]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid10.c
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *    use_far_sets_bugfixed (stored in bit 18 of layout )
43  *
44  * The data to be stored is divided into chunks using chunksize.  Each device
45  * is divided into far_copies sections.   In each section, chunks are laid out
46  * in a style similar to raid0, but near_copies copies of each chunk is stored
47  * (each on a different drive).  The starting device for each section is offset
48  * near_copies from the starting device of the previous section.  Thus there
49  * are (near_copies * far_copies) of each chunk, and each is on a different
50  * drive.  near_copies and far_copies must be at least one, and their product
51  * is at most raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of being very far
55  * apart on disk, there are adjacent stripes.
56  *
57  * The far and offset algorithms are handled slightly differently if
58  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
59  * sets that are (near_copies * far_copies) in size.  The far copied stripes
60  * are still shifted by 'near_copies' devices, but this shifting stays confined
61  * to the set rather than the entire array.  This is done to improve the number
62  * of device combinations that can fail without causing the array to fail.
63  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64  * on a device):
65  *    A B C D    A B C D E
66  *      ...         ...
67  *    D A B C    E A B C D
68  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69  *    [A B] [C D]    [A B] [C D E]
70  *    |...| |...|    |...| | ... |
71  *    [B A] [D C]    [B A] [E C D]
72  */
73
74 /*
75  * Number of guaranteed r10bios in case of extreme VM load:
76  */
77 #define NR_RAID10_BIOS 256
78
79 /* when we get a read error on a read-only array, we redirect to another
80  * device without failing the first device, or trying to over-write to
81  * correct the read error.  To keep track of bad blocks on a per-bio
82  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83  */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86  * bad-block marking which must be done from process context.  So we record
87  * the success by setting devs[n].bio to IO_MADE_GOOD
88  */
89 #define IO_MADE_GOOD ((struct bio *)2)
90
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93 /* When there are this many requests queued to be written by
94  * the raid10 thread, we become 'congested' to provide back-pressure
95  * for writeback.
96  */
97 static int max_queued_requests = 1024;
98
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103                                 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110         struct r10conf *conf = data;
111         int size = offsetof(struct r10bio, devs[conf->copies]);
112
113         /* allocate a r10bio with room for raid_disks entries in the
114          * bios array */
115         return kzalloc(size, gfp_flags);
116 }
117
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120         kfree(r10_bio);
121 }
122
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130
131 /*
132  * When performing a resync, we need to read and compare, so
133  * we need as many pages are there are copies.
134  * When performing a recovery, we need 2 bios, one for read,
135  * one for write (we recover only one drive per r10buf)
136  *
137  */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140         struct r10conf *conf = data;
141         struct page *page;
142         struct r10bio *r10_bio;
143         struct bio *bio;
144         int i, j;
145         int nalloc;
146
147         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148         if (!r10_bio)
149                 return NULL;
150
151         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153                 nalloc = conf->copies; /* resync */
154         else
155                 nalloc = 2; /* recovery */
156
157         /*
158          * Allocate bios.
159          */
160         for (j = nalloc ; j-- ; ) {
161                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162                 if (!bio)
163                         goto out_free_bio;
164                 r10_bio->devs[j].bio = bio;
165                 if (!conf->have_replacement)
166                         continue;
167                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168                 if (!bio)
169                         goto out_free_bio;
170                 r10_bio->devs[j].repl_bio = bio;
171         }
172         /*
173          * Allocate RESYNC_PAGES data pages and attach them
174          * where needed.
175          */
176         for (j = 0 ; j < nalloc; j++) {
177                 struct bio *rbio = r10_bio->devs[j].repl_bio;
178                 bio = r10_bio->devs[j].bio;
179                 for (i = 0; i < RESYNC_PAGES; i++) {
180                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181                                                &conf->mddev->recovery)) {
182                                 /* we can share bv_page's during recovery
183                                  * and reshape */
184                                 struct bio *rbio = r10_bio->devs[0].bio;
185                                 page = rbio->bi_io_vec[i].bv_page;
186                                 get_page(page);
187                         } else
188                                 page = alloc_page(gfp_flags);
189                         if (unlikely(!page))
190                                 goto out_free_pages;
191
192                         bio->bi_io_vec[i].bv_page = page;
193                         if (rbio)
194                                 rbio->bi_io_vec[i].bv_page = page;
195                 }
196         }
197
198         return r10_bio;
199
200 out_free_pages:
201         for ( ; i > 0 ; i--)
202                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203         while (j--)
204                 for (i = 0; i < RESYNC_PAGES ; i++)
205                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206         j = 0;
207 out_free_bio:
208         for ( ; j < nalloc; j++) {
209                 if (r10_bio->devs[j].bio)
210                         bio_put(r10_bio->devs[j].bio);
211                 if (r10_bio->devs[j].repl_bio)
212                         bio_put(r10_bio->devs[j].repl_bio);
213         }
214         r10bio_pool_free(r10_bio, conf);
215         return NULL;
216 }
217
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220         int i;
221         struct r10conf *conf = data;
222         struct r10bio *r10bio = __r10_bio;
223         int j;
224
225         for (j=0; j < conf->copies; j++) {
226                 struct bio *bio = r10bio->devs[j].bio;
227                 if (bio) {
228                         for (i = 0; i < RESYNC_PAGES; i++) {
229                                 safe_put_page(bio->bi_io_vec[i].bv_page);
