks)
4620                 return -EBUSY;
4621
4622         if (mddev->persistent &&
4623             mddev->major_version == 0)
4624                 return -EINVAL;
4625
4626         mddev->reshape_backwards = backwards;
4627         return len;
4628 }
4629
4630 static struct md_sysfs_entry md_reshape_direction =
4631 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4632        reshape_direction_store);
4633
4634 static ssize_t
4635 array_size_show(struct mddev *mddev, char *page)
4636 {
4637         if (mddev->external_size)
4638                 return sprintf(page, "%llu\n",
4639                                (unsigned long long)mddev->array_sectors/2);
4640         else
4641                 return sprintf(page, "default\n");
4642 }
4643
4644 static ssize_t
4645 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4646 {
4647         sector_t sectors;
4648
4649         if (strncmp(buf, "default", 7) == 0) {
4650                 if (mddev->pers)
4651                         sectors = mddev->pers->size(mddev, 0, 0);
4652                 else
4653                         sectors = mddev->array_sectors;
4654
4655                 mddev->external_size = 0;
4656         } else {
4657                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4658                         return -EINVAL;
4659                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4660                         return -E2BIG;
4661
4662                 mddev->external_size = 1;
4663         }
4664
4665         mddev->array_sectors = sectors;
4666         if (mddev->pers) {
4667                 set_capacity(mddev->gendisk, mddev->array_sectors);
4668                 revalidate_disk(mddev->gendisk);
4669         }
4670         return len;
4671 }
4672
4673 static struct md_sysfs_entry md_array_size =
4674 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4675        array_size_store);
4676
4677 static struct attribute *md_default_attrs[] = {
4678         &md_level.attr,
4679         &md_layout.attr,
4680         &md_raid_disks.attr,
4681         &md_chunk_size.attr,
4682         &md_size.attr,
4683         &md_resync_start.attr,
4684         &md_metadata.attr,
4685         &md_new_device.attr,
4686         &md_safe_delay.attr,
4687         &md_array_state.attr,
4688         &md_reshape_position.attr,
4689         &md_reshape_direction.attr,
4690         &md_array_size.attr,
4691         &max_corr_read_errors.attr,
4692         NULL,
4693 };
4694
4695 static struct attribute *md_redundancy_attrs[] = {
4696         &md_scan_mode.attr,
4697         &md_last_scan_mode.attr,
4698         &md_mismatches.attr,
4699         &md_sync_min.attr,
4700         &md_sync_max.attr,
4701         &md_sync_speed.attr,
4702         &md_sync_force_parallel.attr,
4703         &md_sync_completed.attr,
4704         &md_min_sync.attr,
4705         &md_max_sync.attr,
4706         &md_suspend_lo.attr,
4707         &md_suspend_hi.attr,
4708         &md_bitmap.attr,
4709         &md_degraded.attr,
4710         NULL,
4711 };
4712 static struct attribute_group md_redundancy_group = {
4713         .name = NULL,
4714         .attrs = md_redundancy_attrs,
4715 };
4716
4717
4718 static ssize_t
4719 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4720 {
4721         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4722         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4723         ssize_t rv;
4724
4725         if (!entry->show)
4726                 return -EIO;
4727         spin_lock(&all_mddevs_lock);
4728         if (list_empty(&mddev->all_mddevs)) {
4729                 spin_unlock(&all_mddevs_lock);
4730                 return -EBUSY;
4731         }
4732         mddev_get(mddev);
4733         spin_unlock(&all_mddevs_lock);
4734
4735         rv = mddev_lock(mddev);
4736         if (!rv) {
4737                 rv = entry->show(mddev, page);
4738                 mddev_unlock(mddev);
4739         }
4740         mddev_put(mddev);
4741         return rv;
4742 }
4743
4744 static ssize_t
4745 md_attr_store(struct kobject *kobj, struct attribute *attr,
4746               const char *page, size_t length)
4747 {
4748         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4749         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4750         ssize_t rv;
4751
4752         if (!entry->store)
4753                 return -EIO;
4754         if (!capable(CAP_SYS_ADMIN))
4755                 return -EACCES;
4756         spin_lock(&all_mddevs_lock);
4757         if (list_empty(&mddev->all_mddevs)) {
4758                 spin_unlock(&all_mddevs_lock);
4759                 return -EBUSY;
4760         }
4761         mddev_get(mddev);
4762         spin_unlock(&all_mddevs_lock);
4763         if (entry->store == new_dev_store)
4764                 flush_workqueue(md_misc_wq);
4765         rv = mddev_lock(mddev);
4766         if (!rv) {
4767                 rv = entry->store(mddev, page, length);
4768                 mddev_unlock(mddev);
4769         }
4770         mddev_put(mddev);
4771         return rv;
4772 }
4773
4774 static void md_free(struct kobject *ko)
4775 {
4776         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4777
4778         if (mddev->sysfs_state)
4779                 sysfs_put(mddev->sysfs_state);
4780
4781         if (mddev->gendisk) {
4782                 del_gendisk(mddev->gendisk);
4783                 put_disk(mddev->gendisk);
4784         }
4785         if (mddev->queue)
4786                 blk_cleanup_queue(mddev->queue);
4787
4788         kfree(mddev);
4789 }
4790
4791 static const struct sysfs_ops md_sysfs_ops = {
4792         .show   = md_attr_show,
4793         .store  = md_attr_store,
4794 };
4795 static struct kobj_type md_ktype = {
4796         .release        = md_free,
4797         .sysfs_ops      = &md_sysfs_ops,
4798         .default_attrs  = md_default_attrs,
4799 };
4800
4801 int mdp_major = 0;
4802
4803 static void mddev_delayed_delete(struct work_struct *ws)
4804 {
4805         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4806
4807         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4808         kobject_del(&mddev->kobj);
4809         kobject_put(&mddev->kobj);
4810 }
4811
4812 static int md_alloc(dev_t dev, char *name)
4813 {
4814         static DEFINE_MUTEX(disks_mutex);
4815         struct mddev *mddev = mddev_find(dev);
4816         struct gendisk *disk;
4817         int partitioned;
4818         int shift;
4819         int unit;
4820         int error;
4821
4822         if (!mddev)
4823                 return -ENODEV;
4824
4825         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4826         shift = partitioned ? MdpMinorShift : 0;
4827         unit = MINOR(mddev->unit) >> shift;
4828
4829         /* wait for any previous instance of this device to be
4830          * completely removed (mddev_delayed_delete).
4831          */
4832         flush_workqueue(md_misc_wq);
4833
4834         mutex_lock(&disks_mutex);
4835         error = -EEXIST;
4836         if (mddev->gendisk)
4837                 goto abort;
4838
4839         if (name) {
4840                 /* Need to ensure that 'name' is not a duplicate.
4841                  */
4842                 struct mddev *mddev2;
4843                 spin_lock(&all_mddevs_lock);
4844
4845                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4846                         if (mddev2->gendisk &&
4847                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4848                                 spin_unlock(&all_mddevs_lock);
4849                                 goto abort;
4850                         }
4851                 spin_unlock(&all_mddevs_lock);
4852         }
4853
4854         error = -ENOMEM;
4855         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4856         if (!mddev->queue)
4857                 goto abort;
4858         mddev->queue->queuedata = mddev;
4859
4860         blk_queue_make_request(mddev->queue, md_make_request);
4861         blk_set_stacking_limits(&mddev->queue->limits);
4862
4863         disk = alloc_disk(1 << shift);
4864         if (!disk) {
4865                 blk_cleanup_queue(mddev->queue);
4866                 mddev->queue = NULL;
4867                 goto abort;
4868         }
4869         disk->major = MAJOR(mddev->unit);
4870         disk->first_minor = unit << shift;
4871         if (name)
4872                 strcpy(disk->disk_name, name);
4873         else if (partitioned)
4874                 sprintf(disk->disk_name, "md_d%d", unit);
4875         else
4876                 sprintf(disk->disk_name, "md%d", unit);
4877         disk->fops = &md_fops;
4878         disk->private_data = mddev;
4879         disk->queue = mddev->queue;
4880         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4881         /* Allow extended partitions.  This makes the
4882          * 'mdp' device redundant, but we can't really
4883          * remove it now.
4884          */
4885         disk->flags |= GENHD_FL_EXT_DEVT;
4886         mddev->gendisk = disk;
4887         /* As soon as we call add_disk(), another thread could get
4888          * through to md_open, so make sure it doesn't get too far
4889          */
4890         mutex_lock(&mddev->open_mutex);
4891         add_disk(disk);
4892
4893         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4894                                      &disk_to_dev(disk)->kobj, "%s", "md");
4895         if (error) {
4896                 /* This isn't possible, but as kobject_init_and_add is marked
4897                  * __must_check, we must do something with the result
4898                  */
4899                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4900                        disk->disk_name);
4901                 error = 0;
4902         }
4903         if (mddev->kobj.sd &&
4904             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4905                 printk(KERN_DEBUG "pointless warning\n");
4906         mutex_unlock(&mddev->open_mutex);
4907  abort:
4908         mutex_unlock(&disks_mutex);
4909         if (!error && mddev->kobj.sd) {
4910                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4911                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4912         }
4913         mddev_put(mddev);
4914         return error;
4915 }
4916
4917 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4918 {
4919         md_alloc(dev, NULL);
4920         return NULL;
4921 }
4922
4923 static int add_named_array(const char *val, struct kernel_param *kp)
4924 {
4925         /* val must be "md_*" where * is not all digits.
4926          * We allocate an array with a large free minor number, and
4927          * set the name to val.  val must not already be an active name.
4928          */
4929         int len = strlen(val);
4930         char buf[DISK_NAME_LEN];
4931
4932         while (len && val[len-1] == '\n')
4933                 len--;
4934         if (len >= DISK_NAME_LEN)
4935                 return -E2BIG;
4936         strlcpy(buf, val, len+1);
4937         if (strncmp(buf, "md_", 3) != 0)
4938                 return -EINVAL;
4939         return md_alloc(0, buf);
4940 }
4941
4942 static void md_safemode_timeout(unsigned long data)
4943 {
4944         struct mddev *mddev = (struct mddev *) data;
4945
4946         if (!atomic_read(&mddev->writes_pending)) {
4947                 mddev->safemode = 1;
4948                 if (mddev->external)
4949                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4950         }
4951         md_wakeup_thread(mddev->thread);
4952 }
4953
4954 static int start_dirty_degraded;
4955
4956 int md_run(struct mddev *mddev)
4957 {
4958         int err;
4959         struct md_rdev *rdev;
4960         struct md_personality *pers;
4961
4962         if (list_empty(&mddev->disks))
4963                 /* cannot run an array with no devices.. */
4964                 return -EINVAL;
4965
4966         if (mddev->pers)
4967                 return -EBUSY;
4968         /* Cannot run until previous stop completes properly */
4969         if (mddev->sysfs_active)
4970                 return -EBUSY;
4971
4972         /*
4973          * Analyze all RAID superblock(s)
4974          */
4975         if (!mddev->raid_disks) {
4976                 if (!mddev->persistent)
4977                         return -EINVAL;
4978                 analyze_sbs(mddev);
4979         }
4980
4981         if (mddev->level != LEVEL_NONE)
4982                 request_module("md-level-%d", mddev->level);
4983         else if (mddev->clevel[0])
4984                 request_module("md-%s", mddev->clevel);
4985
4986         /*
4987          * Drop all container device buffers, from now on
4988          * the only valid external interface is through the md
4989          * device.
4990          */
4991         rdev_for_each(rdev, mddev) {
4992                 if (test_bit(Faulty, &rdev->flags))
4993                         continue;
4994                 sync_blockdev(rdev->bdev);
4995                 invalidate_bdev(rdev->bdev);
4996
4997                 /* perform some consistency tests on the device.
4998                  * We don't want the data to overlap the metadata,
4999                  * Internal Bitmap issues have been handled elsewhere.
5000                  */
5001                 if (rdev->meta_bdev) {
5002                         /* Nothing to check */;
5003                 } else if (rdev->data_offset < rdev->sb_start) {
5004                         if (mddev->dev_sectors &&
5005                             rdev->data_offset + mddev->dev_sectors
5006                             > rdev->sb_start) {
5007                                 printk("md: %s: data overlaps metadata\n",
5008                                        mdname(mddev));
5009                                 return -EINVAL;
5010                         }
5011                 } else {
5012                         if (rdev->sb_start + rdev->sb_size/512
5013                             > rdev->data_offset) {
5014                                 printk("md: %s: metadata overlaps data\n",
5015                                        mdname(mddev));
5016                                 return -EINVAL;
5017                         }
5018                 }
5019                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5020         }
5021
5022         if (mddev->bio_set == NULL)
5023                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5024
5025         spin_lock(&pers_lock);
5026         pers = find_pers(mddev->level, mddev->clevel);
5027         if (!pers || !try_module_get(pers->owner)) {
5028                 spin_unlock(&pers_lock);
5029                 if (mddev->level != LEVEL_NONE)
5030                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5031                                mddev->level);
5032                 else
5033                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5034                                mddev->clevel);
5035                 return -EINVAL;
5036         }
5037         mddev->pers = pers;
5038         spin_unlock(&pers_lock);
5039         if (mddev->level != pers->level) {
5040                 mddev->level = pers->level;
5041                 mddev->new_level = pers->level;
5042         }
5043         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5044
5045         if (mddev->reshape_position != MaxSector &&
5046             pers->start_reshape == NULL) {
5047                 /* This personality cannot handle reshaping... */
5048                 mddev->pers = NULL;
5049                 module_put(pers->owner);
5050                 return -EINVAL;
5051         }
5052
5053         if (pers->sync_request) {
5054                 /* Warn if this is a potentially silly
5055                  * configuration.
