]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid1.c
33e59876678baab234174cf887ec7edcc7bbe5c7
[karo-tx-linux.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         struct r1bio *r1_bio;
99         struct bio *bio;
100         int need_pages;
101         int i, j;
102
103         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104         if (!r1_bio)
105                 return NULL;
106
107         /*
108          * Allocate bios : 1 for reading, n-1 for writing
109          */
110         for (j = pi->raid_disks ; j-- ; ) {
111                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112                 if (!bio)
113                         goto out_free_bio;
114                 r1_bio->bios[j] = bio;
115         }
116         /*
117          * Allocate RESYNC_PAGES data pages and attach them to
118          * the first bio.
119          * If this is a user-requested check/repair, allocate
120          * RESYNC_PAGES for each bio.
121          */
122         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123                 need_pages = pi->raid_disks;
124         else
125                 need_pages = 1;
126         for (j = 0; j < need_pages; j++) {
127                 bio = r1_bio->bios[j];
128                 bio->bi_vcnt = RESYNC_PAGES;
129
130                 if (bio_alloc_pages(bio, gfp_flags))
131                         goto out_free_pages;
132         }
133         /* If not user-requests, copy the page pointers to all bios */
134         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135                 for (i=0; i<RESYNC_PAGES ; i++)
136                         for (j=1; j<pi->raid_disks; j++)
137                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
139         }
140
141         r1_bio->master_bio = NULL;
142
143         return r1_bio;
144
145 out_free_pages:
146         while (--j >= 0) {
147                 struct bio_vec *bv;
148
149                 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150                         __free_page(bv->bv_page);
151         }
152
153 out_free_bio:
154         while (++j < pi->raid_disks)
155                 bio_put(r1_bio->bios[j]);
156         r1bio_pool_free(r1_bio, data);
157         return NULL;
158 }
159
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162         struct pool_info *pi = data;
163         int i,j;
164         struct r1bio *r1bio = __r1_bio;
165
166         for (i = 0; i < RESYNC_PAGES; i++)
167                 for (j = pi->raid_disks; j-- ;) {
168                         if (j == 0 ||
169                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
170                             r1bio->bios[0]->bi_io_vec[i].bv_page)
171                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172                 }
173         for (i=0 ; i < pi->raid_disks; i++)
174                 bio_put(r1bio->bios[i]);
175
176         r1bio_pool_free(r1bio, data);
177 }
178
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181         int i;
182
183         for (i = 0; i < conf->raid_disks * 2; i++) {
184                 struct bio **bio = r1_bio->bios + i;
185                 if (!BIO_SPECIAL(*bio))
186                         bio_put(*bio);
187                 *bio = NULL;
188         }
189 }
190
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193         struct r1conf *conf = r1_bio->mddev->private;
194
195         put_all_bios(conf, r1_bio);
196         mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
199 static void put_buf(struct r1bio *r1_bio)
200 {
201         struct r1conf *conf = r1_bio->mddev->private;
202         int i;
203
204         for (i = 0; i < conf->raid_disks * 2; i++) {
205                 struct bio *bio = r1_bio->bios[i];
206                 if (bio->bi_end_io)
207                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208         }
209
210         mempool_free(r1_bio, conf->r1buf_pool);
211
212         lower_barrier(conf);
213 }
214
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217         unsigned long flags;
218         struct mddev *mddev = r1_bio->mddev;
219         struct r1conf *conf = mddev->private;
220
221         spin_lock_irqsave(&conf->device_lock, flags);
222         list_add(&r1_bio->retry_list, &conf->retry_list);
223         conf->nr_queued ++;
224         spin_unlock_irqrestore(&conf->device_lock, flags);
225
226         wake_up(&conf->wait_barrier);
227         md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237         struct bio *bio = r1_bio->master_bio;
238         int done;
239         struct r1conf *conf = r1_bio->mddev->private;
240         sector_t start_next_window = r1_bio->start_next_window;
241         sector_t bi_sector = bio->bi_iter.bi_sector;
242
243         if (bio->bi_phys_segments) {
244                 unsigned long flags;
245                 spin_lock_irqsave(&conf->device_lock, flags);
246                 bio->bi_phys_segments--;
247                 done = (bio->bi_phys_segments == 0);
248                 spin_unlock_irqrestore(&conf->device_lock, flags);
249                 /*
250                  * make_request() might be waiting for
251                  * bi_phys_segments to decrease
252                  */
253                 wake_up(&conf->wait_barrier);
254         } else
255                 done = 1;
256
257         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258                 bio->bi_error = -EIO;
259
260         if (done) {
261                 bio_endio(bio);
262                 /*
263                  * Wake up any possible resync thread that waits for the device
264                  * to go idle.
265                  */
266                 allow_barrier(conf, start_next_window, bi_sector);
267         }
268 }
269
270 static void raid_end_bio_io(struct r1bio *r1_bio)
271 {
272         struct bio *bio = r1_bio->master_bio;
273
274         /* if nobody has done the final endio yet, do it now */
275         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
276                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
277                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
278                          (unsigned long long) bio->bi_iter.bi_sector,
279                          (unsigned long long) bio_end_sector(bio) - 1);
280
281                 call_bio_endio(r1_bio);
282         }
283         free_r1bio(r1_bio);
284 }
285
286 /*
287  * Update disk head position estimator based on IRQ completion info.
288  */
289 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
290 {
291         struct r1conf *conf = r1_bio->mddev->private;
292
293         conf->mirrors[disk].head_position =
294                 r1_bio->sector + (r1_bio->sectors);
295 }
296
297 /*
298  * Find the disk number which triggered given bio
299  */
300 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
301 {
302         int mirror;
303         struct r1conf *conf = r1_bio->mddev->private;
304         int raid_disks = conf->raid_disks;
305
306         for (mirror = 0; mirror < raid_disks * 2; mirror++)
307                 if (r1_bio->bios[mirror] == bio)
308                         break;
309
310         BUG_ON(mirror == raid_disks * 2);
311         update_head_pos(mirror, r1_bio);
312
313         return mirror;
314 }
315
316 static void raid1_end_read_request(struct bio *bio)
317 {
318         int uptodate = !bio->bi_error;
319         struct r1bio *r1_bio = bio->bi_private;
320         int mirror;
321         struct r1conf *conf = r1_bio->mddev->private;
322
323         mirror = r1_bio->read_disk;
324         /*
325          * this branch is our 'one mirror IO has finished' event handler:
326          */
327         update_head_pos(mirror, r1_bio);
328
329         if (uptodate)
330                 set_bit(R1BIO_Uptodate, &r1_bio->state);
331         else {
332                 /* If all other devices have failed, we want to return
333                  * the error upwards rather than fail the last device.
334                  * Here we redefine "uptodate" to mean "Don't want to retry"
335                  */
336                 unsigned long flags;
337                 spin_lock_irqsave(&conf->device_lock, flags);
338                 if (r1_bio->mddev->degraded == conf->raid_disks ||
339                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
340                      test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
341                         uptodate = 1;
342                 spin_unlock_irqrestore(&conf->device_lock, flags);
343         }
344
345         if (uptodate) {
346                 raid_end_bio_io(r1_bio);
347                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
348         } else {
349                 /*
350                  * oops, read error:
351                  */
352                 char b[BDEVNAME_SIZE];
353                 printk_ratelimited(
354                         KERN_ERR "md/raid1:%s: %s: "
355                         "rescheduling sector %llu\n",
356                         mdname(conf->mddev),
357                         bdevname(conf->mirrors[mirror].rdev->bdev,
358                                  b),
359                         (unsigned long long)r1_bio->sector);
360                 set_bit(R1BIO_ReadError, &r1_bio->state);
361                 reschedule_retry(r1_bio);
362                 /* don't drop the reference on read_disk yet */
363         }
364 }
365
366 static void close_write(struct r1bio *r1_bio)
367 {
368         /* it really is the end of this request */
369         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
370                 /* free extra copy of the data pages */
371                 int i = r1_bio->behind_page_count;
372                 while (i--)
373                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
374                 kfree(r1_bio->behind_bvecs);
375                 r1_bio->behind_bvecs = NULL;
376         }
377         /* clear the bitmap if all writes complete successfully */
378         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
379                         r1_bio->sectors,
380                         !test_bit(R1BIO_Degraded, &r1_bio->state),
381                         test_bit(R1BIO_BehindIO, &r1_bio->state));
382         md_write_end(r1_bio->mddev);
383 }
384
385 static void r1_bio_write_done(struct r1bio *r1_bio)
386 {
387         if (!atomic_dec_and_test(&r1_bio->remaining))
388                 return;
389
390         if (test_bit(R1BIO_WriteError, &r1_bio->state))
391                 reschedule_retry(r1_bio);
392         else {
393                 close_write(r1_bio);
394                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
395                         reschedule_retry(r1_bio);
396                 else
397                         raid_end_bio_io(r1_bio);
398         }
399 }
400
401 static void raid1_end_write_request(struct bio *bio)
402 {
403         struct r1bio *r1_bio = bio->bi_private;
404         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405         struct r1conf *conf = r1_bio->mddev->private;
406         struct bio *to_put = NULL;
407
408         mirror = find_bio_disk(r1_bio, bio);
409
410         /*
411          * 'one mirror IO has finished' event handler:
412          */
413         if (bio->bi_error) {
414                 set_bit(WriteErrorSeen,
415                         &conf->mirrors[mirror].rdev->flags);
416                 if (!test_and_set_bit(WantReplacement,
417                                       &conf->mirrors[mirror].rdev->flags))
418                         set_bit(MD_RECOVERY_NEEDED, &
419                                 conf->mddev->recovery);
420
421                 set_bit(R1BIO_WriteError, &r1_bio->state);
422         } else {
423                 /*
424                  * Set R1BIO_Uptodate in our master bio, so that we
425                  * will return a good error code for to the higher
426                  * levels even if IO on some other mirrored buffer
427                  * fails.
428                  *
429                  * The 'master' represents the composite IO operation
430                  * to user-side. So if something waits for IO, then it
431                  * will wait for the 'master' bio.
432                  */
433                 sector_t first_bad;
434                 int bad_sectors;
435
436                 r1_bio->bios[mirror] = NULL;
437                 to_put = bio;
438                 /*
439                  * Do not set R1BIO_Uptodate if the current device is
440                  * rebuilding or Faulty. This is because we cannot use
441                  * such device for properly reading the data back (we could
442                  * potentially use it, if the current write would have felt
443                  * before rdev->recovery_offset, but for simplicity we don't
444                  * check this here.
445                  */
446                 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448                         set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450                 /* Maybe we can clear some bad blocks. */
451                 if (is_badblock(conf->mirrors[mirror].rdev,
452                                 r1_bio->sector, r1_bio->sectors,
453                                 &first_bad, &bad_sectors)) {
454                         r1_bio->bios[mirror] = IO_MADE_GOOD;
455                         set_bit(R1BIO_MadeGood, &r1_bio->state);
456                 }
457         }
458
459         if (behind) {
460                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461                         atomic_dec(&r1_bio->behind_remaining);
462
463                 /*
464                  * In behind mode, we ACK the master bio once the I/O
465                  * has safely reached all non-writemostly
466                  * disks. Setting the Returned bit ensures that this
467                  * gets done only once -- we don't ever want to return
468                  * -EIO here, instead we'll wait
469                  */
470                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472                         /* Maybe we can return now */
473                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474                                 struct bio *mbio = r1_bio->master_bio;
475                                 pr_debug("raid1: behind end write sectors"
476                                          " %llu-%llu\n",
477                                          (unsigned long long) mbio->bi_iter.bi_sector,
478                                          (unsigned long long) bio_end_sector(mbio) - 1);
479                                 call_bio_endio(r1_bio);
480                         }
481                 }
482         }
483         if (r1_bio->bios[mirror] == NULL)
484                 rdev_dec_pending(conf->mirrors[mirror].rdev,
485                                  conf->mddev);
486
487         /*
488          * Let's see if all mirrored write operations have finished
489          * already.
490          */
491         r1_bio_write_done(r1_bio);
492
493         if (to_put)
494                 bio_put(to_put);
495 }
496
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513         const sector_t this_sector = r1_bio->sector;
514         int sectors;
515         int best_good_sectors;
516         int best_disk, best_dist_disk, best_pending_disk;
517         int has_nonrot_disk;
518         int disk;
519         sector_t best_dist;
520         unsigned int min_pending;
521         struct md_rdev *rdev;
522         int choose_first;
523         int choose_next_idle;
524
525         rcu_read_lock();
526         /*
527          * Check if we can balance. We can balance on the whole
528          * device if no resync is going on, or below the resync window.
529          * We take the first readable disk when above the resync window.