230                                 bio->bi_io_vec[i].bv_page = NULL;
231                         }
232                         bio_put(bio);
233                 }
234                 bio = r10bio->devs[j].repl_bio;
235                 if (bio)
236                         bio_put(bio);
237         }
238         r10bio_pool_free(r10bio, conf);
239 }
240
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243         int i;
244
245         for (i = 0; i < conf->copies; i++) {
246                 struct bio **bio = & r10_bio->devs[i].bio;
247                 if (!BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250                 bio = &r10_bio->devs[i].repl_bio;
251                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252                         bio_put(*bio);
253                 *bio = NULL;
254         }
255 }
256
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259         struct r10conf *conf = r10_bio->mddev->private;
260
261         put_all_bios(conf, r10_bio);
262         mempool_free(r10_bio, conf->r10bio_pool);
263 }
264
265 static void put_buf(struct r10bio *r10_bio)
266 {
267         struct r10conf *conf = r10_bio->mddev->private;
268
269         mempool_free(r10_bio, conf->r10buf_pool);
270
271         lower_barrier(conf);
272 }
273
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276         unsigned long flags;
277         struct mddev *mddev = r10_bio->mddev;
278         struct r10conf *conf = mddev->private;
279
280         spin_lock_irqsave(&conf->device_lock, flags);
281         list_add(&r10_bio->retry_list, &conf->retry_list);
282         conf->nr_queued ++;
283         spin_unlock_irqrestore(&conf->device_lock, flags);
284
285         /* wake up frozen array... */
286         wake_up(&conf->wait_barrier);
287
288         md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298         struct bio *bio = r10_bio->master_bio;
299         int done;
300         struct r10conf *conf = r10_bio->mddev->private;
301
302         if (bio->bi_phys_segments) {
303                 unsigned long flags;
304                 spin_lock_irqsave(&conf->device_lock, flags);
305                 bio->bi_phys_segments--;
306                 done = (bio->bi_phys_segments == 0);
307                 spin_unlock_irqrestore(&conf->device_lock, flags);
308         } else
309                 done = 1;
310         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311                 bio->bi_error = -EIO;
312         if (done) {
313                 bio_endio(bio);
314                 /*
315                  * Wake up any possible resync thread that waits for the device
316                  * to go idle.
317                  */
318                 allow_barrier(conf);
319         }
320         free_r10bio(r10_bio);
321 }
322
323 /*
324  * Update disk head position estimator based on IRQ completion info.
325  */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328         struct r10conf *conf = r10_bio->mddev->private;
329
330         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331                 r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333
334 /*
335  * Find the disk number which triggered given bio
336  */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338                          struct bio *bio, int *slotp, int *replp)
339 {
340         int slot;
341         int repl = 0;
342
343         for (slot = 0; slot < conf->copies; slot++) {
344                 if (r10_bio->devs[slot].bio == bio)
345                         break;
346                 if (r10_bio->devs[slot].repl_bio == bio) {
347                         repl = 1;
348                         break;
349                 }
350         }
351
352         BUG_ON(slot == conf->copies);
353         update_head_pos(slot, r10_bio);
354
355         if (slotp)
356                 *slotp = slot;
357         if (replp)
358                 *replp = repl;
359         return r10_bio->devs[slot].devnum;
360 }
361
362 static void raid10_end_read_request(struct bio *bio)
363 {
364         int uptodate = !bio->bi_error;
365         struct r10bio *r10_bio = bio->bi_private;
366         int slot, dev;
367         struct md_rdev *rdev;
368         struct r10conf *conf = r10_bio->mddev->private;
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396                              rdev->raid_disk))
397                         uptodate = 1;
398         }
399         if (uptodate) {
400                 raid_end_bio_io(r10_bio);
401                 rdev_dec_pending(rdev, conf->mddev);
402         } else {
403                 /*
404                  * oops, read error - keep the refcount on the rdev
405                  */
406                 char b[BDEVNAME_SIZE];
407                 printk_ratelimited(KERN_ERR
408                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
409                                    mdname(conf->mddev),
410                                    bdevname(rdev->bdev, b),
411                                    (unsigned long long)r10_bio->sector);
412                 set_bit(R10BIO_ReadError, &r10_bio->state);
413                 reschedule_retry(r10_bio);
414         }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419         /* clear the bitmap if all writes complete successfully */
420         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421                         r10_bio->sectors,
422                         !test_bit(R10BIO_Degraded, &r10_bio->state),
423                         0);
424         md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429         if (atomic_dec_and_test(&r10_bio->remaining)) {
430                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431                         reschedule_retry(r10_bio);
432                 else {
433                         close_write(r10_bio);
434                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435                                 reschedule_retry(r10_bio);
436                         else
437                                 raid_end_bio_io(r10_bio);
438                 }
439         }
440 }
441
442 static void raid10_end_write_request(struct bio *bio)
443 {
444         struct r10bio *r10_bio = bio->bi_private;
445         int dev;
446         int dec_rdev = 1;
447         struct r10conf *conf = r10_bio->mddev->private;
448         int slot, repl;
449         struct md_rdev *rdev = NULL;
450
451         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453         if (repl)
454                 rdev = conf->mirrors[dev].replacement;
455         if (!rdev) {
456                 smp_rmb();
457                 repl = 0;
458                 rdev = conf->mirrors[dev].rdev;
459         }
460         /*
461          * this branch is our 'one mirror IO has finished' event handler:
462          */
463         if (bio->bi_error) {
464                 if (repl)
465                         /* Never record new bad blocks to replacement,
466                          * just fail it.