5056                  */
5057                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5058                 struct md_rdev *rdev2;
5059                 int warned = 0;
5060
5061                 rdev_for_each(rdev, mddev)
5062                         rdev_for_each(rdev2, mddev) {
5063                                 if (rdev < rdev2 &&
5064                                     rdev->bdev->bd_contains ==
5065                                     rdev2->bdev->bd_contains) {
5066                                         printk(KERN_WARNING
5067                                                "%s: WARNING: %s appears to be"
5068                                                " on the same physical disk as"
5069                                                " %s.\n",
5070                                                mdname(mddev),
5071                                                bdevname(rdev->bdev,b),
5072                                                bdevname(rdev2->bdev,b2));
5073                                         warned = 1;
5074                                 }
5075                         }
5076
5077                 if (warned)
5078                         printk(KERN_WARNING
5079                                "True protection against single-disk"
5080                                " failure might be compromised.\n");
5081         }
5082
5083         mddev->recovery = 0;
5084         /* may be over-ridden by personality */
5085         mddev->resync_max_sectors = mddev->dev_sectors;
5086
5087         mddev->ok_start_degraded = start_dirty_degraded;
5088
5089         if (start_readonly && mddev->ro == 0)
5090                 mddev->ro = 2; /* read-only, but switch on first write */
5091
5092         err = mddev->pers->run(mddev);
5093         if (err)
5094                 printk(KERN_ERR "md: pers->run() failed ...\n");
5095         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5096                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5097                           " but 'external_size' not in effect?\n", __func__);
5098                 printk(KERN_ERR
5099                        "md: invalid array_size %llu > default size %llu\n",
5100                        (unsigned long long)mddev->array_sectors / 2,
5101                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5102                 err = -EINVAL;
5103                 mddev->pers->stop(mddev);
5104         }
5105         if (err == 0 && mddev->pers->sync_request &&
5106             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5107                 err = bitmap_create(mddev);
5108                 if (err) {
5109                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5110                                mdname(mddev), err);
5111                         mddev->pers->stop(mddev);
5112                 }
5113         }
5114         if (err) {
5115                 module_put(mddev->pers->owner);
5116                 mddev->pers = NULL;
5117                 bitmap_destroy(mddev);
5118                 return err;
5119         }
5120         if (mddev->pers->sync_request) {
5121                 if (mddev->kobj.sd &&
5122                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5123                         printk(KERN_WARNING
5124                                "md: cannot register extra attributes for %s\n",
5125                                mdname(mddev));
5126                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5127         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5128                 mddev->ro = 0;
5129
5130         atomic_set(&mddev->writes_pending,0);
5131         atomic_set(&mddev->max_corr_read_errors,
5132                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5133         mddev->safemode = 0;
5134         mddev->safemode_timer.function = md_safemode_timeout;
5135         mddev->safemode_timer.data = (unsigned long) mddev;
5136         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5137         mddev->in_sync = 1;
5138         smp_wmb();
5139         mddev->ready = 1;
5140         rdev_for_each(rdev, mddev)
5141                 if (rdev->raid_disk >= 0)
5142                         if (sysfs_link_rdev(mddev, rdev))
5143                                 /* failure here is OK */;
5144         
5145         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5146         
5147         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5148                 md_update_sb(mddev, 0);
5149
5150         md_new_event(mddev);
5151         sysfs_notify_dirent_safe(mddev->sysfs_state);
5152         sysfs_notify_dirent_safe(mddev->sysfs_action);
5153         sysfs_notify(&mddev->kobj, NULL, "degraded");
5154         return 0;
5155 }
5156 EXPORT_SYMBOL_GPL(md_run);
5157
5158 static int do_md_run(struct mddev *mddev)
5159 {
5160         int err;
5161
5162         err = md_run(mddev);
5163         if (err)
5164                 goto out;
5165         err = bitmap_load(mddev);
5166         if (err) {
5167                 bitmap_destroy(mddev);
5168                 goto out;
5169         }
5170
5171         md_wakeup_thread(mddev->thread);
5172         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5173
5174         set_capacity(mddev->gendisk, mddev->array_sectors);
5175         revalidate_disk(mddev->gendisk);
5176         mddev->changed = 1;
5177         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5178 out:
5179         return err;
5180 }
5181
5182 static int restart_array(struct mddev *mddev)
5183 {
5184         struct gendisk *disk = mddev->gendisk;
5185
5186         /* Complain if it has no devices */
5187         if (list_empty(&mddev->disks))
5188                 return -ENXIO;
5189         if (!mddev->pers)
5190                 return -EINVAL;
5191         if (!mddev->ro)
5192                 return -EBUSY;
5193         mddev->safemode = 0;
5194         mddev->ro = 0;
5195         set_disk_ro(disk, 0);
5196         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5197                 mdname(mddev));
5198         /* Kick recovery or resync if necessary */
5199         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5200         md_wakeup_thread(mddev->thread);
5201         md_wakeup_thread(mddev->sync_thread);
5202         sysfs_notify_dirent_safe(mddev->sysfs_state);
5203         return 0;
5204 }
5205
5206 /* similar to deny_write_access, but accounts for our holding a reference
5207  * to the file ourselves */
5208 static int deny_bitmap_write_access(struct file * file)
5209 {
5210         struct inode *inode = file->f_mapping->host;
5211
5212         spin_lock(&inode->i_lock);
5213         if (atomic_read(&inode->i_writecount) > 1) {
5214                 spin_unlock(&inode->i_lock);
5215                 return -ETXTBSY;
5216         }
5217         atomic_set(&inode->i_writecount, -1);
5218         spin_unlock(&inode->i_lock);
5219
5220         return 0;
5221 }
5222
5223 void restore_bitmap_write_access(struct file *file)
5224 {
5225         struct inode *inode = file->f_mapping->host;
5226
5227         spin_lock(&inode->i_lock);
5228         atomic_set(&inode->i_writecount, 1);
5229         spin_unlock(&inode->i_lock);
5230 }
5231
5232 static void md_clean(struct mddev *mddev)
5233 {
5234         mddev->array_sectors = 0;
5235         mddev->external_size = 0;
5236         mddev->dev_sectors = 0;
5237         mddev->raid_disks = 0;
5238         mddev->recovery_cp = 0;
5239         mddev->resync_min = 0;
5240         mddev->resync_max = MaxSector;
5241         mddev->reshape_position = MaxSector;
5242         mddev->external = 0;
5243         mddev->persistent = 0;
5244         mddev->level = LEVEL_NONE;
5245         mddev->clevel[0] = 0;
5246         mddev->flags = 0;
5247         mddev->ro = 0;
5248         mddev->metadata_type[0] = 0;
5249         mddev->chunk_sectors = 0;
5250         mddev->ctime = mddev->utime = 0;
5251         mddev->layout = 0;
5252         mddev->max_disks = 0;
5253         mddev->events = 0;
5254         mddev->can_decrease_events = 0;
5255         mddev->delta_disks = 0;
5256         mddev->reshape_backwards = 0;
5257         mddev->new_level = LEVEL_NONE;
5258         mddev->new_layout = 0;
5259         mddev->new_chunk_sectors = 0;
5260         mddev->curr_resync = 0;
5261         atomic64_set(&mddev->resync_mismatches, 0);
5262         mddev->suspend_lo = mddev->suspend_hi = 0;
5263         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5264         mddev->recovery = 0;
5265         mddev->in_sync = 0;
5266         mddev->changed = 0;
5267         mddev->degraded = 0;
5268         mddev->safemode = 0;
5269         mddev->merge_check_needed = 0;
5270         mddev->bitmap_info.offset = 0;
5271         mddev->bitmap_info.default_offset = 0;
5272         mddev->bitmap_info.default_space = 0;
5273         mddev->bitmap_info.chunksize = 0;
5274         mddev->bitmap_info.daemon_sleep = 0;
5275         mddev->bitmap_info.max_write_behind = 0;
5276 }
5277
5278 static void __md_stop_writes(struct mddev *mddev)
5279 {
5280         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5281         if (mddev->sync_thread) {
5282                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5283                 md_reap_sync_thread(mddev);
5284         }
5285
5286         del_timer_sync(&mddev->safemode_timer);
5287
5288         bitmap_flush(mddev);
5289         md_super_wait(mddev);
5290
5291         if (mddev->ro == 0 &&
5292             (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5293                 /* mark array as shutdown cleanly */
5294                 mddev->in_sync = 1;
5295                 md_update_sb(mddev, 1);
5296         }
5297 }
5298
5299 void md_stop_writes(struct mddev *mddev)
5300 {
5301         mddev_lock(mddev);
5302         __md_stop_writes(mddev);
5303         mddev_unlock(mddev);
5304 }
5305 EXPORT_SYMBOL_GPL(md_stop_writes);
5306
5307 static void __md_stop(struct mddev *mddev)
5308 {
5309         mddev->ready = 0;
5310         mddev->pers->stop(mddev);
5311         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5312                 mddev->to_remove = &md_redundancy_group;
5313         module_put(mddev->pers->owner);
5314         mddev->pers = NULL;
5315         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5316 }
5317
5318 void md_stop(struct mddev *mddev)
5319 {
5320         /* stop the array and free an attached data structures.
5321          * This is called from dm-raid
5322          */
5323         __md_stop(mddev);
5324         bitmap_destroy(mddev);
5325         if (mddev->bio_set)
5326                 bioset_free(mddev->bio_set);
5327 }
5328
5329 EXPORT_SYMBOL_GPL(md_stop);
5330
5331 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5332 {
5333         int err = 0;
5334         int did_freeze = 0;
5335
5336         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5337                 did_freeze = 1;
5338                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5339                 md_wakeup_thread(mddev->thread);
5340         }
5341         if (mddev->sync_thread)
5342                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5343         mddev_unlock(mddev);
5344         wait_event(resync_wait, mddev->sync_thread == NULL);
5345         mddev_lock(mddev);
5346
5347         mutex_lock(&mddev->open_mutex);
5348         if (atomic_read(&mddev->openers) > !!bdev ||
5349             mddev->sync_thread ||
5350             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5351                 printk("md: %s still in use.\n",mdname(mddev));
5352                 if (did_freeze) {
5353                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5354                         md_wakeup_thread(mddev->thread);
5355                 }
5356                 err = -EBUSY;
5357                 goto out;
5358         }
5359         if (mddev->pers) {
5360                 __md_stop_writes(mddev);
5361
5362                 err  = -ENXIO;
5363                 if (mddev->ro==1)
5364                         goto out;
5365                 mddev->ro = 1;
5366                 set_disk_ro(mddev->gendisk, 1);
5367                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5368                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5369                 err = 0;
5370         }
5371 out:
5372         mutex_unlock(&mddev->open_mutex);
5373         return err;
5374 }
5375
5376 /* mode:
5377  *   0 - completely stop and dis-assemble array
5378  *   2 - stop but do not disassemble array
5379  */
5380 static int do_md_stop(struct mddev * mddev, int mode,
5381                       struct block_device *bdev)
5382 {
5383         struct gendisk *disk = mddev->gendisk;
5384         struct md_rdev *rdev;
5385         int did_freeze = 0;
5386
5387         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5388                 did_freeze = 1;
5389                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5390                 md_wakeup_thread(mddev->thread);
5391         }
5392         if (mddev->sync_thread)
5393                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5394         mddev_unlock(mddev);
5395         wait_event(resync_wait, mddev->sync_thread == NULL);
5396         mddev_lock(mddev);
5397
5398         mutex_lock(&mddev->open_mutex);
5399         if (atomic_read(&mddev->openers) > !!bdev ||
5400             mddev->sysfs_active ||
5401             mddev->sync_thread ||
5402             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5403                 printk("md: %s still in use.\n",mdname(mddev));
5404                 mutex_unlock(&mddev->open_mutex);
5405                 if (did_freeze) {
5406                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5407                         md_wakeup_thread(mddev->thread);
5408                 }
5409                 return -EBUSY;
5410         }
5411         if (mddev->pers) {
5412                 if (mddev->ro)
5413                         set_disk_ro(disk, 0);
5414
5415                 __md_stop_writes(mddev);
5416                 __md_stop(mddev);
5417                 mddev->queue->merge_bvec_fn = NULL;
5418                 mddev->queue->backing_dev_info.congested_fn = NULL;
5419
5420                 /* tell userspace to handle 'inactive' */
5421                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5422
5423                 rdev_for_each(rdev, mddev)
5424                         if (rdev->raid_disk >= 0)
5425                                 sysfs_unlink_rdev(mddev, rdev);
5426
5427                 set_capacity(disk, 0);
5428                 mutex_unlock(&mddev->open_mutex);
5429                 mddev->changed = 1;
5430                 revalidate_disk(disk);
5431
5432                 if (mddev->ro)
5433                         mddev->ro = 0;
5434         } else
5435                 mutex_unlock(&mddev->open_mutex);
5436         /*
5437          * Free resources if final stop
5438          */
5439         if (mode == 0) {
5440                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5441
5442                 bitmap_destroy(mddev);
5443                 if (mddev->bitmap_info.file) {
5444                         restore_bitmap_write_access(mddev->bitmap_info.file);
5445                         fput(mddev->bitmap_info.file);
5446                         mddev->bitmap_info.file = NULL;
5447                 }
5448                 mddev->bitmap_info.offset = 0;
5449
5450                 export_array(mddev);
5451
5452                 md_clean(mddev);
5453                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5454                 if (mddev->hold_active == UNTIL_STOP)
5455                         mddev->hold_active = 0;
5456         }
5457         blk_integrity_unregister(disk);
5458         md_new_event(mddev);
5459         sysfs_notify_dirent_safe(mddev->sysfs_state);
5460         return 0;
5461 }
5462
5463 #ifndef MODULE
5464 static void autorun_array(struct mddev *mddev)
5465 {
5466         struct md_rdev *rdev;
5467         int err;
5468
5469         if (list_empty(&mddev->disks))
5470                 return;
5471
5472         printk(KERN_INFO "md: running: ");
5473
5474         rdev_for_each(rdev, mddev) {
5475                 char b[BDEVNAME_SIZE];
5476                 printk("<%s>", bdevname(rdev->bdev,b));
5477         }
5478         printk("\n");
5479
5480         err = do_md_run(mddev);
5481         if (err) {
5482                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5483                 do_md_stop(mddev, 0, NULL);
5484         }
5485 }
5486
5487 /*
5488  * lets try to run arrays based on all disks that have arrived
5489  * until now. (those are in pending_raid_disks)
5490  *
5491  * the method: pick the first pending disk, collect all disks with
5492  * the same UUID, remove all from the pending list and put them into
5493  * the 'same_array' list. Then order this list based on superblock
5494  * update time (freshest comes first), kick out 'old' disks and
5495  * compare superblocks. If everything's fine then run it.
5496  *
5497  * If "unit" is allocated, then bump its reference count
5498  */
5499 static void autorun_devices(int part)
5500 {
5501         struct md_rdev *rdev0, *rdev, *tmp;
5502         struct mddev *mddev;
5503         char b[BDEVNAME_SIZE];
5504
5505         printk(KERN_INFO "md: autorun ...\n");
5506         while (!list_empty(&pending_raid_disks)) {
5507                 int unit;
5508                 dev_t dev;
5509                 LIST_HEAD(candidates);
5510                 rdev0 = list_entry(pending_raid_disks.next,
5511                                          struct md_rdev, same_set);
5512
5513                 printk(KERN_INFO "md: considering %s ...\n",
5514                         bdevname(rdev0->bdev,b));
5515                 INIT_LIST_HEAD(&candidates);
5516                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5517                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5518                                 printk(KERN_INFO "md:  adding %s ...\n",
5519                                         bdevname(rdev->bdev,b));
5520                                 list_move(&rdev->same_set, &candidates);
5521                         }
5522                 /*
5523                  * now we have a set of devices, with all of them having
5524                  * mostly sane superblocks. It's time to allocate the
5525                  * mddev.
5526                  */
5527                 if (part) {
5528                         dev = MKDEV(mdp_major,
5529                                     rdev0->preferred_minor << MdpMinorShift);
5530                         unit = MINOR(dev) >> MdpMinorShift;
5531                 } else {
5532                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5533                         unit = MINOR(dev);
5534                 }
5535                 if (rdev0->preferred_minor != unit) {
5536                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5537                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5538                         break;
5539                 }
5540
5541                 md_probe(dev, NULL, NULL);
5542                 mddev = mddev_find(dev);
5543                 if (!mddev || !mddev->gendisk) {
5544                         if (mddev)
5545                                 mddev_put(mddev);
5546                         printk(KERN_ERR
5547                                 "md: cannot allocate memory for md drive.\n");
5548                         break;
5549                 }
5550                 if (mddev_lock(mddev)) 
5551                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5552                                mdname(mddev));
5553                 else if (mddev->raid_disks || mddev->major_version
5554                          || !list_empty(&mddev->disks)) {
5555                         printk(KERN_WARNING 
5556                                 "md: %s already running, cannot run %s\n",
5557                                 mdname(mddev), bdevname(rdev0->bdev,b));
5558                         mddev_unlock(mddev);
5559                 } else {
5560                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5561                         mddev->persistent = 1;
5562                         rdev_for_each_list(rdev, tmp, &candidates) {
5563                                 list_del_init(&rdev->same_set);
5564                                 if (bind_rdev_to_array(rdev, mddev))
5565                                         export_rdev(rdev);
5566                         }
5567                         autorun_array(mddev);
5568                         mddev_unlock(mddev);
5569                 }
5570                 /* on success, candidates will be empty, on error
5571                  * it won't...