530          */
531  retry:
532         sectors = r1_bio->sectors;
533         best_disk = -1;
534         best_dist_disk = -1;
535         best_dist = MaxSector;
536         best_pending_disk = -1;
537         min_pending = UINT_MAX;
538         best_good_sectors = 0;
539         has_nonrot_disk = 0;
540         choose_next_idle = 0;
541
542         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543             (mddev_is_clustered(conf->mddev) &&
544             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
545                     this_sector + sectors)))
546                 choose_first = 1;
547         else
548                 choose_first = 0;
549
550         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
551                 sector_t dist;
552                 sector_t first_bad;
553                 int bad_sectors;
554                 unsigned int pending;
555                 bool nonrot;
556
557                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
558                 if (r1_bio->bios[disk] == IO_BLOCKED
559                     || rdev == NULL
560                     || test_bit(Faulty, &rdev->flags))
561                         continue;
562                 if (!test_bit(In_sync, &rdev->flags) &&
563                     rdev->recovery_offset < this_sector + sectors)
564                         continue;
565                 if (test_bit(WriteMostly, &rdev->flags)) {
566                         /* Don't balance among write-mostly, just
567                          * use the first as a last resort */
568                         if (best_dist_disk < 0) {
569                                 if (is_badblock(rdev, this_sector, sectors,
570                                                 &first_bad, &bad_sectors)) {
571                                         if (first_bad < this_sector)
572                                                 /* Cannot use this */
573                                                 continue;
574                                         best_good_sectors = first_bad - this_sector;
575                                 } else
576                                         best_good_sectors = sectors;
577                                 best_dist_disk = disk;
578                                 best_pending_disk = disk;
579                         }
580                         continue;
581                 }
582                 /* This is a reasonable device to use.  It might
583                  * even be best.
584                  */
585                 if (is_badblock(rdev, this_sector, sectors,
586                                 &first_bad, &bad_sectors)) {
587                         if (best_dist < MaxSector)
588                                 /* already have a better device */
589                                 continue;
590                         if (first_bad <= this_sector) {
591                                 /* cannot read here. If this is the 'primary'
592                                  * device, then we must not read beyond
593                                  * bad_sectors from another device..
594                                  */
595                                 bad_sectors -= (this_sector - first_bad);
596                                 if (choose_first && sectors > bad_sectors)
597                                         sectors = bad_sectors;
598                                 if (best_good_sectors > sectors)
599                                         best_good_sectors = sectors;
600
601                         } else {
602                                 sector_t good_sectors = first_bad - this_sector;
603                                 if (good_sectors > best_good_sectors) {
604                                         best_good_sectors = good_sectors;
605                                         best_disk = disk;
606                                 }
607                                 if (choose_first)
608                                         break;
609                         }
610                         continue;
611                 } else
612                         best_good_sectors = sectors;
613
614                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
615                 has_nonrot_disk |= nonrot;
616                 pending = atomic_read(&rdev->nr_pending);
617                 dist = abs(this_sector - conf->mirrors[disk].head_position);
618                 if (choose_first) {
619                         best_disk = disk;
620                         break;
621                 }
622                 /* Don't change to another disk for sequential reads */
623                 if (conf->mirrors[disk].next_seq_sect == this_sector
624                     || dist == 0) {
625                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
626                         struct raid1_info *mirror = &conf->mirrors[disk];
627
628                         best_disk = disk;
629                         /*
630                          * If buffered sequential IO size exceeds optimal
631                          * iosize, check if there is idle disk. If yes, choose
632                          * the idle disk. read_balance could already choose an
633                          * idle disk before noticing it's a sequential IO in
634                          * this disk. This doesn't matter because this disk
635                          * will idle, next time it will be utilized after the
636                          * first disk has IO size exceeds optimal iosize. In
637                          * this way, iosize of the first disk will be optimal
638                          * iosize at least. iosize of the second disk might be
639                          * small, but not a big deal since when the second disk
640                          * starts IO, the first disk is likely still busy.
641                          */
642                         if (nonrot && opt_iosize > 0 &&
643                             mirror->seq_start != MaxSector &&
644                             mirror->next_seq_sect > opt_iosize &&
645                             mirror->next_seq_sect - opt_iosize >=
646                             mirror->seq_start) {
647                                 choose_next_idle = 1;
648                                 continue;
649                         }
650                         break;
651                 }
652                 /* If device is idle, use it */
653                 if (pending == 0) {
654                         best_disk = disk;
655                         break;
656                 }
657
658                 if (choose_next_idle)
659                         continue;
660
661                 if (min_pending > pending) {
662                         min_pending = pending;
663                         best_pending_disk = disk;
664                 }
665
666                 if (dist < best_dist) {
667                         best_dist = dist;
668                         best_dist_disk = disk;
669                 }
670         }
671
672         /*
673          * If all disks are rotational, choose the closest disk. If any disk is
674          * non-rotational, choose the disk with less pending request even the
675          * disk is rotational, which might/might not be optimal for raids with
676          * mixed ratation/non-rotational disks depending on workload.
677          */
678         if (best_disk == -1) {
679                 if (has_nonrot_disk)
680                         best_disk = best_pending_disk;
681                 else
682                         best_disk = best_dist_disk;
683         }
684
685         if (best_disk >= 0) {
686                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
687                 if (!rdev)
688                         goto retry;
689                 atomic_inc(&rdev->nr_pending);
690                 if (test_bit(Faulty, &rdev->flags)) {
691                         /* cannot risk returning a device that failed
692                          * before we inc'ed nr_pending
693                          */
694                         rdev_dec_pending(rdev, conf->mddev);
695                         goto retry;
696                 }
697                 sectors = best_good_sectors;
698
699                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
700                         conf->mirrors[best_disk].seq_start = this_sector;
701
702                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
703         }
704         rcu_read_unlock();
705         *max_sectors = sectors;
706
707         return best_disk;
708 }
709
710 static int raid1_congested(struct mddev *mddev, int bits)
711 {
712         struct r1conf *conf = mddev->private;
713         int i, ret = 0;
714
715         if ((bits & (1 << WB_async_congested)) &&
716             conf->pending_count >= max_queued_requests)
717                 return 1;
718
719         rcu_read_lock();
720         for (i = 0; i < conf->raid_disks * 2; i++) {
721                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
722                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
723                         struct request_queue *q = bdev_get_queue(rdev->bdev);
724
725                         BUG_ON(!q);
726
727                         /* Note the '|| 1' - when read_balance prefers
728                          * non-congested targets, it can be removed
729                          */
730                         if ((bits & (1 << WB_async_congested)) || 1)
731                                 ret |= bdi_congested(&q->backing_dev_info, bits);
732                         else
733                                 ret &= bdi_congested(&q->backing_dev_info, bits);
734                 }
735         }
736         rcu_read_unlock();
737         return ret;
738 }
739
740 static void flush_pending_writes(struct r1conf *conf)
741 {
742         /* Any writes that have been queued but are awaiting
743          * bitmap updates get flushed here.
744          */
745         spin_lock_irq(&conf->device_lock);
746
747         if (conf->pending_bio_list.head) {
748                 struct bio *bio;
749                 bio = bio_list_get(&conf->pending_bio_list);
750                 conf->pending_count = 0;
751                 spin_unlock_irq(&conf->device_lock);
752                 /* flush any pending bitmap writes to
753                  * disk before proceeding w/ I/O */
754                 bitmap_unplug(conf->mddev->bitmap);
755                 wake_up(&conf->wait_barrier);
756
757                 while (bio) { /* submit pending writes */
758                         struct bio *next = bio->bi_next;
759                         bio->bi_next = NULL;
760                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
761                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
762                                 /* Just ignore it */
763                                 bio_endio(bio);
764                         else
765                                 generic_make_request(bio);
766                         bio = next;
767                 }
768         } else
769                 spin_unlock_irq(&conf->device_lock);
770 }
771
772 /* Barriers....
773  * Sometimes we need to suspend IO while we do something else,
774  * either some resync/recovery, or reconfigure the array.
775  * To do this we raise a 'barrier'.
776  * The 'barrier' is a counter that can be raised multiple times
777  * to count how many activities are happening which preclude
778  * normal IO.
779  * We can only raise the barrier if there is no pending IO.
780  * i.e. if nr_pending == 0.
781  * We choose only to raise the barrier if no-one is waiting for the
782  * barrier to go down.  This means that as soon as an IO request
783  * is ready, no other operations which require a barrier will start
784  * until the IO request has had a chance.
785  *
786  * So: regular IO calls 'wait_barrier'.  When that returns there
787  *    is no backgroup IO happening,  It must arrange to call
788  *    allow_barrier when it has finished its IO.
789  * backgroup IO calls must call raise_barrier.  Once that returns
790  *    there is no normal IO happeing.  It must arrange to call
791  *    lower_barrier when the particular background IO completes.
792  */
793 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
794 {
795         spin_lock_irq(&conf->resync_lock);
796
797         /* Wait until no block IO is waiting */
798         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
799                             conf->resync_lock);
800
801         /* block any new IO from starting */
802         conf->barrier++;
803         conf->next_resync = sector_nr;
804
805         /* For these conditions we must wait:
806          * A: while the array is in frozen state
807          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
808          *    the max count which allowed.
809          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
810          *    next resync will reach to the window which normal bios are
811          *    handling.
812          * D: while there are any active requests in the current window.
813          */
814         wait_event_lock_irq(conf->wait_barrier,
815                             !conf->array_frozen &&
816                             conf->barrier < RESYNC_DEPTH &&
817                             conf->current_window_requests == 0 &&
818                             (conf->start_next_window >=
819                              conf->next_resync + RESYNC_SECTORS),
820                             conf->resync_lock);
821
822         conf->nr_pending++;
823         spin_unlock_irq(&conf->resync_lock);
824 }
825
826 static void lower_barrier(struct r1conf *conf)
827 {
828         unsigned long flags;
829         BUG_ON(conf->barrier <= 0);
830         spin_lock_irqsave(&conf->resync_lock, flags);
831         conf->barrier--;
832         conf->nr_pending--;
833         spin_unlock_irqrestore(&conf->resync_lock, flags);
834         wake_up(&conf->wait_barrier);
835 }
836
837 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
838 {
839         bool wait = false;
840
841         if (conf->array_frozen || !bio)
842                 wait = true;
843         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
844                 if ((conf->mddev->curr_resync_completed
845                      >= bio_end_sector(bio)) ||
846                     (conf->next_resync + NEXT_NORMALIO_DISTANCE
847                      <= bio->bi_iter.bi_sector))
848                         wait = false;
849                 else
850                         wait = true;
851         }
852
853         return wait;
854 }
855
856 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
857 {
858         sector_t sector = 0;
859
860         spin_lock_irq(&conf->resync_lock);
861         if (need_to_wait_for_sync(conf, bio)) {
862                 conf->nr_waiting++;
863                 /* Wait for the barrier to drop.
864                  * However if there are already pending
865                  * requests (preventing the barrier from
866                  * rising completely), and the
867                  * per-process bio queue isn't empty,
868                  * then don't wait, as we need to empty
869                  * that queue to allow conf->start_next_window
870                  * to increase.
871                  */
872                 wait_event_lock_irq(conf->wait_barrier,
873                                     !conf->array_frozen &&
874                                     (!conf->barrier ||
875                                      ((conf->start_next_window <
876                                        conf->next_resync + RESYNC_SECTORS) &&
877                                       current->bio_list &&
878                                       !bio_list_empty(current->bio_list))),
879                                     conf->resync_lock);
880                 conf->nr_waiting--;
881         }
882
883         if (bio && bio_data_dir(bio) == WRITE) {
884                 if (bio->bi_iter.bi_sector >= conf->next_resync) {
885                         if (conf->start_next_window == MaxSector)
886                                 conf->start_next_window =
887                                         conf->next_resync +
888                                         NEXT_NORMALIO_DISTANCE;
889
890                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
891                             <= bio->bi_iter.bi_sector)
892                                 conf->next_window_requests++;
893                         else
894                                 conf->current_window_requests++;
895                         sector = conf->start_next_window;
896                 }
897         }
898
899         conf->nr_pending++;
900         spin_unlock_irq(&conf->resync_lock);
901         return sector;
902 }
903
904 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
905                           sector_t bi_sector)
906 {
907         unsigned long flags;
908
909         spin_lock_irqsave(&conf->resync_lock, flags);
910         conf->nr_pending--;
911         if (start_next_window) {
912                 if (start_next_window == conf->start_next_window) {
913                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
914                             <= bi_sector)
915                                 conf->next_window_requests--;
916                         else
917                                 conf->current_window_requests--;
918                 } else
919                         conf->current_window_requests--;
920
921                 if (!conf->current_window_requests) {
922                         if (conf->next_window_requests) {
923                                 conf->current_window_requests =
924                                         conf->next_window_requests;
925                                 conf->next_window_requests = 0;
926                                 conf->start_next_window +=
927                                         NEXT_NORMALIO_DISTANCE;
928                         } else
929                                 conf->start_next_window = MaxSector;
930                 }
931         }
932         spin_unlock_irqrestore(&conf->resync_lock, flags);
933         wake_up(&conf->wait_barrier);
934 }
935
936 static void freeze_array(struct r1conf *conf, int extra)
937 {
938         /* stop syncio and normal IO and wait for everything to
939          * go quite.