467                          */
468                         md_error(rdev->mddev, rdev);
469                 else {
470                         set_bit(WriteErrorSeen, &rdev->flags);
471                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
472                                 set_bit(MD_RECOVERY_NEEDED,
473                                         &rdev->mddev->recovery);
474                         set_bit(R10BIO_WriteError, &r10_bio->state);
475                         dec_rdev = 0;
476                 }
477         } else {
478                 /*
479                  * Set R10BIO_Uptodate in our master bio, so that
480                  * we will return a good error code for to the higher
481                  * levels even if IO on some other mirrored buffer fails.
482                  *
483                  * The 'master' represents the composite IO operation to
484                  * user-side. So if something waits for IO, then it will
485                  * wait for the 'master' bio.
486                  */
487                 sector_t first_bad;
488                 int bad_sectors;
489
490                 /*
491                  * Do not set R10BIO_Uptodate if the current device is
492                  * rebuilding or Faulty. This is because we cannot use
493                  * such device for properly reading the data back (we could
494                  * potentially use it, if the current write would have felt
495                  * before rdev->recovery_offset, but for simplicity we don't
496                  * check this here.
497                  */
498                 if (test_bit(In_sync, &rdev->flags) &&
499                     !test_bit(Faulty, &rdev->flags))
500                         set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502                 /* Maybe we can clear some bad blocks. */
503                 if (is_badblock(rdev,
504                                 r10_bio->devs[slot].addr,
505                                 r10_bio->sectors,
506                                 &first_bad, &bad_sectors)) {
507                         bio_put(bio);
508                         if (repl)
509                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510                         else
511                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512                         dec_rdev = 0;
513                         set_bit(R10BIO_MadeGood, &r10_bio->state);
514                 }
515         }
516
517         /*
518          *
519          * Let's see if all mirrored write operations have finished
520          * already.
521          */
522         one_write_done(r10_bio);
523         if (dec_rdev)
524                 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528  * RAID10 layout manager
529  * As well as the chunksize and raid_disks count, there are two
530  * parameters: near_copies and far_copies.
531  * near_copies * far_copies must be <= raid_disks.
532  * Normally one of these will be 1.
533  * If both are 1, we get raid0.
534  * If near_copies == raid_disks, we get raid1.
535  *
536  * Chunks are laid out in raid0 style with near_copies copies of the
537  * first chunk, followed by near_copies copies of the next chunk and
538  * so on.
539  * If far_copies > 1, then after 1/far_copies of the array has been assigned
540  * as described above, we start again with a device offset of near_copies.
541  * So we effectively have another copy of the whole array further down all
542  * the drives, but with blocks on different drives.
543  * With this layout, and block is never stored twice on the one device.
544  *
545  * raid10_find_phys finds the sector offset of a given virtual sector
546  * on each device that it is on.
547  *
548  * raid10_find_virt does the reverse mapping, from a device and a
549  * sector offset to a virtual address
550  */
551
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554         int n,f;
555         sector_t sector;
556         sector_t chunk;
557         sector_t stripe;
558         int dev;
559         int slot = 0;
560         int last_far_set_start, last_far_set_size;
561
562         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563         last_far_set_start *= geo->far_set_size;
564
565         last_far_set_size = geo->far_set_size;
566         last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568         /* now calculate first sector/dev */
569         chunk = r10bio->sector >> geo->chunk_shift;
570         sector = r10bio->sector & geo->chunk_mask;
571
572         chunk *= geo->near_copies;
573         stripe = chunk;
574         dev = sector_div(stripe, geo->raid_disks);
575         if (geo->far_offset)
576                 stripe *= geo->far_copies;
577
578         sector += stripe << geo->chunk_shift;
579
580         /* and calculate all the others */
581         for (n = 0; n < geo->near_copies; n++) {
582                 int d = dev;
583                 int set;
584                 sector_t s = sector;
585                 r10bio->devs[slot].devnum = d;
586                 r10bio->devs[slot].addr = s;
587                 slot++;
588
589                 for (f = 1; f < geo->far_copies; f++) {
590                         set = d / geo->far_set_size;
591                         d += geo->near_copies;
592
593                         if ((geo->raid_disks % geo->far_set_size) &&
594                             (d > last_far_set_start)) {
595                                 d -= last_far_set_start;
596                                 d %= last_far_set_size;
597                                 d += last_far_set_start;
598                         } else {
599                                 d %= geo->far_set_size;
600                                 d += geo->far_set_size * set;
601                         }
602                         s += geo->stride;
603                         r10bio->devs[slot].devnum = d;
604                         r10bio->devs[slot].addr = s;
605                         slot++;
606                 }
607                 dev++;
608                 if (dev >= geo->raid_disks) {
609                         dev = 0;
610                         sector += (geo->chunk_mask + 1);
611                 }
612         }
613 }
614
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617         struct geom *geo = &conf->geo;
618
619         if (conf->reshape_progress != MaxSector &&
620             ((r10bio->sector >= conf->reshape_progress) !=
621              conf->mddev->reshape_backwards)) {
622                 set_bit(R10BIO_Previous, &r10bio->state);
623                 geo = &conf->prev;
624         } else
625                 clear_bit(R10BIO_Previous, &r10bio->state);
626
627         __raid10_find_phys(geo, r10bio);
628 }
629
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632         sector_t offset, chunk, vchunk;
633         /* Never use conf->prev as this is only called during resync
634          * or recovery, so reshape isn't happening
635          */
636         struct geom *geo = &conf->geo;
637         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638         int far_set_size = geo->far_set_size;
639         int last_far_set_start;
640
641         if (geo->raid_disks % geo->far_set_size) {
642                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643                 last_far_set_start *= geo->far_set_size;
644
645                 if (dev >= last_far_set_start) {
646                         far_set_size = geo->far_set_size;
647                         far_set_size += (geo->raid_disks % geo->far_set_size);
648                         far_set_start = last_far_set_start;
649                 }
650         }
651
652         offset = sector & geo->chunk_mask;
653         if (geo->far_offset) {
654                 int fc;
655                 chunk = sector >> geo->chunk_shift;
656                 fc = sector_div(chunk, geo->far_copies);
657                 dev -= fc * geo->near_copies;
658                 if (dev < far_set_start)
659                         dev += far_set_size;
660         } else {
661                 while (sector >= geo->stride) {
662                         sector -= geo->stride;
663                         if (dev < (geo->near_copies + far_set_start))
664                                 dev += far_set_size - geo->near_copies;
665                         else
666                                 dev -= geo->near_copies;
667                 }
668                 chunk = sector >> geo->chunk_shift;
669         }
670         vchunk = chunk * geo->raid_disks + dev;
671         sector_div(vchunk, geo->near_copies);
672         return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /*
676  * This routine returns the disk from which the requested read should
677  * be done. There is a per-array 'next expected sequential IO' sector
678  * number - if this matches on the next IO then we use the last disk.