5572                  */
5573                 rdev_for_each_list(rdev, tmp, &candidates) {
5574                         list_del_init(&rdev->same_set);
5575                         export_rdev(rdev);
5576                 }
5577                 mddev_put(mddev);
5578         }
5579         printk(KERN_INFO "md: ... autorun DONE.\n");
5580 }
5581 #endif /* !MODULE */
5582
5583 static int get_version(void __user * arg)
5584 {
5585         mdu_version_t ver;
5586
5587         ver.major = MD_MAJOR_VERSION;
5588         ver.minor = MD_MINOR_VERSION;
5589         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5590
5591         if (copy_to_user(arg, &ver, sizeof(ver)))
5592                 return -EFAULT;
5593
5594         return 0;
5595 }
5596
5597 static int get_array_info(struct mddev * mddev, void __user * arg)
5598 {
5599         mdu_array_info_t info;
5600         int nr,working,insync,failed,spare;
5601         struct md_rdev *rdev;
5602
5603         nr = working = insync = failed = spare = 0;
5604         rcu_read_lock();
5605         rdev_for_each_rcu(rdev, mddev) {
5606                 nr++;
5607                 if (test_bit(Faulty, &rdev->flags))
5608                         failed++;
5609                 else {
5610                         working++;
5611                         if (test_bit(In_sync, &rdev->flags))
5612                                 insync++;       
5613                         else
5614                                 spare++;
5615                 }
5616         }
5617         rcu_read_unlock();
5618
5619         info.major_version = mddev->major_version;
5620         info.minor_version = mddev->minor_version;
5621         info.patch_version = MD_PATCHLEVEL_VERSION;
5622         info.ctime         = mddev->ctime;
5623         info.level         = mddev->level;
5624         info.size          = mddev->dev_sectors / 2;
5625         if (info.size != mddev->dev_sectors / 2) /* overflow */
5626                 info.size = -1;
5627         info.nr_disks      = nr;
5628         info.raid_disks    = mddev->raid_disks;
5629         info.md_minor      = mddev->md_minor;
5630         info.not_persistent= !mddev->persistent;
5631
5632         info.utime         = mddev->utime;
5633         info.state         = 0;
5634         if (mddev->in_sync)
5635                 info.state = (1<<MD_SB_CLEAN);
5636         if (mddev->bitmap && mddev->bitmap_info.offset)
5637                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5638         info.active_disks  = insync;
5639         info.working_disks = working;
5640         info.failed_disks  = failed;
5641         info.spare_disks   = spare;
5642
5643         info.layout        = mddev->layout;
5644         info.chunk_size    = mddev->chunk_sectors << 9;
5645
5646         if (copy_to_user(arg, &info, sizeof(info)))
5647                 return -EFAULT;
5648
5649         return 0;
5650 }
5651
5652 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5653 {
5654         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5655         char *ptr, *buf = NULL;
5656         int err = -ENOMEM;
5657
5658         file = kmalloc(sizeof(*file), GFP_NOIO);
5659
5660         if (!file)
5661                 goto out;
5662
5663         /* bitmap disabled, zero the first byte and copy out */
5664         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5665                 file->pathname[0] = '\0';
5666                 goto copy_out;
5667         }
5668
5669         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5670         if (!buf)
5671                 goto out;
5672
5673         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5674                      buf, sizeof(file->pathname));
5675         if (IS_ERR(ptr))
5676                 goto out;
5677
5678         strcpy(file->pathname, ptr);
5679
5680 copy_out:
5681         err = 0;
5682         if (copy_to_user(arg, file, sizeof(*file)))
5683                 err = -EFAULT;
5684 out:
5685         kfree(buf);
5686         kfree(file);
5687         return err;
5688 }
5689
5690 static int get_disk_info(struct mddev * mddev, void __user * arg)
5691 {
5692         mdu_disk_info_t info;
5693         struct md_rdev *rdev;
5694
5695         if (copy_from_user(&info, arg, sizeof(info)))
5696                 return -EFAULT;
5697
5698         rcu_read_lock();
5699         rdev = find_rdev_nr_rcu(mddev, info.number);
5700         if (rdev) {
5701                 info.major = MAJOR(rdev->bdev->bd_dev);
5702                 info.minor = MINOR(rdev->bdev->bd_dev);
5703                 info.raid_disk = rdev->raid_disk;
5704                 info.state = 0;
5705                 if (test_bit(Faulty, &rdev->flags))
5706                         info.state |= (1<<MD_DISK_FAULTY);
5707                 else if (test_bit(In_sync, &rdev->flags)) {
5708                         info.state |= (1<<MD_DISK_ACTIVE);
5709                         info.state |= (1<<MD_DISK_SYNC);
5710                 }
5711                 if (test_bit(WriteMostly, &rdev->flags))
5712                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5713         } else {
5714                 info.major = info.minor = 0;
5715                 info.raid_disk = -1;
5716                 info.state = (1<<MD_DISK_REMOVED);
5717         }
5718         rcu_read_unlock();
5719
5720         if (copy_to_user(arg, &info, sizeof(info)))
5721                 return -EFAULT;
5722
5723         return 0;
5724 }
5725
5726 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5727 {
5728         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5729         struct md_rdev *rdev;
5730         dev_t dev = MKDEV(info->major,info->minor);
5731
5732         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5733                 return -EOVERFLOW;
5734
5735         if (!mddev->raid_disks) {
5736                 int err;
5737                 /* expecting a device which has a superblock */
5738                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5739                 if (IS_ERR(rdev)) {
5740                         printk(KERN_WARNING 
5741                                 "md: md_import_device returned %ld\n",
5742                                 PTR_ERR(rdev));
5743                         return PTR_ERR(rdev);
5744                 }
5745                 if (!list_empty(&mddev->disks)) {
5746                         struct md_rdev *rdev0
5747                                 = list_entry(mddev->disks.next,
5748                                              struct md_rdev, same_set);
5749                         err = super_types[mddev->major_version]
5750                                 .load_super(rdev, rdev0, mddev->minor_version);
5751                         if (err < 0) {
5752                                 printk(KERN_WARNING 
5753                                         "md: %s has different UUID to %s\n",
5754                                         bdevname(rdev->bdev,b), 
5755                                         bdevname(rdev0->bdev,b2));
5756                                 export_rdev(rdev);
5757                                 return -EINVAL;
5758                         }
5759                 }
5760                 err = bind_rdev_to_array(rdev, mddev);
5761                 if (err)
5762                         export_rdev(rdev);
5763                 return err;
5764         }
5765
5766         /*
5767          * add_new_disk can be used once the array is assembled
5768          * to add "hot spares".  They must already have a superblock
5769          * written
5770          */
5771         if (mddev->pers) {
5772                 int err;
5773                 if (!mddev->pers->hot_add_disk) {
5774                         printk(KERN_WARNING 
5775                                 "%s: personality does not support diskops!\n",
5776                                mdname(mddev));
5777                         return -EINVAL;
5778                 }
5779                 if (mddev->persistent)
5780                         rdev = md_import_device(dev, mddev->major_version,
5781                                                 mddev->minor_version);
5782                 else
5783                         rdev = md_import_device(dev, -1, -1);
5784                 if (IS_ERR(rdev)) {
5785                         printk(KERN_WARNING 
5786                                 "md: md_import_device returned %ld\n",
5787                                 PTR_ERR(rdev));
5788                         return PTR_ERR(rdev);
5789                 }
5790                 /* set saved_raid_disk if appropriate */
5791                 if (!mddev->persistent) {
5792                         if (info->state & (1<<MD_DISK_SYNC)  &&
5793                             info->raid_disk < mddev->raid_disks) {
5794                                 rdev->raid_disk = info->raid_disk;
5795                                 set_bit(In_sync, &rdev->flags);
5796                         } else
5797                                 rdev->raid_disk = -1;
5798                 } else
5799                         super_types[mddev->major_version].
5800                                 validate_super(mddev, rdev);
5801                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5802                      rdev->raid_disk != info->raid_disk) {
5803                         /* This was a hot-add request, but events doesn't
5804                          * match, so reject it.
5805                          */
5806                         export_rdev(rdev);
5807                         return -EINVAL;
5808                 }
5809
5810                 if (test_bit(In_sync, &rdev->flags))
5811                         rdev->saved_raid_disk = rdev->raid_disk;
5812                 else
5813                         rdev->saved_raid_disk = -1;
5814
5815                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5816                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5817                         set_bit(WriteMostly, &rdev->flags);
5818                 else
5819                         clear_bit(WriteMostly, &rdev->flags);
5820
5821                 rdev->raid_disk = -1;
5822                 err = bind_rdev_to_array(rdev, mddev);
5823                 if (!err && !mddev->pers->hot_remove_disk) {
5824                         /* If there is hot_add_disk but no hot_remove_disk
5825                          * then added disks for geometry changes,
5826                          * and should be added immediately.
5827                          */
5828                         super_types[mddev->major_version].
5829                                 validate_super(mddev, rdev);
5830                         err = mddev->pers->hot_add_disk(mddev, rdev);
5831                         if (err)
5832                                 unbind_rdev_from_array(rdev);
5833                 }
5834                 if (err)
5835                         export_rdev(rdev);
5836                 else
5837                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5838
5839                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5840                 if (mddev->degraded)
5841                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5842                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5843                 if (!err)
5844                         md_new_event(mddev);
5845                 md_wakeup_thread(mddev->thread);
5846                 return err;
5847         }
5848
5849         /* otherwise, add_new_disk is only allowed
5850          * for major_version==0 superblocks
5851          */
5852         if (mddev->major_version != 0) {
5853                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5854                        mdname(mddev));
5855                 return -EINVAL;
5856         }
5857
5858         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5859                 int err;
5860                 rdev = md_import_device(dev, -1, 0);
5861                 if (IS_ERR(rdev)) {
5862                         printk(KERN_WARNING 
5863                                 "md: error, md_import_device() returned %ld\n",
5864                                 PTR_ERR(rdev));
5865                         return PTR_ERR(rdev);
5866                 }
5867                 rdev->desc_nr = info->number;
5868                 if (info->raid_disk < mddev->raid_disks)
5869                         rdev->raid_disk = info->raid_disk;
5870                 else
5871                         rdev->raid_disk = -1;
5872
5873                 if (rdev->raid_disk < mddev->raid_disks)
5874                         if (info->state & (1<<MD_DISK_SYNC))
5875                                 set_bit(In_sync, &rdev->flags);
5876
5877                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5878                         set_bit(WriteMostly, &rdev->flags);
5879
5880                 if (!mddev->persistent) {
5881                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5882                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5883                 } else
5884                         rdev->sb_start = calc_dev_sboffset(rdev);
5885                 rdev->sectors = rdev->sb_start;
5886
5887                 err = bind_rdev_to_array(rdev, mddev);
5888                 if (err) {
5889                         export_rdev(rdev);
5890                         return err;
5891                 }
5892         }
5893
5894         return 0;
5895 }
5896
5897 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5898 {
5899         char b[BDEVNAME_SIZE];
5900         struct md_rdev *rdev;
5901
5902         rdev = find_rdev(mddev, dev);
5903         if (!rdev)
5904                 return -ENXIO;
5905
5906         clear_bit(Blocked, &rdev->flags);
5907         remove_and_add_spares(mddev, rdev);
5908
5909         if (rdev->raid_disk >= 0)
5910                 goto busy;
5911
5912         kick_rdev_from_array(rdev);
5913         md_update_sb(mddev, 1);
5914         md_new_event(mddev);
5915
5916         return 0;
5917 busy:
5918         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5919                 bdevname(rdev->bdev,b), mdname(mddev));
5920         return -EBUSY;
5921 }
5922
5923 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5924 {
5925         char b[BDEVNAME_SIZE];
5926         int err;
5927         struct md_rdev *rdev;
5928
5929         if (!mddev->pers)
5930                 return -ENODEV;
5931
5932         if (mddev->major_version != 0) {
5933                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5934                         " version-0 superblocks.\n",
5935                         mdname(mddev));
5936                 return -EINVAL;
5937         }
5938         if (!mddev->pers->hot_add_disk) {
5939                 printk(KERN_WARNING 
5940                         "%s: personality does not support diskops!\n",
5941                         mdname(mddev));
5942                 return -EINVAL;
5943         }
5944
5945         rdev = md_import_device(dev, -1, 0);
5946         if (IS_ERR(rdev)) {
5947                 printk(KERN_WARNING 
5948                         "md: error, md_import_device() returned %ld\n",
5949                         PTR_ERR(rdev));
5950                 return -EINVAL;
5951         }
5952
5953         if (mddev->persistent)
5954                 rdev->sb_start = calc_dev_sboffset(rdev);
5955         else
5956                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5957
5958         rdev->sectors = rdev->sb_start;
5959
5960         if (test_bit(Faulty, &rdev->flags)) {
5961                 printk(KERN_WARNING 
5962                         "md: can not hot-add faulty %s disk to %s!\n",
5963                         bdevname(rdev->bdev,b), mdname(mddev));
5964                 err = -EINVAL;
5965                 goto abort_export;
5966         }
5967         clear_bit(In_sync, &rdev->flags);
5968         rdev->desc_nr = -1;
5969         rdev->saved_raid_disk = -1;
5970         err = bind_rdev_to_array(rdev, mddev);
5971         if (err)
5972                 goto abort_export;
5973
5974         /*
5975          * The rest should better be atomic, we can have disk failures
5976          * noticed in interrupt contexts ...
5977          */
5978
5979         rdev->raid_disk = -1;
5980
5981         md_update_sb(mddev, 1);
5982
5983         /*
5984          * Kick recovery, maybe this spare has to be added to the
5985          * array immediately.
5986          */
5987         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5988         md_wakeup_thread(mddev->thread);
5989         md_new_event(mddev);
5990         return 0;
5991
5992 abort_export:
5993         export_rdev(rdev);
5994         return err;
5995 }
5996
5997 static int set_bitmap_file(struct mddev *mddev, int fd)
5998 {
5999         int err;
6000
6001         if (mddev->pers) {
6002                 if (!mddev->pers->quiesce)
6003                         return -EBUSY;
6004                 if (mddev->recovery || mddev->sync_thread)
6005                         return -EBUSY;
6006                 /* we should be able to change the bitmap.. */
6007         }
6008
6009
6010         if (fd >= 0) {
6011                 if (mddev->bitmap)
6012                         return -EEXIST; /* cannot add when bitmap is present */
6013                 mddev->bitmap_info.file = fget(fd);
6014
6015                 if (mddev->bitmap_info.file == NULL) {
6016                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6017                                mdname(mddev));
6018                         return -EBADF;
6019                 }
6020
6021                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
6022                 if (err) {
6023                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6024                                mdname(mddev));
6025                         fput(mddev->bitmap_info.file);
6026                         mddev->bitmap_info.file = NULL;
6027                         return err;
6028                 }
6029                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6030         } else if (mddev->bitmap == NULL)
6031                 return -ENOENT; /* cannot remove what isn't there */
6032         err = 0;
6033         if (mddev->pers) {
6034                 mddev->pers->quiesce(mddev, 1);
6035                 if (fd >= 0) {
6036                         err = bitmap_create(mddev);
6037                         if (!err)
6038                                 err = bitmap_load(mddev);
6039                 }
6040                 if (fd < 0 || err) {
6041                         bitmap_destroy(mddev);
6042                         fd = -1; /* make sure to put the file */
6043                 }
6044                 mddev->pers->quiesce(mddev, 0);
6045         }
6046         if (fd < 0) {
6047                 if (mddev->bitmap_info.file) {
6048                         restore_bitmap_write_access(mddev->bitmap_info.file);
6049                         fput(mddev->bitmap_info.file);
6050                 }
6051                 mddev->bitmap_info.file = NULL;
6052         }
6053
6054         return err;
6055 }
6056
6057 /*
6058  * set_array_info is used two different ways
6059  * The original usage is when creating a new array.
6060  * In this usage, raid_disks is > 0 and it together with
6061  *  level, size, not_persistent,layout,chunksize determine the
6062  *  shape of the array.
6063  *  This will always create an array with a type-0.90.0 superblock.
6064  * The newer usage is when assembling an array.
6065  *  In this case raid_disks will be 0, and the major_version field is
6066  *  use to determine which style super-blocks are to be found on the devices.
6067  *  The minor and patch _version numbers are also kept incase the
6068  *  super_block handler wishes to interpret them.
6069  */
6070 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6071 {
6072
6073         if (info->raid_disks == 0) {
6074                 /* just setting version number for superblock loading */
6075                 if (info->major_version < 0 ||
6076                     info->major_version >= ARRAY_SIZE(super_types) ||
6077                     super_types[info->major_version].name == NULL) {
6078                         /* maybe try to auto-load a module? */
6079                         printk(KERN_INFO 
6080                                 "md: superblock version %d not known\n",
6081                                 info->major_version);
6082                         return -EINVAL;
6083                 }
6084                 mddev->major_version = info->major_version;
6085                 mddev->minor_version = info->minor_version;
6086                 mddev->patch_version = info->patch_version;
6087                 mddev->persistent = !info->not_persistent;
6088                 /* ensure mddev_put doesn't delete this now that there
6089                  * is some minimal configuration.
6090                  */
6091                 mddev->ctime         = get_seconds();
6092                 return 0;
6093         }
6094         mddev->major_version = MD_MAJOR_VERSION;
6095         mddev->minor_version = MD_MINOR_VERSION;
6096         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6097         mddev->ctime         = get_seconds();
6098
6099         mddev->level         = info->level;
6100         mddev->clevel[0]     = 0;
6101         mddev->dev_sectors   = 2 * (sector_t)info->size;
6102         mddev->raid_disks    = info->raid_disks;
6103         /* don't set md_minor, it is determined by which /dev/md* was
6104          * openned
6105          */
6106         if (info->state & (1<<MD_SB_CLEAN))
6107                 mddev->recovery_cp = MaxSector;
6108         else
6109                 mddev->recovery_cp = 0;
6110         mddev->persistent    = ! info->not_persistent;
6111         mddev->external      = 0;
6112
6113         mddev->layout        = info->layout;
6114         mddev->chunk_sectors = info->chunk_size >> 9;
6115
6116         mddev->max_disks     = MD_SB_DISKS;
6117
6118         if (mddev->persistent)
6119                 mddev->flags         = 0;
6120         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6121
6122         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6123         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6124         mddev->bitmap_info.offset = 0;
6125
6126         mddev->reshape_position = MaxSector;
6127
6128         /*
6129          * Generate a 128 bit UUID
6130          */
6131         get_random_bytes(mddev->uuid, 16);
6132
6133         mddev->new_level = mddev->level;
6134         mddev->new_chunk_sectors = mddev->chunk_sectors;
6135         mddev->new_layout = mddev->layout;
6136         mddev->delta_disks = 0;
6137         mddev->reshape_backwards = 0;
6138
6139         return 0;
6140 }
6141
6142 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6143 {
6144         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6145
6146         if (mddev->external_size)
6147                 return;
6148
6149         mddev->array_sectors = array_sectors;
6150 }
6151 EXPORT_SYMBOL(md_set_array_sectors);
6152
6153 static int update_size(struct mddev *mddev, sector_t num_sectors)
6154 {
6155         struct md_rdev *rdev;
6156         int rv;
6157         int fit = (num_sectors == 0);
6158
6159         if (mddev->pers->resize == NULL)
6160                 return -EINVAL;
6161         /* The "num_sectors" is the number of sectors of each device that
6162          * is used.  This can only make sense for arrays with redundancy.
