]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid10.c
23de2144ee13e90661f1d9fca919eb2e4f312b30
[karo-tx-linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102                                 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109         struct r10conf *conf = data;
110         int size = offsetof(struct r10bio, devs[conf->copies]);
111
112         /* allocate a r10bio with room for raid_disks entries in the
113          * bios array */
114         return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119         kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139         struct r10conf *conf = data;
140         struct page *page;
141         struct r10bio *r10_bio;
142         struct bio *bio;
143         int i, j;
144         int nalloc;
145
146         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147         if (!r10_bio)
148                 return NULL;
149
150         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152                 nalloc = conf->copies; /* resync */
153         else
154                 nalloc = 2; /* recovery */
155
156         /*
157          * Allocate bios.
158          */
159         for (j = nalloc ; j-- ; ) {
160                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161                 if (!bio)
162                         goto out_free_bio;
163                 r10_bio->devs[j].bio = bio;
164                 if (!conf->have_replacement)
165                         continue;
166                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167                 if (!bio)
168                         goto out_free_bio;
169                 r10_bio->devs[j].repl_bio = bio;
170         }
171         /*
172          * Allocate RESYNC_PAGES data pages and attach them
173          * where needed.
174          */
175         for (j = 0 ; j < nalloc; j++) {
176                 struct bio *rbio = r10_bio->devs[j].repl_bio;
177                 bio = r10_bio->devs[j].bio;
178                 for (i = 0; i < RESYNC_PAGES; i++) {
179                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180                                                &conf->mddev->recovery)) {
181                                 /* we can share bv_page's during recovery
182                                  * and reshape */
183                                 struct bio *rbio = r10_bio->devs[0].bio;
184                                 page = rbio->bi_io_vec[i].bv_page;
185                                 get_page(page);
186                         } else
187                                 page = alloc_page(gfp_flags);
188                         if (unlikely(!page))
189                                 goto out_free_pages;
190
191                         bio->bi_io_vec[i].bv_page = page;
192                         if (rbio)
193                                 rbio->bi_io_vec[i].bv_page = page;
194                 }
195         }
196
197         return r10_bio;
198
199 out_free_pages:
200         for ( ; i > 0 ; i--)
201                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202         while (j--)
203                 for (i = 0; i < RESYNC_PAGES ; i++)
204                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205         j = 0;
206 out_free_bio:
207         for ( ; j < nalloc; j++) {
208                 if (r10_bio->devs[j].bio)
209                         bio_put(r10_bio->devs[j].bio);
210                 if (r10_bio->devs[j].repl_bio)
211                         bio_put(r10_bio->devs[j].repl_bio);
212         }
213         r10bio_pool_free(r10_bio, conf);
214         return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219         int i;
220         struct r10conf *conf = data;
221         struct r10bio *r10bio = __r10_bio;
222         int j;
223
224         for (j=0; j < conf->copies; j++) {
225                 struct bio *bio = r10bio->devs[j].bio;
226                 if (bio) {
227                         for (i = 0; i < RESYNC_PAGES; i++) {
228                                 safe_put_page(bio->bi_io_vec[i].bv_page);
229                                 bio->bi_io_vec[i].bv_page = NULL;
230                         }
231                         bio_put(bio);
232                 }
233                 bio = r10bio->devs[j].repl_bio;
234                 if (bio)
235                         bio_put(bio);
236         }
237         r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242         int i;
243
244         for (i = 0; i < conf->copies; i++) {
245                 struct bio **bio = & r10_bio->devs[i].bio;
246                 if (!BIO_SPECIAL(*bio))
247                         bio_put(*bio);
248                 *bio = NULL;
249                 bio = &r10_bio->devs[i].repl_bio;
250                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253         }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258         struct r10conf *conf = r10_bio->mddev->private;
259
260         put_all_bios(conf, r10_bio);
261         mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266         struct r10conf *conf = r10_bio->mddev->private;
267
268         mempool_free(r10_bio, conf->r10buf_pool);
269
270         lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275         unsigned long flags;
276         struct mddev *mddev = r10_bio->mddev;
277         struct r10conf *conf = mddev->private;
278
279         spin_lock_irqsave(&conf->device_lock, flags);
280         list_add(&r10_bio->retry_list, &conf->retry_list);
281         conf->nr_queued ++;
282         spin_unlock_irqrestore(&conf->device_lock, flags);
283
284         /* wake up frozen array... */
285         wake_up(&conf->wait_barrier);
286
287         md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297         struct bio *bio = r10_bio->master_bio;
298         int done;
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         if (bio->bi_phys_segments) {
302                 unsigned long flags;
303                 spin_lock_irqsave(&conf->device_lock, flags);
304                 bio->bi_phys_segments--;
305                 done = (bio->bi_phys_segments == 0);
306                 spin_unlock_irqrestore(&conf->device_lock, flags);
307         } else
308                 done = 1;
309         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310                 bio->bi_error = -EIO;
311         if (done) {
312                 bio_endio(bio);
313                 /*
314                  * Wake up any possible resync thread that waits for the device
315                  * to go idle.
316                  */
317                 allow_barrier(conf);
318         }
319         free_r10bio(r10_bio);
320 }
321
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327         struct r10conf *conf = r10_bio->mddev->private;
328
329         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330                 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337                          struct bio *bio, int *slotp, int *replp)
338 {
339         int slot;
340         int repl = 0;
341
342         for (slot = 0; slot < conf->copies; slot++) {
343                 if (r10_bio->devs[slot].bio == bio)
344                         break;
345                 if (r10_bio->devs[slot].repl_bio == bio) {
346                         repl = 1;
347                         break;
348                 }
349         }
350
351         BUG_ON(slot == conf->copies);
352         update_head_pos(slot, r10_bio);
353
354         if (slotp)
355                 *slotp = slot;
356         if (replp)
357                 *replp = repl;
358         return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio)
362 {
363         int uptodate = !bio->bi_error;
364         struct r10bio *r10_bio = bio->bi_private;
365         int slot, dev;
366         struct md_rdev *rdev;
367         struct r10conf *conf = r10_bio->mddev->private;
368
369         slot = r10_bio->read_slot;
370         dev = r10_bio->devs[slot].devnum;
371         rdev = r10_bio->devs[slot].rdev;
372         /*
373          * this branch is our 'one mirror IO has finished' event handler:
374          */
375         update_head_pos(slot, r10_bio);
376
377         if (uptodate) {
378                 /*
379                  * Set R10BIO_Uptodate in our master bio, so that
380                  * we will return a good error code to the higher
381                  * levels even if IO on some other mirrored buffer fails.
382                  *
383                  * The 'master' represents the composite IO operation to
384                  * user-side. So if something waits for IO, then it will
385                  * wait for the 'master' bio.
386                  */
387                 set_bit(R10BIO_Uptodate, &r10_bio->state);
388         } else {
389                 /* If all other devices that store this block have
390                  * failed, we want to return the error upwards rather
391                  * than fail the last device.  Here we redefine
392                  * "uptodate" to mean "Don't want to retry"
393                  */
394                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395                              rdev->raid_disk))
396                         uptodate = 1;
397         }
398         if (uptodate) {
399                 raid_end_bio_io(r10_bio);
400                 rdev_dec_pending(rdev, conf->mddev);
401         } else {
402                 /*
403                  * oops, read error - keep the refcount on the rdev
404                  */
405                 char b[BDEVNAME_SIZE];
406                 printk_ratelimited(KERN_ERR
407                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
408                                    mdname(conf->mddev),
409                                    bdevname(rdev->bdev, b),
410                                    (unsigned long long)r10_bio->sector);
411                 set_bit(R10BIO_ReadError, &r10_bio->state);
412                 reschedule_retry(r10_bio);
413         }
414 }
415
416 static void close_write(struct r10bio *r10_bio)
417 {
418         /* clear the bitmap if all writes complete successfully */
419         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420                         r10_bio->sectors,
421                         !test_bit(R10BIO_Degraded, &r10_bio->state),
422                         0);
423         md_write_end(r10_bio->mddev);
424 }
425
426 static void one_write_done(struct r10bio *r10_bio)
427 {
428         if (atomic_dec_and_test(&r10_bio->remaining)) {
429                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
430                         reschedule_retry(r10_bio);
431                 else {
432                         close_write(r10_bio);
433                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434                                 reschedule_retry(r10_bio);
435                         else
436                                 raid_end_bio_io(r10_bio);
437                 }
438         }
439 }
440
441 static void raid10_end_write_request(struct bio *bio)
442 {
443         struct r10bio *r10_bio = bio->bi_private;
444         int dev;
445         int dec_rdev = 1;
446         struct r10conf *conf = r10_bio->mddev->private;
447         int slot, repl;
448         struct md_rdev *rdev = NULL;
449
450         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
451
452         if (repl)
453                 rdev = conf->mirrors[dev].replacement;
454         if (!rdev) {
455                 smp_rmb();
456                 repl = 0;
457                 rdev = conf->mirrors[dev].rdev;
458         }
459         /*
460          * this branch is our 'one mirror IO has finished' event handler:
461          */
462         if (bio->bi_error) {
463                 if (repl)
464                         /* Never record new bad blocks to replacement,
465                          * just fail it.
466                          */
467                         md_error(rdev->mddev, rdev);
468                 else {
469                         set_bit(WriteErrorSeen, &rdev->flags);
470                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
471                                 set_bit(MD_RECOVERY_NEEDED,
472                                         &rdev->mddev->recovery);
473                         set_bit(R10BIO_WriteError, &r10_bio->state);
474                         dec_rdev = 0;
475                 }
476         } else {
477                 /*
478                  * Set R10BIO_Uptodate in our master bio, so that
479                  * we will return a good error code for to the higher
480                  * levels even if IO on some other mirrored buffer fails.
481                  *
482                  * The 'master' represents the composite IO operation to
483                  * user-side. So if something waits for IO, then it will
484                  * wait for the 'master' bio.
485                  */
486                 sector_t first_bad;
487                 int bad_sectors;
488
489                 /*
490                  * Do not set R10BIO_Uptodate if the current device is
491                  * rebuilding or Faulty. This is because we cannot use
492                  * such device for properly reading the data back (we could
493                  * potentially use it, if the current write would have felt
494                  * before rdev->recovery_offset, but for simplicity we don't
495                  * check this here.
496                  */
497                 if (test_bit(In_sync, &rdev->flags) &&
498                     !test_bit(Faulty, &rdev->flags))
499                         set_bit(R10BIO_Uptodate, &r10_bio->state);
500
501                 /* Maybe we can clear some bad blocks. */
502                 if (is_badblock(rdev,
503                                 r10_bio->devs[slot].addr,
504                                 r10_bio->sectors,
505                                 &first_bad, &bad_sectors)) {
506                         bio_put(bio);
507                         if (repl)
508                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
509                         else
510                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
511                         dec_rdev = 0;
512                         set_bit(R10BIO_MadeGood, &r10_bio->state);
513                 }
514         }
515
516         /*
517          *
518          * Let's see if all mirrored write operations have finished
519          * already.
520          */
521         one_write_done(r10_bio);
522         if (dec_rdev)
523                 rdev_dec_pending(rdev, conf->mddev);
524 }
525
526 /*
527  * RAID10 layout manager
528  * As well as the chunksize and raid_disks count, there are two
529  * parameters: near_copies and far_copies.
530  * near_copies * far_copies must be <= raid_disks.
531  * Normally one of these will be 1.
532  * If both are 1, we get raid0.
533  * If near_copies == raid_disks, we get raid1.
534  *
535  * Chunks are laid out in raid0 style with near_copies copies of the
536  * first chunk, followed by near_copies copies of the next chunk and
537  * so on.
538  * If far_copies > 1, then after 1/far_copies of the array has been assigned
539  * as described above, we start again with a device offset of near_copies.
540  * So we effectively have another copy of the whole array further down all
541  * the drives, but with blocks on different drives.
542  * With this layout, and block is never stored twice on the one device.
543  *
544  * raid10_find_phys finds the sector offset of a given virtual sector
545  * on each device that it is on.
546  *
547  * raid10_find_virt does the reverse mapping, from a device and a
548  * sector offset to a virtual address
549  */
550
551 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
552 {
553         int n,f;
554         sector_t sector;
555         sector_t chunk;
556         sector_t stripe;
557         int dev;
558         int slot = 0;
559         int last_far_set_start, last_far_set_size;
560
561         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
562         last_far_set_start *= geo->far_set_size;
563
564         last_far_set_size = geo->far_set_size;
565         last_far_set_size += (geo->raid_disks % geo->far_set_size);
566
567         /* now calculate first sector/dev */
568         chunk = r10bio->sector >> geo->chunk_shift;
569         sector = r10bio->sector & geo->chunk_mask;
570
571         chunk *= geo->near_copies;
572         stripe = chunk;
573         dev = sector_div(stripe, geo->raid_disks);
574         if (geo->far_offset)
575                 stripe *= geo->far_copies;
576
577         sector += stripe << geo->chunk_shift;
578
579         /* and calculate all the others */
580         for (n = 0; n < geo->near_copies; n++) {
581                 int d = dev;
582                 int set;
583                 sector_t s = sector;
584                 r10bio->devs[slot].devnum = d;
585                 r10bio->devs[slot].addr = s;
586                 slot++;
587
588                 for (f = 1; f < geo->far_copies; f++) {
589                         set = d / geo->far_set_size;
590                         d += geo->near_copies;
591
592                         if ((geo->raid_disks % geo->far_set_size) &&
593                             (d > last_far_set_start)) {
594                                 d -= last_far_set_start;
595                                 d %= last_far_set_size;
596                                 d += last_far_set_start;
597                         } else {
598                                 d %= geo->far_set_size;
599                                 d += geo->far_set_size * set;
600                         }
601                         s += geo->stride;
602                         r10bio->devs[slot].devnum = d;
603                         r10bio->devs[slot].addr = s;
604                         slot++;
605                 }
606                 dev++;
607                 if (dev >= geo->raid_disks) {
608                         dev = 0;
609                         sector += (geo->chunk_mask + 1);
610                 }
611         }
612 }
613
614 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
615 {
616         struct geom *geo = &conf->geo;
617
618         if (conf->reshape_progress != MaxSector &&
619             ((r10bio->sector >= conf->reshape_progress) !=
620              conf->mddev->reshape_backwards)) {
621                 set_bit(R10BIO_Previous, &r10bio->state);
622                 geo = &conf->prev;
623         } else
624                 clear_bit(R10BIO_Previous, &r10bio->state);
625
626         __raid10_find_phys(geo, r10bio);
627 }
628
629 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
630 {
631         sector_t offset, chunk, vchunk;
632         /* Never use conf->prev as this is only called during resync
633          * or recovery, so reshape isn't happening
634          */
635         struct geom *geo = &conf->geo;
636         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
637         int far_set_size = geo->far_set_size;
638         int last_far_set_start;
639
640         if (geo->raid_disks % geo->far_set_size) {
641                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
642                 last_far_set_start *= geo->far_set_size;
643
644                 if (dev >= last_far_set_start) {
645                         far_set_size = geo->far_set_size;
646                         far_set_size += (geo->raid_disks % geo->far_set_size);
647                         far_set_start = last_far_set_start;
648                 }
649         }
650
651         offset = sector & geo->chunk_mask;
652         if (geo->far_offset) {
653                 int fc;
654                 chunk = sector >> geo->chunk_shift;
655                 fc = sector_div(chunk, geo->far_copies);
656                 dev -= fc * geo->near_copies;
657                 if (dev < far_set_start)
658                         dev += far_set_size;
659         } else {
660                 while (sector >= geo->stride) {
661                         sector -= geo->stride;
662                         if (dev < (geo->near_copies + far_set_start))
663                                 dev += far_set_size - geo->near_copies;
664                         else
665                                 dev -= geo->near_copies;
666                 }
667                 chunk = sector >> geo->chunk_shift;
668         }
669         vchunk = chunk * geo->raid_disks + dev;
670         sector_div(vchunk, geo->near_copies);
671         return (vchunk << geo->chunk_shift) + offset;
672 }
673
674 /*
675  * This routine returns the disk from which the requested read should
676  * be done. There is a per-array 'next expected sequential IO' sector
677  * number - if this matches on the next IO then we use the last disk.
678  * There is also a per-disk 'last know head position' sector that is
679  * maintained from IRQ contexts, both the normal and the resync IO
680  * completion handlers update this position correctly. If there is no
681  * perfect sequential match then we pick the disk whose head is closest.
682  *
683  * If there are 2 mirrors in the same 2 devices, performance degrades
684  * because position is mirror, not device based.
685  *
686  * The rdev for the device selected will have nr_pending incremented.
687  */
688
689 /*
690  * FIXME: possibly should rethink readbalancing and do it differently
691  * depending on near_copies / far_copies geometry.
692  */
693 static struct md_rdev *read_balance(struct r10conf *conf,
694                                     struct r10bio *r10_bio,
695                                     int *max_sectors)
696 {
697         const sector_t this_sector = r10_bio->sector;
698         int disk, slot;
699         int sectors = r10_bio->sectors;
700         int best_good_sectors;
701         sector_t new_distance, best_dist;
702         struct md_rdev *best_rdev, *rdev = NULL;
703         int do_balance;
704         int best_slot;
705         struct geom *geo = &conf->geo;
706
707         raid10_find_phys(conf, r10_bio);
708         rcu_read_lock();
709 retry:
710         sectors = r10_bio->sectors;
711         best_slot = -1;
712         best_rdev = NULL;
713         best_dist = MaxSector;
714         best_good_sectors = 0;
715         do_balance = 1;
716         /*
717          * Check if we can balance. We can balance on the whole
718          * device if no resync is going on (recovery is ok), or below
719          * the resync window. We take the first readable disk when
720          * above the resync window.
721          */
722         if (conf->mddev->recovery_cp < MaxSector
723             && (this_sector + sectors >= conf->next_resync))
724                 do_balance = 0;
725
726         for (slot = 0; slot < conf->copies ; slot++) {
727                 sector_t first_bad;
728                 int bad_sectors;
729                 sector_t dev_sector;
730
731                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
732                         continue;
733                 disk = r10_bio->devs[slot].devnum;
734                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
735                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
736                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
738                 if (rdev == NULL ||
739                     test_bit(Faulty, &rdev->flags))
740                         continue;
741                 if (!test_bit(In_sync, &rdev->flags) &&
742                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
743                         continue;
744
745                 dev_sector = r10_bio->devs[slot].addr;
746                 if (is_badblock(rdev, dev_sector, sectors,
747                                 &first_bad, &bad_sectors)) {
748                         if (best_dist < MaxSector)
749                                 /* Already have a better slot */
750                                 continue;
751                         if (first_bad <= dev_sector) {
752                                 /* Cannot read here.  If this is the
753                                  * 'primary' device, then we must not read
754                                  * beyond 'bad_sectors' from another device.
