]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/persistent-data/dm-btree-remove.c
Merge remote-tracking branch 'device-mapper/for-next'
[karo-tx-linux.git] / drivers / md / persistent-data / dm-btree-remove.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-btree.h"
8 #include "dm-btree-internal.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12
13 /*
14  * Removing an entry from a btree
15  * ==============================
16  *
17  * A very important constraint for our btree is that no node, except the
18  * root, may have fewer than a certain number of entries.
19  * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
20  *
21  * Ensuring this is complicated by the way we want to only ever hold the
22  * locks on 2 nodes concurrently, and only change nodes in a top to bottom
23  * fashion.
24  *
25  * Each node may have a left or right sibling.  When decending the spine,
26  * if a node contains only MIN_ENTRIES then we try and increase this to at
27  * least MIN_ENTRIES + 1.  We do this in the following ways:
28  *
29  * [A] No siblings => this can only happen if the node is the root, in which
30  *     case we copy the childs contents over the root.
31  *
32  * [B] No left sibling
33  *     ==> rebalance(node, right sibling)
34  *
35  * [C] No right sibling
36  *     ==> rebalance(left sibling, node)
37  *
38  * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
39  *     ==> delete node adding it's contents to left and right
40  *
41  * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
42  *     ==> rebalance(left, node, right)
43  *
44  * After these operations it's possible that the our original node no
45  * longer contains the desired sub tree.  For this reason this rebalancing
46  * is performed on the children of the current node.  This also avoids
47  * having a special case for the root.
48  *
49  * Once this rebalancing has occurred we can then step into the child node
50  * for internal nodes.  Or delete the entry for leaf nodes.
51  */
52
53 /*
54  * Some little utilities for moving node data around.
55  */
56 static void node_shift(struct btree_node *n, int shift)
57 {
58         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
59         uint32_t value_size = le32_to_cpu(n->header.value_size);
60
61         if (shift < 0) {
62                 shift = -shift;
63                 BUG_ON(shift > nr_entries);
64                 BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
65                 memmove(key_ptr(n, 0),
66                         key_ptr(n, shift),
67                         (nr_entries - shift) * sizeof(__le64));
68                 memmove(value_ptr(n, 0),
69                         value_ptr(n, shift),
70                         (nr_entries - shift) * value_size);
71         } else {
72                 BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
73                 memmove(key_ptr(n, shift),
74                         key_ptr(n, 0),
75                         nr_entries * sizeof(__le64));
76                 memmove(value_ptr(n, shift),
77                         value_ptr(n, 0),
78                         nr_entries * value_size);
79         }
80 }
81
82 static void node_copy(struct btree_node *left, struct btree_node *right, int shift)
83 {
84         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
85         uint32_t value_size = le32_to_cpu(left->header.value_size);
86         BUG_ON(value_size != le32_to_cpu(right->header.value_size));
87
88         if (shift < 0) {
89                 shift = -shift;
90                 BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
91                 memcpy(key_ptr(left, nr_left),
92                        key_ptr(right, 0),
93                        shift * sizeof(__le64));
94                 memcpy(value_ptr(left, nr_left),
95                        value_ptr(right, 0),
96                        shift * value_size);
97         } else {
98                 BUG_ON(shift > le32_to_cpu(right->header.max_entries));
99                 memcpy(key_ptr(right, 0),
100                        key_ptr(left, nr_left - shift),
101                        shift * sizeof(__le64));
102                 memcpy(value_ptr(right, 0),
103                        value_ptr(left, nr_left - shift),
104                        shift * value_size);
105         }
106 }
107
108 /*
109  * Delete a specific entry from a leaf node.