679  * There is also a per-disk 'last know head position' sector that is
680  * maintained from IRQ contexts, both the normal and the resync IO
681  * completion handlers update this position correctly. If there is no
682  * perfect sequential match then we pick the disk whose head is closest.
683  *
684  * If there are 2 mirrors in the same 2 devices, performance degrades
685  * because position is mirror, not device based.
686  *
687  * The rdev for the device selected will have nr_pending incremented.
688  */
689
690 /*
691  * FIXME: possibly should rethink readbalancing and do it differently
692  * depending on near_copies / far_copies geometry.
693  */
694 static struct md_rdev *read_balance(struct r10conf *conf,
695                                     struct r10bio *r10_bio,
696                                     int *max_sectors)
697 {
698         const sector_t this_sector = r10_bio->sector;
699         int disk, slot;
700         int sectors = r10_bio->sectors;
701         int best_good_sectors;
702         sector_t new_distance, best_dist;
703         struct md_rdev *best_rdev, *rdev = NULL;
704         int do_balance;
705         int best_slot;
706         struct geom *geo = &conf->geo;
707
708         raid10_find_phys(conf, r10_bio);
709         rcu_read_lock();
710 retry:
711         sectors = r10_bio->sectors;
712         best_slot = -1;
713         best_rdev = NULL;
714         best_dist = MaxSector;
715         best_good_sectors = 0;
716         do_balance = 1;
717         /*
718          * Check if we can balance. We can balance on the whole
719          * device if no resync is going on (recovery is ok), or below
720          * the resync window. We take the first readable disk when
721          * above the resync window.
722          */
723         if (conf->mddev->recovery_cp < MaxSector
724             && (this_sector + sectors >= conf->next_resync))
725                 do_balance = 0;
726
727         for (slot = 0; slot < conf->copies ; slot++) {
728                 sector_t first_bad;
729                 int bad_sectors;
730                 sector_t dev_sector;
731
732                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
733                         continue;
734                 disk = r10_bio->devs[slot].devnum;
735                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
736                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
737                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
738                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
739                 if (rdev == NULL ||
740                     test_bit(Faulty, &rdev->flags))
741                         continue;
742                 if (!test_bit(In_sync, &rdev->flags) &&
743                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
744                         continue;
745
746                 dev_sector = r10_bio->devs[slot].addr;
747                 if (is_badblock(rdev, dev_sector, sectors,
748                                 &first_bad, &bad_sectors)) {
749                         if (best_dist < MaxSector)
750                                 /* Already have a better slot */
751                                 continue;
752                         if (first_bad <= dev_sector) {
753                                 /* Cannot read here.  If this is the
754                                  * 'primary' device, then we must not read
755                                  * beyond 'bad_sectors' from another device.
756                                  */
757                                 bad_sectors -= (dev_sector - first_bad);
758                                 if (!do_balance && sectors > bad_sectors)
759                                         sectors = bad_sectors;
760                                 if (best_good_sectors > sectors)
761                                         best_good_sectors = sectors;
762                         } else {
763                                 sector_t good_sectors =
764                                         first_bad - dev_sector;
765                                 if (good_sectors > best_good_sectors) {
766                                         best_good_sectors = good_sectors;
767                                         best_slot = slot;
768                                         best_rdev = rdev;
769                                 }
770                                 if (!do_balance)
771                                         /* Must read from here */
772                                         break;
773                         }
774                         continue;
775                 } else
776                         best_good_sectors = sectors;
777
778                 if (!do_balance)
779                         break;
780
781                 /* This optimisation is debatable, and completely destroys
782                  * sequential read speed for 'far copies' arrays.  So only
783                  * keep it for 'near' arrays, and review those later.