755                                  */
756                                 bad_sectors -= (dev_sector - first_bad);
757                                 if (!do_balance && sectors > bad_sectors)
758                                         sectors = bad_sectors;
759                                 if (best_good_sectors > sectors)
760                                         best_good_sectors = sectors;
761                         } else {
762                                 sector_t good_sectors =
763                                         first_bad - dev_sector;
764                                 if (good_sectors > best_good_sectors) {
765                                         best_good_sectors = good_sectors;
766                                         best_slot = slot;
767                                         best_rdev = rdev;
768                                 }
769                                 if (!do_balance)
770                                         /* Must read from here */
771                                         break;
772                         }
773                         continue;
774                 } else
775                         best_good_sectors = sectors;
776
777                 if (!do_balance)
778                         break;
779
780                 /* This optimisation is debatable, and completely destroys
781                  * sequential read speed for 'far copies' arrays.  So only
782                  * keep it for 'near' arrays, and review those later.
783                  */
784                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
785                         break;
786
787                 /* for far > 1 always use the lowest address */
788                 if (geo->far_copies > 1)
789                         new_distance = r10_bio->devs[slot].addr;
790                 else
791                         new_distance = abs(r10_bio->devs[slot].addr -
792                                            conf->mirrors[disk].head_position);
793                 if (new_distance < best_dist) {
794                         best_dist = new_distance;
795                         best_slot = slot;
796                         best_rdev = rdev;
797                 }
798         }
799         if (slot >= conf->copies) {
800                 slot = best_slot;
801                 rdev = best_rdev;
802         }
803
804         if (slot >= 0) {
805                 atomic_inc(&rdev->nr_pending);
806                 if (test_bit(Faulty, &rdev->flags)) {
807                         /* Cannot risk returning a device that failed
808                          * before we inc'ed nr_pending
809                          */
810                         rdev_dec_pending(rdev, conf->mddev);
811                         goto retry;
812                 }
813                 r10_bio->read_slot = slot;
814         } else
815                 rdev = NULL;
816         rcu_read_unlock();
817         *max_sectors = best_good_sectors;
818
819         return rdev;
820 }
821
822 static int raid10_congested(struct mddev *mddev, int bits)
823 {
824         struct r10conf *conf = mddev->private;
825         int i, ret = 0;
826
827         if ((bits & (1 << WB_async_congested)) &&
828             conf->pending_count >= max_queued_requests)
829                 return 1;
830
831         rcu_read_lock();
832         for (i = 0;
833              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
834                      && ret == 0;
835              i++) {
836                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
837                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
838                         struct request_queue *q = bdev_get_queue(rdev->bdev);
839
840                         ret |= bdi_congested(&q->backing_dev_info, bits);
841                 }
842         }
843         rcu_read_unlock();
844         return ret;
845 }
846
847 static void flush_pending_writes(struct r10conf *conf)
848 {
849         /* Any writes that have been queued but are awaiting
850          * bitmap updates get flushed here.
851          */
852         spin_lock_irq(&conf->device_lock);
853
854         if (conf->pending_bio_list.head) {
855                 struct bio *bio;
856                 bio = bio_list_get(&conf->pending_bio_list);
857                 conf->pending_count = 0;
858                 spin_unlock_irq(&conf->device_lock);
859                 /* flush any pending bitmap writes to disk
860                  * before proceeding w/ I/O */
861                 bitmap_unplug(conf->mddev->bitmap);
862                 wake_up(&conf->wait_barrier);
863
864                 while (bio) { /* submit pending writes */
865                         struct bio *next = bio->bi_next;
866                         bio->bi_next = NULL;
867                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
868                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
869                                 /* Just ignore it */
870                                 bio_endio(bio);
871                         else
872                                 generic_make_request(bio);
873                         bio = next;
874                 }
875         } else
876                 spin_unlock_irq(&conf->device_lock);
877 }
878
879 /* Barriers....
880  * Sometimes we need to suspend IO while we do something else,
881  * either some resync/recovery, or reconfigure the array.
882  * To do this we raise a 'barrier'.
883  * The 'barrier' is a counter that can be raised multiple times
884  * to count how many activities are happening which preclude
885  * normal IO.
886  * We can only raise the barrier if there is no pending IO.
887  * i.e. if nr_pending == 0.
888  * We choose only to raise the barrier if no-one is waiting for the
889  * barrier to go down.  This means that as soon as an IO request
890  * is ready, no other operations which require a barrier will start
891  * until the IO request has had a chance.
892  *
893  * So: regular IO calls 'wait_barrier'.  When that returns there
894  *    is no backgroup IO happening,  It must arrange to call
895  *    allow_barrier when it has finished its IO.
896  * backgroup IO calls must call raise_barrier.  Once that returns
897  *    there is no normal IO happeing.  It must arrange to call
898  *    lower_barrier when the particular background IO completes.
899  */
900
901 static void raise_barrier(struct r10conf *conf, int force)
902 {
903         BUG_ON(force && !conf->barrier);
904         spin_lock_irq(&conf->resync_lock);
905
906         /* Wait until no block IO is waiting (unless 'force') */
907         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
908                             conf->resync_lock);
909
910         /* block any new IO from starting */
911         conf->barrier++;
912
913         /* Now wait for all pending IO to complete */
914         wait_event_lock_irq(conf->wait_barrier,
915                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
916                             conf->resync_lock);
917
918         spin_unlock_irq(&conf->resync_lock);
919 }
920
921 static void lower_barrier(struct r10conf *conf)
922 {
923         unsigned long flags;
924         spin_lock_irqsave(&conf->resync_lock, flags);
925         conf->barrier--;
926         spin_unlock_irqrestore(&conf->resync_lock, flags);
927         wake_up(&conf->wait_barrier);
928 }
929
930 static void wait_barrier(struct r10conf *conf)
931 {
932         spin_lock_irq(&conf->resync_lock);
933         if (conf->barrier) {
934                 conf->nr_waiting++;
935                 /* Wait for the barrier to drop.
936                  * However if there are already pending
937                  * requests (preventing the barrier from
938                  * rising completely), and the
939                  * pre-process bio queue isn't empty,
940                  * then don't wait, as we need to empty
941                  * that queue to get the nr_pending
942                  * count down.
943                  */
944                 wait_event_lock_irq(conf->wait_barrier,
945                                     !conf->barrier ||
946                                     (conf->nr_pending &&
947                                      current->bio_list &&
948                                      !bio_list_empty(current->bio_list)),
949                                     conf->resync_lock);
950                 conf->nr_waiting--;
951         }
952         conf->nr_pending++;
953         spin_unlock_irq(&conf->resync_lock);
954 }
955
956 static void allow_barrier(struct r10conf *conf)
957 {
958         unsigned long flags;
959         spin_lock_irqsave(&conf->resync_lock, flags);
960         conf->nr_pending--;
961         spin_unlock_irqrestore(&conf->resync_lock, flags);
962         wake_up(&conf->wait_barrier);
963 }
964
965 static void freeze_array(struct r10conf *conf, int extra)
966 {
967         /* stop syncio and normal IO and wait for everything to
968          * go quiet.
969          * We increment barrier and nr_waiting, and then
970          * wait until nr_pending match nr_queued+extra
971          * This is called in the context of one normal IO request
972          * that has failed. Thus any sync request that might be pending
973          * will be blocked by nr_pending, and we need to wait for
974          * pending IO requests to complete or be queued for re-try.
975          * Thus the number queued (nr_queued) plus this request (extra)
976          * must match the number of pending IOs (nr_pending) before
977          * we continue.
978          */
979         spin_lock_irq(&conf->resync_lock);
980         conf->barrier++;
981         conf->nr_waiting++;
982         wait_event_lock_irq_cmd(conf->wait_barrier,
983                                 conf->nr_pending == conf->nr_queued+extra,
984                                 conf->resync_lock,
985                                 flush_pending_writes(conf));
986
987         spin_unlock_irq(&conf->resync_lock);
988 }
989
990 static void unfreeze_array(struct r10conf *conf)
991 {
992         /* reverse the effect of the freeze */
993         spin_lock_irq(&conf->resync_lock);
994         conf->barrier--;
995         conf->nr_waiting--;
996         wake_up(&conf->wait_barrier);
997         spin_unlock_irq(&conf->resync_lock);
998 }
999
1000 static sector_t choose_data_offset(struct r10bio *r10_bio,
1001                                    struct md_rdev *rdev)
1002 {
1003         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1004             test_bit(R10BIO_Previous, &r10_bio->state))
1005                 return rdev->data_offset;
1006         else
1007                 return rdev->new_data_offset;
1008 }
1009
1010 struct raid10_plug_cb {
1011         struct blk_plug_cb      cb;
1012         struct bio_list         pending;
1013         int                     pending_cnt;
1014 };
1015
1016 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1017 {
1018         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1019                                                    cb);
1020         struct mddev *mddev = plug->cb.data;
1021         struct r10conf *conf = mddev->private;
1022         struct bio *bio;
1023
1024         if (from_schedule || current->bio_list) {
1025                 spin_lock_irq(&conf->device_lock);
1026                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1027                 conf->pending_count += plug->pending_cnt;
1028                 spin_unlock_irq(&conf->device_lock);
1029                 wake_up(&conf->wait_barrier);
1030                 md_wakeup_thread(mddev->thread);
1031                 kfree(plug);
1032                 return;
1033         }
1034
1035         /* we aren't scheduling, so we can do the write-out directly. */
1036         bio = bio_list_get(&plug->pending);
1037         bitmap_unplug(mddev->bitmap);
1038         wake_up(&conf->wait_barrier);
1039
1040         while (bio) { /* submit pending writes */
1041                 struct bio *next = bio->bi_next;
1042                 bio->bi_next = NULL;
1043                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1044                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1045                         /* Just ignore it */
1046                         bio_endio(bio);
1047                 else
1048                         generic_make_request(bio);
1049                 bio = next;
1050         }
1051         kfree(plug);
1052 }
1053
1054 static void __make_request(struct mddev *mddev, struct bio *bio)
1055 {
1056         struct r10conf *conf = mddev->private;
1057         struct r10bio *r10_bio;
1058         struct bio *read_bio;
1059         int i;
1060         const int rw = bio_data_dir(bio);
1061         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1062         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1063         const unsigned long do_discard = (bio->bi_rw
1064                                           & (REQ_DISCARD | REQ_SECURE));
1065         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1066         unsigned long flags;
1067         struct md_rdev *blocked_rdev;
1068         struct blk_plug_cb *cb;
1069         struct raid10_plug_cb *plug = NULL;
1070         int sectors_handled;
1071         int max_sectors;
1072         int sectors;
1073
1074         /*
1075          * Register the new request and wait if the reconstruction
1076          * thread has put up a bar for new requests.
1077          * Continue immediately if no resync is active currently.
1078          */
1079         wait_barrier(conf);
1080
1081         sectors = bio_sectors(bio);
1082         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1083             bio->bi_iter.bi_sector < conf->reshape_progress &&
1084             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1085                 /* IO spans the reshape position.  Need to wait for
1086                  * reshape to pass
1087                  */
1088                 allow_barrier(conf);
1089                 wait_event(conf->wait_barrier,
1090                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1091                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1092                            sectors);
1093                 wait_barrier(conf);
1094         }
1095         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1096             bio_data_dir(bio) == WRITE &&
1097             (mddev->reshape_backwards
1098              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1099                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1100              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1101                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1102                 /* Need to update reshape_position in metadata */
1103                 mddev->reshape_position = conf->reshape_progress;
1104                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1105                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1106                 md_wakeup_thread(mddev->thread);
1107                 wait_event(mddev->sb_wait,
1108                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1109
1110                 conf->reshape_safe = mddev->reshape_position;
1111         }
1112
1113         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1114
1115         r10_bio->master_bio = bio;
1116         r10_bio->sectors = sectors;
1117
1118         r10_bio->mddev = mddev;
1119         r10_bio->sector = bio->bi_iter.bi_sector;
1120         r10_bio->state = 0;
1121
1122         /* We might need to issue multiple reads to different
1123          * devices if there are bad blocks around, so we keep
1124          * track of the number of reads in bio->bi_phys_segments.
1125          * If this is 0, there is only one r10_bio and no locking
1126          * will be needed when the request completes.  If it is
1127          * non-zero, then it is the number of not-completed requests.
1128          */
1129         bio->bi_phys_segments = 0;
1130         bio_clear_flag(bio, BIO_SEG_VALID);
1131
1132         if (rw == READ) {
1133                 /*
1134                  * read balancing logic:
1135                  */
1136                 struct md_rdev *rdev;
1137                 int slot;
1138
1139 read_again:
1140                 rdev = read_balance(conf, r10_bio, &max_sectors);
1141                 if (!rdev) {
1142                         raid_end_bio_io(r10_bio);
1143                         return;
1144                 }
1145                 slot = r10_bio->read_slot;
1146
1147                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1148                 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1149                          max_sectors);
1150
1151                 r10_bio->devs[slot].bio = read_bio;
1152                 r10_bio->devs[slot].rdev = rdev;
1153
1154                 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1155                         choose_data_offset(r10_bio, rdev);
1156                 read_bio->bi_bdev = rdev->bdev;
1157                 read_bio->bi_end_io = raid10_end_read_request;
1158                 read_bio->bi_rw = READ | do_sync;
1159                 read_bio->bi_private = r10_bio;
1160
1161                 if (max_sectors < r10_bio->sectors) {
1162                         /* Could not read all from this device, so we will
1163                          * need another r10_bio.
1164                          */
1165                         sectors_handled = (r10_bio->sector + max_sectors
1166                                            - bio->bi_iter.bi_sector);
1167                         r10_bio->sectors = max_sectors;
1168                         spin_lock_irq(&conf->device_lock);
1169                         if (bio->bi_phys_segments == 0)
1170                                 bio->bi_phys_segments = 2;
1171                         else
1172                                 bio->bi_phys_segments++;
1173                         spin_unlock_irq(&conf->device_lock);
1174                         /* Cannot call generic_make_request directly
1175                          * as that will be queued in __generic_make_request
1176                          * and subsequent mempool_alloc might block
1177                          * waiting for it.  so hand bio over to raid10d.
1178                          */
1179                         reschedule_retry(r10_bio);
1180
1181                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1182
1183                         r10_bio->master_bio = bio;
1184                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1185                         r10_bio->state = 0;
1186                         r10_bio->mddev = mddev;
1187                         r10_bio->sector = bio->bi_iter.bi_sector +
1188                                 sectors_handled;
1189                         goto read_again;
1190                 } else
1191                         generic_make_request(read_bio);
1192                 return;
1193         }
1194
1195         /*
1196          * WRITE:
1197          */
1198         if (conf->pending_count >= max_queued_requests) {
1199                 md_wakeup_thread(mddev->thread);
1200                 wait_event(conf->wait_barrier,
1201                            conf->pending_count < max_queued_requests);
1202         }
1203         /* first select target devices under rcu_lock and
1204          * inc refcount on their rdev.  Record them by setting
1205          * bios[x] to bio
1206          * If there are known/acknowledged bad blocks on any device
1207          * on which we have seen a write error, we want to avoid
1208          * writing to those blocks.  This potentially requires several
1209          * writes to write around the bad blocks.  Each set of writes
1210          * gets its own r10_bio with a set of bios attached.  The number
1211          * of r10_bios is recored in bio->bi_phys_segments just as with
1212          * the read case.
1213          */
1214
1215         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1216         raid10_find_phys(conf, r10_bio);
1217 retry_write:
1218         blocked_rdev = NULL;
1219         rcu_read_lock();
1220         max_sectors = r10_bio->sectors;
1221
1222         for (i = 0;  i < conf->copies; i++) {
1223                 int d = r10_bio->devs[i].devnum;
1224                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1225                 struct md_rdev *rrdev = rcu_dereference(
1226                         conf->mirrors[d].replacement);
1227                 if (rdev == rrdev)
1228                         rrdev = NULL;
1229                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1230                         atomic_inc(&rdev->nr_pending);
1231                         blocked_rdev = rdev;
1232                         break;
1233                 }
1234                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1235                         atomic_inc(&rrdev->nr_pending);
1236                         blocked_rdev = rrdev;
1237                         break;
1238                 }
1239                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1240                         rdev = NULL;
1241                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1242                         rrdev = NULL;
1243
1244                 r10_bio->devs[i].bio = NULL;
1245                 r10_bio->devs[i].repl_bio = NULL;
1246
1247                 if (!rdev && !rrdev) {
1248                         set_bit(R10BIO_Degraded, &r10_bio->state);
1249                         continue;
1250                 }
1251                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1252                         sector_t first_bad;
1253                         sector_t dev_sector = r10_bio->devs[i].addr;
1254                         int bad_sectors;
1255                         int is_bad;
1256
1257                         is_bad = is_badblock(rdev, dev_sector,
1258                                              max_sectors,
1259                                              &first_bad, &bad_sectors);
1260                         if (is_bad < 0) {
1261                                 /* Mustn't write here until the bad block
1262                                  * is acknowledged
1263                                  */
1264                                 atomic_inc(&rdev->nr_pending);
1265                                 set_bit(BlockedBadBlocks, &rdev->flags);
1266                                 blocked_rdev = rdev;
1267                                 break;
1268                         }
1269                         if (is_bad && first_bad <= dev_sector) {
1270                                 /* Cannot write here at all */
1271                                 bad_sectors -= (dev_sector - first_bad);
1272                                 if (bad_sectors < max_sectors)
1273                                         /* Mustn't write more than bad_sectors
1274                                          * to other devices yet
1275                                          */
1276                                         max_sectors = bad_sectors;
1277                                 /* We don't set R10BIO_Degraded as that
1278                                  * only applies if the disk is missing,
1279                                  * so it might be re-added, and we want to
1280                                  * know to recover this chunk.
1281                                  * In this case the device is here, and the
1282                                  * fact that this chunk is not in-sync is
1283                                  * recorded in the bad block log.
1284                                  */
1285                                 continue;
1286                         }
1287                         if (is_bad) {
1288                                 int good_sectors = first_bad - dev_sector;
1289                                 if (good_sectors < max_sectors)
1290                                         max_sectors = good_sectors;
1291                         }
1292                 }
1293                 if (rdev) {
1294                         r10_bio->devs[i].bio = bio;
1295                         atomic_inc(&rdev->nr_pending);
1296                 }
1297                 if (rrdev) {
1298                         r10_bio->devs[i].repl_bio = bio;
1299                         atomic_inc(&rrdev->nr_pending);
1300                 }
1301         }
1302         rcu_read_unlock();
1303
1304         if (unlikely(blocked_rdev)) {
1305                 /* Have to wait for this device to get unblocked, then retry */
1306                 int j;
1307                 int d;
1308
1309                 for (j = 0; j < i; j++) {
1310                         if (r10_bio->devs[j].bio) {
1311                                 d = r10_bio->devs[j].devnum;
1312                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1313                         }
1314                         if (r10_bio->devs[j].repl_bio) {
1315                                 struct md_rdev *rdev;
1316                                 d = r10_bio->devs[j].devnum;
1317                                 rdev = conf->mirrors[d].replacement;
1318                                 if (!rdev) {
1319                                         /* Race with remove_disk */
1320                                         smp_mb();
1321                                         rdev = conf->mirrors[d].rdev;
1322                                 }
1323                                 rdev_dec_pending(rdev, mddev);
1324                         }
1325                 }
1326                 allow_barrier(conf);
1327                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1328                 wait_barrier(conf);
1329                 goto retry_write;
1330         }
1331
1332         if (max_sectors < r10_bio->sectors) {
1333                 /* We are splitting this into multiple parts, so
1334                  * we need to prepare for allocating another r10_bio.