110  */
111 static void delete_at(struct btree_node *n, unsigned index)
112 {
113         unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
114         unsigned nr_to_copy = nr_entries - (index + 1);
115         uint32_t value_size = le32_to_cpu(n->header.value_size);
116         BUG_ON(index >= nr_entries);
117
118         if (nr_to_copy) {
119                 memmove(key_ptr(n, index),
120                         key_ptr(n, index + 1),
121                         nr_to_copy * sizeof(__le64));
122
123                 memmove(value_ptr(n, index),
124                         value_ptr(n, index + 1),
125                         nr_to_copy * value_size);
126         }
127
128         n->header.nr_entries = cpu_to_le32(nr_entries - 1);
129 }
130
131 static unsigned merge_threshold(struct btree_node *n)
132 {
133         return le32_to_cpu(n->header.max_entries) / 3;
134 }
135
136 struct child {
137         unsigned index;
138         struct dm_block *block;
139         struct btree_node *n;
140 };
141
142 static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
143                       struct btree_node *parent,
144                       unsigned index, struct child *result)
145 {
146         int r, inc;
147         dm_block_t root;
148
149         result->index = index;
150         root = value64(parent, index);
151
152         r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
153                                &result->block, &inc);
154         if (r)
155                 return r;
156
157         result->n = dm_block_data(result->block);
158
159         if (inc)
160                 inc_children(info->tm, result->n, vt);
161
162         *((__le64 *) value_ptr(parent, index)) =
163                 cpu_to_le64(dm_block_location(result->block));
164
165         return 0;
166 }
167
168 static void exit_child(struct dm_btree_info *info, struct child *c)
169 {
170         dm_tm_unlock(info->tm, c->block);
171 }
172
173 static void shift(struct btree_node *left, struct btree_node *right, int count)
174 {
175         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
176         uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
177         uint32_t max_entries = le32_to_cpu(left->header.max_entries);
178         uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
179
180         BUG_ON(max_entries != r_max_entries);
181         BUG_ON(nr_left - count > max_entries);
182         BUG_ON(nr_right + count > max_entries);
183
184         if (!count)
185                 return;
186
187         if (count > 0) {
188                 node_shift(right, count);
189                 node_copy(left, right, count);
190         } else {
191                 node_copy(left, right, count);
192                 node_shift(right, count);
193         }
194
195         left->header.nr_entries = cpu_to_le32(nr_left - count);
196         right->header.nr_entries = cpu_to_le32(nr_right + count);
197 }
198
199 static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
200                          struct child *l, struct child *r)
201 {
202         struct btree_node *left = l->n;
203         struct btree_node *right = r->n;
204         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
205         uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
206         unsigned threshold = 2 * merge_threshold(left) + 1;
207
208         if (nr_left + nr_right < threshold) {
209                 /*
210                  * Merge
211                  */
212                 node_copy(left, right, -nr_right);
213                 left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
214                 delete_at(parent, r->index);
215
216                 /*
217                  * We need to decrement the right block, but not it's
218                  * children, since they're still referenced by left.
219                  */
220                 dm_tm_dec(info->tm, dm_block_location(r->block));
221         } else {
222                 /*
223                  * Rebalance.
224                  */
225                 unsigned target_left = (nr_left + nr_right) / 2;
226                 shift(left, right, nr_left - target_left);
227                 *key_ptr(parent, r->index) = right->keys[0];
228         }
229 }
230
231 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
232                       struct dm_btree_value_type *vt, unsigned left_index)
233 {
234         int r;
235         struct btree_node *parent;
236         struct child left, right;
237
238         parent = dm_block_data(shadow_current(s));
239
240         r = init_child(info, vt, parent, left_index, &left);
241         if (r)
242                 return r;
243
244         r = init_child(info, vt, parent, left_index + 1, &right);
245         if (r) {
246                 exit_child(info, &left);
247                 return r;
248         }
249
250         __rebalance2(info, parent, &left, &right);
251
252         exit_child(info, &left);
253         exit_child(info, &right);
254
255         return 0;
256 }
257
258 /*
259  * We dump as many entries from center as possible into left, then the rest
260  * in right, then rebalance2.  This wastes some cpu, but I want something
261  * simple atm.