784                  */
785                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
786                         break;
787
788                 /* for far > 1 always use the lowest address */
789                 if (geo->far_copies > 1)
790                         new_distance = r10_bio->devs[slot].addr;
791                 else
792                         new_distance = abs(r10_bio->devs[slot].addr -
793                                            conf->mirrors[disk].head_position);
794                 if (new_distance < best_dist) {
795                         best_dist = new_distance;
796                         best_slot = slot;
797                         best_rdev = rdev;
798                 }
799         }
800         if (slot >= conf->copies) {
801                 slot = best_slot;
802                 rdev = best_rdev;
803         }
804
805         if (slot >= 0) {
806                 atomic_inc(&rdev->nr_pending);
807                 if (test_bit(Faulty, &rdev->flags)) {
808                         /* Cannot risk returning a device that failed
809                          * before we inc'ed nr_pending
810                          */
811                         rdev_dec_pending(rdev, conf->mddev);
812                         goto retry;
813                 }
814                 r10_bio->read_slot = slot;
815         } else
816                 rdev = NULL;
817         rcu_read_unlock();
818         *max_sectors = best_good_sectors;
819
820         return rdev;
821 }
822
823 static int raid10_congested(struct mddev *mddev, int bits)
824 {
825         struct r10conf *conf = mddev->private;
826         int i, ret = 0;
827
828         if ((bits & (1 << WB_async_congested)) &&
829             conf->pending_count >= max_queued_requests)
830                 return 1;
831
832         rcu_read_lock();
833         for (i = 0;
834              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
835                      && ret == 0;
836              i++) {
837                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
838                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
839                         struct request_queue *q = bdev_get_queue(rdev->bdev);
840
841                         ret |= bdi_congested(&q->backing_dev_info, bits);
842                 }
843         }
844         rcu_read_unlock();
845         return ret;
846 }
847
848 static void flush_pending_writes(struct r10conf *conf)
849 {
850         /* Any writes that have been queued but are awaiting
851          * bitmap updates get flushed here.
852          */
853         spin_lock_irq(&conf->device_lock);
854
855         if (conf->pending_bio_list.head) {
856                 struct bio *bio;
857                 bio = bio_list_get(&conf->pending_bio_list);
858                 conf->pending_count = 0;
859                 spin_unlock_irq(&conf->device_lock);
860                 /* flush any pending bitmap writes to disk
861                  * before proceeding w/ I/O */
862                 bitmap_unplug(conf->mddev->bitmap);
863                 wake_up(&conf->wait_barrier);
864
865                 while (bio) { /* submit pending writes */
866                         struct bio *next = bio->bi_next;
867                         bio->bi_next = NULL;
868                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
869                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
870                                 /* Just ignore it */
871                                 bio_endio(bio);
872                         else
873                                 generic_make_request(bio);
874                         bio = next;
875                 }
876         } else
877                 spin_unlock_irq(&conf->device_lock);
878 }
879
880 /* Barriers....
881  * Sometimes we need to suspend IO while we do something else,
882  * either some resync/recovery, or reconfigure the array.
883  * To do this we raise a 'barrier'.
884  * The 'barrier' is a counter that can be raised multiple times
885  * to count how many activities are happening which preclude
886  * normal IO.
887  * We can only raise the barrier if there is no pending IO.
888  * i.e. if nr_pending == 0.
889  * We choose only to raise the barrier if no-one is waiting for the
890  * barrier to go down.  This means that as soon as an IO request
891  * is ready, no other operations which require a barrier will start
892  * until the IO request has had a chance.
893  *
894  * So: regular IO calls 'wait_barrier'.  When that returns there
895  *    is no backgroup IO happening,  It must arrange to call
896  *    allow_barrier when it has finished its IO.
897  * backgroup IO calls must call raise_barrier.  Once that returns
898  *    there is no normal IO happeing.  It must arrange to call
899  *    lower_barrier when the particular background IO completes.
900  */
901
902 static void raise_barrier(struct r10conf *conf, int force)
903 {
904         BUG_ON(force && !conf->barrier);
905         spin_lock_irq(&conf->resync_lock);
906
907         /* Wait until no block IO is waiting (unless 'force') */
908         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
909                             conf->resync_lock);
910
911         /* block any new IO from starting */
912         conf->barrier++;
913
914         /* Now wait for all pending IO to complete */
915         wait_event_lock_irq(conf->wait_barrier,
916                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
917                             conf->resync_lock);
918
919         spin_unlock_irq(&conf->resync_lock);
920 }
921
922 static void lower_barrier(struct r10conf *conf)
923 {
924         unsigned long flags;
925         spin_lock_irqsave(&conf->resync_lock, flags);
926         conf->barrier--;
927         spin_unlock_irqrestore(&conf->resync_lock, flags);
928         wake_up(&conf->wait_barrier);
929 }
930
931 static void wait_barrier(struct r10conf *conf)
932 {
933         spin_lock_irq(&conf->resync_lock);
934         if (conf->barrier) {
935                 conf->nr_waiting++;
936                 /* Wait for the barrier to drop.
937                  * However if there are already pending
938                  * requests (preventing the barrier from
939                  * rising completely), and the
940                  * pre-process bio queue isn't empty,
941                  * then don't wait, as we need to empty
942                  * that queue to get the nr_pending
943                  * count down.