1335                  */
1336                 r10_bio->sectors = max_sectors;
1337                 spin_lock_irq(&conf->device_lock);
1338                 if (bio->bi_phys_segments == 0)
1339                         bio->bi_phys_segments = 2;
1340                 else
1341                         bio->bi_phys_segments++;
1342                 spin_unlock_irq(&conf->device_lock);
1343         }
1344         sectors_handled = r10_bio->sector + max_sectors -
1345                 bio->bi_iter.bi_sector;
1346
1347         atomic_set(&r10_bio->remaining, 1);
1348         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1349
1350         for (i = 0; i < conf->copies; i++) {
1351                 struct bio *mbio;
1352                 int d = r10_bio->devs[i].devnum;
1353                 if (r10_bio->devs[i].bio) {
1354                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1355                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1356                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1357                                  max_sectors);
1358                         r10_bio->devs[i].bio = mbio;
1359
1360                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1361                                            choose_data_offset(r10_bio,
1362                                                               rdev));
1363                         mbio->bi_bdev = rdev->bdev;
1364                         mbio->bi_end_io = raid10_end_write_request;
1365                         mbio->bi_rw =
1366                                 WRITE | do_sync | do_fua | do_discard | do_same;
1367                         mbio->bi_private = r10_bio;
1368
1369                         atomic_inc(&r10_bio->remaining);
1370
1371                         cb = blk_check_plugged(raid10_unplug, mddev,
1372                                                sizeof(*plug));
1373                         if (cb)
1374                                 plug = container_of(cb, struct raid10_plug_cb,
1375                                                     cb);
1376                         else
1377                                 plug = NULL;
1378                         spin_lock_irqsave(&conf->device_lock, flags);
1379                         if (plug) {
1380                                 bio_list_add(&plug->pending, mbio);
1381                                 plug->pending_cnt++;
1382                         } else {
1383                                 bio_list_add(&conf->pending_bio_list, mbio);
1384                                 conf->pending_count++;
1385                         }
1386                         spin_unlock_irqrestore(&conf->device_lock, flags);
1387                         if (!plug)
1388                                 md_wakeup_thread(mddev->thread);
1389                 }
1390
1391                 if (r10_bio->devs[i].repl_bio) {
1392                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1393                         if (rdev == NULL) {
1394                                 /* Replacement just got moved to main 'rdev' */
1395                                 smp_mb();
1396                                 rdev = conf->mirrors[d].rdev;
1397                         }
1398                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1399                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1400                                  max_sectors);
1401                         r10_bio->devs[i].repl_bio = mbio;
1402
1403                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1404                                            choose_data_offset(
1405                                                    r10_bio, rdev));
1406                         mbio->bi_bdev = rdev->bdev;
1407                         mbio->bi_end_io = raid10_end_write_request;
1408                         mbio->bi_rw =
1409                                 WRITE | do_sync | do_fua | do_discard | do_same;
1410                         mbio->bi_private = r10_bio;
1411
1412                         atomic_inc(&r10_bio->remaining);
1413                         spin_lock_irqsave(&conf->device_lock, flags);
1414                         bio_list_add(&conf->pending_bio_list, mbio);
1415                         conf->pending_count++;
1416                         spin_unlock_irqrestore(&conf->device_lock, flags);
1417                         if (!mddev_check_plugged(mddev))
1418                                 md_wakeup_thread(mddev->thread);
1419                 }
1420         }
1421
1422         /* Don't remove the bias on 'remaining' (one_write_done) until
1423          * after checking if we need to go around again.
1424          */
1425
1426         if (sectors_handled < bio_sectors(bio)) {
1427                 one_write_done(r10_bio);
1428                 /* We need another r10_bio.  It has already been counted
1429                  * in bio->bi_phys_segments.
1430                  */
1431                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1432
1433                 r10_bio->master_bio = bio;
1434                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1435
1436                 r10_bio->mddev = mddev;
1437                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1438                 r10_bio->state = 0;
1439                 goto retry_write;
1440         }
1441         one_write_done(r10_bio);
1442 }
1443
1444 static void make_request(struct mddev *mddev, struct bio *bio)
1445 {
1446         struct r10conf *conf = mddev->private;
1447         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1448         int chunk_sects = chunk_mask + 1;
1449
1450         struct bio *split;
1451
1452         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1453                 md_flush_request(mddev, bio);
1454                 return;
1455         }
1456
1457         md_write_start(mddev, bio);
1458
1459         do {
1460
1461                 /*
1462                  * If this request crosses a chunk boundary, we need to split
1463                  * it.
1464                  */
1465                 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1466                              bio_sectors(bio) > chunk_sects
1467                              && (conf->geo.near_copies < conf->geo.raid_disks
1468                                  || conf->prev.near_copies <
1469                                  conf->prev.raid_disks))) {
1470                         split = bio_split(bio, chunk_sects -
1471                                           (bio->bi_iter.bi_sector &
1472                                            (chunk_sects - 1)),
1473                                           GFP_NOIO, fs_bio_set);
1474                         bio_chain(split, bio);
1475                 } else {
1476                         split = bio;
1477                 }
1478
1479                 __make_request(mddev, split);
1480         } while (split != bio);
1481
1482         /* In case raid10d snuck in to freeze_array */
1483         wake_up(&conf->wait_barrier);
1484 }
1485
1486 static void status(struct seq_file *seq, struct mddev *mddev)
1487 {
1488         struct r10conf *conf = mddev->private;
1489         int i;
1490
1491         if (conf->geo.near_copies < conf->geo.raid_disks)
1492                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1493         if (conf->geo.near_copies > 1)
1494                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1495         if (conf->geo.far_copies > 1) {
1496                 if (conf->geo.far_offset)
1497                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1498                 else
1499                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1500         }
1501         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1502                                         conf->geo.raid_disks - mddev->degraded);
1503         for (i = 0; i < conf->geo.raid_disks; i++)
1504                 seq_printf(seq, "%s",
1505                               conf->mirrors[i].rdev &&
1506                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1507         seq_printf(seq, "]");
1508 }
1509
1510 /* check if there are enough drives for
1511  * every block to appear on atleast one.
1512  * Don't consider the device numbered 'ignore'
1513  * as we might be about to remove it.
1514  */
1515 static int _enough(struct r10conf *conf, int previous, int ignore)
1516 {
1517         int first = 0;
1518         int has_enough = 0;
1519         int disks, ncopies;
1520         if (previous) {
1521                 disks = conf->prev.raid_disks;
1522                 ncopies = conf->prev.near_copies;
1523         } else {
1524                 disks = conf->geo.raid_disks;
1525                 ncopies = conf->geo.near_copies;
1526         }
1527
1528         rcu_read_lock();
1529         do {
1530                 int n = conf->copies;
1531                 int cnt = 0;
1532                 int this = first;
1533                 while (n--) {
1534                         struct md_rdev *rdev;
1535                         if (this != ignore &&
1536                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1537                             test_bit(In_sync, &rdev->flags))
1538                                 cnt++;
1539                         this = (this+1) % disks;
1540                 }
1541                 if (cnt == 0)
1542                         goto out;
1543                 first = (first + ncopies) % disks;
1544         } while (first != 0);
1545         has_enough = 1;
1546 out:
1547         rcu_read_unlock();
1548         return has_enough;
1549 }
1550
1551 static int enough(struct r10conf *conf, int ignore)
1552 {
1553         /* when calling 'enough', both 'prev' and 'geo' must
1554          * be stable.
1555          * This is ensured if ->reconfig_mutex or ->device_lock
1556          * is held.
1557          */
1558         return _enough(conf, 0, ignore) &&
1559                 _enough(conf, 1, ignore);
1560 }
1561
1562 static void error(struct mddev *mddev, struct md_rdev *rdev)
1563 {
1564         char b[BDEVNAME_SIZE];
1565         struct r10conf *conf = mddev->private;
1566         unsigned long flags;
1567
1568         /*
1569          * If it is not operational, then we have already marked it as dead
1570          * else if it is the last working disks, ignore the error, let the
1571          * next level up know.
1572          * else mark the drive as failed
1573          */
1574         spin_lock_irqsave(&conf->device_lock, flags);
1575         if (test_bit(In_sync, &rdev->flags)
1576             && !enough(conf, rdev->raid_disk)) {
1577                 /*
1578                  * Don't fail the drive, just return an IO error.
1579                  */
1580                 spin_unlock_irqrestore(&conf->device_lock, flags);
1581                 return;
1582         }
1583         if (test_and_clear_bit(In_sync, &rdev->flags))
1584                 mddev->degraded++;
1585         /*
1586          * If recovery is running, make sure it aborts.
1587          */
1588         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1589         set_bit(Blocked, &rdev->flags);
1590         set_bit(Faulty, &rdev->flags);
1591         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1592         set_bit(MD_CHANGE_PENDING, &mddev->flags);
1593         spin_unlock_irqrestore(&conf->device_lock, flags);
1594         printk(KERN_ALERT
1595                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1596                "md/raid10:%s: Operation continuing on %d devices.\n",
1597                mdname(mddev), bdevname(rdev->bdev, b),
1598                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1599 }
1600
1601 static void print_conf(struct r10conf *conf)
1602 {
1603         int i;
1604         struct raid10_info *tmp;
1605
1606         printk(KERN_DEBUG "RAID10 conf printout:\n");
1607         if (!conf) {
1608                 printk(KERN_DEBUG "(!conf)\n");
1609                 return;
1610         }
1611         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1612                 conf->geo.raid_disks);
1613
1614         for (i = 0; i < conf->geo.raid_disks; i++) {
1615                 char b[BDEVNAME_SIZE];
1616                 tmp = conf->mirrors + i;
1617                 if (tmp->rdev)
1618                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1619                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1620                                 !test_bit(Faulty, &tmp->rdev->flags),
1621                                 bdevname(tmp->rdev->bdev,b));
1622         }
1623 }
1624
1625 static void close_sync(struct r10conf *conf)
1626 {
1627         wait_barrier(conf);
1628         allow_barrier(conf);
1629
1630         mempool_destroy(conf->r10buf_pool);
1631         conf->r10buf_pool = NULL;
1632 }
1633
1634 static int raid10_spare_active(struct mddev *mddev)
1635 {
1636         int i;
1637         struct r10conf *conf = mddev->private;
1638         struct raid10_info *tmp;
1639         int count = 0;
1640         unsigned long flags;
1641
1642         /*
1643          * Find all non-in_sync disks within the RAID10 configuration
1644          * and mark them in_sync
1645          */
1646         for (i = 0; i < conf->geo.raid_disks; i++) {
1647                 tmp = conf->mirrors + i;
1648                 if (tmp->replacement
1649                     && tmp->replacement->recovery_offset == MaxSector
1650                     && !test_bit(Faulty, &tmp->replacement->flags)
1651                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1652                         /* Replacement has just become active */
1653                         if (!tmp->rdev
1654                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1655                                 count++;
1656                         if (tmp->rdev) {
1657                                 /* Replaced device not technically faulty,
1658                                  * but we need to be sure it gets removed
1659                                  * and never re-added.
1660                                  */
1661                                 set_bit(Faulty, &tmp->rdev->flags);
1662                                 sysfs_notify_dirent_safe(
1663                                         tmp->rdev->sysfs_state);
1664                         }
1665                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1666                 } else if (tmp->rdev
1667                            && tmp->rdev->recovery_offset == MaxSector
1668                            && !test_bit(Faulty, &tmp->rdev->flags)
1669                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1670                         count++;
1671                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1672                 }
1673         }
1674         spin_lock_irqsave(&conf->device_lock, flags);
1675         mddev->degraded -= count;
1676         spin_unlock_irqrestore(&conf->device_lock, flags);
1677
1678         print_conf(conf);
1679         return count;
1680 }
1681
1682 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684         struct r10conf *conf = mddev->private;
1685         int err = -EEXIST;
1686         int mirror;
1687         int first = 0;
1688         int last = conf->geo.raid_disks - 1;
1689
1690         if (mddev->recovery_cp < MaxSector)
1691                 /* only hot-add to in-sync arrays, as recovery is
1692                  * very different from resync
1693                  */
1694                 return -EBUSY;
1695         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1696                 return -EINVAL;
1697
1698         if (rdev->raid_disk >= 0)
1699                 first = last = rdev->raid_disk;
1700
1701         if (rdev->saved_raid_disk >= first &&
1702             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1703                 mirror = rdev->saved_raid_disk;
1704         else
1705                 mirror = first;
1706         for ( ; mirror <= last ; mirror++) {
1707                 struct raid10_info *p = &conf->mirrors[mirror];
1708                 if (p->recovery_disabled == mddev->recovery_disabled)
1709                         continue;
1710                 if (p->rdev) {
1711                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1712                             p->replacement != NULL)
1713                                 continue;
1714                         clear_bit(In_sync, &rdev->flags);
1715                         set_bit(Replacement, &rdev->flags);
1716                         rdev->raid_disk = mirror;
1717                         err = 0;
1718                         if (mddev->gendisk)
1719                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1720                                                   rdev->data_offset << 9);
1721                         conf->fullsync = 1;
1722                         rcu_assign_pointer(p->replacement, rdev);
1723                         break;
1724                 }
1725
1726                 if (mddev->gendisk)
1727                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1728                                           rdev->data_offset << 9);
1729
1730                 p->head_position = 0;
1731                 p->recovery_disabled = mddev->recovery_disabled - 1;
1732                 rdev->raid_disk = mirror;
1733                 err = 0;
1734                 if (rdev->saved_raid_disk != mirror)
1735                         conf->fullsync = 1;
1736                 rcu_assign_pointer(p->rdev, rdev);
1737                 break;
1738         }
1739         md_integrity_add_rdev(rdev, mddev);
1740         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1741                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1742
1743         print_conf(conf);
1744         return err;
1745 }
1746
1747 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1748 {
1749         struct r10conf *conf = mddev->private;
1750         int err = 0;
1751         int number = rdev->raid_disk;
1752         struct md_rdev **rdevp;
1753         struct raid10_info *p = conf->mirrors + number;
1754
1755         print_conf(conf);
1756         if (rdev == p->rdev)
1757                 rdevp = &p->rdev;
1758         else if (rdev == p->replacement)
1759                 rdevp = &p->replacement;
1760         else
1761                 return 0;
1762
1763         if (test_bit(In_sync, &rdev->flags) ||
1764             atomic_read(&rdev->nr_pending)) {
1765                 err = -EBUSY;
1766                 goto abort;
1767         }
1768         /* Only remove faulty devices if recovery
1769          * is not possible.
1770          */
1771         if (!test_bit(Faulty, &rdev->flags) &&
1772             mddev->recovery_disabled != p->recovery_disabled &&
1773             (!p->replacement || p->replacement == rdev) &&
1774             number < conf->geo.raid_disks &&
1775             enough(conf, -1)) {
1776                 err = -EBUSY;
1777                 goto abort;
1778         }
1779         *rdevp = NULL;
1780         synchronize_rcu();
1781         if (atomic_read(&rdev->nr_pending)) {
1782                 /* lost the race, try later */
1783                 err = -EBUSY;
1784                 *rdevp = rdev;
1785                 goto abort;
1786         } else if (p->replacement) {
1787                 /* We must have just cleared 'rdev' */
1788                 p->rdev = p->replacement;
1789                 clear_bit(Replacement, &p->replacement->flags);
1790                 smp_mb(); /* Make sure other CPUs may see both as identical
1791                            * but will never see neither -- if they are careful.
1792                            */
1793                 p->replacement = NULL;
1794                 clear_bit(WantReplacement, &rdev->flags);
1795         } else
1796                 /* We might have just remove the Replacement as faulty
1797                  * Clear the flag just in case
1798                  */
1799                 clear_bit(WantReplacement, &rdev->flags);
1800
1801         err = md_integrity_register(mddev);
1802
1803 abort:
1804
1805         print_conf(conf);
1806         return err;
1807 }
1808
1809 static void end_sync_read(struct bio *bio)
1810 {
1811         struct r10bio *r10_bio = bio->bi_private;
1812         struct r10conf *conf = r10_bio->mddev->private;
1813         int d;
1814
1815         if (bio == r10_bio->master_bio) {
1816                 /* this is a reshape read */
1817                 d = r10_bio->read_slot; /* really the read dev */
1818         } else
1819                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1820
1821         if (!bio->bi_error)
1822                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1823         else
1824                 /* The write handler will notice the lack of
1825                  * R10BIO_Uptodate and record any errors etc
1826                  */
1827                 atomic_add(r10_bio->sectors,
1828                            &conf->mirrors[d].rdev->corrected_errors);
1829
1830         /* for reconstruct, we always reschedule after a read.
1831          * for resync, only after all reads
1832          */
1833         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1834         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1835             atomic_dec_and_test(&r10_bio->remaining)) {
1836                 /* we have read all the blocks,
1837                  * do the comparison in process context in raid10d
1838                  */
1839                 reschedule_retry(r10_bio);
1840         }
1841 }
1842
1843 static void end_sync_request(struct r10bio *r10_bio)
1844 {
1845         struct mddev *mddev = r10_bio->mddev;
1846
1847         while (atomic_dec_and_test(&r10_bio->remaining)) {
1848                 if (r10_bio->master_bio == NULL) {
1849                         /* the primary of several recovery bios */
1850                         sector_t s = r10_bio->sectors;
1851                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1852                             test_bit(R10BIO_WriteError, &r10_bio->state))
1853                                 reschedule_retry(r10_bio);
1854                         else
1855                                 put_buf(r10_bio);
1856                         md_done_sync(mddev, s, 1);
1857                         break;
1858                 } else {
1859                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1860                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1861                             test_bit(R10BIO_WriteError, &r10_bio->state))
1862                                 reschedule_retry(r10_bio);
1863                         else
1864                                 put_buf(r10_bio);
1865                         r10_bio = r10_bio2;
1866                 }
1867         }
1868 }
1869
1870 static void end_sync_write(struct bio *bio)
1871 {
1872         struct r10bio *r10_bio = bio->bi_private;
1873         struct mddev *mddev = r10_bio->mddev;
1874         struct r10conf *conf = mddev->private;
1875         int d;
1876         sector_t first_bad;
1877         int bad_sectors;
1878         int slot;
1879         int repl;
1880         struct md_rdev *rdev = NULL;
1881
1882         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1883         if (repl)
1884                 rdev = conf->mirrors[d].replacement;
1885         else
1886                 rdev = conf->mirrors[d].rdev;
1887
1888         if (bio->bi_error) {
1889                 if (repl)
1890                         md_error(mddev, rdev);
1891                 else {
1892                         set_bit(WriteErrorSeen, &rdev->flags);
1893                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1894                                 set_bit(MD_RECOVERY_NEEDED,
1895                                         &rdev->mddev->recovery);
1896                         set_bit(R10BIO_WriteError, &r10_bio->state);
1897                 }
1898         } else if (is_badblock(rdev,
1899                              r10_bio->devs[slot].addr,
1900                              r10_bio->sectors,
1901                              &first_bad, &bad_sectors))
1902                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1903
1904         rdev_dec_pending(rdev, mddev);
1905
1906         end_sync_request(r10_bio);
1907 }
1908
1909 /*
1910  * Note: sync and recover and handled very differently for raid10
1911  * This code is for resync.