6163          * linear and raid0 always use whatever space is available. We can only
6164          * consider changing this number if no resync or reconstruction is
6165          * happening, and if the new size is acceptable. It must fit before the
6166          * sb_start or, if that is <data_offset, it must fit before the size
6167          * of each device.  If num_sectors is zero, we find the largest size
6168          * that fits.
6169          */
6170         if (mddev->sync_thread)
6171                 return -EBUSY;
6172
6173         rdev_for_each(rdev, mddev) {
6174                 sector_t avail = rdev->sectors;
6175
6176                 if (fit && (num_sectors == 0 || num_sectors > avail))
6177                         num_sectors = avail;
6178                 if (avail < num_sectors)
6179                         return -ENOSPC;
6180         }
6181         rv = mddev->pers->resize(mddev, num_sectors);
6182         if (!rv)
6183                 revalidate_disk(mddev->gendisk);
6184         return rv;
6185 }
6186
6187 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6188 {
6189         int rv;
6190         struct md_rdev *rdev;
6191         /* change the number of raid disks */
6192         if (mddev->pers->check_reshape == NULL)
6193                 return -EINVAL;
6194         if (raid_disks <= 0 ||
6195             (mddev->max_disks && raid_disks >= mddev->max_disks))
6196                 return -EINVAL;
6197         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6198                 return -EBUSY;
6199
6200         rdev_for_each(rdev, mddev) {
6201                 if (mddev->raid_disks < raid_disks &&
6202                     rdev->data_offset < rdev->new_data_offset)
6203                         return -EINVAL;
6204                 if (mddev->raid_disks > raid_disks &&
6205                     rdev->data_offset > rdev->new_data_offset)
6206                         return -EINVAL;
6207         }
6208
6209         mddev->delta_disks = raid_disks - mddev->raid_disks;
6210         if (mddev->delta_disks < 0)
6211                 mddev->reshape_backwards = 1;
6212         else if (mddev->delta_disks > 0)
6213                 mddev->reshape_backwards = 0;
6214
6215         rv = mddev->pers->check_reshape(mddev);
6216         if (rv < 0) {
6217                 mddev->delta_disks = 0;
6218                 mddev->reshape_backwards = 0;
6219         }
6220         return rv;
6221 }
6222
6223
6224 /*
6225  * update_array_info is used to change the configuration of an
6226  * on-line array.
6227  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6228  * fields in the info are checked against the array.
6229  * Any differences that cannot be handled will cause an error.
6230  * Normally, only one change can be managed at a time.
6231  */
6232 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6233 {
6234         int rv = 0;
6235         int cnt = 0;
6236         int state = 0;
6237
6238         /* calculate expected state,ignoring low bits */
6239         if (mddev->bitmap && mddev->bitmap_info.offset)
6240                 state |= (1 << MD_SB_BITMAP_PRESENT);
6241
6242         if (mddev->major_version != info->major_version ||
6243             mddev->minor_version != info->minor_version ||
6244 /*          mddev->patch_version != info->patch_version || */
6245             mddev->ctime         != info->ctime         ||
6246             mddev->level         != info->level         ||
6247 /*          mddev->layout        != info->layout        || */
6248             !mddev->persistent   != info->not_persistent||
6249             mddev->chunk_sectors != info->chunk_size >> 9 ||
6250             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6251             ((state^info->state) & 0xfffffe00)
6252                 )
6253                 return -EINVAL;
6254         /* Check there is only one change */
6255         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6256                 cnt++;
6257         if (mddev->raid_disks != info->raid_disks)
6258                 cnt++;
6259         if (mddev->layout != info->layout)
6260                 cnt++;
6261         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6262                 cnt++;
6263         if (cnt == 0)
6264                 return 0;
6265         if (cnt > 1)
6266                 return -EINVAL;
6267
6268         if (mddev->layout != info->layout) {
6269                 /* Change layout
6270                  * we don't need to do anything at the md level, the
6271                  * personality will take care of it all.
6272                  */
6273                 if (mddev->pers->check_reshape == NULL)
6274                         return -EINVAL;
6275                 else {
6276                         mddev->new_layout = info->layout;
6277                         rv = mddev->pers->check_reshape(mddev);
6278                         if (rv)
6279                                 mddev->new_layout = mddev->layout;
6280                         return rv;
6281                 }
6282         }
6283         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6284                 rv = update_size(mddev, (sector_t)info->size * 2);
6285
6286         if (mddev->raid_disks    != info->raid_disks)
6287                 rv = update_raid_disks(mddev, info->raid_disks);
6288
6289         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6290                 if (mddev->pers->quiesce == NULL)
6291                         return -EINVAL;
6292                 if (mddev->recovery || mddev->sync_thread)
6293                         return -EBUSY;
6294                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6295                         /* add the bitmap */
6296                         if (mddev->bitmap)
6297                                 return -EEXIST;
6298                         if (mddev->bitmap_info.default_offset == 0)
6299                                 return -EINVAL;
6300                         mddev->bitmap_info.offset =
6301                                 mddev->bitmap_info.default_offset;
6302                         mddev->bitmap_info.space =
6303                                 mddev->bitmap_info.default_space;
6304                         mddev->pers->quiesce(mddev, 1);
6305                         rv = bitmap_create(mddev);
6306                         if (!rv)
6307                                 rv = bitmap_load(mddev);
6308                         if (rv)
6309                                 bitmap_destroy(mddev);
6310                         mddev->pers->quiesce(mddev, 0);
6311                 } else {
6312                         /* remove the bitmap */
6313                         if (!mddev->bitmap)
6314                                 return -ENOENT;
6315                         if (mddev->bitmap->storage.file)
6316                                 return -EINVAL;
6317                         mddev->pers->quiesce(mddev, 1);
6318                         bitmap_destroy(mddev);
6319                         mddev->pers->quiesce(mddev, 0);
6320                         mddev->bitmap_info.offset = 0;
6321                 }
6322         }
6323         md_update_sb(mddev, 1);
6324         return rv;
6325 }
6326
6327 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6328 {
6329         struct md_rdev *rdev;
6330         int err = 0;
6331
6332         if (mddev->pers == NULL)
6333                 return -ENODEV;
6334
6335         rcu_read_lock();
6336         rdev = find_rdev_rcu(mddev, dev);
6337         if (!rdev)
6338                 err =  -ENODEV;
6339         else {
6340                 md_error(mddev, rdev);
6341                 if (!test_bit(Faulty, &rdev->flags))
6342                         err = -EBUSY;
6343         }
6344         rcu_read_unlock();
6345         return err;
6346 }
6347
6348 /*
6349  * We have a problem here : there is no easy way to give a CHS
6350  * virtual geometry. We currently pretend that we have a 2 heads
6351  * 4 sectors (with a BIG number of cylinders...). This drives
6352  * dosfs just mad... ;-)
6353  */
6354 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6355 {
6356         struct mddev *mddev = bdev->bd_disk->private_data;
6357
6358         geo->heads = 2;
6359         geo->sectors = 4;
6360         geo->cylinders = mddev->array_sectors / 8;
6361         return 0;
6362 }
6363
6364 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6365                         unsigned int cmd, unsigned long arg)
6366 {
6367         int err = 0;
6368         void __user *argp = (void __user *)arg;
6369         struct mddev *mddev = NULL;
6370         int ro;
6371
6372         switch (cmd) {
6373         case RAID_VERSION:
6374         case GET_ARRAY_INFO:
6375         case GET_DISK_INFO:
6376                 break;
6377         default:
6378                 if (!capable(CAP_SYS_ADMIN))
6379                         return -EACCES;
6380         }
6381
6382         /*
6383          * Commands dealing with the RAID driver but not any
6384          * particular array:
6385          */
6386         switch (cmd) {
6387         case RAID_VERSION:
6388                 err = get_version(argp);
6389                 goto done;
6390
6391         case PRINT_RAID_DEBUG:
6392                 err = 0;
6393                 md_print_devices();
6394                 goto done;
6395
6396 #ifndef MODULE
6397         case RAID_AUTORUN:
6398                 err = 0;
6399                 autostart_arrays(arg);
6400                 goto done;
6401 #endif
6402         default:;
6403         }
6404
6405         /*
6406          * Commands creating/starting a new array:
6407          */
6408
6409         mddev = bdev->bd_disk->private_data;
6410
6411         if (!mddev) {
6412                 BUG();
6413                 goto abort;
6414         }
6415
6416         /* Some actions do not requires the mutex */
6417         switch (cmd) {
6418         case GET_ARRAY_INFO:
6419                 if (!mddev->raid_disks && !mddev->external)
6420                         err = -ENODEV;
6421                 else
6422                         err = get_array_info(mddev, argp);
6423                 goto abort;
6424
6425         case GET_DISK_INFO:
6426                 if (!mddev->raid_disks && !mddev->external)
6427                         err = -ENODEV;
6428                 else
6429                         err = get_disk_info(mddev, argp);
6430                 goto abort;
6431
6432         case SET_DISK_FAULTY:
6433                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6434                 goto abort;
6435         }
6436
6437         if (cmd == ADD_NEW_DISK)
6438                 /* need to ensure md_delayed_delete() has completed */
6439                 flush_workqueue(md_misc_wq);
6440
6441         if (cmd == HOT_REMOVE_DISK)
6442                 /* need to ensure recovery thread has run */
6443                 wait_event_interruptible_timeout(mddev->sb_wait,
6444                                                  !test_bit(MD_RECOVERY_NEEDED,
6445                                                            &mddev->flags),
6446                                                  msecs_to_jiffies(5000));
6447         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6448                 /* Need to flush page cache, and ensure no-one else opens
6449                  * and writes
6450                  */
6451                 mutex_lock(&mddev->open_mutex);
6452                 if (atomic_read(&mddev->openers) > 1) {
6453                         mutex_unlock(&mddev->open_mutex);
6454                         err = -EBUSY;
6455                         goto abort;
6456                 }
6457                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6458                 mutex_unlock(&mddev->open_mutex);
6459                 sync_blockdev(bdev);
6460         }
6461         err = mddev_lock(mddev);
6462         if (err) {
6463                 printk(KERN_INFO 
6464                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6465                         err, cmd);
6466                 goto abort;
6467         }
6468
6469         if (cmd == SET_ARRAY_INFO) {
6470                 mdu_array_info_t info;
6471                 if (!arg)
6472                         memset(&info, 0, sizeof(info));
6473                 else if (copy_from_user(&info, argp, sizeof(info))) {
6474                         err = -EFAULT;
6475                         goto abort_unlock;
6476                 }
6477                 if (mddev->pers) {
6478                         err = update_array_info(mddev, &info);
6479                         if (err) {
6480                                 printk(KERN_WARNING "md: couldn't update"
6481                                        " array info. %d\n", err);
6482                                 goto abort_unlock;
6483                         }
6484                         goto done_unlock;
6485                 }
6486                 if (!list_empty(&mddev->disks)) {
6487                         printk(KERN_WARNING
6488                                "md: array %s already has disks!\n",
6489                                mdname(mddev));
6490                         err = -EBUSY;
6491                         goto abort_unlock;
6492                 }
6493                 if (mddev->raid_disks) {
6494                         printk(KERN_WARNING
6495                                "md: array %s already initialised!\n",
6496                                mdname(mddev));
6497                         err = -EBUSY;
6498                         goto abort_unlock;
6499                 }
6500                 err = set_array_info(mddev, &info);
6501                 if (err) {
6502                         printk(KERN_WARNING "md: couldn't set"
6503                                " array info. %d\n", err);
6504                         goto abort_unlock;
6505                 }
6506                 goto done_unlock;
6507         }
6508
6509         /*
6510          * Commands querying/configuring an existing array:
6511          */
6512         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6513          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6514         if ((!mddev->raid_disks && !mddev->external)
6515             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6516             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6517             && cmd != GET_BITMAP_FILE) {
6518                 err = -ENODEV;
6519                 goto abort_unlock;
6520         }
6521
6522         /*
6523          * Commands even a read-only array can execute:
6524          */
6525         switch (cmd) {
6526         case GET_BITMAP_FILE:
6527                 err = get_bitmap_file(mddev, argp);
6528                 goto done_unlock;
6529
6530         case RESTART_ARRAY_RW:
6531                 err = restart_array(mddev);
6532                 goto done_unlock;
6533
6534         case STOP_ARRAY:
6535                 err = do_md_stop(mddev, 0, bdev);
6536                 goto done_unlock;
6537
6538         case STOP_ARRAY_RO:
6539                 err = md_set_readonly(mddev, bdev);
6540                 goto done_unlock;
6541
6542         case HOT_REMOVE_DISK:
6543                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6544                 goto done_unlock;
6545
6546         case ADD_NEW_DISK:
6547                 /* We can support ADD_NEW_DISK on read-only arrays
6548                  * on if we are re-adding a preexisting device.
6549                  * So require mddev->pers and MD_DISK_SYNC.
6550                  */
6551                 if (mddev->pers) {
6552                         mdu_disk_info_t info;
6553                         if (copy_from_user(&info, argp, sizeof(info)))
6554                                 err = -EFAULT;
6555                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6556                                 /* Need to clear read-only for this */
6557                                 break;
6558                         else
6559                                 err = add_new_disk(mddev, &info);
6560                         goto done_unlock;
6561                 }
6562                 break;
6563
6564         case BLKROSET:
6565                 if (get_user(ro, (int __user *)(arg))) {
6566                         err = -EFAULT;
6567                         goto done_unlock;
6568                 }
6569                 err = -EINVAL;
6570
6571                 /* if the bdev is going readonly the value of mddev->ro
6572                  * does not matter, no writes are coming
6573                  */
6574                 if (ro)
6575                         goto done_unlock;
6576
6577                 /* are we are already prepared for writes? */
6578                 if (mddev->ro != 1)
6579                         goto done_unlock;
6580
6581                 /* transitioning to readauto need only happen for
6582                  * arrays that call md_write_start
6583                  */
6584                 if (mddev->pers) {
6585                         err = restart_array(mddev);
6586                         if (err == 0) {
6587                                 mddev->ro = 2;
6588                                 set_disk_ro(mddev->gendisk, 0);
6589                         }
6590                 }
6591                 goto done_unlock;
6592         }
6593
6594         /*
6595          * The remaining ioctls are changing the state of the
6596          * superblock, so we do not allow them on read-only arrays.
6597          * However non-MD ioctls (e.g. get-size) will still come through
6598          * here and hit the 'default' below, so only disallow
6599          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6600          */
6601         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6602                 if (mddev->ro == 2) {
6603                         mddev->ro = 0;
6604                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6605                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6606                         /* mddev_unlock will wake thread */
6607                         /* If a device failed while we were read-only, we
6608                          * need to make sure the metadata is updated now.