944                  */
945                 wait_event_lock_irq(conf->wait_barrier,
946                                     !conf->barrier ||
947                                     (conf->nr_pending &&
948                                      current->bio_list &&
949                                      !bio_list_empty(current->bio_list)),
950                                     conf->resync_lock);
951                 conf->nr_waiting--;
952         }
953         conf->nr_pending++;
954         spin_unlock_irq(&conf->resync_lock);
955 }
956
957 static void allow_barrier(struct r10conf *conf)
958 {
959         unsigned long flags;
960         spin_lock_irqsave(&conf->resync_lock, flags);
961         conf->nr_pending--;
962         spin_unlock_irqrestore(&conf->resync_lock, flags);
963         wake_up(&conf->wait_barrier);
964 }
965
966 static void freeze_array(struct r10conf *conf, int extra)
967 {
968         /* stop syncio and normal IO and wait for everything to
969          * go quiet.
970          * We increment barrier and nr_waiting, and then
971          * wait until nr_pending match nr_queued+extra
972          * This is called in the context of one normal IO request
973          * that has failed. Thus any sync request that might be pending
974          * will be blocked by nr_pending, and we need to wait for
975          * pending IO requests to complete or be queued for re-try.
976          * Thus the number queued (nr_queued) plus this request (extra)
977          * must match the number of pending IOs (nr_pending) before
978          * we continue.
979          */
980         spin_lock_irq(&conf->resync_lock);
981         conf->barrier++;
982         conf->nr_waiting++;
983         wait_event_lock_irq_cmd(conf->wait_barrier,
984                                 conf->nr_pending == conf->nr_queued+extra,
985                                 conf->resync_lock,
986                                 flush_pending_writes(conf));
987
988         spin_unlock_irq(&conf->resync_lock);
989 }
990
991 static void unfreeze_array(struct r10conf *conf)
992 {
993         /* reverse the effect of the freeze */
994         spin_lock_irq(&conf->resync_lock);
995         conf->barrier--;
996         conf->nr_waiting--;
997         wake_up(&conf->wait_barrier);
998         spin_unlock_irq(&conf->resync_lock);
999 }
1000
1001 static sector_t choose_data_offset(struct r10bio *r10_bio,
1002                                    struct md_rdev *rdev)
1003 {
1004         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1005             test_bit(R10BIO_Previous, &r10_bio->state))
1006                 return rdev->data_offset;
1007         else
1008                 return rdev->new_data_offset;
1009 }
1010
1011 struct raid10_plug_cb {
1012         struct blk_plug_cb      cb;
1013         struct bio_list         pending;
1014         int                     pending_cnt;
1015 };
1016
1017 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1018 {
1019         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1020                                                    cb);
1021         struct mddev *mddev = plug->cb.data;
1022         struct r10conf *conf = mddev->private;
1023         struct bio *bio;
1024
1025         if (from_schedule || current->bio_list) {
1026                 spin_lock_irq(&conf->device_lock);
1027                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1028                 conf->pending_count += plug->pending_cnt;
1029                 spin_unlock_irq(&conf->device_lock);
1030                 wake_up(&conf->wait_barrier);
1031                 md_wakeup_thread(mddev->thread);
1032                 kfree(plug);
1033                 return;
1034         }
1035
1036         /* we aren't scheduling, so we can do the write-out directly. */
1037         bio = bio_list_get(&plug->pending);
1038         bitmap_unplug(mddev->bitmap);
1039         wake_up(&conf->wait_barrier);
1040
1041         while (bio) { /* submit pending writes */
1042                 struct bio *next = bio->bi_next;
1043                 bio->bi_next = NULL;
1044                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1045                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1046                         /* Just ignore it */
1047                         bio_endio(bio);
1048                 else
1049                         generic_make_request(bio);
1050                 bio = next;
1051         }
1052         kfree(plug);
1053 }
1054
1055 static void __make_request(struct mddev *mddev, struct bio *bio)
1056 {
1057         struct r10conf *conf = mddev->private;
1058         struct r10bio *r10_bio;
1059         struct bio *read_bio;
1060         int i;
1061         const int rw = bio_data_dir(bio);
1062         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1063         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1064         const unsigned long do_discard = (bio->bi_rw
1065                                           & (REQ_DISCARD | REQ_SECURE));
1066         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1067         unsigned long flags;
1068         struct md_rdev *blocked_rdev;
1069         struct blk_plug_cb *cb;
1070         struct raid10_plug_cb *plug = NULL;
1071         int sectors_handled;
1072         int max_sectors;
1073         int sectors;
1074
1075         /*
1076          * Register the new request and wait if the reconstruction
1077          * thread has put up a bar for new requests.
1078          * Continue immediately if no resync is active currently.
1079          */
1080         wait_barrier(conf);
1081
1082         sectors = bio_sectors(bio);
1083         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1084             bio->bi_iter.bi_sector < conf->reshape_progress &&
1085             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1086                 /* IO spans the reshape position.  Need to wait for
1087                  * reshape to pass
1088                  */
1089                 allow_barrier(conf);
1090                 wait_event(conf->wait_barrier,
1091                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1092                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1093                            sectors);
1094                 wait_barrier(conf);
1095         }
1096         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1097             bio_data_dir(bio) == WRITE &&
1098             (mddev->reshape_backwards
1099              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1100                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1101              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1102                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1103                 /* Need to update reshape_position in metadata */
1104                 mddev->reshape_position = conf->reshape_progress;
1105                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1106                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1107                 md_wakeup_thread(mddev->thread);
1108                 wait_event(mddev->sb_wait,
1109                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1110
1111                 conf->reshape_safe = mddev->reshape_position;
1112         }
1113
1114         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1115
1116         r10_bio->master_bio = bio;
1117         r10_bio->sectors = sectors;
1118
1119         r10_bio->mddev = mddev;
1120         r10_bio->sector = bio->bi_iter.bi_sector;
1121         r10_bio->state = 0;
1122
1123         /* We might need to issue multiple reads to different
1124          * devices if there are bad blocks around, so we keep
1125          * track of the number of reads in bio->bi_phys_segments.