940          * We wait until nr_pending match nr_queued+extra
941          * This is called in the context of one normal IO request
942          * that has failed. Thus any sync request that might be pending
943          * will be blocked by nr_pending, and we need to wait for
944          * pending IO requests to complete or be queued for re-try.
945          * Thus the number queued (nr_queued) plus this request (extra)
946          * must match the number of pending IOs (nr_pending) before
947          * we continue.
948          */
949         spin_lock_irq(&conf->resync_lock);
950         conf->array_frozen = 1;
951         wait_event_lock_irq_cmd(conf->wait_barrier,
952                                 conf->nr_pending == conf->nr_queued+extra,
953                                 conf->resync_lock,
954                                 flush_pending_writes(conf));
955         spin_unlock_irq(&conf->resync_lock);
956 }
957 static void unfreeze_array(struct r1conf *conf)
958 {
959         /* reverse the effect of the freeze */
960         spin_lock_irq(&conf->resync_lock);
961         conf->array_frozen = 0;
962         wake_up(&conf->wait_barrier);
963         spin_unlock_irq(&conf->resync_lock);
964 }
965
966 /* duplicate the data pages for behind I/O
967  */
968 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
969 {
970         int i;
971         struct bio_vec *bvec;
972         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
973                                         GFP_NOIO);
974         if (unlikely(!bvecs))
975                 return;
976
977         bio_for_each_segment_all(bvec, bio, i) {
978                 bvecs[i] = *bvec;
979                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
980                 if (unlikely(!bvecs[i].bv_page))
981                         goto do_sync_io;
982                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
983                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
984                 kunmap(bvecs[i].bv_page);
985                 kunmap(bvec->bv_page);
986         }
987         r1_bio->behind_bvecs = bvecs;
988         r1_bio->behind_page_count = bio->bi_vcnt;
989         set_bit(R1BIO_BehindIO, &r1_bio->state);
990         return;
991
992 do_sync_io:
993         for (i = 0; i < bio->bi_vcnt; i++)
994                 if (bvecs[i].bv_page)
995                         put_page(bvecs[i].bv_page);
996         kfree(bvecs);
997         pr_debug("%dB behind alloc failed, doing sync I/O\n",
998                  bio->bi_iter.bi_size);
999 }
1000
1001 struct raid1_plug_cb {
1002         struct blk_plug_cb      cb;
1003         struct bio_list         pending;
1004         int                     pending_cnt;
1005 };
1006
1007 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1008 {
1009         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1010                                                   cb);
1011         struct mddev *mddev = plug->cb.data;
1012         struct r1conf *conf = mddev->private;
1013         struct bio *bio;
1014
1015         if (from_schedule || current->bio_list) {
1016                 spin_lock_irq(&conf->device_lock);
1017                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1018                 conf->pending_count += plug->pending_cnt;
1019                 spin_unlock_irq(&conf->device_lock);
1020                 wake_up(&conf->wait_barrier);
1021                 md_wakeup_thread(mddev->thread);
1022                 kfree(plug);
1023                 return;
1024         }
1025
1026         /* we aren't scheduling, so we can do the write-out directly. */
1027         bio = bio_list_get(&plug->pending);
1028         bitmap_unplug(mddev->bitmap);
1029         wake_up(&conf->wait_barrier);
1030
1031         while (bio) { /* submit pending writes */
1032                 struct bio *next = bio->bi_next;
1033                 bio->bi_next = NULL;
1034                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1035                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1036                         /* Just ignore it */
1037                         bio_endio(bio);
1038                 else
1039                         generic_make_request(bio);
1040                 bio = next;
1041         }
1042         kfree(plug);
1043 }
1044
1045 static void make_request(struct mddev *mddev, struct bio * bio)
1046 {
1047         struct r1conf *conf = mddev->private;
1048         struct raid1_info *mirror;
1049         struct r1bio *r1_bio;
1050         struct bio *read_bio;
1051         int i, disks;
1052         struct bitmap *bitmap;
1053         unsigned long flags;
1054         const int rw = bio_data_dir(bio);
1055         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1056         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1057         const unsigned long do_discard = (bio->bi_rw
1058                                           & (REQ_DISCARD | REQ_SECURE));
1059         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1060         struct md_rdev *blocked_rdev;
1061         struct blk_plug_cb *cb;
1062         struct raid1_plug_cb *plug = NULL;
1063         int first_clone;
1064         int sectors_handled;
1065         int max_sectors;
1066         sector_t start_next_window;
1067
1068         /*
1069          * Register the new request and wait if the reconstruction
1070          * thread has put up a bar for new requests.
1071          * Continue immediately if no resync is active currently.
1072          */
1073
1074         md_write_start(mddev, bio); /* wait on superblock update early */
1075
1076         if (bio_data_dir(bio) == WRITE &&
1077             ((bio_end_sector(bio) > mddev->suspend_lo &&
1078             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1079             (mddev_is_clustered(mddev) &&
1080              md_cluster_ops->area_resyncing(mddev, WRITE,
1081                      bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1082                 /* As the suspend_* range is controlled by
1083                  * userspace, we want an interruptible
1084                  * wait.
1085                  */
1086                 DEFINE_WAIT(w);
1087                 for (;;) {
1088                         flush_signals(current);
1089                         prepare_to_wait(&conf->wait_barrier,
1090                                         &w, TASK_INTERRUPTIBLE);
1091                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1092                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1093                             (mddev_is_clustered(mddev) &&
1094                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1095                                      bio->bi_iter.bi_sector, bio_end_sector(bio))))
1096                                 break;
1097                         schedule();
1098                 }
1099                 finish_wait(&conf->wait_barrier, &w);
1100         }
1101
1102         start_next_window = wait_barrier(conf, bio);
1103
1104         bitmap = mddev->bitmap;
1105
1106         /*
1107          * make_request() can abort the operation when READA is being
1108          * used and no empty request is available.
1109          *
1110          */
1111         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1112
1113         r1_bio->master_bio = bio;
1114         r1_bio->sectors = bio_sectors(bio);
1115         r1_bio->state = 0;
1116         r1_bio->mddev = mddev;
1117         r1_bio->sector = bio->bi_iter.bi_sector;
1118
1119         /* We might need to issue multiple reads to different
1120          * devices if there are bad blocks around, so we keep
1121          * track of the number of reads in bio->bi_phys_segments.
1122          * If this is 0, there is only one r1_bio and no locking
1123          * will be needed when requests complete.  If it is
1124          * non-zero, then it is the number of not-completed requests.
1125          */
1126         bio->bi_phys_segments = 0;
1127         bio_clear_flag(bio, BIO_SEG_VALID);
1128
1129         if (rw == READ) {
1130                 /*
1131                  * read balancing logic:
1132                  */
1133                 int rdisk;
1134
1135 read_again:
1136                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1137
1138                 if (rdisk < 0) {
1139                         /* couldn't find anywhere to read from */
1140                         raid_end_bio_io(r1_bio);
1141                         return;
1142                 }
1143                 mirror = conf->mirrors + rdisk;
1144
1145                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1146                     bitmap) {
1147                         /* Reading from a write-mostly device must
1148                          * take care not to over-take any writes
1149                          * that are 'behind'
1150                          */
1151                         wait_event(bitmap->behind_wait,
1152                                    atomic_read(&bitmap->behind_writes) == 0);
1153                 }
1154                 r1_bio->read_disk = rdisk;
1155                 r1_bio->start_next_window = 0;
1156
1157                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1158                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1159                          max_sectors);
1160
1161                 r1_bio->bios[rdisk] = read_bio;
1162
1163                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1164                         mirror->rdev->data_offset;
1165                 read_bio->bi_bdev = mirror->rdev->bdev;
1166                 read_bio->bi_end_io = raid1_end_read_request;
1167                 read_bio->bi_rw = READ | do_sync;
1168                 read_bio->bi_private = r1_bio;
1169
1170                 if (max_sectors < r1_bio->sectors) {
1171                         /* could not read all from this device, so we will
1172                          * need another r1_bio.
1173                          */
1174
1175                         sectors_handled = (r1_bio->sector + max_sectors
1176                                            - bio->bi_iter.bi_sector);
1177                         r1_bio->sectors = max_sectors;
1178                         spin_lock_irq(&conf->device_lock);
1179                         if (bio->bi_phys_segments == 0)
1180                                 bio->bi_phys_segments = 2;
1181                         else
1182                                 bio->bi_phys_segments++;
1183                         spin_unlock_irq(&conf->device_lock);
1184                         /* Cannot call generic_make_request directly
1185                          * as that will be queued in __make_request
1186                          * and subsequent mempool_alloc might block waiting
1187                          * for it.  So hand bio over to raid1d.
1188                          */
1189                         reschedule_retry(r1_bio);
1190
1191                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1192
1193                         r1_bio->master_bio = bio;
1194                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1195                         r1_bio->state = 0;
1196                         r1_bio->mddev = mddev;
1197                         r1_bio->sector = bio->bi_iter.bi_sector +
1198                                 sectors_handled;
1199                         goto read_again;
1200                 } else
1201                         generic_make_request(read_bio);
1202                 return;
1203         }
1204
1205         /*
1206          * WRITE:
1207          */
1208         if (conf->pending_count >= max_queued_requests) {
1209                 md_wakeup_thread(mddev->thread);
1210                 wait_event(conf->wait_barrier,
1211                            conf->pending_count < max_queued_requests);
1212         }
1213         /* first select target devices under rcu_lock and
1214          * inc refcount on their rdev.  Record them by setting
1215          * bios[x] to bio
1216          * If there are known/acknowledged bad blocks on any device on
1217          * which we have seen a write error, we want to avoid writing those
1218          * blocks.
1219          * This potentially requires several writes to write around
1220          * the bad blocks.  Each set of writes gets it's own r1bio
1221          * with a set of bios attached.
1222          */
1223
1224         disks = conf->raid_disks * 2;
1225  retry_write:
1226         r1_bio->start_next_window = start_next_window;
1227         blocked_rdev = NULL;
1228         rcu_read_lock();
1229         max_sectors = r1_bio->sectors;
1230         for (i = 0;  i < disks; i++) {
1231                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1232                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1233                         atomic_inc(&rdev->nr_pending);
1234                         blocked_rdev = rdev;
1235                         break;
1236                 }
1237                 r1_bio->bios[i] = NULL;
1238                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1239                         if (i < conf->raid_disks)
1240                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1241                         continue;
1242                 }
1243
1244                 atomic_inc(&rdev->nr_pending);
1245                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1246                         sector_t first_bad;
1247                         int bad_sectors;
1248                         int is_bad;
1249
1250                         is_bad = is_badblock(rdev, r1_bio->sector,
1251                                              max_sectors,
1252                                              &first_bad, &bad_sectors);
1253                         if (is_bad < 0) {
1254                                 /* mustn't write here until the bad block is
1255                                  * acknowledged*/
1256                                 set_bit(BlockedBadBlocks, &rdev->flags);
1257                                 blocked_rdev = rdev;
1258                                 break;
1259                         }
1260                         if (is_bad && first_bad <= r1_bio->sector) {
1261                                 /* Cannot write here at all */
1262                                 bad_sectors -= (r1_bio->sector - first_bad);
1263                                 if (bad_sectors < max_sectors)
1264                                         /* mustn't write more than bad_sectors
1265                                          * to other devices yet
1266                                          */
1267                                         max_sectors = bad_sectors;
1268                                 rdev_dec_pending(rdev, mddev);
1269                                 /* We don't set R1BIO_Degraded as that
1270                                  * only applies if the disk is
1271                                  * missing, so it might be re-added,
1272                                  * and we want to know to recover this
1273                                  * chunk.