1912  * For resync, we read through virtual addresses and read all blocks.
1913  * If there is any error, we schedule a write.  The lowest numbered
1914  * drive is authoritative.
1915  * However requests come for physical address, so we need to map.
1916  * For every physical address there are raid_disks/copies virtual addresses,
1917  * which is always are least one, but is not necessarly an integer.
1918  * This means that a physical address can span multiple chunks, so we may
1919  * have to submit multiple io requests for a single sync request.
1920  */
1921 /*
1922  * We check if all blocks are in-sync and only write to blocks that
1923  * aren't in sync
1924  */
1925 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1926 {
1927         struct r10conf *conf = mddev->private;
1928         int i, first;
1929         struct bio *tbio, *fbio;
1930         int vcnt;
1931
1932         atomic_set(&r10_bio->remaining, 1);
1933
1934         /* find the first device with a block */
1935         for (i=0; i<conf->copies; i++)
1936                 if (!r10_bio->devs[i].bio->bi_error)
1937                         break;
1938
1939         if (i == conf->copies)
1940                 goto done;
1941
1942         first = i;
1943         fbio = r10_bio->devs[i].bio;
1944
1945         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1946         /* now find blocks with errors */
1947         for (i=0 ; i < conf->copies ; i++) {
1948                 int  j, d;
1949
1950                 tbio = r10_bio->devs[i].bio;
1951
1952                 if (tbio->bi_end_io != end_sync_read)
1953                         continue;
1954                 if (i == first)
1955                         continue;
1956                 if (!r10_bio->devs[i].bio->bi_error) {
1957                         /* We know that the bi_io_vec layout is the same for
1958                          * both 'first' and 'i', so we just compare them.
1959                          * All vec entries are PAGE_SIZE;
1960                          */
1961                         int sectors = r10_bio->sectors;
1962                         for (j = 0; j < vcnt; j++) {
1963                                 int len = PAGE_SIZE;
1964                                 if (sectors < (len / 512))
1965                                         len = sectors * 512;
1966                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1967                                            page_address(tbio->bi_io_vec[j].bv_page),
1968                                            len))
1969                                         break;
1970                                 sectors -= len/512;
1971                         }
1972                         if (j == vcnt)
1973                                 continue;
1974                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1975                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1976                                 /* Don't fix anything. */
1977                                 continue;
1978                 }
1979                 /* Ok, we need to write this bio, either to correct an
1980                  * inconsistency or to correct an unreadable block.
1981                  * First we need to fixup bv_offset, bv_len and
1982                  * bi_vecs, as the read request might have corrupted these
1983                  */
1984                 bio_reset(tbio);
1985
1986                 tbio->bi_vcnt = vcnt;
1987                 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
1988                 tbio->bi_rw = WRITE;
1989                 tbio->bi_private = r10_bio;
1990                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1991                 tbio->bi_end_io = end_sync_write;
1992
1993                 bio_copy_data(tbio, fbio);
1994
1995                 d = r10_bio->devs[i].devnum;
1996                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1997                 atomic_inc(&r10_bio->remaining);
1998                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1999
2000                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2001                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2002                 generic_make_request(tbio);
2003         }
2004
2005         /* Now write out to any replacement devices
2006          * that are active
2007          */
2008         for (i = 0; i < conf->copies; i++) {
2009                 int d;
2010
2011                 tbio = r10_bio->devs[i].repl_bio;
2012                 if (!tbio || !tbio->bi_end_io)
2013                         continue;
2014                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2015                     && r10_bio->devs[i].bio != fbio)
2016                         bio_copy_data(tbio, fbio);
2017                 d = r10_bio->devs[i].devnum;
2018                 atomic_inc(&r10_bio->remaining);
2019                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2020                              bio_sectors(tbio));
2021                 generic_make_request(tbio);
2022         }
2023
2024 done:
2025         if (atomic_dec_and_test(&r10_bio->remaining)) {
2026                 md_done_sync(mddev, r10_bio->sectors, 1);
2027                 put_buf(r10_bio);
2028         }
2029 }
2030
2031 /*
2032  * Now for the recovery code.
2033  * Recovery happens across physical sectors.
2034  * We recover all non-is_sync drives by finding the virtual address of
2035  * each, and then choose a working drive that also has that virt address.
2036  * There is a separate r10_bio for each non-in_sync drive.
2037  * Only the first two slots are in use. The first for reading,
2038  * The second for writing.
2039  *
2040  */
2041 static void fix_recovery_read_error(struct r10bio *r10_bio)
2042 {
2043         /* We got a read error during recovery.
2044          * We repeat the read in smaller page-sized sections.
2045          * If a read succeeds, write it to the new device or record
2046          * a bad block if we cannot.
2047          * If a read fails, record a bad block on both old and
2048          * new devices.
2049          */
2050         struct mddev *mddev = r10_bio->mddev;
2051         struct r10conf *conf = mddev->private;
2052         struct bio *bio = r10_bio->devs[0].bio;
2053         sector_t sect = 0;
2054         int sectors = r10_bio->sectors;
2055         int idx = 0;
2056         int dr = r10_bio->devs[0].devnum;
2057         int dw = r10_bio->devs[1].devnum;
2058
2059         while (sectors) {
2060                 int s = sectors;
2061                 struct md_rdev *rdev;
2062                 sector_t addr;
2063                 int ok;
2064
2065                 if (s > (PAGE_SIZE>>9))
2066                         s = PAGE_SIZE >> 9;
2067
2068                 rdev = conf->mirrors[dr].rdev;
2069                 addr = r10_bio->devs[0].addr + sect,
2070                 ok = sync_page_io(rdev,
2071                                   addr,
2072                                   s << 9,
2073                                   bio->bi_io_vec[idx].bv_page,
2074                                   READ, false);
2075                 if (ok) {
2076                         rdev = conf->mirrors[dw].rdev;
2077                         addr = r10_bio->devs[1].addr + sect;
2078                         ok = sync_page_io(rdev,
2079                                           addr,
2080                                           s << 9,
2081                                           bio->bi_io_vec[idx].bv_page,
2082                                           WRITE, false);
2083                         if (!ok) {
2084                                 set_bit(WriteErrorSeen, &rdev->flags);
2085                                 if (!test_and_set_bit(WantReplacement,
2086                                                       &rdev->flags))
2087                                         set_bit(MD_RECOVERY_NEEDED,
2088                                                 &rdev->mddev->recovery);
2089                         }
2090                 }
2091                 if (!ok) {
2092                         /* We don't worry if we cannot set a bad block -
2093                          * it really is bad so there is no loss in not
2094                          * recording it yet
2095                          */
2096                         rdev_set_badblocks(rdev, addr, s, 0);
2097
2098                         if (rdev != conf->mirrors[dw].rdev) {
2099                                 /* need bad block on destination too */
2100                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2101                                 addr = r10_bio->devs[1].addr + sect;
2102                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2103                                 if (!ok) {
2104                                         /* just abort the recovery */
2105                                         printk(KERN_NOTICE
2106                                                "md/raid10:%s: recovery aborted"
2107                                                " due to read error\n",
2108                                                mdname(mddev));
2109
2110                                         conf->mirrors[dw].recovery_disabled
2111                                                 = mddev->recovery_disabled;
2112                                         set_bit(MD_RECOVERY_INTR,
2113                                                 &mddev->recovery);
2114                                         break;
2115                                 }
2116                         }
2117                 }
2118
2119                 sectors -= s;
2120                 sect += s;
2121                 idx++;
2122         }
2123 }
2124
2125 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2126 {
2127         struct r10conf *conf = mddev->private;
2128         int d;
2129         struct bio *wbio, *wbio2;
2130
2131         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2132                 fix_recovery_read_error(r10_bio);
2133                 end_sync_request(r10_bio);
2134                 return;
2135         }
2136
2137         /*
2138          * share the pages with the first bio
2139          * and submit the write request
2140          */
2141         d = r10_bio->devs[1].devnum;
2142         wbio = r10_bio->devs[1].bio;
2143         wbio2 = r10_bio->devs[1].repl_bio;
2144         /* Need to test wbio2->bi_end_io before we call
2145          * generic_make_request as if the former is NULL,
2146          * the latter is free to free wbio2.
2147          */
2148         if (wbio2 && !wbio2->bi_end_io)
2149                 wbio2 = NULL;
2150         if (wbio->bi_end_io) {
2151                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2152                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2153                 generic_make_request(wbio);
2154         }
2155         if (wbio2) {
2156                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2157                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2158                              bio_sectors(wbio2));
2159                 generic_make_request(wbio2);
2160         }
2161 }
2162
2163 /*
2164  * Used by fix_read_error() to decay the per rdev read_errors.
2165  * We halve the read error count for every hour that has elapsed
2166  * since the last recorded read error.
2167  *
2168  */
2169 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2170 {
2171         struct timespec cur_time_mon;
2172         unsigned long hours_since_last;
2173         unsigned int read_errors = atomic_read(&rdev->read_errors);
2174
2175         ktime_get_ts(&cur_time_mon);
2176
2177         if (rdev->last_read_error.tv_sec == 0 &&
2178             rdev->last_read_error.tv_nsec == 0) {
2179                 /* first time we've seen a read error */
2180                 rdev->last_read_error = cur_time_mon;
2181                 return;
2182         }
2183
2184         hours_since_last = (cur_time_mon.tv_sec -
2185                             rdev->last_read_error.tv_sec) / 3600;
2186
2187         rdev->last_read_error = cur_time_mon;
2188
2189         /*
2190          * if hours_since_last is > the number of bits in read_errors
2191          * just set read errors to 0. We do this to avoid
2192          * overflowing the shift of read_errors by hours_since_last.
2193          */
2194         if (hours_since_last >= 8 * sizeof(read_errors))
2195                 atomic_set(&rdev->read_errors, 0);
2196         else
2197                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2198 }
2199
2200 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2201                             int sectors, struct page *page, int rw)
2202 {
2203         sector_t first_bad;
2204         int bad_sectors;
2205
2206         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2207             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2208                 return -1;
2209         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2210                 /* success */
2211                 return 1;
2212         if (rw == WRITE) {
2213                 set_bit(WriteErrorSeen, &rdev->flags);
2214                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2215                         set_bit(MD_RECOVERY_NEEDED,
2216                                 &rdev->mddev->recovery);
2217         }
2218         /* need to record an error - either for the block or the device */
2219         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2220                 md_error(rdev->mddev, rdev);
2221         return 0;
2222 }
2223
2224 /*
2225  * This is a kernel thread which:
2226  *
2227  *      1.      Retries failed read operations on working mirrors.
2228  *      2.      Updates the raid superblock when problems encounter.
2229  *      3.      Performs writes following reads for array synchronising.
2230  */
2231
2232 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2233 {
2234         int sect = 0; /* Offset from r10_bio->sector */
2235         int sectors = r10_bio->sectors;
2236         struct md_rdev*rdev;
2237         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2238         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2239
2240         /* still own a reference to this rdev, so it cannot
2241          * have been cleared recently.
2242          */
2243         rdev = conf->mirrors[d].rdev;
2244
2245         if (test_bit(Faulty, &rdev->flags))
2246                 /* drive has already been failed, just ignore any
2247                    more fix_read_error() attempts */
2248                 return;
2249
2250         check_decay_read_errors(mddev, rdev);
2251         atomic_inc(&rdev->read_errors);
2252         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2253                 char b[BDEVNAME_SIZE];
2254                 bdevname(rdev->bdev, b);
2255
2256                 printk(KERN_NOTICE
2257                        "md/raid10:%s: %s: Raid device exceeded "
2258                        "read_error threshold [cur %d:max %d]\n",
2259                        mdname(mddev), b,
2260                        atomic_read(&rdev->read_errors), max_read_errors);
2261                 printk(KERN_NOTICE
2262                        "md/raid10:%s: %s: Failing raid device\n",
2263                        mdname(mddev), b);
2264                 md_error(mddev, conf->mirrors[d].rdev);
2265                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2266                 return;
2267         }
2268
2269         while(sectors) {
2270                 int s = sectors;
2271                 int sl = r10_bio->read_slot;
2272                 int success = 0;
2273                 int start;
2274
2275                 if (s > (PAGE_SIZE>>9))
2276                         s = PAGE_SIZE >> 9;
2277
2278                 rcu_read_lock();
2279                 do {
2280                         sector_t first_bad;
2281                         int bad_sectors;
2282
2283                         d = r10_bio->devs[sl].devnum;
2284                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2285                         if (rdev &&
2286                             test_bit(In_sync, &rdev->flags) &&
2287                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2288                                         &first_bad, &bad_sectors) == 0) {
2289                                 atomic_inc(&rdev->nr_pending);
2290                                 rcu_read_unlock();
2291                                 success = sync_page_io(rdev,
2292                                                        r10_bio->devs[sl].addr +
2293                                                        sect,
2294                                                        s<<9,
2295                                                        conf->tmppage, READ, false);
2296                                 rdev_dec_pending(rdev, mddev);
2297                                 rcu_read_lock();
2298                                 if (success)
2299                                         break;
2300                         }
2301                         sl++;
2302                         if (sl == conf->copies)
2303                                 sl = 0;
2304                 } while (!success && sl != r10_bio->read_slot);
2305                 rcu_read_unlock();
2306
2307                 if (!success) {
2308                         /* Cannot read from anywhere, just mark the block
2309                          * as bad on the first device to discourage future
2310                          * reads.
2311                          */
2312                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2313                         rdev = conf->mirrors[dn].rdev;
2314
2315                         if (!rdev_set_badblocks(
2316                                     rdev,
2317                                     r10_bio->devs[r10_bio->read_slot].addr
2318                                     + sect,
2319                                     s, 0)) {
2320                                 md_error(mddev, rdev);
2321                                 r10_bio->devs[r10_bio->read_slot].bio
2322                                         = IO_BLOCKED;
2323                         }
2324                         break;
2325                 }
2326
2327                 start = sl;
2328                 /* write it back and re-read */
2329                 rcu_read_lock();
2330                 while (sl != r10_bio->read_slot) {
2331                         char b[BDEVNAME_SIZE];
2332
2333                         if (sl==0)
2334                                 sl = conf->copies;
2335                         sl--;
2336                         d = r10_bio->devs[sl].devnum;
2337                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2338                         if (!rdev ||
2339                             !test_bit(In_sync, &rdev->flags))
2340                                 continue;
2341
2342                         atomic_inc(&rdev->nr_pending);
2343                         rcu_read_unlock();
2344                         if (r10_sync_page_io(rdev,
2345                                              r10_bio->devs[sl].addr +
2346                                              sect,
2347                                              s, conf->tmppage, WRITE)
2348                             == 0) {
2349                                 /* Well, this device is dead */
2350                                 printk(KERN_NOTICE
2351                                        "md/raid10:%s: read correction "
2352                                        "write failed"
2353                                        " (%d sectors at %llu on %s)\n",
2354                                        mdname(mddev), s,
2355                                        (unsigned long long)(
2356                                                sect +
2357                                                choose_data_offset(r10_bio,
2358                                                                   rdev)),
2359                                        bdevname(rdev->bdev, b));
2360                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2361                                        "drive\n",
2362                                        mdname(mddev),
2363                                        bdevname(rdev->bdev, b));
2364                         }
2365                         rdev_dec_pending(rdev, mddev);
2366                         rcu_read_lock();
2367                 }
2368                 sl = start;
2369                 while (sl != r10_bio->read_slot) {
2370                         char b[BDEVNAME_SIZE];
2371
2372                         if (sl==0)
2373                                 sl = conf->copies;
2374                         sl--;
2375                         d = r10_bio->devs[sl].devnum;
2376                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2377                         if (!rdev ||
2378                             !test_bit(In_sync, &rdev->flags))
2379                                 continue;
2380
2381                         atomic_inc(&rdev->nr_pending);
2382                         rcu_read_unlock();
2383                         switch (r10_sync_page_io(rdev,
2384                                              r10_bio->devs[sl].addr +
2385                                              sect,
2386                                              s, conf->tmppage,
2387                                                  READ)) {
2388                         case 0:
2389                                 /* Well, this device is dead */
2390                                 printk(KERN_NOTICE
2391                                        "md/raid10:%s: unable to read back "
2392                                        "corrected sectors"
2393                                        " (%d sectors at %llu on %s)\n",
2394                                        mdname(mddev), s,
2395                                        (unsigned long long)(
2396                                                sect +
2397                                                choose_data_offset(r10_bio, rdev)),
2398                                        bdevname(rdev->bdev, b));
2399                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2400                                        "drive\n",
2401                                        mdname(mddev),
2402                                        bdevname(rdev->bdev, b));
2403                                 break;
2404                         case 1:
2405                                 printk(KERN_INFO
2406                                        "md/raid10:%s: read error corrected"
2407                                        " (%d sectors at %llu on %s)\n",
2408                                        mdname(mddev), s,
2409                                        (unsigned long long)(
2410                                                sect +
2411                                                choose_data_offset(r10_bio, rdev)),
2412                                        bdevname(rdev->bdev, b));
2413                                 atomic_add(s, &rdev->corrected_errors);
2414                         }
2415
2416                         rdev_dec_pending(rdev, mddev);
2417                         rcu_read_lock();
2418                 }
2419                 rcu_read_unlock();
2420
2421                 sectors -= s;
2422                 sect += s;
2423         }
2424 }
2425
2426 static int narrow_write_error(struct r10bio *r10_bio, int i)
2427 {
2428         struct bio *bio = r10_bio->master_bio;
2429         struct mddev *mddev = r10_bio->mddev;
2430         struct r10conf *conf = mddev->private;
2431         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2432         /* bio has the data to be written to slot 'i' where
2433          * we just recently had a write error.
2434          * We repeatedly clone the bio and trim down to one block,
2435          * then try the write.  Where the write fails we record
2436          * a bad block.
2437          * It is conceivable that the bio doesn't exactly align with
2438          * blocks.  We must handle this.
2439          *
2440          * We currently own a reference to the rdev.