6609                          */
6610                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6611                                 mddev_unlock(mddev);
6612                                 wait_event(mddev->sb_wait,
6613                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6614                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6615                                 mddev_lock(mddev);
6616                         }
6617                 } else {
6618                         err = -EROFS;
6619                         goto abort_unlock;
6620                 }
6621         }
6622
6623         switch (cmd) {
6624         case ADD_NEW_DISK:
6625         {
6626                 mdu_disk_info_t info;
6627                 if (copy_from_user(&info, argp, sizeof(info)))
6628                         err = -EFAULT;
6629                 else
6630                         err = add_new_disk(mddev, &info);
6631                 goto done_unlock;
6632         }
6633
6634         case HOT_ADD_DISK:
6635                 err = hot_add_disk(mddev, new_decode_dev(arg));
6636                 goto done_unlock;
6637
6638         case RUN_ARRAY:
6639                 err = do_md_run(mddev);
6640                 goto done_unlock;
6641
6642         case SET_BITMAP_FILE:
6643                 err = set_bitmap_file(mddev, (int)arg);
6644                 goto done_unlock;
6645
6646         default:
6647                 err = -EINVAL;
6648                 goto abort_unlock;
6649         }
6650
6651 done_unlock:
6652 abort_unlock:
6653         if (mddev->hold_active == UNTIL_IOCTL &&
6654             err != -EINVAL)
6655                 mddev->hold_active = 0;
6656         mddev_unlock(mddev);
6657
6658         return err;
6659 done:
6660         if (err)
6661                 MD_BUG();
6662 abort:
6663         return err;
6664 }
6665 #ifdef CONFIG_COMPAT
6666 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6667                     unsigned int cmd, unsigned long arg)
6668 {
6669         switch (cmd) {
6670         case HOT_REMOVE_DISK:
6671         case HOT_ADD_DISK:
6672         case SET_DISK_FAULTY:
6673         case SET_BITMAP_FILE:
6674                 /* These take in integer arg, do not convert */
6675                 break;
6676         default:
6677                 arg = (unsigned long)compat_ptr(arg);
6678                 break;
6679         }
6680
6681         return md_ioctl(bdev, mode, cmd, arg);
6682 }
6683 #endif /* CONFIG_COMPAT */
6684
6685 static int md_open(struct block_device *bdev, fmode_t mode)
6686 {
6687         /*
6688          * Succeed if we can lock the mddev, which confirms that
6689          * it isn't being stopped right now.
6690          */
6691         struct mddev *mddev = mddev_find(bdev->bd_dev);
6692         int err;
6693
6694         if (!mddev)
6695                 return -ENODEV;
6696
6697         if (mddev->gendisk != bdev->bd_disk) {
6698                 /* we are racing with mddev_put which is discarding this
6699                  * bd_disk.
6700                  */
6701                 mddev_put(mddev);
6702                 /* Wait until bdev->bd_disk is definitely gone */
6703                 flush_workqueue(md_misc_wq);
6704                 /* Then retry the open from the top */
6705                 return -ERESTARTSYS;
6706         }
6707         BUG_ON(mddev != bdev->bd_disk->private_data);
6708
6709         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6710                 goto out;
6711
6712         err = 0;
6713         atomic_inc(&mddev->openers);
6714         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6715         mutex_unlock(&mddev->open_mutex);
6716
6717         check_disk_change(bdev);
6718  out:
6719         return err;
6720 }
6721
6722 static void md_release(struct gendisk *disk, fmode_t mode)
6723 {
6724         struct mddev *mddev = disk->private_data;
6725
6726         BUG_ON(!mddev);
6727         atomic_dec(&mddev->openers);
6728         mddev_put(mddev);
6729 }
6730
6731 static int md_media_changed(struct gendisk *disk)
6732 {
6733         struct mddev *mddev = disk->private_data;
6734
6735         return mddev->changed;
6736 }
6737
6738 static int md_revalidate(struct gendisk *disk)
6739 {
6740         struct mddev *mddev = disk->private_data;
6741
6742         mddev->changed = 0;
6743         return 0;
6744 }
6745 static const struct block_device_operations md_fops =
6746 {
6747         .owner          = THIS_MODULE,
6748         .open           = md_open,
6749         .release        = md_release,
6750         .ioctl          = md_ioctl,
6751 #ifdef CONFIG_COMPAT
6752         .compat_ioctl   = md_compat_ioctl,
6753 #endif
6754         .getgeo         = md_getgeo,
6755         .media_changed  = md_media_changed,
6756         .revalidate_disk= md_revalidate,
6757 };
6758
6759 static int md_thread(void * arg)
6760 {
6761         struct md_thread *thread = arg;
6762
6763         /*
6764          * md_thread is a 'system-thread', it's priority should be very
6765          * high. We avoid resource deadlocks individually in each
6766          * raid personality. (RAID5 does preallocation) We also use RR and
6767          * the very same RT priority as kswapd, thus we will never get
6768          * into a priority inversion deadlock.
6769          *
6770          * we definitely have to have equal or higher priority than
6771          * bdflush, otherwise bdflush will deadlock if there are too
6772          * many dirty RAID5 blocks.
6773          */
6774
6775         allow_signal(SIGKILL);
6776         while (!kthread_should_stop()) {
6777
6778                 /* We need to wait INTERRUPTIBLE so that
6779                  * we don't add to the load-average.
6780                  * That means we need to be sure no signals are
6781                  * pending
6782                  */
6783                 if (signal_pending(current))
6784                         flush_signals(current);
6785
6786                 wait_event_interruptible_timeout
6787                         (thread->wqueue,
6788                          test_bit(THREAD_WAKEUP, &thread->flags)
6789                          || kthread_should_stop(),
6790                          thread->timeout);
6791
6792                 clear_bit(THREAD_WAKEUP, &thread->flags);
6793                 if (!kthread_should_stop())
6794                         thread->run(thread);
6795         }
6796
6797         return 0;
6798 }
6799
6800 void md_wakeup_thread(struct md_thread *thread)
6801 {
6802         if (thread) {
6803                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6804                 set_bit(THREAD_WAKEUP, &thread->flags);
6805                 wake_up(&thread->wqueue);
6806         }
6807 }
6808
6809 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6810                 struct mddev *mddev, const char *name)
6811 {
6812         struct md_thread *thread;
6813
6814         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6815         if (!thread)
6816                 return NULL;
6817
6818         init_waitqueue_head(&thread->wqueue);
6819
6820         thread->run = run;
6821         thread->mddev = mddev;
6822         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6823         thread->tsk = kthread_run(md_thread, thread,
6824                                   "%s_%s",
6825                                   mdname(thread->mddev),
6826                                   name);
6827         if (IS_ERR(thread->tsk)) {
6828                 kfree(thread);
6829                 return NULL;
6830         }
6831         return thread;
6832 }
6833
6834 void md_unregister_thread(struct md_thread **threadp)
6835 {
6836         struct md_thread *thread = *threadp;
6837         if (!thread)
6838                 return;
6839         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6840         /* Locking ensures that mddev_unlock does not wake_up a
6841          * non-existent thread
6842          */
6843         spin_lock(&pers_lock);
6844         *threadp = NULL;
6845         spin_unlock(&pers_lock);
6846
6847         kthread_stop(thread->tsk);
6848         kfree(thread);
6849 }
6850
6851 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6852 {
6853         if (!mddev) {
6854                 MD_BUG();
6855                 return;
6856         }
6857
6858         if (!rdev || test_bit(Faulty, &rdev->flags))
6859                 return;
6860
6861         if (!mddev->pers || !mddev->pers->error_handler)
6862                 return;
6863         mddev->pers->error_handler(mddev,rdev);
6864         if (mddev->degraded)
6865                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6866         sysfs_notify_dirent_safe(rdev->sysfs_state);
6867         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6868         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6869         md_wakeup_thread(mddev->thread);
6870         if (mddev->event_work.func)
6871                 queue_work(md_misc_wq, &mddev->event_work);
6872         md_new_event_inintr(mddev);
6873 }
6874
6875 /* seq_file implementation /proc/mdstat */
6876
6877 static void status_unused(struct seq_file *seq)
6878 {
6879         int i = 0;
6880         struct md_rdev *rdev;
6881
6882         seq_printf(seq, "unused devices: ");
6883
6884         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6885                 char b[BDEVNAME_SIZE];
6886                 i++;
6887                 seq_printf(seq, "%s ",
6888                               bdevname(rdev->bdev,b));
6889         }
6890         if (!i)
6891                 seq_printf(seq, "<none>");
6892
6893         seq_printf(seq, "\n");
6894 }
6895
6896
6897 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6898 {
6899         sector_t max_sectors, resync, res;
6900         unsigned long dt, db;
6901         sector_t rt;
6902         int scale;
6903         unsigned int per_milli;
6904
6905         if (mddev->curr_resync <= 3)
6906                 resync = 0;
6907         else
6908                 resync = mddev->curr_resync
6909                         - atomic_read(&mddev->recovery_active);
6910
6911         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6912             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6913                 max_sectors = mddev->resync_max_sectors;
6914         else
6915                 max_sectors = mddev->dev_sectors;
6916
6917         /*
6918          * Should not happen.
6919          */
6920         if (!max_sectors) {
6921                 MD_BUG();
6922                 return;
6923         }
6924         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6925          * in a sector_t, and (max_sectors>>scale) will fit in a
6926          * u32, as those are the requirements for sector_div.
6927          * Thus 'scale' must be at least 10
6928          */
6929         scale = 10;
6930         if (sizeof(sector_t) > sizeof(unsigned long)) {
6931                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6932                         scale++;
6933         }
6934         res = (resync>>scale)*1000;
6935         sector_div(res, (u32)((max_sectors>>scale)+1));
6936
6937         per_milli = res;
6938         {
6939                 int i, x = per_milli/50, y = 20-x;
6940                 seq_printf(seq, "[");
6941                 for (i = 0; i < x; i++)
6942                         seq_printf(seq, "=");
6943                 seq_printf(seq, ">");
6944                 for (i = 0; i < y; i++)
6945                         seq_printf(seq, ".");
6946                 seq_printf(seq, "] ");
6947         }
6948         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6949                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6950                     "reshape" :
6951                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6952                      "check" :
6953                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6954                       "resync" : "recovery"))),
6955                    per_milli/10, per_milli % 10,
6956                    (unsigned long long) resync/2,
6957                    (unsigned long long) max_sectors/2);
6958
6959         /*
6960          * dt: time from mark until now
6961          * db: blocks written from mark until now
6962          * rt: remaining time
6963          *
6964          * rt is a sector_t, so could be 32bit or 64bit.
6965          * So we divide before multiply in case it is 32bit and close
6966          * to the limit.
6967          * We scale the divisor (db) by 32 to avoid losing precision
6968          * near the end of resync when the number of remaining sectors
6969          * is close to 'db'.
6970          * We then divide rt by 32 after multiplying by db to compensate.
6971          * The '+1' avoids division by zero if db is very small.
6972          */
6973         dt = ((jiffies - mddev->resync_mark) / HZ);
6974         if (!dt) dt++;
6975         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6976                 - mddev->resync_mark_cnt;
6977
6978         rt = max_sectors - resync;    /* number of remaining sectors */
6979         sector_div(rt, db/32+1);
6980         rt *= dt;
6981         rt >>= 5;
6982
6983         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6984                    ((unsigned long)rt % 60)/6);
6985
6986         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6987 }
6988
6989 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6990 {
6991         struct list_head *tmp;
6992         loff_t l = *pos;
6993         struct mddev *mddev;
6994
6995         if (l >= 0x10000)
6996                 return NULL;
6997         if (!l--)
6998                 /* header */
6999                 return (void*)1;
7000
7001         spin_lock(&all_mddevs_lock);
7002         list_for_each(tmp,&all_mddevs)
7003                 if (!l--) {
7004                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7005                         mddev_get(mddev);
7006                         spin_unlock(&all_mddevs_lock);
7007                         return mddev;
7008                 }
7009         spin_unlock(&all_mddevs_lock);
7010         if (!l--)
7011                 return (void*)2;/* tail */
7012         return NULL;
7013 }
7014
7015 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7016 {
7017         struct list_head *tmp;
7018         struct mddev *next_mddev, *mddev = v;
7019         
7020         ++*pos;
7021         if (v == (void*)2)
7022                 return NULL;
7023
7024         spin_lock(&all_mddevs_lock);
7025         if (v == (void*)1)
7026                 tmp = all_mddevs.next;
7027         else
7028                 tmp = mddev->all_mddevs.next;
7029         if (tmp != &all_mddevs)
7030                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7031         else {
7032                 next_mddev = (void*)2;
7033                 *pos = 0x10000;
7034         }               
7035         spin_unlock(&all_mddevs_lock);
7036
7037         if (v != (void*)1)
7038                 mddev_put(mddev);
7039         return next_mddev;
7040
7041 }
7042
7043 static void md_seq_stop(struct seq_file *seq, void *v)
7044 {
7045         struct mddev *mddev = v;
7046
7047         if (mddev && v != (void*)1 && v != (void*)2)
7048                 mddev_put(mddev);
7049 }
7050
7051 static int md_seq_show(struct seq_file *seq, void *v)
7052 {
7053         struct mddev *mddev = v;
7054         sector_t sectors;
7055         struct md_rdev *rdev;
7056
7057         if (v == (void*)1) {
7058                 struct md_personality *pers;
7059                 seq_printf(seq, "Personalities : ");
7060                 spin_lock(&pers_lock);
7061                 list_for_each_entry(pers, &pers_list, list)
7062                         seq_printf(seq, "[%s] ", pers->name);
7063
7064                 spin_unlock(&pers_lock);
7065                 seq_printf(seq, "\n");
7066                 seq->poll_event = atomic_read(&md_event_count);
7067                 return 0;
7068         }
7069         if (v == (void*)2) {
7070                 status_unused(seq);
7071                 return 0;
7072         }
7073
7074         if (mddev_lock(mddev) < 0)
7075                 return -EINTR;
7076
7077         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7078                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7079                                                 mddev->pers ? "" : "in");
7080                 if (mddev->pers) {
7081                         if (mddev->ro==1)
7082                                 seq_printf(seq, " (read-only)");
7083                         if (mddev->ro==2)
7084                                 seq_printf(seq, " (auto-read-only)");
7085                         seq_printf(seq, " %s", mddev->pers->name);
7086                 }
7087
7088                 sectors = 0;
7089                 rdev_for_each(rdev, mddev) {
7090                         char b[BDEVNAME_SIZE];
7091                         seq_printf(seq, " %s[%d]",
7092                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7093                         if (test_bit(WriteMostly, &rdev->flags))
7094                                 seq_printf(seq, "(W)");
7095                         if (test_bit(Faulty, &rdev->flags)) {
7096                                 seq_printf(seq, "(F)");
7097                                 continue;
7098                         }
7099                         if (rdev->raid_disk < 0)
7100                                 seq_printf(seq, "(S)"); /* spare */
7101                         if (test_bit(Replacement, &rdev->flags))
7102                                 seq_printf(seq, "(R)");
7103                         sectors += rdev->sectors;
7104                 }
7105
7106                 if (!list_empty(&mddev->disks)) {
7107                         if (mddev->pers)
7108                                 seq_printf(seq, "\n      %llu blocks",
7109                                            (unsigned long long)
7110                                            mddev->array_sectors / 2);
7111                         else
7112                                 seq_printf(seq, "\n      %llu blocks",
7113                                            (unsigned long long)sectors / 2);
7114                 }
7115                 if (mddev->persistent) {
7116                         if (mddev->major_version != 0 ||
7117                             mddev->minor_version != 90) {
7118                                 seq_printf(seq," super %d.%d",
7119                                            mddev->major_version,
7120                                            mddev->minor_version);
7121                         }
7122                 } else if (mddev->external)
7123                         seq_printf(seq, " super external:%s",
7124                                    mddev->metadata_type);
7125                 else
7126                         seq_printf(seq, " super non-persistent");
7127
7128                 if (mddev->pers) {
7129                         mddev->pers->status(seq, mddev);
7130                         seq_printf(seq, "\n      ");
7131                         if (mddev->pers->sync_request) {
7132                                 if (mddev->curr_resync > 2) {
7133                                         status_resync(seq, mddev);
7134                                         seq_printf(seq, "\n      ");
7135                                 } else if (mddev->curr_resync >= 1)
7136                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7137                                 else if (mddev->recovery_cp < MaxSector)
7138                                         seq_printf(seq, "\tresync=PENDING\n      ");
7139                         }
7140                 } else
7141                         seq_printf(seq, "\n       ");
7142
7143                 bitmap_status(seq, mddev->bitmap);
7144
7145                 seq_printf(seq, "\n");
7146         }
7147         mddev_unlock(mddev);
7148         
7149         return 0;
7150 }
7151
7152 static const struct seq_operations md_seq_ops = {
7153         .start  = md_seq_start,
7154         .next   = md_seq_next,
7155         .stop   = md_seq_stop,
7156         .show   = md_seq_show,
7157 };
7158
7159 static int md_seq_open(struct inode *inode, struct file *file)
7160 {
7161         struct seq_file *seq;
7162         int error;
7163
7164         error = seq_open(file, &md_seq_ops);
7165         if (error)
7166                 return error;
7167
7168         seq = file->private_data;
7169         seq->poll_event = atomic_read(&md_event_count);
7170         return error;
7171 }
7172
7173 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7174 {
7175         struct seq_file *seq = filp->private_data;
7176         int mask;
7177
7178         poll_wait(filp, &md_event_waiters, wait);
7179
7180         /* always allow read */
7181         mask = POLLIN | POLLRDNORM;
7182
7183         if (seq->poll_event != atomic_read(&md_event_count))
7184                 mask |= POLLERR | POLLPRI;
7185         return mask;
7186 }
7187
7188 static const struct file_operations md_seq_fops = {
7189         .owner          = THIS_MODULE,
7190         .open           = md_seq_open,
7191         .read           = seq_read,
7192         .llseek         = seq_lseek,
7193         .release        = seq_release_private,
7194         .poll           = mdstat_poll,
7195 };
7196
7197 int register_md_personality(struct md_personality *p)
7198 {
7199         spin_lock(&pers_lock);
7200         list_add_tail(&p->list, &pers_list);
7201         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7202         spin_unlock(&pers_lock);
7203         return 0;
7204 }
7205
7206 int unregister_md_personality(struct md_personality *p)
7207 {
7208         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7209         spin_lock(&pers_lock);
7210         list_del_init(&p->list);
7211         spin_unlock(&pers_lock);
7212         return 0;
7213 }
7214
7215 static int is_mddev_idle(struct mddev *mddev, int init)
7216 {
7217         struct md_rdev * rdev;
7218         int idle;
7219         int curr_events;
7220
7221         idle = 1;
7222         rcu_read_lock();
7223         rdev_for_each_rcu(rdev, mddev) {
7224                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7225                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7226                               (int)part_stat_read(&disk->part0, sectors[1]) -
7227                               atomic_read(&disk->sync_io);
7228                 /* sync IO will cause sync_io to increase before the disk_stats
7229                  * as sync_io is counted when a request starts, and
7230                  * disk_stats is counted when it completes.