1274                                  * In this case the device is here,
1275                                  * and the fact that this chunk is not
1276                                  * in-sync is recorded in the bad
1277                                  * block log
1278                                  */
1279                                 continue;
1280                         }
1281                         if (is_bad) {
1282                                 int good_sectors = first_bad - r1_bio->sector;
1283                                 if (good_sectors < max_sectors)
1284                                         max_sectors = good_sectors;
1285                         }
1286                 }
1287                 r1_bio->bios[i] = bio;
1288         }
1289         rcu_read_unlock();
1290
1291         if (unlikely(blocked_rdev)) {
1292                 /* Wait for this device to become unblocked */
1293                 int j;
1294                 sector_t old = start_next_window;
1295
1296                 for (j = 0; j < i; j++)
1297                         if (r1_bio->bios[j])
1298                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1299                 r1_bio->state = 0;
1300                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1301                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1302                 start_next_window = wait_barrier(conf, bio);
1303                 /*
1304                  * We must make sure the multi r1bios of bio have
1305                  * the same value of bi_phys_segments
1306                  */
1307                 if (bio->bi_phys_segments && old &&
1308                     old != start_next_window)
1309                         /* Wait for the former r1bio(s) to complete */
1310                         wait_event(conf->wait_barrier,
1311                                    bio->bi_phys_segments == 1);
1312                 goto retry_write;
1313         }
1314
1315         if (max_sectors < r1_bio->sectors) {
1316                 /* We are splitting this write into multiple parts, so
1317                  * we need to prepare for allocating another r1_bio.
1318                  */
1319                 r1_bio->sectors = max_sectors;
1320                 spin_lock_irq(&conf->device_lock);
1321                 if (bio->bi_phys_segments == 0)
1322                         bio->bi_phys_segments = 2;
1323                 else
1324                         bio->bi_phys_segments++;
1325                 spin_unlock_irq(&conf->device_lock);
1326         }
1327         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1328
1329         atomic_set(&r1_bio->remaining, 1);
1330         atomic_set(&r1_bio->behind_remaining, 0);
1331
1332         first_clone = 1;
1333         for (i = 0; i < disks; i++) {
1334                 struct bio *mbio;
1335                 if (!r1_bio->bios[i])
1336                         continue;
1337
1338                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1339                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1340
1341                 if (first_clone) {
1342                         /* do behind I/O ?
1343                          * Not if there are too many, or cannot
1344                          * allocate memory, or a reader on WriteMostly
1345                          * is waiting for behind writes to flush */
1346                         if (bitmap &&
1347                             (atomic_read(&bitmap->behind_writes)
1348                              < mddev->bitmap_info.max_write_behind) &&
1349                             !waitqueue_active(&bitmap->behind_wait))
1350                                 alloc_behind_pages(mbio, r1_bio);
1351
1352                         bitmap_startwrite(bitmap, r1_bio->sector,
1353                                           r1_bio->sectors,
1354                                           test_bit(R1BIO_BehindIO,
1355                                                    &r1_bio->state));
1356                         first_clone = 0;
1357                 }
1358                 if (r1_bio->behind_bvecs) {
1359                         struct bio_vec *bvec;
1360                         int j;
1361
1362                         /*
1363                          * We trimmed the bio, so _all is legit
1364                          */
1365                         bio_for_each_segment_all(bvec, mbio, j)
1366                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1367                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1368                                 atomic_inc(&r1_bio->behind_remaining);
1369                 }
1370
1371                 r1_bio->bios[i] = mbio;
1372
1373                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1374                                    conf->mirrors[i].rdev->data_offset);
1375                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1376                 mbio->bi_end_io = raid1_end_write_request;
1377                 mbio->bi_rw =
1378                         WRITE | do_flush_fua | do_sync | do_discard | do_same;
1379                 mbio->bi_private = r1_bio;
1380
1381                 atomic_inc(&r1_bio->remaining);
1382
1383                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1384                 if (cb)
1385                         plug = container_of(cb, struct raid1_plug_cb, cb);
1386                 else
1387                         plug = NULL;
1388                 spin_lock_irqsave(&conf->device_lock, flags);
1389                 if (plug) {
1390                         bio_list_add(&plug->pending, mbio);
1391                         plug->pending_cnt++;
1392                 } else {
1393                         bio_list_add(&conf->pending_bio_list, mbio);
1394                         conf->pending_count++;
1395                 }
1396                 spin_unlock_irqrestore(&conf->device_lock, flags);
1397                 if (!plug)
1398                         md_wakeup_thread(mddev->thread);
1399         }
1400         /* Mustn't call r1_bio_write_done before this next test,
1401          * as it could result in the bio being freed.
1402          */
1403         if (sectors_handled < bio_sectors(bio)) {
1404                 r1_bio_write_done(r1_bio);
1405                 /* We need another r1_bio.  It has already been counted
1406                  * in bio->bi_phys_segments
1407                  */
1408                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1409                 r1_bio->master_bio = bio;
1410                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1411                 r1_bio->state = 0;
1412                 r1_bio->mddev = mddev;
1413                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1414                 goto retry_write;
1415         }
1416
1417         r1_bio_write_done(r1_bio);
1418
1419         /* In case raid1d snuck in to freeze_array */
1420         wake_up(&conf->wait_barrier);
1421 }
1422
1423 static void status(struct seq_file *seq, struct mddev *mddev)
1424 {
1425         struct r1conf *conf = mddev->private;
1426         int i;
1427
1428         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1429                    conf->raid_disks - mddev->degraded);
1430         rcu_read_lock();
1431         for (i = 0; i < conf->raid_disks; i++) {
1432                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1433                 seq_printf(seq, "%s",
1434                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1435         }
1436         rcu_read_unlock();
1437         seq_printf(seq, "]");
1438 }
1439
1440 static void error(struct mddev *mddev, struct md_rdev *rdev)
1441 {
1442         char b[BDEVNAME_SIZE];
1443         struct r1conf *conf = mddev->private;
1444         unsigned long flags;
1445
1446         /*
1447          * If it is not operational, then we have already marked it as dead
1448          * else if it is the last working disks, ignore the error, let the
1449          * next level up know.
1450          * else mark the drive as failed
1451          */
1452         if (test_bit(In_sync, &rdev->flags)
1453             && (conf->raid_disks - mddev->degraded) == 1) {
1454                 /*
1455                  * Don't fail the drive, act as though we were just a
1456                  * normal single drive.
1457                  * However don't try a recovery from this drive as
1458                  * it is very likely to fail.
1459                  */
1460                 conf->recovery_disabled = mddev->recovery_disabled;
1461                 return;
1462         }
1463         set_bit(Blocked, &rdev->flags);
1464         spin_lock_irqsave(&conf->device_lock, flags);
1465         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1466                 mddev->degraded++;
1467                 set_bit(Faulty, &rdev->flags);
1468         } else
1469                 set_bit(Faulty, &rdev->flags);
1470         spin_unlock_irqrestore(&conf->device_lock, flags);
1471         /*
1472          * if recovery is running, make sure it aborts.
1473          */
1474         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1475         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1476         set_bit(MD_CHANGE_PENDING, &mddev->flags);
1477         printk(KERN_ALERT
1478                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1479                "md/raid1:%s: Operation continuing on %d devices.\n",
1480                mdname(mddev), bdevname(rdev->bdev, b),
1481                mdname(mddev), conf->raid_disks - mddev->degraded);
1482 }
1483
1484 static void print_conf(struct r1conf *conf)
1485 {
1486         int i;
1487
1488         printk(KERN_DEBUG "RAID1 conf printout:\n");
1489         if (!conf) {
1490                 printk(KERN_DEBUG "(!conf)\n");
1491                 return;
1492         }
1493         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1494                 conf->raid_disks);
1495
1496         rcu_read_lock();
1497         for (i = 0; i < conf->raid_disks; i++) {
1498                 char b[BDEVNAME_SIZE];
1499                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1500                 if (rdev)
1501                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1502                                i, !test_bit(In_sync, &rdev->flags),
1503                                !test_bit(Faulty, &rdev->flags),
1504                                bdevname(rdev->bdev,b));
1505         }
1506         rcu_read_unlock();
1507 }
1508
1509 static void close_sync(struct r1conf *conf)
1510 {
1511         wait_barrier(conf, NULL);
1512         allow_barrier(conf, 0, 0);
1513
1514         mempool_destroy(conf->r1buf_pool);
1515         conf->r1buf_pool = NULL;
1516
1517         spin_lock_irq(&conf->resync_lock);
1518         conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1519         conf->start_next_window = MaxSector;
1520         conf->current_window_requests +=
1521                 conf->next_window_requests;
1522         conf->next_window_requests = 0;
1523         spin_unlock_irq(&conf->resync_lock);
1524 }
1525
1526 static int raid1_spare_active(struct mddev *mddev)
1527 {
1528         int i;
1529         struct r1conf *conf = mddev->private;
1530         int count = 0;
1531         unsigned long flags;
1532
1533         /*
1534          * Find all failed disks within the RAID1 configuration
1535          * and mark them readable.
1536          * Called under mddev lock, so rcu protection not needed.
1537          * device_lock used to avoid races with raid1_end_read_request
1538          * which expects 'In_sync' flags and ->degraded to be consistent.
1539          */
1540         spin_lock_irqsave(&conf->device_lock, flags);
1541         for (i = 0; i < conf->raid_disks; i++) {
1542                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1543                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1544                 if (repl
1545                     && !test_bit(Candidate, &repl->flags)
1546                     && repl->recovery_offset == MaxSector
1547                     && !test_bit(Faulty, &repl->flags)
1548                     && !test_and_set_bit(In_sync, &repl->flags)) {
1549                         /* replacement has just become active */
1550                         if (!rdev ||
1551                             !test_and_clear_bit(In_sync, &rdev->flags))
1552                                 count++;
1553                         if (rdev) {
1554                                 /* Replaced device not technically
1555                                  * faulty, but we need to be sure
1556                                  * it gets removed and never re-added
1557                                  */
1558                                 set_bit(Faulty, &rdev->flags);
1559                                 sysfs_notify_dirent_safe(
1560                                         rdev->sysfs_state);
1561                         }
1562                 }
1563                 if (rdev
1564                     && rdev->recovery_offset == MaxSector
1565                     && !test_bit(Faulty, &rdev->flags)
1566                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1567                         count++;
1568                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1569                 }
1570         }
1571         mddev->degraded -= count;
1572         spin_unlock_irqrestore(&conf->device_lock, flags);
1573
1574         print_conf(conf);
1575         return count;
1576 }
1577
1578 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1579 {
1580         struct r1conf *conf = mddev->private;
1581         int err = -EEXIST;
1582         int mirror = 0;
1583         struct raid1_info *p;
1584         int first = 0;
1585         int last = conf->raid_disks - 1;
1586
1587         if (mddev->recovery_disabled == conf->recovery_disabled)
1588                 return -EBUSY;
1589
1590         if (rdev->raid_disk >= 0)
1591                 first = last = rdev->raid_disk;
1592
1593         for (mirror = first; mirror <= last; mirror++) {
1594                 p = conf->mirrors+mirror;
1595                 if (!p->rdev) {
1596
1597                         if (mddev->gendisk)
1598                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1599                                                   rdev->data_offset << 9);
1600
1601                         p->head_position = 0;
1602                         rdev->raid_disk = mirror;
1603                         err = 0;
1604                         /* As all devices are equivalent, we don't need a full recovery
1605                          * if this was recently any drive of the array
1606                          */
1607                         if (rdev->saved_raid_disk < 0)
1608                                 conf->fullsync = 1;
1609                         rcu_assign_pointer(p->rdev, rdev);
1610                         break;
1611                 }
1612                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1613                     p[conf->raid_disks].rdev == NULL) {
1614                         /* Add this device as a replacement */
1615                         clear_bit(In_sync, &rdev->flags);
1616                         set_bit(Replacement, &rdev->flags);
1617                         rdev->raid_disk = mirror;
1618                         err = 0;
1619                         conf->fullsync = 1;
1620                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1621                         break;
1622                 }
1623         }
1624         mddev_suspend(mddev);
1625         md_integrity_add_rdev(rdev, mddev);
1626         mddev_resume(mddev);
1627         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1628                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1629         print_conf(conf);
1630         return err;
1631 }
1632
1633 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1634 {
1635         struct r1conf *conf = mddev->private;
1636         int err = 0;
1637         int number = rdev->raid_disk;
1638         struct raid1_info *p = conf->mirrors + number;
1639
1640         if (rdev != p->rdev)
1641                 p = conf->mirrors + conf->raid_disks + number;
1642
1643         print_conf(conf);
1644         if (rdev == p->rdev) {
1645                 if (test_bit(In_sync, &rdev->flags) ||
1646                     atomic_read(&rdev->nr_pending)) {
1647                         err = -EBUSY;
1648                         goto abort;
1649                 }
1650                 /* Only remove non-faulty devices if recovery
1651                  * is not possible.
1652                  */
1653                 if (!test_bit(Faulty, &rdev->flags) &&
1654                     mddev->recovery_disabled != conf->recovery_disabled &&
1655                     mddev->degraded < conf->raid_disks) {
1656                         err = -EBUSY;
1657                         goto abort;
1658                 }
1659                 p->rdev = NULL;
1660                 synchronize_rcu();
1661                 if (atomic_read(&rdev->nr_pending)) {
1662                         /* lost the race, try later */
1663                         err = -EBUSY;
1664                         p->rdev = rdev;
1665                         goto abort;
1666                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1667                         /* We just removed a device that is being replaced.