2441          */
2442
2443         int block_sectors;
2444         sector_t sector;
2445         int sectors;
2446         int sect_to_write = r10_bio->sectors;
2447         int ok = 1;
2448
2449         if (rdev->badblocks.shift < 0)
2450                 return 0;
2451
2452         block_sectors = roundup(1 << rdev->badblocks.shift,
2453                                 bdev_logical_block_size(rdev->bdev) >> 9);
2454         sector = r10_bio->sector;
2455         sectors = ((r10_bio->sector + block_sectors)
2456                    & ~(sector_t)(block_sectors - 1))
2457                 - sector;
2458
2459         while (sect_to_write) {
2460                 struct bio *wbio;
2461                 if (sectors > sect_to_write)
2462                         sectors = sect_to_write;
2463                 /* Write at 'sector' for 'sectors' */
2464                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2465                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2466                 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2467                                    choose_data_offset(r10_bio, rdev) +
2468                                    (sector - r10_bio->sector));
2469                 wbio->bi_bdev = rdev->bdev;
2470                 if (submit_bio_wait(WRITE, wbio) < 0)
2471                         /* Failure! */
2472                         ok = rdev_set_badblocks(rdev, sector,
2473                                                 sectors, 0)
2474                                 && ok;
2475
2476                 bio_put(wbio);
2477                 sect_to_write -= sectors;
2478                 sector += sectors;
2479                 sectors = block_sectors;
2480         }
2481         return ok;
2482 }
2483
2484 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2485 {
2486         int slot = r10_bio->read_slot;
2487         struct bio *bio;
2488         struct r10conf *conf = mddev->private;
2489         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2490         char b[BDEVNAME_SIZE];
2491         unsigned long do_sync;
2492         int max_sectors;
2493
2494         /* we got a read error. Maybe the drive is bad.  Maybe just
2495          * the block and we can fix it.
2496          * We freeze all other IO, and try reading the block from
2497          * other devices.  When we find one, we re-write
2498          * and check it that fixes the read error.
2499          * This is all done synchronously while the array is
2500          * frozen.
2501          */
2502         bio = r10_bio->devs[slot].bio;
2503         bdevname(bio->bi_bdev, b);
2504         bio_put(bio);
2505         r10_bio->devs[slot].bio = NULL;
2506
2507         if (mddev->ro == 0) {
2508                 freeze_array(conf, 1);
2509                 fix_read_error(conf, mddev, r10_bio);
2510                 unfreeze_array(conf);
2511         } else
2512                 r10_bio->devs[slot].bio = IO_BLOCKED;
2513
2514         rdev_dec_pending(rdev, mddev);
2515
2516 read_more:
2517         rdev = read_balance(conf, r10_bio, &max_sectors);
2518         if (rdev == NULL) {
2519                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2520                        " read error for block %llu\n",
2521                        mdname(mddev), b,
2522                        (unsigned long long)r10_bio->sector);
2523                 raid_end_bio_io(r10_bio);
2524                 return;
2525         }
2526
2527         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2528         slot = r10_bio->read_slot;
2529         printk_ratelimited(
2530                 KERN_ERR
2531                 "md/raid10:%s: %s: redirecting "
2532                 "sector %llu to another mirror\n",
2533                 mdname(mddev),
2534                 bdevname(rdev->bdev, b),
2535                 (unsigned long long)r10_bio->sector);
2536         bio = bio_clone_mddev(r10_bio->master_bio,
2537                               GFP_NOIO, mddev);
2538         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2539         r10_bio->devs[slot].bio = bio;
2540         r10_bio->devs[slot].rdev = rdev;
2541         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2542                 + choose_data_offset(r10_bio, rdev);
2543         bio->bi_bdev = rdev->bdev;
2544         bio->bi_rw = READ | do_sync;
2545         bio->bi_private = r10_bio;
2546         bio->bi_end_io = raid10_end_read_request;
2547         if (max_sectors < r10_bio->sectors) {
2548                 /* Drat - have to split this up more */
2549                 struct bio *mbio = r10_bio->master_bio;
2550                 int sectors_handled =
2551                         r10_bio->sector + max_sectors
2552                         - mbio->bi_iter.bi_sector;
2553                 r10_bio->sectors = max_sectors;
2554                 spin_lock_irq(&conf->device_lock);
2555                 if (mbio->bi_phys_segments == 0)
2556                         mbio->bi_phys_segments = 2;
2557                 else
2558                         mbio->bi_phys_segments++;
2559                 spin_unlock_irq(&conf->device_lock);
2560                 generic_make_request(bio);
2561
2562                 r10_bio = mempool_alloc(conf->r10bio_pool,
2563                                         GFP_NOIO);
2564                 r10_bio->master_bio = mbio;
2565                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2566                 r10_bio->state = 0;
2567                 set_bit(R10BIO_ReadError,
2568                         &r10_bio->state);
2569                 r10_bio->mddev = mddev;
2570                 r10_bio->sector = mbio->bi_iter.bi_sector
2571                         + sectors_handled;
2572
2573                 goto read_more;
2574         } else
2575                 generic_make_request(bio);
2576 }
2577
2578 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2579 {
2580         /* Some sort of write request has finished and it
2581          * succeeded in writing where we thought there was a
2582          * bad block.  So forget the bad block.
2583          * Or possibly if failed and we need to record
2584          * a bad block.
2585          */
2586         int m;
2587         struct md_rdev *rdev;
2588
2589         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2590             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2591                 for (m = 0; m < conf->copies; m++) {
2592                         int dev = r10_bio->devs[m].devnum;
2593                         rdev = conf->mirrors[dev].rdev;
2594                         if (r10_bio->devs[m].bio == NULL)
2595                                 continue;
2596                         if (!r10_bio->devs[m].bio->bi_error) {
2597                                 rdev_clear_badblocks(
2598                                         rdev,
2599                                         r10_bio->devs[m].addr,
2600                                         r10_bio->sectors, 0);
2601                         } else {
2602                                 if (!rdev_set_badblocks(
2603                                             rdev,
2604                                             r10_bio->devs[m].addr,
2605                                             r10_bio->sectors, 0))
2606                                         md_error(conf->mddev, rdev);
2607                         }
2608                         rdev = conf->mirrors[dev].replacement;
2609                         if (r10_bio->devs[m].repl_bio == NULL)
2610                                 continue;
2611
2612                         if (!r10_bio->devs[m].repl_bio->bi_error) {
2613                                 rdev_clear_badblocks(
2614                                         rdev,
2615                                         r10_bio->devs[m].addr,
2616                                         r10_bio->sectors, 0);
2617                         } else {
2618                                 if (!rdev_set_badblocks(
2619                                             rdev,
2620                                             r10_bio->devs[m].addr,
2621                                             r10_bio->sectors, 0))
2622                                         md_error(conf->mddev, rdev);
2623                         }
2624                 }
2625                 put_buf(r10_bio);
2626         } else {
2627                 bool fail = false;
2628                 for (m = 0; m < conf->copies; m++) {
2629                         int dev = r10_bio->devs[m].devnum;
2630                         struct bio *bio = r10_bio->devs[m].bio;
2631                         rdev = conf->mirrors[dev].rdev;
2632                         if (bio == IO_MADE_GOOD) {
2633                                 rdev_clear_badblocks(
2634                                         rdev,
2635                                         r10_bio->devs[m].addr,
2636                                         r10_bio->sectors, 0);
2637                                 rdev_dec_pending(rdev, conf->mddev);
2638                         } else if (bio != NULL && bio->bi_error) {
2639                                 fail = true;
2640                                 if (!narrow_write_error(r10_bio, m)) {
2641                                         md_error(conf->mddev, rdev);
2642                                         set_bit(R10BIO_Degraded,
2643                                                 &r10_bio->state);
2644                                 }
2645                                 rdev_dec_pending(rdev, conf->mddev);
2646                         }
2647                         bio = r10_bio->devs[m].repl_bio;
2648                         rdev = conf->mirrors[dev].replacement;
2649                         if (rdev && bio == IO_MADE_GOOD) {
2650                                 rdev_clear_badblocks(
2651                                         rdev,
2652                                         r10_bio->devs[m].addr,
2653                                         r10_bio->sectors, 0);
2654                                 rdev_dec_pending(rdev, conf->mddev);
2655                         }
2656                 }
2657                 if (fail) {
2658                         spin_lock_irq(&conf->device_lock);
2659                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2660                         spin_unlock_irq(&conf->device_lock);
2661                         md_wakeup_thread(conf->mddev->thread);
2662                 } else {
2663                         if (test_bit(R10BIO_WriteError,
2664                                      &r10_bio->state))
2665                                 close_write(r10_bio);
2666                         raid_end_bio_io(r10_bio);
2667                 }
2668         }
2669 }
2670
2671 static void raid10d(struct md_thread *thread)
2672 {
2673         struct mddev *mddev = thread->mddev;
2674         struct r10bio *r10_bio;
2675         unsigned long flags;
2676         struct r10conf *conf = mddev->private;
2677         struct list_head *head = &conf->retry_list;
2678         struct blk_plug plug;
2679
2680         md_check_recovery(mddev);
2681
2682         if (!list_empty_careful(&conf->bio_end_io_list) &&
2683             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2684                 LIST_HEAD(tmp);
2685                 spin_lock_irqsave(&conf->device_lock, flags);
2686                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2687                         list_add(&tmp, &conf->bio_end_io_list);
2688                         list_del_init(&conf->bio_end_io_list);
2689                 }
2690                 spin_unlock_irqrestore(&conf->device_lock, flags);
2691                 while (!list_empty(&tmp)) {
2692                         r10_bio = list_first_entry(&tmp, struct r10bio,
2693                                                    retry_list);
2694                         list_del(&r10_bio->retry_list);
2695                         if (mddev->degraded)
2696                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2697
2698                         if (test_bit(R10BIO_WriteError,
2699                                      &r10_bio->state))
2700                                 close_write(r10_bio);
2701                         raid_end_bio_io(r10_bio);
2702                 }
2703         }
2704
2705         blk_start_plug(&plug);
2706         for (;;) {
2707
2708                 flush_pending_writes(conf);
2709
2710                 spin_lock_irqsave(&conf->device_lock, flags);
2711                 if (list_empty(head)) {
2712                         spin_unlock_irqrestore(&conf->device_lock, flags);
2713                         break;
2714                 }
2715                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2716                 list_del(head->prev);
2717                 conf->nr_queued--;
2718                 spin_unlock_irqrestore(&conf->device_lock, flags);
2719
2720                 mddev = r10_bio->mddev;
2721                 conf = mddev->private;
2722                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2723                     test_bit(R10BIO_WriteError, &r10_bio->state))
2724                         handle_write_completed(conf, r10_bio);
2725                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2726                         reshape_request_write(mddev, r10_bio);
2727                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2728                         sync_request_write(mddev, r10_bio);
2729                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2730                         recovery_request_write(mddev, r10_bio);
2731                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2732                         handle_read_error(mddev, r10_bio);
2733                 else {
2734                         /* just a partial read to be scheduled from a
2735                          * separate context
2736                          */
2737                         int slot = r10_bio->read_slot;
2738                         generic_make_request(r10_bio->devs[slot].bio);
2739                 }
2740
2741                 cond_resched();
2742                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2743                         md_check_recovery(mddev);
2744         }
2745         blk_finish_plug(&plug);
2746 }
2747
2748 static int init_resync(struct r10conf *conf)
2749 {
2750         int buffs;
2751         int i;
2752
2753         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2754         BUG_ON(conf->r10buf_pool);
2755         conf->have_replacement = 0;
2756         for (i = 0; i < conf->geo.raid_disks; i++)
2757                 if (conf->mirrors[i].replacement)
2758                         conf->have_replacement = 1;
2759         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2760         if (!conf->r10buf_pool)
2761                 return -ENOMEM;
2762         conf->next_resync = 0;
2763         return 0;
2764 }
2765
2766 /*
2767  * perform a "sync" on one "block"
2768  *
2769  * We need to make sure that no normal I/O request - particularly write
2770  * requests - conflict with active sync requests.
2771  *
2772  * This is achieved by tracking pending requests and a 'barrier' concept
2773  * that can be installed to exclude normal IO requests.
2774  *
2775  * Resync and recovery are handled very differently.
2776  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2777  *
2778  * For resync, we iterate over virtual addresses, read all copies,
2779  * and update if there are differences.  If only one copy is live,
2780  * skip it.
2781  * For recovery, we iterate over physical addresses, read a good
2782  * value for each non-in_sync drive, and over-write.
2783  *
2784  * So, for recovery we may have several outstanding complex requests for a
2785  * given address, one for each out-of-sync device.  We model this by allocating
2786  * a number of r10_bio structures, one for each out-of-sync device.
2787  * As we setup these structures, we collect all bio's together into a list
2788  * which we then process collectively to add pages, and then process again
2789  * to pass to generic_make_request.
2790  *
2791  * The r10_bio structures are linked using a borrowed master_bio pointer.
2792  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2793  * has its remaining count decremented to 0, the whole complex operation
2794  * is complete.
2795  *
2796  */
2797
2798 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2799                              int *skipped)
2800 {
2801         struct r10conf *conf = mddev->private;
2802         struct r10bio *r10_bio;
2803         struct bio *biolist = NULL, *bio;
2804         sector_t max_sector, nr_sectors;
2805         int i;
2806         int max_sync;
2807         sector_t sync_blocks;
2808         sector_t sectors_skipped = 0;
2809         int chunks_skipped = 0;
2810         sector_t chunk_mask = conf->geo.chunk_mask;
2811
2812         if (!conf->r10buf_pool)
2813                 if (init_resync(conf))
2814                         return 0;
2815
2816         /*
2817          * Allow skipping a full rebuild for incremental assembly
2818          * of a clean array, like RAID1 does.
2819          */
2820         if (mddev->bitmap == NULL &&
2821             mddev->recovery_cp == MaxSector &&
2822             mddev->reshape_position == MaxSector &&
2823             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2824             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2825             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2826             conf->fullsync == 0) {
2827                 *skipped = 1;
2828                 return mddev->dev_sectors - sector_nr;
2829         }
2830
2831  skipped:
2832         max_sector = mddev->dev_sectors;
2833         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2834             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2835                 max_sector = mddev->resync_max_sectors;
2836         if (sector_nr >= max_sector) {
2837                 /* If we aborted, we need to abort the
2838                  * sync on the 'current' bitmap chucks (there can
2839                  * be several when recovering multiple devices).
2840                  * as we may have started syncing it but not finished.
2841                  * We can find the current address in
2842                  * mddev->curr_resync, but for recovery,
2843                  * we need to convert that to several
2844                  * virtual addresses.
2845                  */
2846                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2847                         end_reshape(conf);
2848                         close_sync(conf);
2849                         return 0;
2850                 }
2851
2852                 if (mddev->curr_resync < max_sector) { /* aborted */
2853                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2854                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2855                                                 &sync_blocks, 1);
2856                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2857                                 sector_t sect =
2858                                         raid10_find_virt(conf, mddev->curr_resync, i);
2859                                 bitmap_end_sync(mddev->bitmap, sect,
2860                                                 &sync_blocks, 1);
2861                         }
2862                 } else {
2863                         /* completed sync */
2864                         if ((!mddev->bitmap || conf->fullsync)
2865                             && conf->have_replacement
2866                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2867                                 /* Completed a full sync so the replacements
2868                                  * are now fully recovered.
2869                                  */
2870                                 for (i = 0; i < conf->geo.raid_disks; i++)
2871                                         if (conf->mirrors[i].replacement)
2872                                                 conf->mirrors[i].replacement
2873                                                         ->recovery_offset
2874                                                         = MaxSector;
2875                         }
2876                         conf->fullsync = 0;
2877                 }
2878                 bitmap_close_sync(mddev->bitmap);
2879                 close_sync(conf);
2880                 *skipped = 1;
2881                 return sectors_skipped;
2882         }
2883
2884         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2885                 return reshape_request(mddev, sector_nr, skipped);
2886
2887         if (chunks_skipped >= conf->geo.raid_disks) {
2888                 /* if there has been nothing to do on any drive,
2889                  * then there is nothing to do at all..
2890                  */
2891                 *skipped = 1;
2892                 return (max_sector - sector_nr) + sectors_skipped;
2893         }
2894
2895         if (max_sector > mddev->resync_max)
2896                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2897
2898         /* make sure whole request will fit in a chunk - if chunks
2899          * are meaningful
2900          */
2901         if (conf->geo.near_copies < conf->geo.raid_disks &&
2902             max_sector > (sector_nr | chunk_mask))
2903                 max_sector = (sector_nr | chunk_mask) + 1;
2904
2905         /* Again, very different code for resync and recovery.
2906          * Both must result in an r10bio with a list of bios that
2907          * have bi_end_io, bi_sector, bi_bdev set,
2908          * and bi_private set to the r10bio.
2909          * For recovery, we may actually create several r10bios
2910          * with 2 bios in each, that correspond to the bios in the main one.
2911          * In this case, the subordinate r10bios link back through a
2912          * borrowed master_bio pointer, and the counter in the master
2913          * includes a ref from each subordinate.
2914          */
2915         /* First, we decide what to do and set ->bi_end_io
2916          * To end_sync_read if we want to read, and
2917          * end_sync_write if we will want to write.
2918          */
2919
2920         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2921         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2922                 /* recovery... the complicated one */
2923                 int j;
2924                 r10_bio = NULL;
2925
2926                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2927                         int still_degraded;
2928                         struct r10bio *rb2;
2929                         sector_t sect;
2930                         int must_sync;
2931                         int any_working;
2932                         struct raid10_info *mirror = &conf->mirrors[i];
2933
2934                         if ((mirror->rdev == NULL ||
2935                              test_bit(In_sync, &mirror->rdev->flags))
2936                             &&
2937                             (mirror->replacement == NULL ||
2938                              test_bit(Faulty,
2939                                       &mirror->replacement->flags)))
2940                                 continue;
2941
2942                         still_degraded = 0;
2943                         /* want to reconstruct this device */
2944                         rb2 = r10_bio;
2945                         sect = raid10_find_virt(conf, sector_nr, i);
2946                         if (sect >= mddev->resync_max_sectors) {
2947                                 /* last stripe is not complete - don't
2948                                  * try to recover this sector.