262  */
263 static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
264                                struct child *l, struct child *c, struct child *r,
265                                struct btree_node *left, struct btree_node *center, struct btree_node *right,
266                                uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
267 {
268         uint32_t max_entries = le32_to_cpu(left->header.max_entries);
269         unsigned shift = min(max_entries - nr_left, nr_center);
270
271         BUG_ON(nr_left + shift > max_entries);
272         node_copy(left, center, -shift);
273         left->header.nr_entries = cpu_to_le32(nr_left + shift);
274
275         if (shift != nr_center) {
276                 shift = nr_center - shift;
277                 BUG_ON((nr_right + shift) > max_entries);
278                 node_shift(right, shift);
279                 node_copy(center, right, shift);
280                 right->header.nr_entries = cpu_to_le32(nr_right + shift);
281         }
282         *key_ptr(parent, r->index) = right->keys[0];
283
284         delete_at(parent, c->index);
285         r->index--;
286
287         dm_tm_dec(info->tm, dm_block_location(c->block));
288         __rebalance2(info, parent, l, r);
289 }
290
291 /*
292  * Redistributes entries among 3 sibling nodes.
293  */
294 static void redistribute3(struct dm_btree_info *info, struct btree_node *parent,
295                           struct child *l, struct child *c, struct child *r,
296                           struct btree_node *left, struct btree_node *center, struct btree_node *right,
297                           uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
298 {
299         int s;
300         uint32_t max_entries = le32_to_cpu(left->header.max_entries);
301         unsigned total = nr_left + nr_center + nr_right;
302         unsigned target_right = total / 3;
303         unsigned remainder = (target_right * 3) != total;
304         unsigned target_left = target_right + remainder;
305
306         BUG_ON(target_left > max_entries);
307         BUG_ON(target_right > max_entries);
308
309         if (nr_left < nr_right) {
310                 s = nr_left - target_left;
311
312                 if (s < 0 && nr_center < -s) {
313                         /* not enough in central node */
314                         shift(left, center, -nr_center);
315                         s += nr_center;
316                         shift(left, right, s);
317                         nr_right += s;
318                 } else
319                         shift(left, center, s);
320
321                 shift(center, right, target_right - nr_right);
322
323         } else {
324                 s = target_right - nr_right;
325                 if (s > 0 && nr_center < s) {
326                         /* not enough in central node */
327                         shift(center, right, nr_center);
328                         s -= nr_center;
329                         shift(left, right, s);
330                         nr_left -= s;
331                 } else
332                         shift(center, right, s);
333
334                 shift(left, center, nr_left - target_left);
335         }
336
337         *key_ptr(parent, c->index) = center->keys[0];
338         *key_ptr(parent, r->index) = right->keys[0];
339 }
340
341 static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
342                          struct child *l, struct child *c, struct child *r)
343 {
344         struct btree_node *left = l->n;
345         struct btree_node *center = c->n;
346         struct btree_node *right = r->n;
347
348         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
349         uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
350         uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
351
352         unsigned threshold = merge_threshold(left) * 4 + 1;
353
354         BUG_ON(left->header.max_entries != center->header.max_entries);
355         BUG_ON(center->header.max_entries != right->header.max_entries);
356
357         if ((nr_left + nr_center + nr_right) < threshold)
358                 delete_center_node(info, parent, l, c, r, left, center, right,
359                                    nr_left, nr_center, nr_right);
360         else
361                 redistribute3(info, parent, l, c, r, left, center, right,
362                               nr_left, nr_center, nr_right);
363 }
364
365 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
366                       struct dm_btree_value_type *vt, unsigned left_index)
367 {
368         int r;
369         struct btree_node *parent = dm_block_data(shadow_current(s));
370         struct child left, center, right;
371
372         /*
373          * FIXME: fill out an array?