1126          * If this is 0, there is only one r10_bio and no locking
1127          * will be needed when the request completes.  If it is
1128          * non-zero, then it is the number of not-completed requests.
1129          */
1130         bio->bi_phys_segments = 0;
1131         bio_clear_flag(bio, BIO_SEG_VALID);
1132
1133         if (rw == READ) {
1134                 /*
1135                  * read balancing logic:
1136                  */
1137                 struct md_rdev *rdev;
1138                 int slot;
1139
1140 read_again:
1141                 rdev = read_balance(conf, r10_bio, &max_sectors);
1142                 if (!rdev) {
1143                         raid_end_bio_io(r10_bio);
1144                         return;
1145                 }
1146                 slot = r10_bio->read_slot;
1147
1148                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1149                 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1150                          max_sectors);
1151
1152                 r10_bio->devs[slot].bio = read_bio;
1153                 r10_bio->devs[slot].rdev = rdev;
1154
1155                 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1156                         choose_data_offset(r10_bio, rdev);
1157                 read_bio->bi_bdev = rdev->bdev;
1158                 read_bio->bi_end_io = raid10_end_read_request;
1159                 read_bio->bi_rw = READ | do_sync;
1160                 read_bio->bi_private = r10_bio;
1161
1162                 if (max_sectors < r10_bio->sectors) {
1163                         /* Could not read all from this device, so we will
1164                          * need another r10_bio.
1165                          */
1166                         sectors_handled = (r10_bio->sector + max_sectors
1167                                            - bio->bi_iter.bi_sector);
1168                         r10_bio->sectors = max_sectors;
1169                         spin_lock_irq(&conf->device_lock);
1170                         if (bio->bi_phys_segments == 0)
1171                                 bio->bi_phys_segments = 2;
1172                         else
1173                                 bio->bi_phys_segments++;
1174                         spin_unlock_irq(&conf->device_lock);
1175                         /* Cannot call generic_make_request directly
1176                          * as that will be queued in __generic_make_request
1177                          * and subsequent mempool_alloc might block
1178                          * waiting for it.  so hand bio over to raid10d.
1179                          */
1180                         reschedule_retry(r10_bio);
1181
1182                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1183
1184                         r10_bio->master_bio = bio;
1185                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1186                         r10_bio->state = 0;
1187                         r10_bio->mddev = mddev;
1188                         r10_bio->sector = bio->bi_iter.bi_sector +
1189                                 sectors_handled;
1190                         goto read_again;
1191                 } else
1192                         generic_make_request(read_bio);
1193                 return;
1194         }
1195
1196         /*
1197          * WRITE:
1198          */
1199         if (conf->pending_count >= max_queued_requests) {
1200                 md_wakeup_thread(mddev->thread);
1201                 wait_event(conf->wait_barrier,
1202                            conf->pending_count < max_queued_requests);
1203         }
1204         /* first select target devices under rcu_lock and
1205          * inc refcount on their rdev.  Record them by setting
1206          * bios[x] to bio
1207          * If there are known/acknowledged bad blocks on any device
1208          * on which we have seen a write error, we want to avoid
1209          * writing to those blocks.  This potentially requires several
1210          * writes to write around the bad blocks.  Each set of writes
1211          * gets its own r10_bio with a set of bios attached.  The number
1212          * of r10_bios is recored in bio->bi_phys_segments just as with
1213          * the read case.
1214          */
1215
1216         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1217         raid10_find_phys(conf, r10_bio);
1218 retry_write:
1219         blocked_rdev = NULL;
1220         rcu_read_lock();
1221         max_sectors = r10_bio->sectors;
1222
1223         for (i = 0;  i < conf->copies; i++) {
1224                 int d = r10_bio->devs[i].devnum;
1225                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1226                 struct md_rdev *rrdev = rcu_dereference(
1227                         conf->mirrors[d].replacement);
1228                 if (rdev == rrdev)
1229                         rrdev = NULL;
1230                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1231                         atomic_inc(&rdev->nr_pending);
1232                         blocked_rdev = rdev;
1233                         break;
1234                 }
1235                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1236                         atomic_inc(&rrdev->nr_pending);
1237                         blocked_rdev = rrdev;
1238                         break;
1239                 }
1240                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1241                         rdev = NULL;
1242                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1243                         rrdev = NULL;
1244
1245                 r10_bio->devs[i].bio = NULL;
1246                 r10_bio->devs[i].repl_bio = NULL;
1247
1248                 if (!rdev && !rrdev) {
1249                         set_bit(R10BIO_Degraded, &r10_bio->state);
1250                         continue;
1251                 }
1252                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1253                         sector_t first_bad;
1254                         sector_t dev_sector = r10_bio->devs[i].addr;
1255                         int bad_sectors;
1256                         int is_bad;
1257
1258                         is_bad = is_badblock(rdev, dev_sector,
1259                                              max_sectors,
1260                                              &first_bad, &bad_sectors);
1261                         if (is_bad < 0) {
1262                                 /* Mustn't write here until the bad block
1263                                  * is acknowledged
1264                                  */
1265                                 atomic_inc(&rdev->nr_pending);
1266                                 set_bit(BlockedBadBlocks, &rdev->flags);
1267                                 blocked_rdev = rdev;
1268                                 break;
1269                         }
1270                         if (is_bad && first_bad <= dev_sector) {
1271                                 /* Cannot write here at all */
1272                                 bad_sectors -= (dev_sector - first_bad);
1273                                 if (bad_sectors < max_sectors)
1274                                         /* Mustn't write more than bad_sectors
1275                                          * to other devices yet
1276                                          */
1277                                         max_sectors = bad_sectors;
1278                                 /* We don't set R10BIO_Degraded as that
1279                                  * only applies if the disk is missing,
1280                                  * so it might be re-added, and we want to
1281                                  * know to recover this chunk.