2949                                  */
2950                                 continue;
2951                         }
2952                         /* Unless we are doing a full sync, or a replacement
2953                          * we only need to recover the block if it is set in
2954                          * the bitmap
2955                          */
2956                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2957                                                       &sync_blocks, 1);
2958                         if (sync_blocks < max_sync)
2959                                 max_sync = sync_blocks;
2960                         if (!must_sync &&
2961                             mirror->replacement == NULL &&
2962                             !conf->fullsync) {
2963                                 /* yep, skip the sync_blocks here, but don't assume
2964                                  * that there will never be anything to do here
2965                                  */
2966                                 chunks_skipped = -1;
2967                                 continue;
2968                         }
2969
2970                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2971                         r10_bio->state = 0;
2972                         raise_barrier(conf, rb2 != NULL);
2973                         atomic_set(&r10_bio->remaining, 0);
2974
2975                         r10_bio->master_bio = (struct bio*)rb2;
2976                         if (rb2)
2977                                 atomic_inc(&rb2->remaining);
2978                         r10_bio->mddev = mddev;
2979                         set_bit(R10BIO_IsRecover, &r10_bio->state);
2980                         r10_bio->sector = sect;
2981
2982                         raid10_find_phys(conf, r10_bio);
2983
2984                         /* Need to check if the array will still be
2985                          * degraded
2986                          */
2987                         for (j = 0; j < conf->geo.raid_disks; j++)
2988                                 if (conf->mirrors[j].rdev == NULL ||
2989                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2990                                         still_degraded = 1;
2991                                         break;
2992                                 }
2993
2994                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2995                                                       &sync_blocks, still_degraded);
2996
2997                         any_working = 0;
2998                         for (j=0; j<conf->copies;j++) {
2999                                 int k;
3000                                 int d = r10_bio->devs[j].devnum;
3001                                 sector_t from_addr, to_addr;
3002                                 struct md_rdev *rdev;
3003                                 sector_t sector, first_bad;
3004                                 int bad_sectors;
3005                                 if (!conf->mirrors[d].rdev ||
3006                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3007                                         continue;
3008                                 /* This is where we read from */
3009                                 any_working = 1;
3010                                 rdev = conf->mirrors[d].rdev;
3011                                 sector = r10_bio->devs[j].addr;
3012
3013                                 if (is_badblock(rdev, sector, max_sync,
3014                                                 &first_bad, &bad_sectors)) {
3015                                         if (first_bad > sector)
3016                                                 max_sync = first_bad - sector;
3017                                         else {
3018                                                 bad_sectors -= (sector
3019                                                                 - first_bad);
3020                                                 if (max_sync > bad_sectors)
3021                                                         max_sync = bad_sectors;
3022                                                 continue;
3023                                         }
3024                                 }
3025                                 bio = r10_bio->devs[0].bio;
3026                                 bio_reset(bio);
3027                                 bio->bi_next = biolist;
3028                                 biolist = bio;
3029                                 bio->bi_private = r10_bio;
3030                                 bio->bi_end_io = end_sync_read;
3031                                 bio->bi_rw = READ;
3032                                 from_addr = r10_bio->devs[j].addr;
3033                                 bio->bi_iter.bi_sector = from_addr +
3034                                         rdev->data_offset;
3035                                 bio->bi_bdev = rdev->bdev;
3036                                 atomic_inc(&rdev->nr_pending);
3037                                 /* and we write to 'i' (if not in_sync) */
3038
3039                                 for (k=0; k<conf->copies; k++)
3040                                         if (r10_bio->devs[k].devnum == i)
3041                                                 break;
3042                                 BUG_ON(k == conf->copies);
3043                                 to_addr = r10_bio->devs[k].addr;
3044                                 r10_bio->devs[0].devnum = d;
3045                                 r10_bio->devs[0].addr = from_addr;
3046                                 r10_bio->devs[1].devnum = i;
3047                                 r10_bio->devs[1].addr = to_addr;
3048
3049                                 rdev = mirror->rdev;
3050                                 if (!test_bit(In_sync, &rdev->flags)) {
3051                                         bio = r10_bio->devs[1].bio;
3052                                         bio_reset(bio);
3053                                         bio->bi_next = biolist;
3054                                         biolist = bio;
3055                                         bio->bi_private = r10_bio;
3056                                         bio->bi_end_io = end_sync_write;
3057                                         bio->bi_rw = WRITE;
3058                                         bio->bi_iter.bi_sector = to_addr
3059                                                 + rdev->data_offset;
3060                                         bio->bi_bdev = rdev->bdev;
3061                                         atomic_inc(&r10_bio->remaining);
3062                                 } else
3063                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3064
3065                                 /* and maybe write to replacement */
3066                                 bio = r10_bio->devs[1].repl_bio;
3067                                 if (bio)
3068                                         bio->bi_end_io = NULL;
3069                                 rdev = mirror->replacement;
3070                                 /* Note: if rdev != NULL, then bio
3071                                  * cannot be NULL as r10buf_pool_alloc will
3072                                  * have allocated it.
3073                                  * So the second test here is pointless.
3074                                  * But it keeps semantic-checkers happy, and
3075                                  * this comment keeps human reviewers
3076                                  * happy.
3077                                  */
3078                                 if (rdev == NULL || bio == NULL ||
3079                                     test_bit(Faulty, &rdev->flags))
3080                                         break;
3081                                 bio_reset(bio);
3082                                 bio->bi_next = biolist;
3083                                 biolist = bio;
3084                                 bio->bi_private = r10_bio;
3085                                 bio->bi_end_io = end_sync_write;
3086                                 bio->bi_rw = WRITE;
3087                                 bio->bi_iter.bi_sector = to_addr +
3088                                         rdev->data_offset;
3089                                 bio->bi_bdev = rdev->bdev;
3090                                 atomic_inc(&r10_bio->remaining);
3091                                 break;
3092                         }
3093                         if (j == conf->copies) {
3094                                 /* Cannot recover, so abort the recovery or
3095                                  * record a bad block */
3096                                 if (any_working) {
3097                                         /* problem is that there are bad blocks
3098                                          * on other device(s)
3099                                          */
3100                                         int k;
3101                                         for (k = 0; k < conf->copies; k++)
3102                                                 if (r10_bio->devs[k].devnum == i)
3103                                                         break;
3104                                         if (!test_bit(In_sync,
3105                                                       &mirror->rdev->flags)
3106                                             && !rdev_set_badblocks(
3107                                                     mirror->rdev,
3108                                                     r10_bio->devs[k].addr,
3109                                                     max_sync, 0))
3110                                                 any_working = 0;
3111                                         if (mirror->replacement &&
3112                                             !rdev_set_badblocks(
3113                                                     mirror->replacement,
3114                                                     r10_bio->devs[k].addr,
3115                                                     max_sync, 0))
3116                                                 any_working = 0;
3117                                 }
3118                                 if (!any_working)  {
3119                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3120                                                               &mddev->recovery))
3121                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3122                                                        "working devices for recovery.\n",
3123                                                        mdname(mddev));
3124                                         mirror->recovery_disabled
3125                                                 = mddev->recovery_disabled;
3126                                 }
3127                                 put_buf(r10_bio);
3128                                 if (rb2)
3129                                         atomic_dec(&rb2->remaining);
3130                                 r10_bio = rb2;
3131                                 break;
3132                         }
3133                 }
3134                 if (biolist == NULL) {
3135                         while (r10_bio) {
3136                                 struct r10bio *rb2 = r10_bio;
3137                                 r10_bio = (struct r10bio*) rb2->master_bio;
3138                                 rb2->master_bio = NULL;
3139                                 put_buf(rb2);
3140                         }
3141                         goto giveup;
3142                 }
3143         } else {
3144                 /* resync. Schedule a read for every block at this virt offset */
3145                 int count = 0;
3146
3147                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3148
3149                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3150                                        &sync_blocks, mddev->degraded) &&
3151                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3152                                                  &mddev->recovery)) {
3153                         /* We can skip this block */
3154                         *skipped = 1;
3155                         return sync_blocks + sectors_skipped;
3156                 }
3157                 if (sync_blocks < max_sync)
3158                         max_sync = sync_blocks;
3159                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3160                 r10_bio->state = 0;
3161
3162                 r10_bio->mddev = mddev;
3163                 atomic_set(&r10_bio->remaining, 0);
3164                 raise_barrier(conf, 0);
3165                 conf->next_resync = sector_nr;
3166
3167                 r10_bio->master_bio = NULL;
3168                 r10_bio->sector = sector_nr;
3169                 set_bit(R10BIO_IsSync, &r10_bio->state);
3170                 raid10_find_phys(conf, r10_bio);
3171                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3172
3173                 for (i = 0; i < conf->copies; i++) {
3174                         int d = r10_bio->devs[i].devnum;
3175                         sector_t first_bad, sector;
3176                         int bad_sectors;
3177
3178                         if (r10_bio->devs[i].repl_bio)
3179                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3180
3181                         bio = r10_bio->devs[i].bio;
3182                         bio_reset(bio);
3183                         bio->bi_error = -EIO;
3184                         if (conf->mirrors[d].rdev == NULL ||
3185                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3186                                 continue;
3187                         sector = r10_bio->devs[i].addr;
3188                         if (is_badblock(conf->mirrors[d].rdev,
3189                                         sector, max_sync,
3190                                         &first_bad, &bad_sectors)) {
3191                                 if (first_bad > sector)
3192                                         max_sync = first_bad - sector;
3193                                 else {
3194                                         bad_sectors -= (sector - first_bad);
3195                                         if (max_sync > bad_sectors)
3196                                                 max_sync = bad_sectors;
3197                                         continue;
3198                                 }
3199                         }
3200                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3201                         atomic_inc(&r10_bio->remaining);
3202                         bio->bi_next = biolist;
3203                         biolist = bio;
3204                         bio->bi_private = r10_bio;
3205                         bio->bi_end_io = end_sync_read;
3206                         bio->bi_rw = READ;
3207                         bio->bi_iter.bi_sector = sector +
3208                                 conf->mirrors[d].rdev->data_offset;
3209                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3210                         count++;
3211
3212                         if (conf->mirrors[d].replacement == NULL ||
3213                             test_bit(Faulty,
3214                                      &conf->mirrors[d].replacement->flags))
3215                                 continue;
3216
3217                         /* Need to set up for writing to the replacement */
3218                         bio = r10_bio->devs[i].repl_bio;
3219                         bio_reset(bio);
3220                         bio->bi_error = -EIO;
3221
3222                         sector = r10_bio->devs[i].addr;
3223                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3224                         bio->bi_next = biolist;
3225                         biolist = bio;
3226                         bio->bi_private = r10_bio;
3227                         bio->bi_end_io = end_sync_write;
3228                         bio->bi_rw = WRITE;
3229                         bio->bi_iter.bi_sector = sector +
3230                                 conf->mirrors[d].replacement->data_offset;
3231                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3232                         count++;
3233                 }
3234
3235                 if (count < 2) {
3236                         for (i=0; i<conf->copies; i++) {
3237                                 int d = r10_bio->devs[i].devnum;
3238                                 if (r10_bio->devs[i].bio->bi_end_io)
3239                                         rdev_dec_pending(conf->mirrors[d].rdev,
3240                                                          mddev);
3241                                 if (r10_bio->devs[i].repl_bio &&
3242                                     r10_bio->devs[i].repl_bio->bi_end_io)
3243                                         rdev_dec_pending(
3244                                                 conf->mirrors[d].replacement,
3245                                                 mddev);
3246                         }
3247                         put_buf(r10_bio);
3248                         biolist = NULL;
3249                         goto giveup;
3250                 }
3251         }
3252
3253         nr_sectors = 0;
3254         if (sector_nr + max_sync < max_sector)
3255                 max_sector = sector_nr + max_sync;
3256         do {
3257                 struct page *page;
3258                 int len = PAGE_SIZE;
3259                 if (sector_nr + (len>>9) > max_sector)
3260                         len = (max_sector - sector_nr) << 9;
3261                 if (len == 0)
3262                         break;
3263                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3264                         struct bio *bio2;
3265                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3266                         if (bio_add_page(bio, page, len, 0))
3267                                 continue;
3268
3269                         /* stop here */
3270                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3271                         for (bio2 = biolist;
3272                              bio2 && bio2 != bio;
3273                              bio2 = bio2->bi_next) {
3274                                 /* remove last page from this bio */
3275                                 bio2->bi_vcnt--;
3276                                 bio2->bi_iter.bi_size -= len;
3277                                 bio_clear_flag(bio2, BIO_SEG_VALID);
3278                         }
3279                         goto bio_full;
3280                 }
3281                 nr_sectors += len>>9;
3282                 sector_nr += len>>9;
3283         } while (biolist->bi_vcnt < RESYNC_PAGES);
3284  bio_full:
3285         r10_bio->sectors = nr_sectors;
3286
3287         while (biolist) {
3288                 bio = biolist;
3289                 biolist = biolist->bi_next;
3290
3291                 bio->bi_next = NULL;
3292                 r10_bio = bio->bi_private;
3293                 r10_bio->sectors = nr_sectors;
3294
3295                 if (bio->bi_end_io == end_sync_read) {
3296                         md_sync_acct(bio->bi_bdev, nr_sectors);
3297                         bio->bi_error = 0;
3298                         generic_make_request(bio);
3299                 }
3300         }
3301
3302         if (sectors_skipped)
3303                 /* pretend they weren't skipped, it makes
3304                  * no important difference in this case
3305                  */
3306                 md_done_sync(mddev, sectors_skipped, 1);
3307
3308         return sectors_skipped + nr_sectors;
3309  giveup:
3310         /* There is nowhere to write, so all non-sync
3311          * drives must be failed or in resync, all drives
3312          * have a bad block, so try the next chunk...
3313          */
3314         if (sector_nr + max_sync < max_sector)
3315                 max_sector = sector_nr + max_sync;
3316
3317         sectors_skipped += (max_sector - sector_nr);
3318         chunks_skipped ++;
3319         sector_nr = max_sector;
3320         goto skipped;
3321 }
3322
3323 static sector_t
3324 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3325 {
3326         sector_t size;
3327         struct r10conf *conf = mddev->private;
3328
3329         if (!raid_disks)
3330                 raid_disks = min(conf->geo.raid_disks,
3331                                  conf->prev.raid_disks);
3332         if (!sectors)
3333                 sectors = conf->dev_sectors;
3334
3335         size = sectors >> conf->geo.chunk_shift;
3336         sector_div(size, conf->geo.far_copies);
3337         size = size * raid_disks;
3338         sector_div(size, conf->geo.near_copies);
3339
3340         return size << conf->geo.chunk_shift;
3341 }
3342
3343 static void calc_sectors(struct r10conf *conf, sector_t size)
3344 {
3345         /* Calculate the number of sectors-per-device that will
3346          * actually be used, and set conf->dev_sectors and
3347          * conf->stride
3348          */
3349
3350         size = size >> conf->geo.chunk_shift;
3351         sector_div(size, conf->geo.far_copies);
3352         size = size * conf->geo.raid_disks;
3353         sector_div(size, conf->geo.near_copies);
3354         /* 'size' is now the number of chunks in the array */
3355         /* calculate "used chunks per device" */
3356         size = size * conf->copies;
3357
3358         /* We need to round up when dividing by raid_disks to
3359          * get the stride size.
3360          */
3361         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3362
3363         conf->dev_sectors = size << conf->geo.chunk_shift;
3364
3365         if (conf->geo.far_offset)
3366                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3367         else {
3368                 sector_div(size, conf->geo.far_copies);
3369                 conf->geo.stride = size << conf->geo.chunk_shift;
3370         }
3371 }
3372
3373 enum geo_type {geo_new, geo_old, geo_start};
3374 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3375 {
3376         int nc, fc, fo;
3377         int layout, chunk, disks;
3378         switch (new) {
3379         case geo_old:
3380                 layout = mddev->layout;
3381                 chunk = mddev->chunk_sectors;
3382                 disks = mddev->raid_disks - mddev->delta_disks;
3383                 break;
3384         case geo_new:
3385                 layout = mddev->new_layout;
3386                 chunk = mddev->new_chunk_sectors;
3387                 disks = mddev->raid_disks;
3388                 break;
3389         default: /* avoid 'may be unused' warnings */
3390         case geo_start: /* new when starting reshape - raid_disks not
3391                          * updated yet. */
3392                 layout = mddev->new_layout;
3393                 chunk = mddev->new_chunk_sectors;
3394                 disks = mddev->raid_disks + mddev->delta_disks;
3395                 break;
3396         }
3397         if (layout >> 18)
3398                 return -1;
3399         if (chunk < (PAGE_SIZE >> 9) ||
3400             !is_power_of_2(chunk))
3401                 return -2;
3402         nc = layout & 255;
3403         fc = (layout >> 8) & 255;
3404         fo = layout & (1<<16);
3405         geo->raid_disks = disks;
3406         geo->near_copies = nc;
3407         geo->far_copies = fc;
3408         geo->far_offset = fo;
3409         geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3410         geo->chunk_mask = chunk - 1;
3411         geo->chunk_shift = ffz(~chunk);
3412         return nc*fc;
3413 }
3414
3415 static struct r10conf *setup_conf(struct mddev *mddev)
3416 {
3417         struct r10conf *conf = NULL;
3418         int err = -EINVAL;
3419         struct geom geo;
3420         int copies;
3421
3422         copies = setup_geo(&geo, mddev, geo_new);
3423
3424         if (copies == -2) {
3425                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3426                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3427                        mdname(mddev), PAGE_SIZE);
3428                 goto out;
3429         }
3430
3431         if (copies < 2 || copies > mddev->raid_disks) {
3432                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3433                        mdname(mddev), mddev->new_layout);
3434                 goto out;
3435         }
3436
3437         err = -ENOMEM;
3438         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3439         if (!conf)
3440                 goto out;
3441
3442         /* FIXME calc properly */
3443         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3444                                                             max(0,-mddev->delta_disks)),
3445                                 GFP_KERNEL);
3446         if (!conf->mirrors)
3447                 goto out;
3448
3449         conf->tmppage = alloc_page(GFP_KERNEL);
3450         if (!conf->tmppage)
3451                 goto out;
3452
3453         conf->geo = geo;
3454         conf->copies = copies;
3455         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3456                                            r10bio_pool_free, conf);
3457         if (!conf->r10bio_pool)
3458                 goto out;
3459
3460         calc_sectors(conf, mddev->dev_sectors);
3461         if (mddev->reshape_position == MaxSector) {
3462                 conf->prev = conf->geo;
3463                 conf->reshape_progress = MaxSector;
3464         } else {
3465                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3466                         err = -EINVAL;
3467                         goto out;
3468                 }
3469                 conf->reshape_progress = mddev->reshape_position;
3470                 if (conf->prev.far_offset)
3471                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3472                 else
3473                         /* far_copies must be 1 */
3474                         conf->prev.stride = conf->dev_sectors;
3475         }
3476         conf->reshape_safe = conf->reshape_progress;
3477         spin_lock_init(&conf->device_lock);
3478         INIT_LIST_HEAD(&conf->retry_list);
3479         INIT_LIST_HEAD(&conf->bio_end_io_list);
3480
3481         spin_lock_init(&conf->resync_lock);
3482         init_waitqueue_head(&conf->wait_barrier);
3483
3484         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3485         if (!conf->thread)
3486                 goto out;
3487
3488         conf->mddev = mddev;
3489         return conf;
3490
3491  out:
3492         if (err == -ENOMEM)
3493                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3494                        mdname(mddev));
3495         if (conf) {
3496                 mempool_destroy(conf->r10bio_pool);
3497                 kfree(conf->mirrors);
3498                 safe_put_page(conf->tmppage);
3499                 kfree(conf);
3500         }
3501         return ERR_PTR(err);
3502 }
3503
3504 static int run(struct mddev *mddev)
3505 {
3506         struct r10conf *conf;
3507         int i, disk_idx, chunk_size;
3508         struct raid10_info *disk;
3509         struct md_rdev *rdev;
3510         sector_t size;
3511         sector_t min_offset_diff = 0;
3512         int first = 1;
3513         bool discard_supported = false;
3514
3515         if (mddev->private == NULL) {
3516                 conf = setup_conf(mddev);
3517                 if (IS_ERR(conf))
3518                         return PTR_ERR(conf);
3519                 mddev->private = conf;
3520         }
3521         conf = mddev->private;
3522         if (!conf)
3523                 goto out;
3524
3525         mddev->thread = conf->thread;
3526         conf->thread = NULL;
3527
3528         chunk_size = mddev->chunk_sectors << 9;
3529         if (mddev->queue) {
3530                 blk_queue_max_discard_sectors(mddev->queue,
3531                                               mddev->chunk_sectors);
3532                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3533                 blk_queue_io_min(mddev->queue, chunk_size);
3534                 if (conf->geo.raid_disks % conf->geo.near_copies)
3535                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3536                 else
3537                         blk_queue_io_opt(mddev->queue, chunk_size *
3538                                          (conf->geo.raid_disks / conf->geo.near_copies));
3539         }
3540
3541         rdev_for_each(rdev, mddev) {
3542                 long long diff;
3543                 struct request_queue *q;
3544
3545                 disk_idx = rdev->raid_disk;
3546                 if (disk_idx < 0)
3547                         continue;
3548                 if (disk_idx >= conf->geo.raid_disks &&
3549                     disk_idx >= conf->prev.raid_disks)
3550                         continue;
3551                 disk = conf->mirrors + disk_idx;
3552
3553                 if (test_bit(Replacement, &rdev->flags)) {
3554                         if (disk->replacement)
3555                                 goto out_free_conf;
3556                         disk->replacement = rdev;
3557                 } else {
3558                         if (disk->rdev)
3559                                 goto out_free_conf;
3560                         disk->rdev = rdev;
3561                 }
3562                 q = bdev_get_queue(rdev->bdev);
3563                 diff = (rdev->new_data_offset - rdev->data_offset);
3564                 if (!mddev->reshape_backwards)
3565                         diff = -diff;
3566                 if (diff < 0)
3567                         diff = 0;
3568                 if (first || diff < min_offset_diff)
3569                         min_offset_diff = diff;
3570
3571                 if (mddev->gendisk)
3572                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3573                                           rdev->data_offset << 9);
3574
3575                 disk->head_position = 0;
3576
3577                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3578                         discard_supported = true;
3579         }
3580
3581         if (mddev->queue) {
3582                 if (discard_supported)
3583                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3584                                                 mddev->queue);
3585                 else
3586                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3587                                                   mddev->queue);
3588         }
3589         /* need to check that every block has at least one working mirror */
3590         if (!enough(conf, -1)) {
3591                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3592                        mdname(mddev));
3593                 goto out_free_conf;
3594         }
3595
3596         if (conf->reshape_progress != MaxSector) {
3597                 /* must ensure that shape change is supported */
3598                 if (conf->geo.far_copies != 1 &&
3599                     conf->geo.far_offset == 0)
3600                         goto out_free_conf;
3601                 if (conf->prev.far_copies != 1 &&
3602                     conf->prev.far_offset == 0)
3603                         goto out_free_conf;
3604         }
3605
3606         mddev->degraded = 0;
3607         for (i = 0;
3608              i < conf->geo.raid_disks
3609                      || i < conf->prev.raid_disks;
3610              i++) {
3611
3612                 disk = conf->mirrors + i;
3613
3614                 if (!disk->rdev && disk->replacement) {
3615                         /* The replacement is all we have - use it */
3616                         disk->rdev = disk->replacement;
3617                         disk->replacement = NULL;
3618                         clear_bit(Replacement, &disk->rdev->flags);
3619                 }
3620
3621                 if (!disk->rdev ||
3622                     !test_bit(In_sync, &disk->rdev->flags)) {
3623                         disk->head_position = 0;
3624                         mddev->degraded++;
3625                         if (disk->rdev &&
3626                             disk->rdev->saved_raid_disk < 0)
3627                                 conf->fullsync = 1;
3628                 }
3629                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3630         }
3631
3632         if (mddev->recovery_cp != MaxSector)
3633                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3634                        " -- starting background reconstruction\n",
3635                        mdname(mddev));
3636         printk(KERN_INFO
3637                 "md/raid10:%s: active with %d out of %d devices\n",
3638                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3639                 conf->geo.raid_disks);
3640         /*
3641          * Ok, everything is just fine now
3642          */
3643         mddev->dev_sectors = conf->dev_sectors;
3644         size = raid10_size(mddev, 0, 0);
3645         md_set_array_sectors(mddev, size);
3646         mddev->resync_max_sectors = size;
3647
3648         if (mddev->queue) {
3649                 int stripe = conf->geo.raid_disks *
3650                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3651
3652                 /* Calculate max read-ahead size.