7231                  * So resync activity will cause curr_events to be smaller than
7232                  * when there was no such activity.
7233                  * non-sync IO will cause disk_stat to increase without
7234                  * increasing sync_io so curr_events will (eventually)
7235                  * be larger than it was before.  Once it becomes
7236                  * substantially larger, the test below will cause
7237                  * the array to appear non-idle, and resync will slow
7238                  * down.
7239                  * If there is a lot of outstanding resync activity when
7240                  * we set last_event to curr_events, then all that activity
7241                  * completing might cause the array to appear non-idle
7242                  * and resync will be slowed down even though there might
7243                  * not have been non-resync activity.  This will only
7244                  * happen once though.  'last_events' will soon reflect
7245                  * the state where there is little or no outstanding
7246                  * resync requests, and further resync activity will
7247                  * always make curr_events less than last_events.
7248                  *
7249                  */
7250                 if (init || curr_events - rdev->last_events > 64) {
7251                         rdev->last_events = curr_events;
7252                         idle = 0;
7253                 }
7254         }
7255         rcu_read_unlock();
7256         return idle;
7257 }
7258
7259 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7260 {
7261         /* another "blocks" (512byte) blocks have been synced */
7262         atomic_sub(blocks, &mddev->recovery_active);
7263         wake_up(&mddev->recovery_wait);
7264         if (!ok) {
7265                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7266                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7267                 md_wakeup_thread(mddev->thread);
7268                 // stop recovery, signal do_sync ....
7269         }
7270 }
7271
7272
7273 /* md_write_start(mddev, bi)
7274  * If we need to update some array metadata (e.g. 'active' flag
7275  * in superblock) before writing, schedule a superblock update
7276  * and wait for it to complete.
7277  */
7278 void md_write_start(struct mddev *mddev, struct bio *bi)
7279 {
7280         int did_change = 0;
7281         if (bio_data_dir(bi) != WRITE)
7282                 return;
7283
7284         BUG_ON(mddev->ro == 1);
7285         if (mddev->ro == 2) {
7286                 /* need to switch to read/write */
7287                 mddev->ro = 0;
7288                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7289                 md_wakeup_thread(mddev->thread);
7290                 md_wakeup_thread(mddev->sync_thread);
7291                 did_change = 1;
7292         }
7293         atomic_inc(&mddev->writes_pending);
7294         if (mddev->safemode == 1)
7295                 mddev->safemode = 0;
7296         if (mddev->in_sync) {
7297                 spin_lock_irq(&mddev->write_lock);
7298                 if (mddev->in_sync) {
7299                         mddev->in_sync = 0;
7300                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7301                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7302                         md_wakeup_thread(mddev->thread);
7303                         did_change = 1;
7304                 }
7305                 spin_unlock_irq(&mddev->write_lock);
7306         }
7307         if (did_change)
7308                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7309         wait_event(mddev->sb_wait,
7310                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7311 }
7312
7313 void md_write_end(struct mddev *mddev)
7314 {
7315         if (atomic_dec_and_test(&mddev->writes_pending)) {
7316                 if (mddev->safemode == 2)
7317                         md_wakeup_thread(mddev->thread);
7318                 else if (mddev->safemode_delay)
7319                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7320         }
7321 }
7322
7323 /* md_allow_write(mddev)
7324  * Calling this ensures that the array is marked 'active' so that writes
7325  * may proceed without blocking.  It is important to call this before
7326  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7327  * Must be called with mddev_lock held.
7328  *
7329  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7330  * is dropped, so return -EAGAIN after notifying userspace.
7331  */
7332 int md_allow_write(struct mddev *mddev)
7333 {
7334         if (!mddev->pers)
7335                 return 0;
7336         if (mddev->ro)
7337                 return 0;
7338         if (!mddev->pers->sync_request)
7339                 return 0;
7340
7341         spin_lock_irq(&mddev->write_lock);
7342         if (mddev->in_sync) {
7343                 mddev->in_sync = 0;
7344                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7345                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7346                 if (mddev->safemode_delay &&
7347                     mddev->safemode == 0)
7348                         mddev->safemode = 1;
7349                 spin_unlock_irq(&mddev->write_lock);
7350                 md_update_sb(mddev, 0);
7351                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7352         } else
7353                 spin_unlock_irq(&mddev->write_lock);
7354
7355         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7356                 return -EAGAIN;
7357         else
7358                 return 0;
7359 }
7360 EXPORT_SYMBOL_GPL(md_allow_write);
7361
7362 #define SYNC_MARKS      10
7363 #define SYNC_MARK_STEP  (3*HZ)
7364 #define UPDATE_FREQUENCY (5*60*HZ)
7365 void md_do_sync(struct md_thread *thread)
7366 {
7367         struct mddev *mddev = thread->mddev;
7368         struct mddev *mddev2;
7369         unsigned int currspeed = 0,
7370                  window;
7371         sector_t max_sectors,j, io_sectors;
7372         unsigned long mark[SYNC_MARKS];
7373         unsigned long update_time;
7374         sector_t mark_cnt[SYNC_MARKS];
7375         int last_mark,m;
7376         struct list_head *tmp;
7377         sector_t last_check;
7378         int skipped = 0;
7379         struct md_rdev *rdev;
7380         char *desc, *action = NULL;
7381         struct blk_plug plug;
7382
7383         /* just incase thread restarts... */
7384         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7385                 return;
7386         if (mddev->ro) /* never try to sync a read-only array */
7387                 return;
7388
7389         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7390                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7391                         desc = "data-check";
7392                         action = "check";
7393                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7394                         desc = "requested-resync";
7395                         action = "repair";
7396                 } else
7397                         desc = "resync";
7398         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7399                 desc = "reshape";
7400         else
7401                 desc = "recovery";
7402
7403         mddev->last_sync_action = action ?: desc;
7404
7405         /* we overload curr_resync somewhat here.
7406          * 0 == not engaged in resync at all
7407          * 2 == checking that there is no conflict with another sync
7408          * 1 == like 2, but have yielded to allow conflicting resync to
7409          *              commense
7410          * other == active in resync - this many blocks
7411          *
7412          * Before starting a resync we must have set curr_resync to
7413          * 2, and then checked that every "conflicting" array has curr_resync
7414          * less than ours.  When we find one that is the same or higher
7415          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7416          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7417          * This will mean we have to start checking from the beginning again.
7418          *
7419          */
7420
7421         do {
7422                 mddev->curr_resync = 2;
7423
7424         try_again:
7425                 if (kthread_should_stop())
7426                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7427
7428                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7429                         goto skip;
7430                 for_each_mddev(mddev2, tmp) {
7431                         if (mddev2 == mddev)
7432                                 continue;
7433                         if (!mddev->parallel_resync
7434                         &&  mddev2->curr_resync
7435                         &&  match_mddev_units(mddev, mddev2)) {
7436                                 DEFINE_WAIT(wq);
7437                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7438                                         /* arbitrarily yield */
7439                                         mddev->curr_resync = 1;
7440                                         wake_up(&resync_wait);
7441                                 }
7442                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7443                                         /* no need to wait here, we can wait the next
7444                                          * time 'round when curr_resync == 2
7445                                          */
7446                                         continue;
7447                                 /* We need to wait 'interruptible' so as not to
7448                                  * contribute to the load average, and not to
7449                                  * be caught by 'softlockup'
7450                                  */
7451                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7452                                 if (!kthread_should_stop() &&
7453                                     mddev2->curr_resync >= mddev->curr_resync) {
7454                                         printk(KERN_INFO "md: delaying %s of %s"
7455                                                " until %s has finished (they"
7456                                                " share one or more physical units)\n",
7457                                                desc, mdname(mddev), mdname(mddev2));
7458                                         mddev_put(mddev2);
7459                                         if (signal_pending(current))
7460                                                 flush_signals(current);
7461                                         schedule();
7462                                         finish_wait(&resync_wait, &wq);
7463                                         goto try_again;
7464                                 }
7465                                 finish_wait(&resync_wait, &wq);
7466                         }
7467                 }
7468         } while (mddev->curr_resync < 2);
7469
7470         j = 0;
7471         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7472                 /* resync follows the size requested by the personality,
7473                  * which defaults to physical size, but can be virtual size
7474                  */
7475                 max_sectors = mddev->resync_max_sectors;
7476                 atomic64_set(&mddev->resync_mismatches, 0);
7477                 /* we don't use the checkpoint if there's a bitmap */
7478                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7479                         j = mddev->resync_min;
7480                 else if (!mddev->bitmap)
7481                         j = mddev->recovery_cp;
7482
7483         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7484                 max_sectors = mddev->resync_max_sectors;
7485         else {
7486                 /* recovery follows the physical size of devices */
7487                 max_sectors = mddev->dev_sectors;
7488                 j = MaxSector;
7489                 rcu_read_lock();
7490                 rdev_for_each_rcu(rdev, mddev)
7491                         if (rdev->raid_disk >= 0 &&
7492                             !test_bit(Faulty, &rdev->flags) &&
7493                             !test_bit(In_sync, &rdev->flags) &&
7494                             rdev->recovery_offset < j)
7495                                 j = rdev->recovery_offset;
7496                 rcu_read_unlock();
7497         }
7498
7499         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7500         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7501                 " %d KB/sec/disk.\n", speed_min(mddev));
7502         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7503                "(but not more than %d KB/sec) for %s.\n",
7504                speed_max(mddev), desc);
7505
7506         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7507
7508         io_sectors = 0;
7509         for (m = 0; m < SYNC_MARKS; m++) {
7510                 mark[m] = jiffies;
7511                 mark_cnt[m] = io_sectors;
7512         }
7513         last_mark = 0;
7514         mddev->resync_mark = mark[last_mark];
7515         mddev->resync_mark_cnt = mark_cnt[last_mark];
7516
7517         /*
7518          * Tune reconstruction:
7519          */
7520         window = 32*(PAGE_SIZE/512);
7521         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7522                 window/2, (unsigned long long)max_sectors/2);
7523
7524         atomic_set(&mddev->recovery_active, 0);
7525         last_check = 0;
7526
7527         if (j>2) {
7528                 printk(KERN_INFO 
7529                        "md: resuming %s of %s from checkpoint.\n",
7530                        desc, mdname(mddev));
7531                 mddev->curr_resync = j;
7532         } else
7533                 mddev->curr_resync = 3; /* no longer delayed */
7534         mddev->curr_resync_completed = j;
7535         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7536         md_new_event(mddev);
7537         update_time = jiffies;
7538
7539         blk_start_plug(&plug);
7540         while (j < max_sectors) {
7541                 sector_t sectors;
7542
7543                 skipped = 0;
7544
7545                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7546                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7547                       (mddev->curr_resync - mddev->curr_resync_completed)
7548                       > (max_sectors >> 4)) ||
7549                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7550                      (j - mddev->curr_resync_completed)*2
7551                      >= mddev->resync_max - mddev->curr_resync_completed
7552                             )) {
7553                         /* time to update curr_resync_completed */
7554                         wait_event(mddev->recovery_wait,
7555                                    atomic_read(&mddev->recovery_active) == 0);
7556                         mddev->curr_resync_completed = j;
7557                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7558                             j > mddev->recovery_cp)
7559                                 mddev->recovery_cp = j;
7560                         update_time = jiffies;
7561                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7562                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7563                 }
7564
7565                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7566                         /* As this condition is controlled by user-space,
7567                          * we can block indefinitely, so use '_interruptible'
7568                          * to avoid triggering warnings.
7569                          */
7570                         flush_signals(current); /* just in case */
7571                         wait_event_interruptible(mddev->recovery_wait,
7572                                                  mddev->resync_max > j
7573                                                  || kthread_should_stop());
7574                 }
7575
7576                 if (kthread_should_stop())
7577                         goto interrupted;
7578
7579                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7580                                                   currspeed < speed_min(mddev));
7581                 if (sectors == 0) {
7582                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7583                         goto out;
7584                 }
7585
7586                 if (!skipped) { /* actual IO requested */
7587                         io_sectors += sectors;
7588                         atomic_add(sectors, &mddev->recovery_active);
7589                 }
7590
7591                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7592                         break;
7593
7594                 j += sectors;
7595                 if (j > 2)
7596                         mddev->curr_resync = j;
7597                 mddev->curr_mark_cnt = io_sectors;
7598                 if (last_check == 0)
7599                         /* this is the earliest that rebuild will be
7600                          * visible in /proc/mdstat
7601                          */
7602                         md_new_event(mddev);
7603
7604                 if (last_check + window > io_sectors || j == max_sectors)
7605                         continue;
7606
7607                 last_check = io_sectors;
7608         repeat:
7609                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7610                         /* step marks */
7611                         int next = (last_mark+1) % SYNC_MARKS;
7612
7613                         mddev->resync_mark = mark[next];
7614                         mddev->resync_mark_cnt = mark_cnt[next];
7615                         mark[next] = jiffies;
7616                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7617                         last_mark = next;
7618                 }
7619
7620
7621                 if (kthread_should_stop())
7622                         goto interrupted;
7623
7624
7625                 /*
7626                  * this loop exits only if either when we are slower than
7627                  * the 'hard' speed limit, or the system was IO-idle for
7628                  * a jiffy.
7629                  * the system might be non-idle CPU-wise, but we only care
7630                  * about not overloading the IO subsystem. (things like an
7631                  * e2fsck being done on the RAID array should execute fast)
7632                  */
7633                 cond_resched();
7634
7635                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7636                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7637
7638                 if (currspeed > speed_min(mddev)) {
7639                         if ((currspeed > speed_max(mddev)) ||
7640                                         !is_mddev_idle(mddev, 0)) {
7641                                 msleep(500);
7642                                 goto repeat;
7643                         }
7644                 }
7645         }
7646         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7647         /*
7648          * this also signals 'finished resyncing' to md_stop
7649          */
7650  out:
7651         blk_finish_plug(&plug);
7652         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7653
7654         /* tell personality that we are finished */
7655         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7656
7657         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7658             mddev->curr_resync > 2) {
7659                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7660                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7661                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7662                                         printk(KERN_INFO
7663                                                "md: checkpointing %s of %s.\n",
7664                                                desc, mdname(mddev));
7665                                         if (test_bit(MD_RECOVERY_ERROR,
7666                                                 &mddev->recovery))
7667                                                 mddev->recovery_cp =
7668                                                         mddev->curr_resync_completed;
7669                                         else
7670                                                 mddev->recovery_cp =
7671                                                         mddev->curr_resync;
7672                                 }
7673                         } else
7674                                 mddev->recovery_cp = MaxSector;
7675                 } else {
7676                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7677                                 mddev->curr_resync = MaxSector;
7678                         rcu_read_lock();
7679                         rdev_for_each_rcu(rdev, mddev)
7680                                 if (rdev->raid_disk >= 0 &&
7681                                     mddev->delta_disks >= 0 &&
7682                                     !test_bit(Faulty, &rdev->flags) &&
7683                                     !test_bit(In_sync, &rdev->flags) &&
7684                                     rdev->recovery_offset < mddev->curr_resync)
7685                                         rdev->recovery_offset = mddev->curr_resync;
7686                         rcu_read_unlock();
7687                 }
7688         }
7689  skip:
7690         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7691
7692         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7693                 /* We completed so min/max setting can be forgotten if used. */
7694                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7695                         mddev->resync_min = 0;
7696                 mddev->resync_max = MaxSector;
7697         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7698                 mddev->resync_min = mddev->curr_resync_completed;
7699         mddev->curr_resync = 0;
7700         wake_up(&resync_wait);
7701         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7702         md_wakeup_thread(mddev->thread);
7703         return;
7704
7705  interrupted:
7706         /*
7707          * got a signal, exit.