1668                          * Move down the replacement.  We drain all IO before
1669                          * doing this to avoid confusion.
1670                          */
1671                         struct md_rdev *repl =
1672                                 conf->mirrors[conf->raid_disks + number].rdev;
1673                         freeze_array(conf, 0);
1674                         clear_bit(Replacement, &repl->flags);
1675                         p->rdev = repl;
1676                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1677                         unfreeze_array(conf);
1678                         clear_bit(WantReplacement, &rdev->flags);
1679                 } else
1680                         clear_bit(WantReplacement, &rdev->flags);
1681                 err = md_integrity_register(mddev);
1682         }
1683 abort:
1684
1685         print_conf(conf);
1686         return err;
1687 }
1688
1689 static void end_sync_read(struct bio *bio)
1690 {
1691         struct r1bio *r1_bio = bio->bi_private;
1692
1693         update_head_pos(r1_bio->read_disk, r1_bio);
1694
1695         /*
1696          * we have read a block, now it needs to be re-written,
1697          * or re-read if the read failed.
1698          * We don't do much here, just schedule handling by raid1d
1699          */
1700         if (!bio->bi_error)
1701                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1702
1703         if (atomic_dec_and_test(&r1_bio->remaining))
1704                 reschedule_retry(r1_bio);
1705 }
1706
1707 static void end_sync_write(struct bio *bio)
1708 {
1709         int uptodate = !bio->bi_error;
1710         struct r1bio *r1_bio = bio->bi_private;
1711         struct mddev *mddev = r1_bio->mddev;
1712         struct r1conf *conf = mddev->private;
1713         int mirror=0;
1714         sector_t first_bad;
1715         int bad_sectors;
1716
1717         mirror = find_bio_disk(r1_bio, bio);
1718
1719         if (!uptodate) {
1720                 sector_t sync_blocks = 0;
1721                 sector_t s = r1_bio->sector;
1722                 long sectors_to_go = r1_bio->sectors;
1723                 /* make sure these bits doesn't get cleared. */
1724                 do {
1725                         bitmap_end_sync(mddev->bitmap, s,
1726                                         &sync_blocks, 1);
1727                         s += sync_blocks;
1728                         sectors_to_go -= sync_blocks;
1729                 } while (sectors_to_go > 0);
1730                 set_bit(WriteErrorSeen,
1731                         &conf->mirrors[mirror].rdev->flags);
1732                 if (!test_and_set_bit(WantReplacement,
1733                                       &conf->mirrors[mirror].rdev->flags))
1734                         set_bit(MD_RECOVERY_NEEDED, &
1735                                 mddev->recovery);
1736                 set_bit(R1BIO_WriteError, &r1_bio->state);
1737         } else if (is_badblock(conf->mirrors[mirror].rdev,
1738                                r1_bio->sector,
1739                                r1_bio->sectors,
1740                                &first_bad, &bad_sectors) &&
1741                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1742                                 r1_bio->sector,
1743                                 r1_bio->sectors,
1744                                 &first_bad, &bad_sectors)
1745                 )
1746                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1747
1748         if (atomic_dec_and_test(&r1_bio->remaining)) {
1749                 int s = r1_bio->sectors;
1750                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1751                     test_bit(R1BIO_WriteError, &r1_bio->state))
1752                         reschedule_retry(r1_bio);
1753                 else {
1754                         put_buf(r1_bio);
1755                         md_done_sync(mddev, s, uptodate);
1756                 }
1757         }
1758 }
1759
1760 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1761                             int sectors, struct page *page, int rw)
1762 {
1763         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1764                 /* success */
1765                 return 1;
1766         if (rw == WRITE) {
1767                 set_bit(WriteErrorSeen, &rdev->flags);
1768                 if (!test_and_set_bit(WantReplacement,
1769                                       &rdev->flags))
1770                         set_bit(MD_RECOVERY_NEEDED, &
1771                                 rdev->mddev->recovery);
1772         }
1773         /* need to record an error - either for the block or the device */
1774         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1775                 md_error(rdev->mddev, rdev);
1776         return 0;
1777 }
1778
1779 static int fix_sync_read_error(struct r1bio *r1_bio)
1780 {
1781         /* Try some synchronous reads of other devices to get
1782          * good data, much like with normal read errors.  Only
1783          * read into the pages we already have so we don't
1784          * need to re-issue the read request.
1785          * We don't need to freeze the array, because being in an
1786          * active sync request, there is no normal IO, and
1787          * no overlapping syncs.
1788          * We don't need to check is_badblock() again as we
1789          * made sure that anything with a bad block in range
1790          * will have bi_end_io clear.
1791          */
1792         struct mddev *mddev = r1_bio->mddev;
1793         struct r1conf *conf = mddev->private;
1794         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1795         sector_t sect = r1_bio->sector;
1796         int sectors = r1_bio->sectors;
1797         int idx = 0;
1798
1799         while(sectors) {
1800                 int s = sectors;
1801                 int d = r1_bio->read_disk;
1802                 int success = 0;
1803                 struct md_rdev *rdev;
1804                 int start;
1805
1806                 if (s > (PAGE_SIZE>>9))
1807                         s = PAGE_SIZE >> 9;
1808                 do {
1809                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1810                                 /* No rcu protection needed here devices
1811                                  * can only be removed when no resync is
1812                                  * active, and resync is currently active
1813                                  */
1814                                 rdev = conf->mirrors[d].rdev;
1815                                 if (sync_page_io(rdev, sect, s<<9,
1816                                                  bio->bi_io_vec[idx].bv_page,
1817                                                  READ, false)) {
1818                                         success = 1;
1819                                         break;
1820                                 }
1821                         }
1822                         d++;
1823                         if (d == conf->raid_disks * 2)
1824                                 d = 0;
1825                 } while (!success && d != r1_bio->read_disk);
1826
1827                 if (!success) {
1828                         char b[BDEVNAME_SIZE];
1829                         int abort = 0;
1830                         /* Cannot read from anywhere, this block is lost.
1831                          * Record a bad block on each device.  If that doesn't
1832                          * work just disable and interrupt the recovery.
1833                          * Don't fail devices as that won't really help.
1834                          */
1835                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1836                                " for block %llu\n",
1837                                mdname(mddev),
1838                                bdevname(bio->bi_bdev, b),
1839                                (unsigned long long)r1_bio->sector);
1840                         for (d = 0; d < conf->raid_disks * 2; d++) {
1841                                 rdev = conf->mirrors[d].rdev;
1842                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1843                                         continue;
1844                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1845                                         abort = 1;
1846                         }
1847                         if (abort) {
1848                                 conf->recovery_disabled =
1849                                         mddev->recovery_disabled;
1850                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1851                                 md_done_sync(mddev, r1_bio->sectors, 0);
1852                                 put_buf(r1_bio);
1853                                 return 0;
1854                         }
1855                         /* Try next page */
1856                         sectors -= s;
1857                         sect += s;
1858                         idx++;
1859                         continue;
1860                 }
1861
1862                 start = d;
1863                 /* write it back and re-read */
1864                 while (d != r1_bio->read_disk) {
1865                         if (d == 0)
1866                                 d = conf->raid_disks * 2;
1867                         d--;
1868                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1869                                 continue;
1870                         rdev = conf->mirrors[d].rdev;
1871                         if (r1_sync_page_io(rdev, sect, s,
1872                                             bio->bi_io_vec[idx].bv_page,
1873                                             WRITE) == 0) {
1874                                 r1_bio->bios[d]->bi_end_io = NULL;
1875                                 rdev_dec_pending(rdev, mddev);
1876                         }
1877                 }
1878                 d = start;
1879                 while (d != r1_bio->read_disk) {
1880                         if (d == 0)
1881                                 d = conf->raid_disks * 2;
1882                         d--;
1883                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1884                                 continue;
1885                         rdev = conf->mirrors[d].rdev;
1886                         if (r1_sync_page_io(rdev, sect, s,
1887                                             bio->bi_io_vec[idx].bv_page,
1888                                             READ) != 0)
1889                                 atomic_add(s, &rdev->corrected_errors);
1890                 }
1891                 sectors -= s;
1892                 sect += s;
1893                 idx ++;
1894         }
1895         set_bit(R1BIO_Uptodate, &r1_bio->state);
1896         bio->bi_error = 0;
1897         return 1;
1898 }
1899
1900 static void process_checks(struct r1bio *r1_bio)
1901 {
1902         /* We have read all readable devices.  If we haven't
1903          * got the block, then there is no hope left.
1904          * If we have, then we want to do a comparison
1905          * and skip the write if everything is the same.
1906          * If any blocks failed to read, then we need to
1907          * attempt an over-write
1908          */
1909         struct mddev *mddev = r1_bio->mddev;
1910         struct r1conf *conf = mddev->private;
1911         int primary;
1912         int i;
1913         int vcnt;
1914
1915         /* Fix variable parts of all bios */
1916         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1917         for (i = 0; i < conf->raid_disks * 2; i++) {
1918                 int j;
1919                 int size;
1920                 int error;
1921                 struct bio *b = r1_bio->bios[i];
1922                 if (b->bi_end_io != end_sync_read)
1923                         continue;
1924                 /* fixup the bio for reuse, but preserve errno */
1925                 error = b->bi_error;
1926                 bio_reset(b);
1927                 b->bi_error = error;
1928                 b->bi_vcnt = vcnt;
1929                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1930                 b->bi_iter.bi_sector = r1_bio->sector +
1931                         conf->mirrors[i].rdev->data_offset;
1932                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1933                 b->bi_end_io = end_sync_read;
1934                 b->bi_private = r1_bio;
1935
1936                 size = b->bi_iter.bi_size;
1937                 for (j = 0; j < vcnt ; j++) {
1938                         struct bio_vec *bi;
1939                         bi = &b->bi_io_vec[j];
1940                         bi->bv_offset = 0;
1941                         if (size > PAGE_SIZE)
1942                                 bi->bv_len = PAGE_SIZE;
1943                         else
1944                                 bi->bv_len = size;
1945                         size -= PAGE_SIZE;
1946                 }
1947         }
1948         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1949                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1950                     !r1_bio->bios[primary]->bi_error) {
1951                         r1_bio->bios[primary]->bi_end_io = NULL;
1952                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1953                         break;
1954                 }
1955         r1_bio->read_disk = primary;
1956         for (i = 0; i < conf->raid_disks * 2; i++) {
1957                 int j;
1958                 struct bio *pbio = r1_bio->bios[primary];
1959                 struct bio *sbio = r1_bio->bios[i];
1960                 int error = sbio->bi_error;
1961
1962                 if (sbio->bi_end_io != end_sync_read)
1963                         continue;
1964                 /* Now we can 'fixup' the error value */
1965                 sbio->bi_error = 0;
1966
1967                 if (!error) {
1968                         for (j = vcnt; j-- ; ) {
1969                                 struct page *p, *s;
1970                                 p = pbio->bi_io_vec[j].bv_page;
1971                                 s = sbio->bi_io_vec[j].bv_page;
1972                                 if (memcmp(page_address(p),
1973                                            page_address(s),
1974                                            sbio->bi_io_vec[j].bv_len))
1975                                         break;
1976                         }
1977                 } else
1978                         j = 0;
1979                 if (j >= 0)
1980                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1981                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1982                               && !error)) {
1983                         /* No need to write to this device. */
1984                         sbio->bi_end_io = NULL;
1985                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1986                         continue;
1987                 }
1988
1989                 bio_copy_data(sbio, pbio);
1990         }
1991 }
1992
1993 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1994 {
1995         struct r1conf *conf = mddev->private;
1996         int i;
1997         int disks = conf->raid_disks * 2;
1998         struct bio *bio, *wbio;
1999
2000         bio = r1_bio->bios[r1_bio->read_disk];
2001
2002         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2003                 /* ouch - failed to read all of that. */
2004                 if (!fix_sync_read_error(r1_bio))
2005                         return;
2006
2007         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2008                 process_checks(r1_bio);
2009
2010         /*
2011          * schedule writes
2012          */
2013         atomic_set(&r1_bio->remaining, 1);
2014         for (i = 0; i < disks ; i++) {
2015                 wbio = r1_bio->bios[i];
2016                 if (wbio->bi_end_io == NULL ||
2017                     (wbio->bi_end_io == end_sync_read &&
2018                      (i == r1_bio->read_disk ||
2019                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2020                         continue;
2021
2022                 wbio->bi_rw = WRITE;
2023                 wbio->bi_end_io = end_sync_write;
2024                 atomic_inc(&r1_bio->remaining);
2025                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2026
2027                 generic_make_request(wbio);
2028         }
2029
2030         if (atomic_dec_and_test(&r1_bio->remaining)) {
2031                 /* if we're here, all write(s) have completed, so clean up */
2032                 int s = r1_bio->sectors;
2033                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2034                     test_bit(R1BIO_WriteError, &r1_bio->state))
2035                         reschedule_retry(r1_bio);
2036                 else {
2037                         put_buf(r1_bio);
2038                         md_done_sync(mddev, s, 1);
2039                 }
2040         }
2041 }
2042
2043 /*
2044  * This is a kernel thread which:
2045  *
2046  *      1.      Retries failed read operations on working mirrors.