3653                  * We need to readahead at least twice a whole stripe....
3654                  * maybe...
3655                  */
3656                 stripe /= conf->geo.near_copies;
3657                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3658                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3659         }
3660
3661         if (md_integrity_register(mddev))
3662                 goto out_free_conf;
3663
3664         if (conf->reshape_progress != MaxSector) {
3665                 unsigned long before_length, after_length;
3666
3667                 before_length = ((1 << conf->prev.chunk_shift) *
3668                                  conf->prev.far_copies);
3669                 after_length = ((1 << conf->geo.chunk_shift) *
3670                                 conf->geo.far_copies);
3671
3672                 if (max(before_length, after_length) > min_offset_diff) {
3673                         /* This cannot work */
3674                         printk("md/raid10: offset difference not enough to continue reshape\n");
3675                         goto out_free_conf;
3676                 }
3677                 conf->offset_diff = min_offset_diff;
3678
3679                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3680                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3681                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3682                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3683                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3684                                                         "reshape");
3685         }
3686
3687         return 0;
3688
3689 out_free_conf:
3690         md_unregister_thread(&mddev->thread);
3691         mempool_destroy(conf->r10bio_pool);
3692         safe_put_page(conf->tmppage);
3693         kfree(conf->mirrors);
3694         kfree(conf);
3695         mddev->private = NULL;
3696 out:
3697         return -EIO;
3698 }
3699
3700 static void raid10_free(struct mddev *mddev, void *priv)
3701 {
3702         struct r10conf *conf = priv;
3703
3704         mempool_destroy(conf->r10bio_pool);
3705         safe_put_page(conf->tmppage);
3706         kfree(conf->mirrors);
3707         kfree(conf->mirrors_old);
3708         kfree(conf->mirrors_new);
3709         kfree(conf);
3710 }
3711
3712 static void raid10_quiesce(struct mddev *mddev, int state)
3713 {
3714         struct r10conf *conf = mddev->private;
3715
3716         switch(state) {
3717         case 1:
3718                 raise_barrier(conf, 0);
3719                 break;
3720         case 0:
3721                 lower_barrier(conf);
3722                 break;
3723         }
3724 }
3725
3726 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3727 {
3728         /* Resize of 'far' arrays is not supported.
3729          * For 'near' and 'offset' arrays we can set the
3730          * number of sectors used to be an appropriate multiple
3731          * of the chunk size.
3732          * For 'offset', this is far_copies*chunksize.
3733          * For 'near' the multiplier is the LCM of
3734          * near_copies and raid_disks.
3735          * So if far_copies > 1 && !far_offset, fail.
3736          * Else find LCM(raid_disks, near_copy)*far_copies and
3737          * multiply by chunk_size.  Then round to this number.
3738          * This is mostly done by raid10_size()
3739          */
3740         struct r10conf *conf = mddev->private;
3741         sector_t oldsize, size;
3742
3743         if (mddev->reshape_position != MaxSector)
3744                 return -EBUSY;
3745
3746         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3747                 return -EINVAL;
3748
3749         oldsize = raid10_size(mddev, 0, 0);
3750         size = raid10_size(mddev, sectors, 0);
3751         if (mddev->external_size &&
3752             mddev->array_sectors > size)
3753                 return -EINVAL;
3754         if (mddev->bitmap) {
3755                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3756                 if (ret)
3757                         return ret;
3758         }
3759         md_set_array_sectors(mddev, size);
3760         set_capacity(mddev->gendisk, mddev->array_sectors);
3761         revalidate_disk(mddev->gendisk);
3762         if (sectors > mddev->dev_sectors &&
3763             mddev->recovery_cp > oldsize) {
3764                 mddev->recovery_cp = oldsize;
3765                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3766         }
3767         calc_sectors(conf, sectors);
3768         mddev->dev_sectors = conf->dev_sectors;
3769         mddev->resync_max_sectors = size;
3770         return 0;
3771 }
3772
3773 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3774 {
3775         struct md_rdev *rdev;
3776         struct r10conf *conf;
3777
3778         if (mddev->degraded > 0) {
3779                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3780                        mdname(mddev));
3781                 return ERR_PTR(-EINVAL);
3782         }
3783         sector_div(size, devs);
3784
3785         /* Set new parameters */
3786         mddev->new_level = 10;
3787         /* new layout: far_copies = 1, near_copies = 2 */
3788         mddev->new_layout = (1<<8) + 2;
3789         mddev->new_chunk_sectors = mddev->chunk_sectors;
3790         mddev->delta_disks = mddev->raid_disks;
3791         mddev->raid_disks *= 2;
3792         /* make sure it will be not marked as dirty */
3793         mddev->recovery_cp = MaxSector;
3794         mddev->dev_sectors = size;
3795
3796         conf = setup_conf(mddev);
3797         if (!IS_ERR(conf)) {
3798                 rdev_for_each(rdev, mddev)
3799                         if (rdev->raid_disk >= 0) {
3800                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3801                                 rdev->sectors = size;
3802                         }
3803                 conf->barrier = 1;
3804         }
3805
3806         return conf;
3807 }
3808
3809 static void *raid10_takeover(struct mddev *mddev)
3810 {
3811         struct r0conf *raid0_conf;
3812
3813         /* raid10 can take over:
3814          *  raid0 - providing it has only two drives
3815          */
3816         if (mddev->level == 0) {
3817                 /* for raid0 takeover only one zone is supported */
3818                 raid0_conf = mddev->private;
3819                 if (raid0_conf->nr_strip_zones > 1) {
3820                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3821                                " with more than one zone.\n",
3822                                mdname(mddev));
3823                         return ERR_PTR(-EINVAL);
3824                 }
3825                 return raid10_takeover_raid0(mddev,
3826                         raid0_conf->strip_zone->zone_end,
3827                         raid0_conf->strip_zone->nb_dev);
3828         }
3829         return ERR_PTR(-EINVAL);
3830 }
3831
3832 static int raid10_check_reshape(struct mddev *mddev)
3833 {
3834         /* Called when there is a request to change
3835          * - layout (to ->new_layout)
3836          * - chunk size (to ->new_chunk_sectors)
3837          * - raid_disks (by delta_disks)
3838          * or when trying to restart a reshape that was ongoing.
3839          *
3840          * We need to validate the request and possibly allocate
3841          * space if that might be an issue later.
3842          *
3843          * Currently we reject any reshape of a 'far' mode array,
3844          * allow chunk size to change if new is generally acceptable,
3845          * allow raid_disks to increase, and allow
3846          * a switch between 'near' mode and 'offset' mode.
3847          */
3848         struct r10conf *conf = mddev->private;
3849         struct geom geo;
3850
3851         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3852                 return -EINVAL;
3853
3854         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3855                 /* mustn't change number of copies */
3856                 return -EINVAL;
3857         if (geo.far_copies > 1 && !geo.far_offset)
3858                 /* Cannot switch to 'far' mode */
3859                 return -EINVAL;
3860
3861         if (mddev->array_sectors & geo.chunk_mask)
3862                         /* not factor of array size */
3863                         return -EINVAL;
3864
3865         if (!enough(conf, -1))
3866                 return -EINVAL;
3867
3868         kfree(conf->mirrors_new);
3869         conf->mirrors_new = NULL;
3870         if (mddev->delta_disks > 0) {
3871                 /* allocate new 'mirrors' list */
3872                 conf->mirrors_new = kzalloc(
3873                         sizeof(struct raid10_info)
3874                         *(mddev->raid_disks +
3875                           mddev->delta_disks),
3876                         GFP_KERNEL);
3877                 if (!conf->mirrors_new)
3878                         return -ENOMEM;
3879         }
3880         return 0;
3881 }
3882
3883 /*
3884  * Need to check if array has failed when deciding whether to:
3885  *  - start an array
3886  *  - remove non-faulty devices
3887  *  - add a spare
3888  *  - allow a reshape
3889  * This determination is simple when no reshape is happening.
3890  * However if there is a reshape, we need to carefully check
3891  * both the before and after sections.
3892  * This is because some failed devices may only affect one
3893  * of the two sections, and some non-in_sync devices may
3894  * be insync in the section most affected by failed devices.
3895  */
3896 static int calc_degraded(struct r10conf *conf)
3897 {
3898         int degraded, degraded2;
3899         int i;
3900
3901         rcu_read_lock();
3902         degraded = 0;
3903         /* 'prev' section first */
3904         for (i = 0; i < conf->prev.raid_disks; i++) {
3905                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3906                 if (!rdev || test_bit(Faulty, &rdev->flags))
3907                         degraded++;
3908                 else if (!test_bit(In_sync, &rdev->flags))
3909                         /* When we can reduce the number of devices in
3910                          * an array, this might not contribute to
3911                          * 'degraded'.  It does now.
3912                          */
3913                         degraded++;
3914         }
3915         rcu_read_unlock();
3916         if (conf->geo.raid_disks == conf->prev.raid_disks)
3917                 return degraded;
3918         rcu_read_lock();
3919         degraded2 = 0;
3920         for (i = 0; i < conf->geo.raid_disks; i++) {
3921                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3922                 if (!rdev || test_bit(Faulty, &rdev->flags))
3923                         degraded2++;
3924                 else if (!test_bit(In_sync, &rdev->flags)) {
3925                         /* If reshape is increasing the number of devices,
3926                          * this section has already been recovered, so
3927                          * it doesn't contribute to degraded.
3928                          * else it does.
3929                          */
3930                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
3931                                 degraded2++;
3932                 }
3933         }
3934         rcu_read_unlock();
3935         if (degraded2 > degraded)
3936                 return degraded2;
3937         return degraded;
3938 }
3939
3940 static int raid10_start_reshape(struct mddev *mddev)
3941 {
3942         /* A 'reshape' has been requested. This commits
3943          * the various 'new' fields and sets MD_RECOVER_RESHAPE
3944          * This also checks if there are enough spares and adds them
3945          * to the array.
3946          * We currently require enough spares to make the final
3947          * array non-degraded.  We also require that the difference
3948          * between old and new data_offset - on each device - is
3949          * enough that we never risk over-writing.
3950          */
3951
3952         unsigned long before_length, after_length;
3953         sector_t min_offset_diff = 0;
3954         int first = 1;
3955         struct geom new;
3956         struct r10conf *conf = mddev->private;
3957         struct md_rdev *rdev;
3958         int spares = 0;
3959         int ret;
3960
3961         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3962                 return -EBUSY;
3963
3964         if (setup_geo(&new, mddev, geo_start) != conf->copies)
3965                 return -EINVAL;
3966
3967         before_length = ((1 << conf->prev.chunk_shift) *
3968                          conf->prev.far_copies);
3969         after_length = ((1 << conf->geo.chunk_shift) *
3970                         conf->geo.far_copies);
3971
3972         rdev_for_each(rdev, mddev) {
3973                 if (!test_bit(In_sync, &rdev->flags)
3974                     && !test_bit(Faulty, &rdev->flags))
3975                         spares++;
3976                 if (rdev->raid_disk >= 0) {
3977                         long long diff = (rdev->new_data_offset
3978                                           - rdev->data_offset);
3979                         if (!mddev->reshape_backwards)
3980                                 diff = -diff;
3981                         if (diff < 0)
3982                                 diff = 0;
3983                         if (first || diff < min_offset_diff)
3984                                 min_offset_diff = diff;
3985                 }
3986         }
3987
3988         if (max(before_length, after_length) > min_offset_diff)
3989                 return -EINVAL;
3990
3991         if (spares < mddev->delta_disks)
3992                 return -EINVAL;
3993
3994         conf->offset_diff = min_offset_diff;
3995         spin_lock_irq(&conf->device_lock);
3996         if (conf->mirrors_new) {
3997                 memcpy(conf->mirrors_new, conf->mirrors,
3998                        sizeof(struct raid10_info)*conf->prev.raid_disks);
3999                 smp_mb();
4000                 kfree(conf->mirrors_old);
4001                 conf->mirrors_old = conf->mirrors;
4002                 conf->mirrors = conf->mirrors_new;
4003                 conf->mirrors_new = NULL;
4004         }
4005         setup_geo(&conf->geo, mddev, geo_start);
4006         smp_mb();
4007         if (mddev->reshape_backwards) {
4008                 sector_t size = raid10_size(mddev, 0, 0);
4009                 if (size < mddev->array_sectors) {
4010                         spin_unlock_irq(&conf->device_lock);
4011                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4012                                mdname(mddev));
4013                         return -EINVAL;
4014                 }
4015                 mddev->resync_max_sectors = size;
4016                 conf->reshape_progress = size;
4017         } else
4018                 conf->reshape_progress = 0;
4019         conf->reshape_safe = conf->reshape_progress;
4020         spin_unlock_irq(&conf->device_lock);
4021
4022         if (mddev->delta_disks && mddev->bitmap) {
4023                 ret = bitmap_resize(mddev->bitmap,
4024                                     raid10_size(mddev, 0,
4025                                                 conf->geo.raid_disks),
4026                                     0, 0);
4027                 if (ret)
4028                         goto abort;
4029         }
4030         if (mddev->delta_disks > 0) {
4031                 rdev_for_each(rdev, mddev)
4032                         if (rdev->raid_disk < 0 &&
4033                             !test_bit(Faulty, &rdev->flags)) {
4034                                 if (raid10_add_disk(mddev, rdev) == 0) {
4035                                         if (rdev->raid_disk >=
4036                                             conf->prev.raid_disks)
4037                                                 set_bit(In_sync, &rdev->flags);
4038                                         else
4039                                                 rdev->recovery_offset = 0;
4040
4041                                         if (sysfs_link_rdev(mddev, rdev))
4042                                                 /* Failure here  is OK */;
4043                                 }
4044                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4045                                    && !test_bit(Faulty, &rdev->flags)) {
4046                                 /* This is a spare that was manually added */
4047                                 set_bit(In_sync, &rdev->flags);
4048                         }
4049         }
4050         /* When a reshape changes the number of devices,
4051          * ->degraded is measured against the larger of the
4052          * pre and  post numbers.