7708          */
7709         printk(KERN_INFO
7710                "md: md_do_sync() got signal ... exiting\n");
7711         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7712         goto out;
7713
7714 }
7715 EXPORT_SYMBOL_GPL(md_do_sync);
7716
7717 static int remove_and_add_spares(struct mddev *mddev,
7718                                  struct md_rdev *this)
7719 {
7720         struct md_rdev *rdev;
7721         int spares = 0;
7722         int removed = 0;
7723
7724         rdev_for_each(rdev, mddev)
7725                 if ((this == NULL || rdev == this) &&
7726                     rdev->raid_disk >= 0 &&
7727                     !test_bit(Blocked, &rdev->flags) &&
7728                     (test_bit(Faulty, &rdev->flags) ||
7729                      ! test_bit(In_sync, &rdev->flags)) &&
7730                     atomic_read(&rdev->nr_pending)==0) {
7731                         if (mddev->pers->hot_remove_disk(
7732                                     mddev, rdev) == 0) {
7733                                 sysfs_unlink_rdev(mddev, rdev);
7734                                 rdev->raid_disk = -1;
7735                                 removed++;
7736                         }
7737                 }
7738         if (removed && mddev->kobj.sd)
7739                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7740
7741         if (this)
7742                 goto no_add;
7743
7744         rdev_for_each(rdev, mddev) {
7745                 if (rdev->raid_disk >= 0 &&
7746                     !test_bit(In_sync, &rdev->flags) &&
7747                     !test_bit(Faulty, &rdev->flags))
7748                         spares++;
7749                 if (rdev->raid_disk >= 0)
7750                         continue;
7751                 if (test_bit(Faulty, &rdev->flags))
7752                         continue;
7753                 if (mddev->ro &&
7754                     rdev->saved_raid_disk < 0)
7755                         continue;
7756
7757                 rdev->recovery_offset = 0;
7758                 if (mddev->pers->
7759                     hot_add_disk(mddev, rdev) == 0) {
7760                         if (sysfs_link_rdev(mddev, rdev))
7761                                 /* failure here is OK */;
7762                         spares++;
7763                         md_new_event(mddev);
7764                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7765                 }
7766         }
7767 no_add:
7768         if (removed)
7769                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7770         return spares;
7771 }
7772
7773 /*
7774  * This routine is regularly called by all per-raid-array threads to
7775  * deal with generic issues like resync and super-block update.
7776  * Raid personalities that don't have a thread (linear/raid0) do not
7777  * need this as they never do any recovery or update the superblock.
7778  *
7779  * It does not do any resync itself, but rather "forks" off other threads
7780  * to do that as needed.
7781  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7782  * "->recovery" and create a thread at ->sync_thread.
7783  * When the thread finishes it sets MD_RECOVERY_DONE
7784  * and wakeups up this thread which will reap the thread and finish up.
7785  * This thread also removes any faulty devices (with nr_pending == 0).
7786  *
7787  * The overall approach is:
7788  *  1/ if the superblock needs updating, update it.
7789  *  2/ If a recovery thread is running, don't do anything else.
7790  *  3/ If recovery has finished, clean up, possibly marking spares active.
7791  *  4/ If there are any faulty devices, remove them.
7792  *  5/ If array is degraded, try to add spares devices
7793  *  6/ If array has spares or is not in-sync, start a resync thread.
7794  */
7795 void md_check_recovery(struct mddev *mddev)
7796 {
7797         if (mddev->suspended)
7798                 return;
7799
7800         if (mddev->bitmap)
7801                 bitmap_daemon_work(mddev);
7802
7803         if (signal_pending(current)) {
7804                 if (mddev->pers->sync_request && !mddev->external) {
7805                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7806                                mdname(mddev));
7807                         mddev->safemode = 2;
7808                 }
7809                 flush_signals(current);
7810         }
7811
7812         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7813                 return;
7814         if ( ! (
7815                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7816                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7817                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7818                 (mddev->external == 0 && mddev->safemode == 1) ||
7819                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7820                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7821                 ))
7822                 return;
7823
7824         if (mddev_trylock(mddev)) {
7825                 int spares = 0;
7826
7827                 if (mddev->ro) {
7828                         /* On a read-only array we can:
7829                          * - remove failed devices
7830                          * - add already-in_sync devices if the array itself
7831                          *   is in-sync.
7832                          * As we only add devices that are already in-sync,
7833                          * we can activate the spares immediately.
7834                          */
7835                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7836                         remove_and_add_spares(mddev, NULL);
7837                         mddev->pers->spare_active(mddev);
7838                         goto unlock;
7839                 }
7840
7841                 if (!mddev->external) {
7842                         int did_change = 0;
7843                         spin_lock_irq(&mddev->write_lock);
7844                         if (mddev->safemode &&
7845                             !atomic_read(&mddev->writes_pending) &&
7846                             !mddev->in_sync &&
7847                             mddev->recovery_cp == MaxSector) {
7848                                 mddev->in_sync = 1;
7849                                 did_change = 1;
7850                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7851                         }
7852                         if (mddev->safemode == 1)
7853                                 mddev->safemode = 0;
7854                         spin_unlock_irq(&mddev->write_lock);
7855                         if (did_change)
7856                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7857                 }
7858
7859                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7860                         md_update_sb(mddev, 0);
7861
7862                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7863                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7864                         /* resync/recovery still happening */
7865                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7866                         goto unlock;
7867                 }
7868                 if (mddev->sync_thread) {
7869                         md_reap_sync_thread(mddev);
7870                         goto unlock;
7871                 }
7872                 /* Set RUNNING before clearing NEEDED to avoid
7873                  * any transients in the value of "sync_action".
7874                  */
7875                 mddev->curr_resync_completed = 0;
7876                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7877                 /* Clear some bits that don't mean anything, but
7878                  * might be left set
7879                  */
7880                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7881                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7882
7883                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7884                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7885                         goto unlock;
7886                 /* no recovery is running.
7887                  * remove any failed drives, then
7888                  * add spares if possible.
7889                  * Spares are also removed and re-added, to allow
7890                  * the personality to fail the re-add.
7891                  */
7892
7893                 if (mddev->reshape_position != MaxSector) {
7894                         if (mddev->pers->check_reshape == NULL ||
7895                             mddev->pers->check_reshape(mddev) != 0)
7896                                 /* Cannot proceed */
7897                                 goto unlock;
7898                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7899                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7900                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7901                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7902                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7903                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7904                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7905                 } else if (mddev->recovery_cp < MaxSector) {
7906                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7907                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7908                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7909                         /* nothing to be done ... */
7910                         goto unlock;
7911
7912                 if (mddev->pers->sync_request) {
7913                         if (spares) {
7914                                 /* We are adding a device or devices to an array
7915                                  * which has the bitmap stored on all devices.
7916                                  * So make sure all bitmap pages get written
7917                                  */
7918                                 bitmap_write_all(mddev->bitmap);
7919                         }
7920                         mddev->sync_thread = md_register_thread(md_do_sync,
7921                                                                 mddev,
7922                                                                 "resync");
7923                         if (!mddev->sync_thread) {
7924                                 printk(KERN_ERR "%s: could not start resync"
7925                                         " thread...\n", 
7926                                         mdname(mddev));
7927                                 /* leave the spares where they are, it shouldn't hurt */
7928                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7929                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7930                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7931                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7932                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7933                         } else
7934                                 md_wakeup_thread(mddev->sync_thread);
7935                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7936                         md_new_event(mddev);
7937                 }
7938         unlock:
7939                 wake_up(&mddev->sb_wait);
7940
7941                 if (!mddev->sync_thread) {
7942                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7943                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7944                                                &mddev->recovery))
7945                                 if (mddev->sysfs_action)
7946                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7947                 }
7948                 mddev_unlock(mddev);
7949         }
7950 }
7951
7952 void md_reap_sync_thread(struct mddev *mddev)
7953 {
7954         struct md_rdev *rdev;
7955
7956         /* resync has finished, collect result */
7957         md_unregister_thread(&mddev->sync_thread);
7958         wake_up(&resync_wait);
7959         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7960             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7961                 /* success...*/
7962                 /* activate any spares */
7963                 if (mddev->pers->spare_active(mddev)) {
7964                         sysfs_notify(&mddev->kobj, NULL,
7965                                      "degraded");
7966                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7967                 }
7968         }
7969         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7970             mddev->pers->finish_reshape)
7971                 mddev->pers->finish_reshape(mddev);
7972
7973         /* If array is no-longer degraded, then any saved_raid_disk
7974          * information must be scrapped.  Also if any device is now
7975          * In_sync we must scrape the saved_raid_disk for that device
7976          * do the superblock for an incrementally recovered device
7977          * written out.
7978          */
7979         rdev_for_each(rdev, mddev)
7980                 if (!mddev->degraded ||
7981                     test_bit(In_sync, &rdev->flags))
7982                         rdev->saved_raid_disk = -1;
7983
7984         md_update_sb(mddev, 1);
7985         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7986         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7987         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7988         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7989         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7990         /* flag recovery needed just to double check */
7991         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7992         sysfs_notify_dirent_safe(mddev->sysfs_action);
7993         md_new_event(mddev);
7994         if (mddev->event_work.func)
7995                 queue_work(md_misc_wq, &mddev->event_work);
7996 }
7997
7998 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7999 {
8000         sysfs_notify_dirent_safe(rdev->sysfs_state);
8001         wait_event_timeout(rdev->blocked_wait,
8002                            !test_bit(Blocked, &rdev->flags) &&
8003                            !test_bit(BlockedBadBlocks, &rdev->flags),
8004                            msecs_to_jiffies(5000));
8005         rdev_dec_pending(rdev, mddev);
8006 }
8007 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8008
8009 void md_finish_reshape(struct mddev *mddev)
8010 {
8011         /* called be personality module when reshape completes. */
8012         struct md_rdev *rdev;
8013
8014         rdev_for_each(rdev, mddev) {
8015                 if (rdev->data_offset > rdev->new_data_offset)
8016                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8017                 else
8018                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8019                 rdev->data_offset = rdev->new_data_offset;
8020         }
8021 }
8022 EXPORT_SYMBOL(md_finish_reshape);
8023
8024 /* Bad block management.
8025  * We can record which blocks on each device are 'bad' and so just
8026  * fail those blocks, or that stripe, rather than the whole device.
8027  * Entries in the bad-block table are 64bits wide.  This comprises:
8028  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8029  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8030  *  A 'shift' can be set so that larger blocks are tracked and
8031  *  consequently larger devices can be covered.
8032  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8033  *
8034  * Locking of the bad-block table uses a seqlock so md_is_badblock
8035  * might need to retry if it is very unlucky.
8036  * We will sometimes want to check for bad blocks in a bi_end_io function,
8037  * so we use the write_seqlock_irq variant.
8038  *
8039  * When looking for a bad block we specify a range and want to
8040  * know if any block in the range is bad.  So we binary-search
8041  * to the last range that starts at-or-before the given endpoint,
8042  * (or "before the sector after the target range")
8043  * then see if it ends after the given start.
8044  * We return
8045  *  0 if there are no known bad blocks in the range
8046  *  1 if there are known bad block which are all acknowledged
8047  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8048  * plus the start/length of the first bad section we overlap.
8049  */
8050 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8051                    sector_t *first_bad, int *bad_sectors)
8052 {
8053         int hi;
8054         int lo;
8055         u64 *p = bb->page;
8056         int rv;
8057         sector_t target = s + sectors;
8058         unsigned seq;
8059
8060         if (bb->shift > 0) {
8061                 /* round the start down, and the end up */
8062                 s >>= bb->shift;
8063                 target += (1<<bb->shift) - 1;
8064                 target >>= bb->shift;
8065                 sectors = target - s;
8066         }
8067         /* 'target' is now the first block after the bad range */
8068
8069 retry:
8070         seq = read_seqbegin(&bb->lock);
8071         lo = 0;
8072         rv = 0;
8073         hi = bb->count;
8074
8075         /* Binary search between lo and hi for 'target'
8076          * i.e. for the last range that starts before 'target'
8077          */
8078         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8079          * are known not to be the last range before target.
8080          * VARIANT: hi-lo is the number of possible
8081          * ranges, and decreases until it reaches 1
8082          */
8083         while (hi - lo > 1) {
8084                 int mid = (lo + hi) / 2;
8085                 sector_t a = BB_OFFSET(p[mid]);
8086                 if (a < target)
8087                         /* This could still be the one, earlier ranges
8088                          * could not. */
8089                         lo = mid;
8090                 else
8091                         /* This and later ranges are definitely out. */
8092                         hi = mid;
8093         }
8094         /* 'lo' might be the last that started before target, but 'hi' isn't */
8095         if (hi > lo) {
8096                 /* need to check all range that end after 's' to see if
8097                  * any are unacknowledged.
8098                  */
8099                 while (lo >= 0 &&
8100                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8101                         if (BB_OFFSET(p[lo]) < target) {
8102                                 /* starts before the end, and finishes after
8103                                  * the start, so they must overlap
8104                                  */
8105                                 if (rv != -1 && BB_ACK(p[lo]))
8106                                         rv = 1;
8107                                 else
8108                                         rv = -1;
8109                                 *first_bad = BB_OFFSET(p[lo]);
8110                                 *bad_sectors = BB_LEN(p[lo]);
8111                         }
8112                         lo--;
8113                 }
8114         }
8115
8116         if (read_seqretry(&bb->lock, seq))
8117                 goto retry;
8118
8119         return rv;
8120 }
8121 EXPORT_SYMBOL_GPL(md_is_badblock);
8122
8123 /*
8124  * Add a range of bad blocks to the table.
8125  * This might extend the table, or might contract it
8126  * if two adjacent ranges can be merged.
8127  * We binary-search to find the 'insertion' point, then
8128  * decide how best to handle it.
8129  */
8130 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8131                             int acknowledged)
8132 {
8133         u64 *p;
8134         int lo, hi;
8135         int rv = 1;
8136         unsigned long flags;
8137
8138         if (bb->shift < 0)
8139                 /* badblocks are disabled */
8140                 return 0;
8141
8142         if (bb->shift) {
8143                 /* round the start down, and the end up */
8144                 sector_t next = s + sectors;
8145                 s >>= bb->shift;
8146                 next += (1<<bb->shift) - 1;
8147                 next >>= bb->shift;
8148                 sectors = next - s;
8149         }
8150
8151         write_seqlock_irqsave(&bb->lock, flags);
8152
8153         p = bb->page;
8154         lo = 0;
8155         hi = bb->count;
8156         /* Find the last range that starts at-or-before 's' */
8157         while (hi - lo > 1) {
8158                 int mid = (lo + hi) / 2;
8159                 sector_t a = BB_OFFSET(p[mid]);
8160                 if (a <= s)
8161                         lo = mid;
8162                 else
8163                         hi = mid;
8164         }
8165         if (hi > lo && BB_OFFSET(p[lo]) > s)
8166                 hi = lo;
8167
8168         if (hi > lo) {
8169                 /* we found a range that might merge with the start
8170                  * of our new range
8171                  */
8172                 sector_t a = BB_OFFSET(p[lo]);
8173                 sector_t e = a + BB_LEN(p[lo]);
8174                 int ack = BB_ACK(p[lo]);
8175                 if (e >= s) {
8176                         /* Yes, we can merge with a previous range */
8177                         if (s == a && s + sectors >= e)
8178                                 /* new range covers old */
8179                                 ack = acknowledged;
8180                         else
8181                                 ack = ack && acknowledged;
8182
8183                         if (e < s + sectors)
8184                                 e = s + sectors;
8185                         if (e - a <= BB_MAX_LEN) {
8186                                 p[lo] = BB_MAKE(a, e-a, ack);
8187                                 s = e;
8188                         } else {
8189                                 /* does not all fit in one range,
8190                                  * make p[lo] maximal
8191                                  */
8192                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8193                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8194                                 s = a + BB_MAX_LEN;
8195                         }
8196                         sectors = e - s;
8197                 }
8198         }
8199         if (sectors && hi < bb->count) {
8200                 /* 'hi' points to the first range that starts after 's'.