2047  *      2.      Updates the raid superblock when problems encounter.
2048  *      3.      Performs writes following reads for array synchronising.
2049  */
2050
2051 static void fix_read_error(struct r1conf *conf, int read_disk,
2052                            sector_t sect, int sectors)
2053 {
2054         struct mddev *mddev = conf->mddev;
2055         while(sectors) {
2056                 int s = sectors;
2057                 int d = read_disk;
2058                 int success = 0;
2059                 int start;
2060                 struct md_rdev *rdev;
2061
2062                 if (s > (PAGE_SIZE>>9))
2063                         s = PAGE_SIZE >> 9;
2064
2065                 do {
2066                         /* Note: no rcu protection needed here
2067                          * as this is synchronous in the raid1d thread
2068                          * which is the thread that might remove
2069                          * a device.  If raid1d ever becomes multi-threaded....
2070                          */
2071                         sector_t first_bad;
2072                         int bad_sectors;
2073
2074                         rdev = conf->mirrors[d].rdev;
2075                         if (rdev &&
2076                             (test_bit(In_sync, &rdev->flags) ||
2077                              (!test_bit(Faulty, &rdev->flags) &&
2078                               rdev->recovery_offset >= sect + s)) &&
2079                             is_badblock(rdev, sect, s,
2080                                         &first_bad, &bad_sectors) == 0 &&
2081                             sync_page_io(rdev, sect, s<<9,
2082                                          conf->tmppage, READ, false))
2083                                 success = 1;
2084                         else {
2085                                 d++;
2086                                 if (d == conf->raid_disks * 2)
2087                                         d = 0;
2088                         }
2089                 } while (!success && d != read_disk);
2090
2091                 if (!success) {
2092                         /* Cannot read from anywhere - mark it bad */
2093                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2094                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2095                                 md_error(mddev, rdev);
2096                         break;
2097                 }
2098                 /* write it back and re-read */
2099                 start = d;
2100                 while (d != read_disk) {
2101                         if (d==0)
2102                                 d = conf->raid_disks * 2;
2103                         d--;
2104                         rdev = conf->mirrors[d].rdev;
2105                         if (rdev &&
2106                             !test_bit(Faulty, &rdev->flags))
2107                                 r1_sync_page_io(rdev, sect, s,
2108                                                 conf->tmppage, WRITE);
2109                 }
2110                 d = start;
2111                 while (d != read_disk) {
2112                         char b[BDEVNAME_SIZE];
2113                         if (d==0)
2114                                 d = conf->raid_disks * 2;
2115                         d--;
2116                         rdev = conf->mirrors[d].rdev;
2117                         if (rdev &&
2118                             !test_bit(Faulty, &rdev->flags)) {
2119                                 if (r1_sync_page_io(rdev, sect, s,
2120                                                     conf->tmppage, READ)) {
2121                                         atomic_add(s, &rdev->corrected_errors);
2122                                         printk(KERN_INFO
2123                                                "md/raid1:%s: read error corrected "
2124                                                "(%d sectors at %llu on %s)\n",
2125                                                mdname(mddev), s,
2126                                                (unsigned long long)(sect +
2127                                                    rdev->data_offset),
2128                                                bdevname(rdev->bdev, b));
2129                                 }
2130                         }
2131                 }
2132                 sectors -= s;
2133                 sect += s;
2134         }
2135 }
2136
2137 static int narrow_write_error(struct r1bio *r1_bio, int i)
2138 {
2139         struct mddev *mddev = r1_bio->mddev;
2140         struct r1conf *conf = mddev->private;
2141         struct md_rdev *rdev = conf->mirrors[i].rdev;
2142
2143         /* bio has the data to be written to device 'i' where
2144          * we just recently had a write error.
2145          * We repeatedly clone the bio and trim down to one block,
2146          * then try the write.  Where the write fails we record
2147          * a bad block.
2148          * It is conceivable that the bio doesn't exactly align with
2149          * blocks.  We must handle this somehow.
2150          *
2151          * We currently own a reference on the rdev.
2152          */
2153
2154         int block_sectors;
2155         sector_t sector;
2156         int sectors;
2157         int sect_to_write = r1_bio->sectors;
2158         int ok = 1;
2159
2160         if (rdev->badblocks.shift < 0)
2161                 return 0;
2162
2163         block_sectors = roundup(1 << rdev->badblocks.shift,
2164                                 bdev_logical_block_size(rdev->bdev) >> 9);
2165         sector = r1_bio->sector;
2166         sectors = ((sector + block_sectors)
2167                    & ~(sector_t)(block_sectors - 1))
2168                 - sector;
2169
2170         while (sect_to_write) {
2171                 struct bio *wbio;
2172                 if (sectors > sect_to_write)
2173                         sectors = sect_to_write;
2174                 /* Write at 'sector' for 'sectors'*/
2175
2176                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2177                         unsigned vcnt = r1_bio->behind_page_count;
2178                         struct bio_vec *vec = r1_bio->behind_bvecs;
2179
2180                         while (!vec->bv_page) {
2181                                 vec++;
2182                                 vcnt--;
2183                         }
2184
2185                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2186                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2187
2188                         wbio->bi_vcnt = vcnt;
2189                 } else {
2190                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2191                 }
2192
2193                 wbio->bi_rw = WRITE;
2194                 wbio->bi_iter.bi_sector = r1_bio->sector;
2195                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2196
2197                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2198                 wbio->bi_iter.bi_sector += rdev->data_offset;
2199                 wbio->bi_bdev = rdev->bdev;
2200                 if (submit_bio_wait(WRITE, wbio) < 0)
2201                         /* failure! */
2202                         ok = rdev_set_badblocks(rdev, sector,
2203                                                 sectors, 0)
2204                                 && ok;
2205
2206                 bio_put(wbio);
2207                 sect_to_write -= sectors;
2208                 sector += sectors;
2209                 sectors = block_sectors;
2210         }
2211         return ok;
2212 }
2213
2214 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2215 {
2216         int m;
2217         int s = r1_bio->sectors;
2218         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2219                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2220                 struct bio *bio = r1_bio->bios[m];
2221                 if (bio->bi_end_io == NULL)
2222                         continue;
2223                 if (!bio->bi_error &&
2224                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2225                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2226                 }
2227                 if (bio->bi_error &&
2228                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2229                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2230                                 md_error(conf->mddev, rdev);
2231                 }
2232         }
2233         put_buf(r1_bio);
2234         md_done_sync(conf->mddev, s, 1);
2235 }
2236
2237 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2238 {
2239         int m;
2240         bool fail = false;
2241         for (m = 0; m < conf->raid_disks * 2 ; m++)
2242                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2243                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2244                         rdev_clear_badblocks(rdev,
2245                                              r1_bio->sector,
2246                                              r1_bio->sectors, 0);
2247                         rdev_dec_pending(rdev, conf->mddev);
2248                 } else if (r1_bio->bios[m] != NULL) {
2249                         /* This drive got a write error.  We need to
2250                          * narrow down and record precise write
2251                          * errors.
2252                          */
2253                         fail = true;
2254                         if (!narrow_write_error(r1_bio, m)) {
2255                                 md_error(conf->mddev,
2256                                          conf->mirrors[m].rdev);
2257                                 /* an I/O failed, we can't clear the bitmap */
2258                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2259                         }
2260                         rdev_dec_pending(conf->mirrors[m].rdev,
2261                                          conf->mddev);
2262                 }
2263         if (fail) {
2264                 spin_lock_irq(&conf->device_lock);
2265                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2266                 spin_unlock_irq(&conf->device_lock);
2267                 md_wakeup_thread(conf->mddev->thread);
2268         } else {
2269                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2270                         close_write(r1_bio);
2271                 raid_end_bio_io(r1_bio);
2272         }
2273 }
2274
2275 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2276 {
2277         int disk;
2278         int max_sectors;
2279         struct mddev *mddev = conf->mddev;
2280         struct bio *bio;
2281         char b[BDEVNAME_SIZE];
2282         struct md_rdev *rdev;
2283
2284         clear_bit(R1BIO_ReadError, &r1_bio->state);
2285         /* we got a read error. Maybe the drive is bad.  Maybe just
2286          * the block and we can fix it.
2287          * We freeze all other IO, and try reading the block from
2288          * other devices.  When we find one, we re-write
2289          * and check it that fixes the read error.
2290          * This is all done synchronously while the array is
2291          * frozen
2292          */
2293         if (mddev->ro == 0) {
2294                 freeze_array(conf, 1);
2295                 fix_read_error(conf, r1_bio->read_disk,
2296                                r1_bio->sector, r1_bio->sectors);
2297                 unfreeze_array(conf);
2298         } else
2299                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2300         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2301
2302         bio = r1_bio->bios[r1_bio->read_disk];
2303         bdevname(bio->bi_bdev, b);
2304 read_more:
2305         disk = read_balance(conf, r1_bio, &max_sectors);
2306         if (disk == -1) {
2307                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2308                        " read error for block %llu\n",
2309                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2310                 raid_end_bio_io(r1_bio);
2311         } else {
2312                 const unsigned long do_sync
2313                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2314                 if (bio) {
2315                         r1_bio->bios[r1_bio->read_disk] =
2316                                 mddev->ro ? IO_BLOCKED : NULL;
2317                         bio_put(bio);
2318                 }
2319                 r1_bio->read_disk = disk;
2320                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2321                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2322                          max_sectors);
2323                 r1_bio->bios[r1_bio->read_disk] = bio;
2324                 rdev = conf->mirrors[disk].rdev;
2325                 printk_ratelimited(KERN_ERR
2326                                    "md/raid1:%s: redirecting sector %llu"
2327                                    " to other mirror: %s\n",
2328                                    mdname(mddev),
2329                                    (unsigned long long)r1_bio->sector,
2330                                    bdevname(rdev->bdev, b));
2331                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2332                 bio->bi_bdev = rdev->bdev;
2333                 bio->bi_end_io = raid1_end_read_request;
2334                 bio->bi_rw = READ | do_sync;
2335                 bio->bi_private = r1_bio;
2336                 if (max_sectors < r1_bio->sectors) {
2337                         /* Drat - have to split this up more */
2338                         struct bio *mbio = r1_bio->master_bio;
2339                         int sectors_handled = (r1_bio->sector + max_sectors
2340                                                - mbio->bi_iter.bi_sector);
2341                         r1_bio->sectors = max_sectors;
2342                         spin_lock_irq(&conf->device_lock);
2343                         if (mbio->bi_phys_segments == 0)
2344                                 mbio->bi_phys_segments = 2;
2345                         else
2346                                 mbio->bi_phys_segments++;
2347                         spin_unlock_irq(&conf->device_lock);
2348                         generic_make_request(bio);
2349                         bio = NULL;
2350
2351                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2352
2353                         r1_bio->master_bio = mbio;
2354                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2355                         r1_bio->state = 0;
2356                         set_bit(R1BIO_ReadError, &r1_bio->state);
2357                         r1_bio->mddev = mddev;
2358                         r1_bio->sector = mbio->bi_iter.bi_sector +
2359                                 sectors_handled;
2360
2361                         goto read_more;
2362                 } else
2363                         generic_make_request(bio);
2364         }
2365 }
2366
2367 static void raid1d(struct md_thread *thread)
2368 {
2369         struct mddev *mddev = thread->mddev;
2370         struct r1bio *r1_bio;
2371         unsigned long flags;
2372         struct r1conf *conf = mddev->private;
2373         struct list_head *head = &conf->retry_list;
2374         struct blk_plug plug;
2375
2376         md_check_recovery(mddev);
2377
2378         if (!list_empty_careful(&conf->bio_end_io_list) &&
2379             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2380                 LIST_HEAD(tmp);
2381                 spin_lock_irqsave(&conf->device_lock, flags);
2382                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2383                         list_add(&tmp, &conf->bio_end_io_list);
2384                         list_del_init(&conf->bio_end_io_list);
2385                 }
2386                 spin_unlock_irqrestore(&conf->device_lock, flags);
2387                 while (!list_empty(&tmp)) {
2388                         r1_bio = list_first_entry(&tmp, struct r1bio,
2389                                                   retry_list);
2390                         list_del(&r1_bio->retry_list);
2391                         if (mddev->degraded)
2392                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2393                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2394                                 close_write(r1_bio);
2395                         raid_end_bio_io(r1_bio);
2396                 }
2397         }
2398
2399         blk_start_plug(&plug);
2400         for (;;) {
2401
2402                 flush_pending_writes(conf);
2403
2404                 spin_lock_irqsave(&conf->device_lock, flags);
2405                 if (list_empty(head)) {
2406                         spin_unlock_irqrestore(&conf->device_lock, flags);
2407                         break;
2408                 }
2409                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2410                 list_del(head->prev);
2411                 conf->nr_queued--;
2412                 spin_unlock_irqrestore(&conf->device_lock, flags);
2413
2414                 mddev = r1_bio->mddev;
2415                 conf = mddev->private;
2416                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2417                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2418                             test_bit(R1BIO_WriteError, &r1_bio->state))
2419                                 handle_sync_write_finished(conf, r1_bio);
2420                         else
2421                                 sync_request_write(mddev, r1_bio);
2422                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2423                            test_bit(R1BIO_WriteError, &r1_bio->state))
2424                         handle_write_finished(conf, r1_bio);
2425                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2426                         handle_read_error(conf, r1_bio);
2427                 else
2428                         /* just a partial read to be scheduled from separate
2429                          * context
2430                          */
2431                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2432
2433                 cond_resched();
2434                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2435                         md_check_recovery(mddev);
2436         }
2437         blk_finish_plug(&plug);
2438 }
2439
2440 static int init_resync(struct r1conf *conf)
2441 {
2442         int buffs;
2443
2444         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2445         BUG_ON(conf->r1buf_pool);
2446         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2447                                           conf->poolinfo);
2448         if (!conf->r1buf_pool)
2449                 return -ENOMEM;
2450         conf->next_resync = 0;
2451         return 0;
2452 }
2453
2454 /*
2455  * perform a "sync" on one "block"
2456  *
2457  * We need to make sure that no normal I/O request - particularly write
2458  * requests - conflict with active sync requests.