374          */
375         r = init_child(info, vt, parent, left_index, &left);
376         if (r)
377                 return r;
378
379         r = init_child(info, vt, parent, left_index + 1, &center);
380         if (r) {
381                 exit_child(info, &left);
382                 return r;
383         }
384
385         r = init_child(info, vt, parent, left_index + 2, &right);
386         if (r) {
387                 exit_child(info, &left);
388                 exit_child(info, &center);
389                 return r;
390         }
391
392         __rebalance3(info, parent, &left, &center, &right);
393
394         exit_child(info, &left);
395         exit_child(info, &center);
396         exit_child(info, &right);
397
398         return 0;
399 }
400
401 static int rebalance_children(struct shadow_spine *s,
402                               struct dm_btree_info *info,
403                               struct dm_btree_value_type *vt, uint64_t key)
404 {
405         int i, r, has_left_sibling, has_right_sibling;
406         struct btree_node *n;
407
408         n = dm_block_data(shadow_current(s));
409
410         if (le32_to_cpu(n->header.nr_entries) == 1) {
411                 struct dm_block *child;
412                 dm_block_t b = value64(n, 0);
413
414                 r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
415                 if (r)
416                         return r;
417
418                 memcpy(n, dm_block_data(child),
419                        dm_bm_block_size(dm_tm_get_bm(info->tm)));
420                 dm_tm_unlock(info->tm, child);
421
422                 dm_tm_dec(info->tm, dm_block_location(child));
423                 return 0;
424         }
425
426         i = lower_bound(n, key);
427         if (i < 0)
428                 return -ENODATA;
429
430         has_left_sibling = i > 0;
431         has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
432
433         if (!has_left_sibling)
434                 r = rebalance2(s, info, vt, i);
435
436         else if (!has_right_sibling)
437                 r = rebalance2(s, info, vt, i - 1);
438
439         else
440                 r = rebalance3(s, info, vt, i - 1);
441
442         return r;
443 }
444
445 static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
446 {
447         int i = lower_bound(n, key);
448
449         if ((i < 0) ||
450             (i >= le32_to_cpu(n->header.nr_entries)) ||
451             (le64_to_cpu(n->keys[i]) != key))
452                 return -ENODATA;
453
454         *index = i;
455
456         return 0;
457 }
458
459 /*
460  * Prepares for removal from one level of the hierarchy.  The caller must
461  * call delete_at() to remove the entry at index.
462  */
463 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
464                       struct dm_btree_value_type *vt, dm_block_t root,
465                       uint64_t key, unsigned *index)
466 {
467         int i = *index, r;
468         struct btree_node *n;
469
470         for (;;) {
471                 r = shadow_step(s, root, vt);
472                 if (r < 0)
473                         break;
474
475                 /*
476                  * We have to patch up the parent node, ugly, but I don't
477                  * see a way to do this automatically as part of the spine
478                  * op.
479                  */
480                 if (shadow_has_parent(s)) {
481                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
482                         memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
483                                &location, sizeof(__le64));
484                 }
485
486                 n = dm_block_data(shadow_current(s));
487
488                 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
489                         return do_leaf(n, key, index);
490
491                 r = rebalance_children(s, info, vt, key);
492                 if (r)
493                         break;
494
495                 n = dm_block_data(shadow_current(s));
496                 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
497                         return do_leaf(n, key, index);
498
499                 i = lower_bound(n, key);
500
501                 /*
502                  * We know the key is present, or else
503                  * rebalance_children would have returned
504                  * -ENODATA
505                  */
506                 root = value64(n, i);
507         }
508
509         return r;
510 }
511
512 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
513                     uint64_t *keys, dm_block_t *new_root)
514 {
515         unsigned level, last_level = info->levels - 1;
516         int index = 0, r = 0;
517         struct shadow_spine spine;
518         struct btree_node *n;
519         struct dm_btree_value_type le64_vt;
520
521         init_le64_type(info->tm, &le64_vt);
522         init_shadow_spine(&spine, info);
523         for (level = 0; level < info->levels; level++) {
524                 r = remove_raw(&spine, info,
525                                (level == last_level ?