8201                  * Maybe we can merge with the start of that range */
8202                 sector_t a = BB_OFFSET(p[hi]);
8203                 sector_t e = a + BB_LEN(p[hi]);
8204                 int ack = BB_ACK(p[hi]);
8205                 if (a <= s + sectors) {
8206                         /* merging is possible */
8207                         if (e <= s + sectors) {
8208                                 /* full overlap */
8209                                 e = s + sectors;
8210                                 ack = acknowledged;
8211                         } else
8212                                 ack = ack && acknowledged;
8213
8214                         a = s;
8215                         if (e - a <= BB_MAX_LEN) {
8216                                 p[hi] = BB_MAKE(a, e-a, ack);
8217                                 s = e;
8218                         } else {
8219                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8220                                 s = a + BB_MAX_LEN;
8221                         }
8222                         sectors = e - s;
8223                         lo = hi;
8224                         hi++;
8225                 }
8226         }
8227         if (sectors == 0 && hi < bb->count) {
8228                 /* we might be able to combine lo and hi */
8229                 /* Note: 's' is at the end of 'lo' */
8230                 sector_t a = BB_OFFSET(p[hi]);
8231                 int lolen = BB_LEN(p[lo]);
8232                 int hilen = BB_LEN(p[hi]);
8233                 int newlen = lolen + hilen - (s - a);
8234                 if (s >= a && newlen < BB_MAX_LEN) {
8235                         /* yes, we can combine them */
8236                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8237                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8238                         memmove(p + hi, p + hi + 1,
8239                                 (bb->count - hi - 1) * 8);
8240                         bb->count--;
8241                 }
8242         }
8243         while (sectors) {
8244                 /* didn't merge (it all).
8245                  * Need to add a range just before 'hi' */
8246                 if (bb->count >= MD_MAX_BADBLOCKS) {
8247                         /* No room for more */
8248                         rv = 0;
8249                         break;
8250                 } else {
8251                         int this_sectors = sectors;
8252                         memmove(p + hi + 1, p + hi,
8253                                 (bb->count - hi) * 8);
8254                         bb->count++;
8255
8256                         if (this_sectors > BB_MAX_LEN)
8257                                 this_sectors = BB_MAX_LEN;
8258                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8259                         sectors -= this_sectors;
8260                         s += this_sectors;
8261                 }
8262         }
8263
8264         bb->changed = 1;
8265         if (!acknowledged)
8266                 bb->unacked_exist = 1;
8267         write_sequnlock_irqrestore(&bb->lock, flags);
8268
8269         return rv;
8270 }
8271
8272 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8273                        int is_new)
8274 {
8275         int rv;
8276         if (is_new)
8277                 s += rdev->new_data_offset;
8278         else
8279                 s += rdev->data_offset;
8280         rv = md_set_badblocks(&rdev->badblocks,
8281                               s, sectors, 0);
8282         if (rv) {
8283                 /* Make sure they get written out promptly */
8284                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8285                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8286                 md_wakeup_thread(rdev->mddev->thread);
8287         }
8288         return rv;
8289 }
8290 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8291
8292 /*
8293  * Remove a range of bad blocks from the table.
8294  * This may involve extending the table if we spilt a region,
8295  * but it must not fail.  So if the table becomes full, we just
8296  * drop the remove request.
8297  */
8298 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8299 {
8300         u64 *p;
8301         int lo, hi;
8302         sector_t target = s + sectors;
8303         int rv = 0;
8304
8305         if (bb->shift > 0) {
8306                 /* When clearing we round the start up and the end down.
8307                  * This should not matter as the shift should align with
8308                  * the block size and no rounding should ever be needed.
8309                  * However it is better the think a block is bad when it
8310                  * isn't than to think a block is not bad when it is.
8311                  */
8312                 s += (1<<bb->shift) - 1;
8313                 s >>= bb->shift;
8314                 target >>= bb->shift;
8315                 sectors = target - s;
8316         }
8317
8318         write_seqlock_irq(&bb->lock);
8319
8320         p = bb->page;
8321         lo = 0;
8322         hi = bb->count;
8323         /* Find the last range that starts before 'target' */
8324         while (hi - lo > 1) {
8325                 int mid = (lo + hi) / 2;
8326                 sector_t a = BB_OFFSET(p[mid]);
8327                 if (a < target)
8328                         lo = mid;
8329                 else
8330                         hi = mid;
8331         }
8332         if (hi > lo) {
8333                 /* p[lo] is the last range that could overlap the
8334                  * current range.  Earlier ranges could also overlap,
8335                  * but only this one can overlap the end of the range.
8336                  */
8337                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8338                         /* Partial overlap, leave the tail of this range */
8339                         int ack = BB_ACK(p[lo]);
8340                         sector_t a = BB_OFFSET(p[lo]);
8341                         sector_t end = a + BB_LEN(p[lo]);
8342
8343                         if (a < s) {
8344                                 /* we need to split this range */
8345                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8346                                         rv = 0;
8347                                         goto out;
8348                                 }
8349                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8350                                 bb->count++;
8351                                 p[lo] = BB_MAKE(a, s-a, ack);
8352                                 lo++;
8353                         }
8354                         p[lo] = BB_MAKE(target, end - target, ack);
8355                         /* there is no longer an overlap */
8356                         hi = lo;
8357                         lo--;
8358                 }
8359                 while (lo >= 0 &&
8360                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8361                         /* This range does overlap */
8362                         if (BB_OFFSET(p[lo]) < s) {
8363                                 /* Keep the early parts of this range. */
8364                                 int ack = BB_ACK(p[lo]);
8365                                 sector_t start = BB_OFFSET(p[lo]);
8366                                 p[lo] = BB_MAKE(start, s - start, ack);
8367                                 /* now low doesn't overlap, so.. */
8368                                 break;
8369                         }
8370                         lo--;
8371                 }
8372                 /* 'lo' is strictly before, 'hi' is strictly after,
8373                  * anything between needs to be discarded
8374                  */
8375                 if (hi - lo > 1) {
8376                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8377                         bb->count -= (hi - lo - 1);
8378                 }
8379         }
8380
8381         bb->changed = 1;
8382 out:
8383         write_sequnlock_irq(&bb->lock);
8384         return rv;
8385 }
8386
8387 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8388                          int is_new)
8389 {
8390         if (is_new)
8391                 s += rdev->new_data_offset;
8392         else
8393                 s += rdev->data_offset;
8394         return md_clear_badblocks(&rdev->badblocks,
8395                                   s, sectors);
8396 }
8397 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8398
8399 /*
8400  * Acknowledge all bad blocks in a list.
8401  * This only succeeds if ->changed is clear.  It is used by
8402  * in-kernel metadata updates
8403  */
8404 void md_ack_all_badblocks(struct badblocks *bb)
8405 {
8406         if (bb->page == NULL || bb->changed)
8407                 /* no point even trying */
8408                 return;
8409         write_seqlock_irq(&bb->lock);
8410
8411         if (bb->changed == 0 && bb->unacked_exist) {
8412                 u64 *p = bb->page;
8413                 int i;
8414                 for (i = 0; i < bb->count ; i++) {
8415                         if (!BB_ACK(p[i])) {
8416                                 sector_t start = BB_OFFSET(p[i]);
8417                                 int len = BB_LEN(p[i]);
8418                                 p[i] = BB_MAKE(start, len, 1);
8419                         }
8420                 }
8421                 bb->unacked_exist = 0;
8422         }
8423         write_sequnlock_irq(&bb->lock);
8424 }
8425 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8426
8427 /* sysfs access to bad-blocks list.
8428  * We present two files.
8429  * 'bad-blocks' lists sector numbers and lengths of ranges that
8430  *    are recorded as bad.  The list is truncated to fit within
8431  *    the one-page limit of sysfs.
8432  *    Writing "sector length" to this file adds an acknowledged
8433  *    bad block list.
8434  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8435  *    been acknowledged.  Writing to this file adds bad blocks
8436  *    without acknowledging them.  This is largely for testing.
8437  */
8438
8439 static ssize_t
8440 badblocks_show(struct badblocks *bb, char *page, int unack)
8441 {
8442         size_t len;
8443         int i;
8444         u64 *p = bb->page;
8445         unsigned seq;
8446
8447         if (bb->shift < 0)
8448                 return 0;
8449
8450 retry:
8451         seq = read_seqbegin(&bb->lock);
8452
8453         len = 0;
8454         i = 0;
8455
8456         while (len < PAGE_SIZE && i < bb->count) {
8457                 sector_t s = BB_OFFSET(p[i]);
8458                 unsigned int length = BB_LEN(p[i]);
8459                 int ack = BB_ACK(p[i]);
8460                 i++;
8461
8462                 if (unack && ack)
8463                         continue;
8464
8465                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8466                                 (unsigned long long)s << bb->shift,
8467                                 length << bb->shift);
8468         }
8469         if (unack && len == 0)
8470                 bb->unacked_exist = 0;
8471
8472         if (read_seqretry(&bb->lock, seq))
8473                 goto retry;
8474
8475         return len;
8476 }
8477
8478 #define DO_DEBUG 1
8479
8480 static ssize_t
8481 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8482 {
8483         unsigned long long sector;
8484         int length;
8485         char newline;
8486 #ifdef DO_DEBUG
8487         /* Allow clearing via sysfs *only* for testing/debugging.
8488          * Normally only a successful write may clear a badblock
8489          */
8490         int clear = 0;
8491         if (page[0] == '-') {
8492                 clear = 1;
8493                 page++;
8494         }
8495 #endif /* DO_DEBUG */
8496
8497         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8498         case 3:
8499                 if (newline != '\n')
8500                         return -EINVAL;
8501         case 2:
8502                 if (length <= 0)
8503                         return -EINVAL;
8504                 break;
8505         default:
8506                 return -EINVAL;
8507         }
8508
8509 #ifdef DO_DEBUG
8510         if (clear) {
8511                 md_clear_badblocks(bb, sector, length);
8512                 return len;
8513         }
8514 #endif /* DO_DEBUG */
8515         if (md_set_badblocks(bb, sector, length, !unack))
8516                 return len;
8517         else
8518                 return -ENOSPC;
8519 }
8520
8521 static int md_notify_reboot(struct notifier_block *this,
8522                             unsigned long code, void *x)
8523 {
8524         struct list_head *tmp;
8525         struct mddev *mddev;
8526         int need_delay = 0;
8527
8528         for_each_mddev(mddev, tmp) {
8529                 if (mddev_trylock(mddev)) {
8530                         if (mddev->pers)
8531                                 __md_stop_writes(mddev);
8532                         mddev->safemode = 2;
8533                         mddev_unlock(mddev);
8534                 }
8535                 need_delay = 1;
8536         }
8537         /*
8538          * certain more exotic SCSI devices are known to be
8539          * volatile wrt too early system reboots. While the
8540          * right place to handle this issue is the given
8541          * driver, we do want to have a safe RAID driver ...
8542          */
8543         if (need_delay)
8544                 mdelay(1000*1);
8545
8546         return NOTIFY_DONE;
8547 }
8548
8549 static struct notifier_block md_notifier = {
8550         .notifier_call  = md_notify_reboot,
8551         .next           = NULL,
8552         .priority       = INT_MAX, /* before any real devices */
8553 };
8554
8555 static void md_geninit(void)
8556 {
8557         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8558
8559         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8560 }
8561
8562 static int __init md_init(void)
8563 {
8564         int ret = -ENOMEM;
8565
8566         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8567         if (!md_wq)
8568                 goto err_wq;
8569
8570         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8571         if (!md_misc_wq)
8572                 goto err_misc_wq;
8573
8574         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8575                 goto err_md;
8576
8577         if ((ret = register_blkdev(0, "mdp")) < 0)
8578                 goto err_mdp;
8579         mdp_major = ret;
8580
8581         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8582                             md_probe, NULL, NULL);
8583         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8584                             md_probe, NULL, NULL);
8585
8586         register_reboot_notifier(&md_notifier);
8587         raid_table_header = register_sysctl_table(raid_root_table);
8588
8589         md_geninit();
8590         return 0;
8591
8592 err_mdp:
8593         unregister_blkdev(MD_MAJOR, "md");
8594 err_md:
8595         destroy_workqueue(md_misc_wq);
8596 err_misc_wq:
8597         destroy_workqueue(md_wq);
8598 err_wq:
8599         return ret;
8600 }
8601
8602 #ifndef MODULE
8603
8604 /*
8605  * Searches all registered partitions for autorun RAID arrays
8606  * at boot time.
8607  */
8608
8609 static LIST_HEAD(all_detected_devices);
8610 struct detected_devices_node {
8611         struct list_head list;
8612         dev_t dev;
8613 };
8614
8615 void md_autodetect_dev(dev_t dev)
8616 {
8617         struct detected_devices_node *node_detected_dev;
8618
8619         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8620         if (node_detected_dev) {
8621                 node_detected_dev->dev = dev;
8622                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8623         } else {
8624                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8625                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8626         }
8627 }
8628
8629
8630 static void autostart_arrays(int part)
8631 {
8632         struct md_rdev *rdev;
8633         struct detected_devices_node *node_detected_dev;
8634         dev_t dev;
8635         int i_scanned, i_passed;
8636
8637         i_scanned = 0;
8638         i_passed = 0;
8639
8640         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8641
8642         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8643                 i_scanned++;
8644                 node_detected_dev = list_entry(all_detected_devices.next,
8645                                         struct detected_devices_node, list);
8646                 list_del(&node_detected_dev->list);
8647                 dev = node_detected_dev->dev;
8648                 kfree(node_detected_dev);
8649                 rdev = md_import_device(dev,0, 90);
8650                 if (IS_ERR(rdev))
8651                         continue;
8652
8653                 if (test_bit(Faulty, &rdev->flags)) {
8654                         MD_BUG();
8655                         continue;
8656                 }
8657                 set_bit(AutoDetected, &rdev->flags);
8658                 list_add(&rdev->same_set, &pending_raid_disks);
8659                 i_passed++;
8660         }
8661
8662         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8663                                                 i_scanned, i_passed);
8664
8665         autorun_devices(part);
8666 }
8667
8668 #endif /* !MODULE */
8669
8670 static __exit void md_exit(void)
8671 {
8672         struct mddev *mddev;
8673         struct list_head *tmp;
8674
8675         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8676         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8677
8678         unregister_blkdev(MD_MAJOR,"md");
8679         unregister_blkdev(mdp_major, "mdp");
8680         unregister_reboot_notifier(&md_notifier);
8681         unregister_sysctl_table(raid_table_header);
8682         remove_proc_entry("mdstat", NULL);
8683         for_each_mddev(mddev, tmp) {
8684                 export_array(mddev);
8685                 mddev->hold_active = 0;
8686         }
8687         destroy_workqueue(md_misc_wq);
8688         destroy_workqueue(md_wq);
8689 }
8690
8691 subsys_initcall(md_init);
8692 module_exit(md_exit)
8693
8694 static int get_ro(char *buffer, struct kernel_param *kp)
8695 {
8696         return sprintf(buffer, "%d", start_readonly);
8697 }
8698 static int set_ro(const char *val, struct kernel_param *kp)
8699 {
8700         char *e;
8701         int num = simple_strtoul(val, &e, 10);
8702         if (*val && (*e == '\0' || *e == '\n')) {
8703                 start_readonly = num;
8704                 return 0;
8705         }
8706         return -EINVAL;
8707 }
8708
8709 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8710 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8711
8712 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8713
8714 EXPORT_SYMBOL(register_md_personality);
8715 EXPORT_SYMBOL(unregister_md_personality);
8716 EXPORT_SYMBOL(md_error);
8717 EXPORT_SYMBOL(md_done_sync);
8718 EXPORT_SYMBOL(md_write_start);
8719 EXPORT_SYMBOL(md_write_end);
8720 EXPORT_SYMBOL(md_register_thread);
8721 EXPORT_SYMBOL(md_unregister_thread);
8722 EXPORT_SYMBOL(md_wakeup_thread);
8723 EXPORT_SYMBOL(md_check_recovery);
8724 EXPORT_SYMBOL(md_reap_sync_thread);
8725 MODULE_LICENSE("GPL");
8726 MODULE_DESCRIPTION("MD RAID framework");
8727 MODULE_ALIAS("md");
8728 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);