2459  *
2460  * This is achieved by tracking pending requests and a 'barrier' concept
2461  * that can be installed to exclude normal IO requests.
2462  */
2463
2464 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2465 {
2466         struct r1conf *conf = mddev->private;
2467         struct r1bio *r1_bio;
2468         struct bio *bio;
2469         sector_t max_sector, nr_sectors;
2470         int disk = -1;
2471         int i;
2472         int wonly = -1;
2473         int write_targets = 0, read_targets = 0;
2474         sector_t sync_blocks;
2475         int still_degraded = 0;
2476         int good_sectors = RESYNC_SECTORS;
2477         int min_bad = 0; /* number of sectors that are bad in all devices */
2478
2479         if (!conf->r1buf_pool)
2480                 if (init_resync(conf))
2481                         return 0;
2482
2483         max_sector = mddev->dev_sectors;
2484         if (sector_nr >= max_sector) {
2485                 /* If we aborted, we need to abort the
2486                  * sync on the 'current' bitmap chunk (there will
2487                  * only be one in raid1 resync.
2488                  * We can find the current addess in mddev->curr_resync
2489                  */
2490                 if (mddev->curr_resync < max_sector) /* aborted */
2491                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2492                                                 &sync_blocks, 1);
2493                 else /* completed sync */
2494                         conf->fullsync = 0;
2495
2496                 bitmap_close_sync(mddev->bitmap);
2497                 close_sync(conf);
2498                 return 0;
2499         }
2500
2501         if (mddev->bitmap == NULL &&
2502             mddev->recovery_cp == MaxSector &&
2503             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2504             conf->fullsync == 0) {
2505                 *skipped = 1;
2506                 return max_sector - sector_nr;
2507         }
2508         /* before building a request, check if we can skip these blocks..
2509          * This call the bitmap_start_sync doesn't actually record anything
2510          */
2511         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2512             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2513                 /* We can skip this block, and probably several more */
2514                 *skipped = 1;
2515                 return sync_blocks;
2516         }
2517
2518         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2519         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2520
2521         raise_barrier(conf, sector_nr);
2522
2523         rcu_read_lock();
2524         /*
2525          * If we get a correctably read error during resync or recovery,
2526          * we might want to read from a different device.  So we
2527          * flag all drives that could conceivably be read from for READ,
2528          * and any others (which will be non-In_sync devices) for WRITE.
2529          * If a read fails, we try reading from something else for which READ
2530          * is OK.
2531          */
2532
2533         r1_bio->mddev = mddev;
2534         r1_bio->sector = sector_nr;
2535         r1_bio->state = 0;
2536         set_bit(R1BIO_IsSync, &r1_bio->state);
2537
2538         for (i = 0; i < conf->raid_disks * 2; i++) {
2539                 struct md_rdev *rdev;
2540                 bio = r1_bio->bios[i];
2541                 bio_reset(bio);
2542
2543                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2544                 if (rdev == NULL ||
2545                     test_bit(Faulty, &rdev->flags)) {
2546                         if (i < conf->raid_disks)
2547                                 still_degraded = 1;
2548                 } else if (!test_bit(In_sync, &rdev->flags)) {
2549                         bio->bi_rw = WRITE;
2550                         bio->bi_end_io = end_sync_write;
2551                         write_targets ++;
2552                 } else {
2553                         /* may need to read from here */
2554                         sector_t first_bad = MaxSector;
2555                         int bad_sectors;
2556
2557                         if (is_badblock(rdev, sector_nr, good_sectors,
2558                                         &first_bad, &bad_sectors)) {
2559                                 if (first_bad > sector_nr)
2560                                         good_sectors = first_bad - sector_nr;
2561                                 else {
2562                                         bad_sectors -= (sector_nr - first_bad);
2563                                         if (min_bad == 0 ||
2564                                             min_bad > bad_sectors)
2565                                                 min_bad = bad_sectors;
2566                                 }
2567                         }
2568                         if (sector_nr < first_bad) {
2569                                 if (test_bit(WriteMostly, &rdev->flags)) {
2570                                         if (wonly < 0)
2571                                                 wonly = i;
2572                                 } else {
2573                                         if (disk < 0)
2574                                                 disk = i;
2575                                 }
2576                                 bio->bi_rw = READ;
2577                                 bio->bi_end_io = end_sync_read;
2578                                 read_targets++;
2579                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2580                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2581                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2582                                 /*
2583                                  * The device is suitable for reading (InSync),
2584                                  * but has bad block(s) here. Let's try to correct them,
2585                                  * if we are doing resync or repair. Otherwise, leave
2586                                  * this device alone for this sync request.
2587                                  */
2588                                 bio->bi_rw = WRITE;
2589                                 bio->bi_end_io = end_sync_write;
2590                                 write_targets++;
2591                         }
2592                 }
2593                 if (bio->bi_end_io) {
2594                         atomic_inc(&rdev->nr_pending);
2595                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2596                         bio->bi_bdev = rdev->bdev;
2597                         bio->bi_private = r1_bio;
2598                 }
2599         }
2600         rcu_read_unlock();
2601         if (disk < 0)
2602                 disk = wonly;
2603         r1_bio->read_disk = disk;
2604
2605         if (read_targets == 0 && min_bad > 0) {
2606                 /* These sectors are bad on all InSync devices, so we
2607                  * need to mark them bad on all write targets
2608                  */
2609                 int ok = 1;
2610                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2611                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2612                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2613                                 ok = rdev_set_badblocks(rdev, sector_nr,
2614                                                         min_bad, 0
2615                                         ) && ok;
2616                         }
2617                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2618                 *skipped = 1;
2619                 put_buf(r1_bio);
2620
2621                 if (!ok) {
2622                         /* Cannot record the badblocks, so need to
2623                          * abort the resync.
2624                          * If there are multiple read targets, could just
2625                          * fail the really bad ones ???
2626                          */
2627                         conf->recovery_disabled = mddev->recovery_disabled;
2628                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2629                         return 0;
2630                 } else
2631                         return min_bad;
2632
2633         }
2634         if (min_bad > 0 && min_bad < good_sectors) {
2635                 /* only resync enough to reach the next bad->good
2636                  * transition */
2637                 good_sectors = min_bad;
2638         }
2639
2640         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2641                 /* extra read targets are also write targets */
2642                 write_targets += read_targets-1;
2643
2644         if (write_targets == 0 || read_targets == 0) {
2645                 /* There is nowhere to write, so all non-sync
2646                  * drives must be failed - so we are finished
2647                  */
2648                 sector_t rv;
2649                 if (min_bad > 0)
2650                         max_sector = sector_nr + min_bad;
2651                 rv = max_sector - sector_nr;
2652                 *skipped = 1;
2653                 put_buf(r1_bio);
2654                 return rv;
2655         }
2656
2657         if (max_sector > mddev->resync_max)
2658                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2659         if (max_sector > sector_nr + good_sectors)
2660                 max_sector = sector_nr + good_sectors;
2661         nr_sectors = 0;
2662         sync_blocks = 0;
2663         do {
2664                 struct page *page;
2665                 int len = PAGE_SIZE;
2666                 if (sector_nr + (len>>9) > max_sector)
2667                         len = (max_sector - sector_nr) << 9;
2668                 if (len == 0)
2669                         break;
2670                 if (sync_blocks == 0) {
2671                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2672                                                &sync_blocks, still_degraded) &&
2673                             !conf->fullsync &&
2674                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2675                                 break;
2676                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2677                         if ((len >> 9) > sync_blocks)
2678                                 len = sync_blocks<<9;
2679                 }
2680
2681                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2682                         bio = r1_bio->bios[i];
2683                         if (bio->bi_end_io) {
2684                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2685                                 if (bio_add_page(bio, page, len, 0) == 0) {
2686                                         /* stop here */
2687                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2688                                         while (i > 0) {
2689                                                 i--;
2690                                                 bio = r1_bio->bios[i];
2691                                                 if (bio->bi_end_io==NULL)
2692                                                         continue;
2693                                                 /* remove last page from this bio */
2694                                                 bio->bi_vcnt--;
2695                                                 bio->bi_iter.bi_size -= len;
2696                                                 bio_clear_flag(bio, BIO_SEG_VALID);
2697                                         }
2698                                         goto bio_full;
2699                                 }
2700                         }
2701                 }
2702                 nr_sectors += len>>9;
2703                 sector_nr += len>>9;
2704                 sync_blocks -= (len>>9);
2705         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2706  bio_full:
2707         r1_bio->sectors = nr_sectors;
2708
2709         /* For a user-requested sync, we read all readable devices and do a
2710          * compare
2711          */
2712         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2713                 atomic_set(&r1_bio->remaining, read_targets);
2714                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2715                         bio = r1_bio->bios[i];
2716                         if (bio->bi_end_io == end_sync_read) {
2717                                 read_targets--;
2718                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2719                                 generic_make_request(bio);
2720                         }
2721                 }
2722         } else {
2723                 atomic_set(&r1_bio->remaining, 1);
2724                 bio = r1_bio->bios[r1_bio->read_disk];
2725                 md_sync_acct(bio->bi_bdev, nr_sectors);
2726                 generic_make_request(bio);
2727
2728         }
2729         return nr_sectors;
2730 }
2731
2732 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2733 {
2734         if (sectors)
2735                 return sectors;
2736
2737         return mddev->dev_sectors;
2738 }
2739
2740 static struct r1conf *setup_conf(struct mddev *mddev)
2741 {
2742         struct r1conf *conf;
2743         int i;
2744         struct raid1_info *disk;
2745         struct md_rdev *rdev;
2746         int err = -ENOMEM;
2747
2748         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2749         if (!conf)
2750                 goto abort;
2751
2752         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2753                                 * mddev->raid_disks * 2,
2754                                  GFP_KERNEL);
2755         if (!conf->mirrors)
2756                 goto abort;
2757
2758         conf->tmppage = alloc_page(GFP_KERNEL);
2759         if (!conf->tmppage)
2760                 goto abort;
2761
2762         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2763         if (!conf->poolinfo)
2764                 goto abort;
2765         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2766         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2767                                           r1bio_pool_free,
2768                                           conf->poolinfo);
2769         if (!conf->r1bio_pool)
2770                 goto abort;
2771
2772         conf->poolinfo->mddev = mddev;
2773
2774         err = -EINVAL;
2775         spin_lock_init(&conf->device_lock);
2776         rdev_for_each(rdev, mddev) {
2777                 struct request_queue *q;
2778                 int disk_idx = rdev->raid_disk;
2779                 if (disk_idx >= mddev->raid_disks
2780                     || disk_idx < 0)
2781                         continue;
2782                 if (test_bit(Replacement, &rdev->flags))
2783                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2784                 else