4053          */
4054         spin_lock_irq(&conf->device_lock);
4055         mddev->degraded = calc_degraded(conf);
4056         spin_unlock_irq(&conf->device_lock);
4057         mddev->raid_disks = conf->geo.raid_disks;
4058         mddev->reshape_position = conf->reshape_progress;
4059         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4060
4061         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4062         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4063         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4064         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4065         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4066
4067         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4068                                                 "reshape");
4069         if (!mddev->sync_thread) {
4070                 ret = -EAGAIN;
4071                 goto abort;
4072         }
4073         conf->reshape_checkpoint = jiffies;
4074         md_wakeup_thread(mddev->sync_thread);
4075         md_new_event(mddev);
4076         return 0;
4077
4078 abort:
4079         mddev->recovery = 0;
4080         spin_lock_irq(&conf->device_lock);
4081         conf->geo = conf->prev;
4082         mddev->raid_disks = conf->geo.raid_disks;
4083         rdev_for_each(rdev, mddev)
4084                 rdev->new_data_offset = rdev->data_offset;
4085         smp_wmb();
4086         conf->reshape_progress = MaxSector;
4087         conf->reshape_safe = MaxSector;
4088         mddev->reshape_position = MaxSector;
4089         spin_unlock_irq(&conf->device_lock);
4090         return ret;
4091 }
4092
4093 /* Calculate the last device-address that could contain
4094  * any block from the chunk that includes the array-address 's'
4095  * and report the next address.
4096  * i.e. the address returned will be chunk-aligned and after
4097  * any data that is in the chunk containing 's'.
4098  */
4099 static sector_t last_dev_address(sector_t s, struct geom *geo)
4100 {
4101         s = (s | geo->chunk_mask) + 1;
4102         s >>= geo->chunk_shift;
4103         s *= geo->near_copies;
4104         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4105         s *= geo->far_copies;
4106         s <<= geo->chunk_shift;
4107         return s;
4108 }
4109
4110 /* Calculate the first device-address that could contain
4111  * any block from the chunk that includes the array-address 's'.
4112  * This too will be the start of a chunk
4113  */
4114 static sector_t first_dev_address(sector_t s, struct geom *geo)
4115 {
4116         s >>= geo->chunk_shift;
4117         s *= geo->near_copies;
4118         sector_div(s, geo->raid_disks);
4119         s *= geo->far_copies;
4120         s <<= geo->chunk_shift;
4121         return s;
4122 }
4123
4124 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4125                                 int *skipped)
4126 {
4127         /* We simply copy at most one chunk (smallest of old and new)
4128          * at a time, possibly less if that exceeds RESYNC_PAGES,
4129          * or we hit a bad block or something.
4130          * This might mean we pause for normal IO in the middle of
4131          * a chunk, but that is not a problem as mddev->reshape_position
4132          * can record any location.
4133          *
4134          * If we will want to write to a location that isn't
4135          * yet recorded as 'safe' (i.e. in metadata on disk) then
4136          * we need to flush all reshape requests and update the metadata.
4137          *
4138          * When reshaping forwards (e.g. to more devices), we interpret
4139          * 'safe' as the earliest block which might not have been copied
4140          * down yet.  We divide this by previous stripe size and multiply
4141          * by previous stripe length to get lowest device offset that we
4142          * cannot write to yet.
4143          * We interpret 'sector_nr' as an address that we want to write to.
4144          * From this we use last_device_address() to find where we might
4145          * write to, and first_device_address on the  'safe' position.
4146          * If this 'next' write position is after the 'safe' position,
4147          * we must update the metadata to increase the 'safe' position.
4148          *
4149          * When reshaping backwards, we round in the opposite direction
4150          * and perform the reverse test:  next write position must not be
4151          * less than current safe position.
4152          *
4153          * In all this the minimum difference in data offsets
4154          * (conf->offset_diff - always positive) allows a bit of slack,
4155          * so next can be after 'safe', but not by more than offset_diff
4156          *
4157          * We need to prepare all the bios here before we start any IO
4158          * to ensure the size we choose is acceptable to all devices.
4159          * The means one for each copy for write-out and an extra one for
4160          * read-in.
4161          * We store the read-in bio in ->master_bio and the others in
4162          * ->devs[x].bio and ->devs[x].repl_bio.
4163          */
4164         struct r10conf *conf = mddev->private;
4165         struct r10bio *r10_bio;
4166         sector_t next, safe, last;
4167         int max_sectors;
4168         int nr_sectors;
4169         int s;
4170         struct md_rdev *rdev;
4171         int need_flush = 0;
4172         struct bio *blist;
4173         struct bio *bio, *read_bio;
4174         int sectors_done = 0;
4175
4176         if (sector_nr == 0) {
4177                 /* If restarting in the middle, skip the initial sectors */
4178                 if (mddev->reshape_backwards &&
4179                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4180                         sector_nr = (raid10_size(mddev, 0, 0)
4181                                      - conf->reshape_progress);
4182                 } else if (!mddev->reshape_backwards &&
4183                            conf->reshape_progress > 0)
4184                         sector_nr = conf->reshape_progress;
4185                 if (sector_nr) {
4186                         mddev->curr_resync_completed = sector_nr;
4187                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4188                         *skipped = 1;
4189                         return sector_nr;
4190                 }
4191         }
4192
4193         /* We don't use sector_nr to track where we are up to
4194          * as that doesn't work well for ->reshape_backwards.
4195          * So just use ->reshape_progress.
4196          */
4197         if (mddev->reshape_backwards) {
4198                 /* 'next' is the earliest device address that we might
4199                  * write to for this chunk in the new layout
4200                  */
4201                 next = first_dev_address(conf->reshape_progress - 1,
4202                                          &conf->geo);
4203
4204                 /* 'safe' is the last device address that we might read from
4205                  * in the old layout after a restart
4206                  */
4207                 safe = last_dev_address(conf->reshape_safe - 1,
4208                                         &conf->prev);
4209
4210                 if (next + conf->offset_diff < safe)
4211                         need_flush = 1;
4212
4213                 last = conf->reshape_progress - 1;
4214                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4215                                                & conf->prev.chunk_mask);
4216                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4217                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4218         } else {
4219                 /* 'next' is after the last device address that we
4220                  * might write to for this chunk in the new layout
4221                  */
4222                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4223
4224                 /* 'safe' is the earliest device address that we might
4225                  * read from in the old layout after a restart
4226                  */
4227                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4228
4229                 /* Need to update metadata if 'next' might be beyond 'safe'
4230                  * as that would possibly corrupt data
4231                  */
4232                 if (next > safe + conf->offset_diff)
4233                         need_flush = 1;
4234
4235                 sector_nr = conf->reshape_progress;
4236                 last  = sector_nr | (conf->geo.chunk_mask
4237                                      & conf->prev.chunk_mask);
4238
4239                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4240                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4241         }
4242
4243         if (need_flush ||
4244             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4245                 /* Need to update reshape_position in metadata */
4246                 wait_barrier(conf);
4247                 mddev->reshape_position = conf->reshape_progress;
4248                 if (mddev->reshape_backwards)
4249                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4250                                 - conf->reshape_progress;
4251                 else
4252                         mddev->curr_resync_completed = conf->reshape_progress;
4253                 conf->reshape_checkpoint = jiffies;
4254                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4255                 md_wakeup_thread(mddev->thread);
4256                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4257                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4258                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4259                         allow_barrier(conf);
4260                         return sectors_done;
4261                 }
4262                 conf->reshape_safe = mddev->reshape_position;
4263                 allow_barrier(conf);
4264         }
4265
4266 read_more:
4267         /* Now schedule reads for blocks from sector_nr to last */
4268         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4269         r10_bio->state = 0;
4270         raise_barrier(conf, sectors_done != 0);
4271         atomic_set(&r10_bio->remaining, 0);
4272         r10_bio->mddev = mddev;
4273         r10_bio->sector = sector_nr;
4274         set_bit(R10BIO_IsReshape, &r10_bio->state);
4275         r10_bio->sectors = last - sector_nr + 1;
4276         rdev = read_balance(conf, r10_bio, &max_sectors);
4277         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4278
4279         if (!rdev) {
4280                 /* Cannot read from here, so need to record bad blocks
4281                  * on all the target devices.
4282                  */
4283                 // FIXME
4284                 mempool_free(r10_bio, conf->r10buf_pool);
4285                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4286                 return sectors_done;
4287         }
4288
4289         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4290
4291         read_bio->bi_bdev = rdev->bdev;
4292         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4293                                + rdev->data_offset);
4294         read_bio->bi_private = r10_bio;
4295         read_bio->bi_end_io = end_sync_read;
4296         read_bio->bi_rw = READ;
4297         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4298         read_bio->bi_error = 0;
4299         read_bio->bi_vcnt = 0;
4300         read_bio->bi_iter.bi_size = 0;
4301         r10_bio->master_bio = read_bio;
4302         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4303
4304         /* Now find the locations in the new layout */
4305         __raid10_find_phys(&conf->geo, r10_bio);
4306
4307         blist = read_bio;
4308         read_bio->bi_next = NULL;
4309
4310         for (s = 0; s < conf->copies*2; s++) {
4311                 struct bio *b;
4312                 int d = r10_bio->devs[s/2].devnum;
4313                 struct md_rdev *rdev2;
4314                 if (s&1) {
4315                         rdev2 = conf->mirrors[d].replacement;
4316                         b = r10_bio->devs[s/2].repl_bio;
4317                 } else {
4318                         rdev2 = conf->mirrors[d].rdev;
4319                         b = r10_bio->devs[s/2].bio;
4320                 }
4321                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4322                         continue;
4323
4324                 bio_reset(b);
4325                 b->bi_bdev = rdev2->bdev;
4326                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4327                         rdev2->new_data_offset;
4328                 b->bi_private = r10_bio;
4329                 b->bi_end_io = end_reshape_write;
4330                 b->bi_rw = WRITE;
4331                 b->bi_next = blist;
4332                 blist = b;
4333         }
4334
4335         /* Now add as many pages as possible to all of these bios. */
4336
4337         nr_sectors = 0;
4338         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4339                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4340                 int len = (max_sectors - s) << 9;
4341                 if (len > PAGE_SIZE)
4342                         len = PAGE_SIZE;
4343                 for (bio = blist; bio ; bio = bio->bi_next) {
4344                         struct bio *bio2;
4345                         if (bio_add_page(bio, page, len, 0))
4346                                 continue;
4347
4348                         /* Didn't fit, must stop */
4349                         for (bio2 = blist;
4350                              bio2 && bio2 != bio;
4351                              bio2 = bio2->bi_next) {
4352                                 /* Remove last page from this bio */
4353                                 bio2->bi_vcnt--;
4354                                 bio2->bi_iter.bi_size -= len;
4355                                 bio_clear_flag(bio2, BIO_SEG_VALID);
4356                         }
4357                         goto bio_full;
4358                 }
4359                 sector_nr += len >> 9;
4360                 nr_sectors += len >> 9;
4361         }
4362 bio_full:
4363         r10_bio->sectors = nr_sectors;
4364
4365         /* Now submit the read */
4366         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4367         atomic_inc(&r10_bio->remaining);
4368         read_bio->bi_next = NULL;
4369         generic_make_request(read_bio);
4370         sector_nr += nr_sectors;
4371         sectors_done += nr_sectors;
4372         if (sector_nr <= last)
4373                 goto read_more;
4374
4375         /* Now that we have done the whole section we can
4376          * update reshape_progress
4377          */
4378         if (mddev->reshape_backwards)
4379                 conf->reshape_progress -= sectors_done;
4380         else
4381                 conf->reshape_progress += sectors_done;
4382
4383         return sectors_done;
4384 }
4385
4386 static void end_reshape_request(struct r10bio *r10_bio);
4387 static int handle_reshape_read_error(struct mddev *mddev,
4388                                      struct r10bio *r10_bio);
4389 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4390 {
4391         /* Reshape read completed.  Hopefully we have a block
4392          * to write out.
4393          * If we got a read error then we do sync 1-page reads from
4394          * elsewhere until we find the data - or give up.
4395          */
4396         struct r10conf *conf = mddev->private;
4397         int s;
4398
4399         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4400                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4401                         /* Reshape has been aborted */
4402                         md_done_sync(mddev, r10_bio->sectors, 0);
4403                         return;
4404                 }
4405
4406         /* We definitely have the data in the pages, schedule the
4407          * writes.
4408          */
4409         atomic_set(&r10_bio->remaining, 1);
4410         for (s = 0; s < conf->copies*2; s++) {
4411                 struct bio *b;
4412                 int d = r10_bio->devs[s/2].devnum;
4413                 struct md_rdev *rdev;
4414                 if (s&1) {
4415                         rdev = conf->mirrors[d].replacement;
4416                         b = r10_bio->devs[s/2].repl_bio;
4417                 } else {
4418                         rdev = conf->mirrors[d].rdev;
4419                         b = r10_bio->devs[s/2].bio;
4420                 }
4421                 if (!rdev || test_bit(Faulty, &rdev->flags))
4422                         continue;
4423                 atomic_inc(&rdev->nr_pending);
4424                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4425                 atomic_inc(&r10_bio->remaining);
4426                 b->bi_next = NULL;
4427                 generic_make_request(b);
4428         }
4429         end_reshape_request(r10_bio);
4430 }
4431
4432 static void end_reshape(struct r10conf *conf)
4433 {
4434         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4435                 return;
4436
4437         spin_lock_irq(&conf->device_lock);
4438         conf->prev = conf->geo;
4439         md_finish_reshape(conf->mddev);
4440         smp_wmb();
4441         conf->reshape_progress = MaxSector;
4442         conf->reshape_safe = MaxSector;
4443         spin_unlock_irq(&conf->device_lock);
4444
4445         /* read-ahead size must cover two whole stripes, which is
4446          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4447          */
4448         if (conf->mddev->queue) {
4449                 int stripe = conf->geo.raid_disks *
4450                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4451                 stripe /= conf->geo.near_copies;
4452                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4453                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4454         }
4455         conf->fullsync = 0;
4456 }
4457
4458 static int handle_reshape_read_error(struct mddev *mddev,
4459                                      struct r10bio *r10_bio)
4460 {
4461         /* Use sync reads to get the blocks from somewhere else */
4462         int sectors = r10_bio->sectors;
4463         struct r10conf *conf = mddev->private;
4464         struct {
4465                 struct r10bio r10_bio;
4466                 struct r10dev devs[conf->copies];
4467         } on_stack;
4468         struct r10bio *r10b = &on_stack.r10_bio;
4469         int slot = 0;
4470         int idx = 0;
4471         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4472
4473         r10b->sector = r10_bio->sector;
4474         __raid10_find_phys(&conf->prev, r10b);
4475
4476         while (sectors) {
4477                 int s = sectors;
4478                 int success = 0;
4479                 int first_slot = slot;
4480
4481                 if (s > (PAGE_SIZE >> 9))
4482                         s = PAGE_SIZE >> 9;
4483
4484                 while (!success) {
4485                         int d = r10b->devs[slot].devnum;
4486                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4487                         sector_t addr;
4488                         if (rdev == NULL ||
4489                             test_bit(Faulty, &rdev->flags) ||
4490                             !test_bit(In_sync, &rdev->flags))
4491                                 goto failed;
4492
4493                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4494                         success = sync_page_io(rdev,
4495                                                addr,
4496                                                s << 9,
4497                                                bvec[idx].bv_page,
4498                                                READ, false);
4499                         if (success)
4500                                 break;
4501                 failed:
4502                         slot++;
4503                         if (slot >= conf->copies)
4504                                 slot = 0;
4505                         if (slot == first_slot)
4506                                 break;
4507                 }
4508                 if (!success) {
4509                         /* couldn't read this block, must give up */
4510                         set_bit(MD_RECOVERY_INTR,
4511                                 &mddev->recovery);
4512                         return -EIO;
4513                 }
4514                 sectors -= s;
4515                 idx++;
4516         }
4517         return 0;
4518 }
4519
4520 static void end_reshape_write(struct bio *bio)
4521 {
4522         struct r10bio *r10_bio = bio->bi_private;
4523         struct mddev *mddev = r10_bio->mddev;
4524         struct r10conf *conf = mddev->private;
4525         int d;
4526         int slot;
4527         int repl;
4528         struct md_rdev *rdev = NULL;
4529
4530         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4531         if (repl)
4532                 rdev = conf->mirrors[d].replacement;
4533         if (!rdev) {
4534                 smp_mb();
4535                 rdev = conf->mirrors[d].rdev;
4536         }
4537
4538         if (bio->bi_error) {
4539                 /* FIXME should record badblock */
4540                 md_error(mddev, rdev);
4541         }
4542
4543         rdev_dec_pending(rdev, mddev);
4544         end_reshape_request(r10_bio);
4545 }
4546
4547 static void end_reshape_request(struct r10bio *r10_bio)
4548 {
4549         if (!atomic_dec_and_test(&r10_bio->remaining))
4550                 return;
4551         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4552         bio_put(r10_bio->master_bio);
4553         put_buf(r10_bio);
4554 }
4555
4556 static void raid10_finish_reshape(struct mddev *mddev)
4557 {
4558         struct r10conf *conf = mddev->private;
4559
4560         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4561                 return;
4562
4563         if (mddev->delta_disks > 0) {
4564                 sector_t size = raid10_size(mddev, 0, 0);
4565                 md_set_array_sectors(mddev, size);
4566                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4567                         mddev->recovery_cp = mddev->resync_max_sectors;
4568                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4569                 }
4570                 mddev->resync_max_sectors = size;
4571                 set_capacity(mddev->gendisk, mddev->array_sectors);
4572                 revalidate_disk(mddev->gendisk);
4573         } else {
4574                 int d;
4575                 for (d = conf->geo.raid_disks ;
4576                      d < conf->geo.raid_disks - mddev->delta_disks;
4577                      d++) {
4578                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4579                         if (rdev)
4580                                 clear_bit(In_sync, &rdev->flags);
4581                         rdev = conf->mirrors[d].replacement;
4582                         if (rdev)
4583                                 clear_bit(In_sync, &rdev->flags);
4584                 }
4585         }
4586         mddev->layout = mddev->new_layout;
4587         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4588         mddev->reshape_position = MaxSector;
4589         mddev->delta_disks = 0;
4590         mddev->reshape_backwards = 0;
4591 }
4592
4593 static struct md_personality raid10_personality =
4594 {
4595         .name           = "raid10",
4596         .level          = 10,
4597         .owner          = THIS_MODULE,
4598         .make_request   = make_request,
4599         .run            = run,
4600         .free           = raid10_free,
4601         .status         = status,
4602         .error_handler  = error,
4603         .hot_add_disk   = raid10_add_disk,
4604         .hot_remove_disk= raid10_remove_disk,
4605         .spare_active   = raid10_spare_active,
4606         .sync_request   = sync_request,
4607         .quiesce        = raid10_quiesce,
4608         .size           = raid10_size,
4609         .resize         = raid10_resize,
4610         .takeover       = raid10_takeover,
4611         .check_reshape  = raid10_check_reshape,
4612         .start_reshape  = raid10_start_reshape,
4613         .finish_reshape = raid10_finish_reshape,
4614         .congested      = raid10_congested,
4615 };
4616
4617 static int __init raid_init(void)
4618 {
4619         return register_md_personality(&raid10_personality);
4620 }
4621
4622 static void raid_exit(void)
4623 {
4624         unregister_md_personality(&raid10_personality);
4625 }
4626
4627 module_init(raid_init);
4628 module_exit(raid_exit);
4629 MODULE_LICENSE("GPL");
4630 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4631 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4632 MODULE_ALIAS("md-raid10");
4633 MODULE_ALIAS("md-level-10");
4634
4635 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);