526                                 &info->value_type : &le64_vt),
527                                root, keys[level], (unsigned *)&index);
528                 if (r < 0)
529                         break;
530
531                 n = dm_block_data(shadow_current(&spine));
532                 if (level != last_level) {
533                         root = value64(n, index);
534                         continue;
535                 }
536
537                 BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
538
539                 if (info->value_type.dec)
540                         info->value_type.dec(info->value_type.context,
541                                              value_ptr(n, index));
542
543                 delete_at(n, index);
544         }
545
546         *new_root = shadow_root(&spine);
547         exit_shadow_spine(&spine);
548
549         return r;
550 }
551 EXPORT_SYMBOL_GPL(dm_btree_remove);
552
553 /*----------------------------------------------------------------*/
554
555 static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info,
556                           struct dm_btree_value_type *vt, dm_block_t root,
557                           uint64_t key, int *index)
558 {
559         int i = *index, r;
560         struct btree_node *n;
561
562         for (;;) {
563                 r = shadow_step(s, root, vt);
564                 if (r < 0)
565                         break;
566
567                 /*
568                  * We have to patch up the parent node, ugly, but I don't
569                  * see a way to do this automatically as part of the spine
570                  * op.
571                  */
572                 if (shadow_has_parent(s)) {
573                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
574                         memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
575                                &location, sizeof(__le64));
576                 }
577
578                 n = dm_block_data(shadow_current(s));
579
580                 if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
581                         *index = lower_bound(n, key);
582                         return 0;
583                 }
584
585                 r = rebalance_children(s, info, vt, key);
586                 if (r)
587                         break;
588
589                 n = dm_block_data(shadow_current(s));
590                 if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
591                         *index = lower_bound(n, key);
592                         return 0;
593                 }
594
595                 i = lower_bound(n, key);
596
597                 /*
598                  * We know the key is present, or else
599                  * rebalance_children would have returned
600                  * -ENODATA
601                  */
602                 root = value64(n, i);
603         }
604
605         return r;
606 }
607
608 static int remove_one(struct dm_btree_info *info, dm_block_t root,
609                       uint64_t *keys, uint64_t end_key,
610                       dm_block_t *new_root, unsigned *nr_removed)
611 {
612         unsigned level, last_level = info->levels - 1;
613         int index = 0, r = 0;
614         struct shadow_spine spine;
615         struct btree_node *n;
616         struct dm_btree_value_type le64_vt;
617         uint64_t k;
618
619         init_le64_type(info->tm, &le64_vt);
620         init_shadow_spine(&spine, info);
621         for (level = 0; level < last_level; level++) {
622                 r = remove_raw(&spine, info, &le64_vt,
623                                root, keys[level], (unsigned *) &index);
624                 if (r < 0)
625                         goto out;
626
627                 n = dm_block_data(shadow_current(&spine));
628                 root = value64(n, index);
629         }
630
631         r = remove_nearest(&spine, info, &info->value_type,
632                            root, keys[last_level], &index);
633         if (r < 0)
634                 goto out;
635
636         n = dm_block_data(shadow_current(&spine));
637
638         if (index < 0)
639                 index = 0;
640
641         if (index >= le32_to_cpu(n->header.nr_entries)) {
642                 r = -ENODATA;
643                 goto out;
644         }
645
646         k = le64_to_cpu(n->keys[index]);
647         if (k >= keys[last_level] && k < end_key) {
648                 if (info->value_type.dec)
649                         info->value_type.dec(info->value_type.context,
650                                              value_ptr(n, index));
651
652                 delete_at(n, index);
653                 keys[last_level] = k + 1ull;
654
655         } else
656                 r = -ENODATA;
657
658 out:
659         *new_root = shadow_root(&spine);
660         exit_shadow_spine(&spine);
661
662         return r;
663 }
664
665 int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
666                            uint64_t *first_key, uint64_t end_key,
667                            dm_block_t *new_root, unsigned *nr_removed)
668 {
669         int r;
670
671         *nr_removed = 0;
672         do {
673                 r = remove_one(info, root, first_key, end_key, &root, nr_removed);
674                 if (!r)
675                         (*nr_removed)++;
676         } while (!r);
677
678         *new_root = root;
679         return r == -ENODATA ? 0 : r;
680 }
681 EXPORT_SYMBOL_GPL(dm_btree_remove_leaves);