2785                         disk = conf->mirrors + disk_idx;
2786
2787                 if (disk->rdev)
2788                         goto abort;
2789                 disk->rdev = rdev;
2790                 q = bdev_get_queue(rdev->bdev);
2791
2792                 disk->head_position = 0;
2793                 disk->seq_start = MaxSector;
2794         }
2795         conf->raid_disks = mddev->raid_disks;
2796         conf->mddev = mddev;
2797         INIT_LIST_HEAD(&conf->retry_list);
2798         INIT_LIST_HEAD(&conf->bio_end_io_list);
2799
2800         spin_lock_init(&conf->resync_lock);
2801         init_waitqueue_head(&conf->wait_barrier);
2802
2803         bio_list_init(&conf->pending_bio_list);
2804         conf->pending_count = 0;
2805         conf->recovery_disabled = mddev->recovery_disabled - 1;
2806
2807         conf->start_next_window = MaxSector;
2808         conf->current_window_requests = conf->next_window_requests = 0;
2809
2810         err = -EIO;
2811         for (i = 0; i < conf->raid_disks * 2; i++) {
2812
2813                 disk = conf->mirrors + i;
2814
2815                 if (i < conf->raid_disks &&
2816                     disk[conf->raid_disks].rdev) {
2817                         /* This slot has a replacement. */
2818                         if (!disk->rdev) {
2819                                 /* No original, just make the replacement
2820                                  * a recovering spare
2821                                  */
2822                                 disk->rdev =
2823                                         disk[conf->raid_disks].rdev;
2824                                 disk[conf->raid_disks].rdev = NULL;
2825                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2826                                 /* Original is not in_sync - bad */
2827                                 goto abort;
2828                 }
2829
2830                 if (!disk->rdev ||
2831                     !test_bit(In_sync, &disk->rdev->flags)) {
2832                         disk->head_position = 0;
2833                         if (disk->rdev &&
2834                             (disk->rdev->saved_raid_disk < 0))
2835                                 conf->fullsync = 1;
2836                 }
2837         }
2838
2839         err = -ENOMEM;
2840         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2841         if (!conf->thread) {
2842                 printk(KERN_ERR
2843                        "md/raid1:%s: couldn't allocate thread\n",
2844                        mdname(mddev));
2845                 goto abort;
2846         }
2847
2848         return conf;
2849
2850  abort:
2851         if (conf) {
2852                 mempool_destroy(conf->r1bio_pool);
2853                 kfree(conf->mirrors);
2854                 safe_put_page(conf->tmppage);
2855                 kfree(conf->poolinfo);
2856                 kfree(conf);
2857         }
2858         return ERR_PTR(err);
2859 }
2860
2861 static void raid1_free(struct mddev *mddev, void *priv);
2862 static int run(struct mddev *mddev)
2863 {
2864         struct r1conf *conf;
2865         int i;
2866         struct md_rdev *rdev;
2867         int ret;
2868         bool discard_supported = false;
2869
2870         if (mddev->level != 1) {
2871                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2872                        mdname(mddev), mddev->level);
2873                 return -EIO;
2874         }
2875         if (mddev->reshape_position != MaxSector) {
2876                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2877                        mdname(mddev));
2878                 return -EIO;
2879         }
2880         /*
2881          * copy the already verified devices into our private RAID1
2882          * bookkeeping area. [whatever we allocate in run(),
2883          * should be freed in raid1_free()]
2884          */
2885         if (mddev->private == NULL)
2886                 conf = setup_conf(mddev);
2887         else
2888                 conf = mddev->private;
2889
2890         if (IS_ERR(conf))
2891                 return PTR_ERR(conf);
2892
2893         if (mddev->queue)
2894                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2895
2896         rdev_for_each(rdev, mddev) {
2897                 if (!mddev->gendisk)
2898                         continue;
2899                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2900                                   rdev->data_offset << 9);
2901                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2902                         discard_supported = true;
2903         }
2904
2905         mddev->degraded = 0;
2906         for (i=0; i < conf->raid_disks; i++)
2907                 if (conf->mirrors[i].rdev == NULL ||
2908                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2909                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2910                         mddev->degraded++;
2911
2912         if (conf->raid_disks - mddev->degraded == 1)
2913                 mddev->recovery_cp = MaxSector;
2914
2915         if (mddev->recovery_cp != MaxSector)
2916                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2917                        " -- starting background reconstruction\n",
2918                        mdname(mddev));
2919         printk(KERN_INFO
2920                 "md/raid1:%s: active with %d out of %d mirrors\n",
2921                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2922                 mddev->raid_disks);
2923
2924         /*
2925          * Ok, everything is just fine now
2926          */
2927         mddev->thread = conf->thread;
2928         conf->thread = NULL;
2929         mddev->private = conf;
2930
2931         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2932
2933         if (mddev->queue) {
2934                 if (discard_supported)
2935                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2936                                                 mddev->queue);
2937                 else
2938                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2939                                                   mddev->queue);
2940         }
2941
2942         ret =  md_integrity_register(mddev);
2943         if (ret) {
2944                 md_unregister_thread(&mddev->thread);
2945                 raid1_free(mddev, conf);
2946         }
2947         return ret;
2948 }
2949
2950 static void raid1_free(struct mddev *mddev, void *priv)
2951 {
2952         struct r1conf *conf = priv;
2953
2954         mempool_destroy(conf->r1bio_pool);
2955         kfree(conf->mirrors);
2956         safe_put_page(conf->tmppage);
2957         kfree(conf->poolinfo);
2958         kfree(conf);
2959 }
2960
2961 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2962 {
2963         /* no resync is happening, and there is enough space
2964          * on all devices, so we can resize.
2965          * We need to make sure resync covers any new space.
2966          * If the array is shrinking we should possibly wait until
2967          * any io in the removed space completes, but it hardly seems
2968          * worth it.
2969          */
2970         sector_t newsize = raid1_size(mddev, sectors, 0);
2971         if (mddev->external_size &&
2972             mddev->array_sectors > newsize)
2973                 return -EINVAL;
2974         if (mddev->bitmap) {
2975                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2976                 if (ret)
2977                         return ret;
2978         }
2979         md_set_array_sectors(mddev, newsize);
2980         set_capacity(mddev->gendisk, mddev->array_sectors);
2981         revalidate_disk(mddev->gendisk);
2982         if (sectors > mddev->dev_sectors &&
2983             mddev->recovery_cp > mddev->dev_sectors) {
2984                 mddev->recovery_cp = mddev->dev_sectors;
2985                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2986         }
2987         mddev->dev_sectors = sectors;
2988         mddev->resync_max_sectors = sectors;
2989         return 0;
2990 }
2991
2992 static int raid1_reshape(struct mddev *mddev)
2993 {
2994         /* We need to:
2995          * 1/ resize the r1bio_pool
2996          * 2/ resize conf->mirrors
2997          *
2998          * We allocate a new r1bio_pool if we can.
2999          * Then raise a device barrier and wait until all IO stops.
3000          * Then resize conf->mirrors and swap in the new r1bio pool.
3001          *
3002          * At the same time, we "pack" the devices so that all the missing
3003          * devices have the higher raid_disk numbers.
3004          */
3005         mempool_t *newpool, *oldpool;
3006         struct pool_info *newpoolinfo;
3007         struct raid1_info *newmirrors;
3008         struct r1conf *conf = mddev->private;
3009         int cnt, raid_disks;
3010         unsigned long flags;
3011         int d, d2, err;
3012
3013         /* Cannot change chunk_size, layout, or level */
3014         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3015             mddev->layout != mddev->new_layout ||
3016             mddev->level != mddev->new_level) {
3017                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3018                 mddev->new_layout = mddev->layout;
3019                 mddev->new_level = mddev->level;
3020                 return -EINVAL;
3021         }
3022
3023         err = md_allow_write(mddev);
3024         if (err)
3025                 return err;
3026
3027         raid_disks = mddev->raid_disks + mddev->delta_disks;
3028
3029         if (raid_disks < conf->raid_disks) {
3030                 cnt=0;
3031                 for (d= 0; d < conf->raid_disks; d++)
3032                         if (conf->mirrors[d].rdev)
3033                                 cnt++;
3034                 if (cnt > raid_disks)
3035                         return -EBUSY;
3036         }
3037
3038         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3039         if (!newpoolinfo)
3040                 return -ENOMEM;
3041         newpoolinfo->mddev = mddev;
3042         newpoolinfo->raid_disks = raid_disks * 2;
3043
3044         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3045                                  r1bio_pool_free, newpoolinfo);
3046         if (!newpool) {
3047                 kfree(newpoolinfo);
3048                 return -ENOMEM;
3049         }
3050         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3051                              GFP_KERNEL);
3052         if (!newmirrors) {
3053                 kfree(newpoolinfo);
3054                 mempool_destroy(newpool);
3055                 return -ENOMEM;
3056         }
3057
3058         freeze_array(conf, 0);
3059
3060         /* ok, everything is stopped */
3061         oldpool = conf->r1bio_pool;
3062         conf->r1bio_pool = newpool;
3063
3064         for (d = d2 = 0; d < conf->raid_disks; d++) {
3065                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3066                 if (rdev && rdev->raid_disk != d2) {
3067                         sysfs_unlink_rdev(mddev, rdev);
3068                         rdev->raid_disk = d2;
3069                         sysfs_unlink_rdev(mddev, rdev);
3070                         if (sysfs_link_rdev(mddev, rdev))
3071                                 printk(KERN_WARNING
3072                                        "md/raid1:%s: cannot register rd%d\n",
3073                                        mdname(mddev), rdev->raid_disk);
3074                 }
3075                 if (rdev)
3076                         newmirrors[d2++].rdev = rdev;
3077         }
3078         kfree(conf->mirrors);
3079         conf->mirrors = newmirrors;
3080         kfree(conf->poolinfo);
3081         conf->poolinfo = newpoolinfo;
3082
3083         spin_lock_irqsave(&conf->device_lock, flags);
3084         mddev->degraded += (raid_disks - conf->raid_disks);
3085         spin_unlock_irqrestore(&conf->device_lock, flags);
3086         conf->raid_disks = mddev->raid_disks = raid_disks;
3087         mddev->delta_disks = 0;
3088
3089         unfreeze_array(conf);
3090
3091         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3092         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3093         md_wakeup_thread(mddev->thread);
3094
3095         mempool_destroy(oldpool);
3096         return 0;
3097 }
3098
3099 static void raid1_quiesce(struct mddev *mddev, int state)
3100 {
3101         struct r1conf *conf = mddev->private;
3102
3103         switch(state) {
3104         case 2: /* wake for suspend */
3105                 wake_up(&conf->wait_barrier);
3106                 break;
3107         case 1:
3108                 freeze_array(conf, 0);
3109                 break;
3110         case 0:
3111                 unfreeze_array(conf);
3112                 break;
3113         }
3114 }
3115
3116 static void *raid1_takeover(struct mddev *mddev)
3117 {
3118         /* raid1 can take over:
3119          *  raid5 with 2 devices, any layout or chunk size
3120          */
3121         if (mddev->level == 5 && mddev->raid_disks == 2) {
3122                 struct r1conf *conf;
3123                 mddev->new_level = 1;
3124                 mddev->new_layout = 0;
3125                 mddev->new_chunk_sectors = 0;
3126                 conf = setup_conf(mddev);
3127                 if (!IS_ERR(conf))
3128                         /* Array must appear to be quiesced */
3129                         conf->array_frozen = 1;
3130                 return conf;
3131         }
3132         return ERR_PTR(-EINVAL);
3133 }
3134
3135 static struct md_personality raid1_personality =
3136 {
3137         .name           = "raid1",
3138         .level          = 1,
3139         .owner          = THIS_MODULE,
3140         .make_request   = make_request,
3141         .run            = run,
3142         .free           = raid1_free,
3143         .status         = status,
3144         .error_handler  = error,
3145         .hot_add_disk   = raid1_add_disk,
3146         .hot_remove_disk= raid1_remove_disk,
3147         .spare_active   = raid1_spare_active,
3148         .sync_request   = sync_request,
3149         .resize         = raid1_resize,
3150         .size           = raid1_size,
3151         .check_reshape  = raid1_reshape,
3152         .quiesce        = raid1_quiesce,
3153         .takeover       = raid1_takeover,
3154         .congested      = raid1_congested,
3155 };
3156
3157 static int __init raid_init(void)
3158 {
3159         return register_md_personality(&raid1_personality);
3160 }
3161
3162 static void raid_exit(void)
3163 {
3164         unregister_md_personality(&raid1_personality);
3165 }
3166
3167 module_init(raid_init);
3168 module_exit(raid_exit);
3169 MODULE_LICENSE("GPL");
3170 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3171 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3172 MODULE_ALIAS("md-raid1");
3173 MODULE_ALIAS("md-level-1");
3174
3175 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);