1282                                  * In this case the device is here, and the
1283                                  * fact that this chunk is not in-sync is
1284                                  * recorded in the bad block log.
1285                                  */
1286                                 continue;
1287                         }
1288                         if (is_bad) {
1289                                 int good_sectors = first_bad - dev_sector;
1290                                 if (good_sectors < max_sectors)
1291                                         max_sectors = good_sectors;
1292                         }
1293                 }
1294                 if (rdev) {
1295                         r10_bio->devs[i].bio = bio;
1296                         atomic_inc(&rdev->nr_pending);
1297                 }
1298                 if (rrdev) {
1299                         r10_bio->devs[i].repl_bio = bio;
1300                         atomic_inc(&rrdev->nr_pending);
1301                 }
1302         }
1303         rcu_read_unlock();
1304
1305         if (unlikely(blocked_rdev)) {
1306                 /* Have to wait for this device to get unblocked, then retry */
1307                 int j;
1308                 int d;
1309
1310                 for (j = 0; j < i; j++) {
1311                         if (r10_bio->devs[j].bio) {
1312                                 d = r10_bio->devs[j].devnum;
1313                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1314                         }
1315                         if (r10_bio->devs[j].repl_bio) {
1316                                 struct md_rdev *rdev;
1317                                 d = r10_bio->devs[j].devnum;
1318                                 rdev = conf->mirrors[d].replacement;
1319                                 if (!rdev) {
1320                                         /* Race with remove_disk */
1321                                         smp_mb();
1322                                         rdev = conf->mirrors[d].rdev;
1323                                 }
1324                                 rdev_dec_pending(rdev, mddev);
1325                         }
1326                 }
1327                 allow_barrier(conf);
1328                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1329                 wait_barrier(conf);
1330                 goto retry_write;
1331         }
1332
1333         if (max_sectors < r10_bio->sectors) {
1334                 /* We are splitting this into multiple parts, so
1335                  * we need to prepare for allocating another r10_bio.
1336                  */
1337                 r10_bio->sectors = max_sectors;
1338                 spin_lock_irq(&conf->device_lock);
1339                 if (bio->bi_phys_segments == 0)
1340                         bio->bi_phys_segments = 2;
1341                 else
1342                         bio->bi_phys_segments++;
1343                 spin_unlock_irq(&conf->device_lock);
1344         }
1345         sectors_handled = r10_bio->sector + max_sectors -
1346                 bio->bi_iter.bi_sector;
1347
1348         atomic_set(&r10_bio->remaining, 1);
1349         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1350
1351         for (i = 0; i < conf->copies; i++) {
1352                 struct bio *mbio;
1353                 int d = r10_bio->devs[i].devnum;
1354                 if (r10_bio->devs[i].bio) {
1355                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1356                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1357                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1358                                  max_sectors);
1359                         r10_bio->devs[i].bio = mbio;
1360
1361                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1362                                            choose_data_offset(r10_bio,
1363                                                               rdev));
1364                         mbio->bi_bdev = rdev->bdev;
1365                         mbio->bi_end_io = raid10_end_write_request;
1366                         mbio->bi_rw =
1367                                 WRITE | do_sync | do_fua | do_discard | do_same;
1368                         mbio->bi_private = r10_bio;
1369
1370                         atomic_inc(&r10_bio->remaining);
1371
1372                         cb = blk_check_plugged(raid10_unplug, mddev,
1373                                                sizeof(*plug));
1374                         if (cb)
1375                                 plug = container_of(cb, struct raid10_plug_cb,
1376                                                     cb);
1377                         else
1378                                 plug = NULL;
1379                         spin_lock_irqsave(&conf->device_lock, flags);
1380                         if (plug) {
1381                                 bio_list_add(&plug->pending, mbio);
1382                                 plug->pending_cnt++;
1383                         } else {
1384                                 bio_list_add(&conf->pending_bio_list, mbio);
1385                                 conf->pending_count++;
1386                         }
1387                         spin_unlock_irqrestore(&conf->device_lock, flags);
1388                         if (!plug)
1389                                 md_wakeup_thread(mddev->thread);
1390                 }
1391
1392                 if (r10_bio->devs[i].repl_bio) {
1393                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1394                         if (rdev == NULL) {
1395                                 /* Replacement just got moved to main 'rdev' */
1396                                 smp_mb();
1397                                 rdev = conf->mirrors[d].rdev;
1398                         }
1399                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1400                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1401                                  max_sectors);
1402                         r10_bio->devs[i].repl_bio = mbio;
1403
1404                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1405                                            choose_data_offset(
1406                                                    r10_bio, rdev));
1407                         mbio->bi_bdev = rdev->bdev;
1408                         mbio->bi_end_io = raid10_end_write_request;
1409                         mbio->bi_rw =
1410                                 WRITE | do_sync | do_fua | do_discard | do_same;
1411                         mbio->bi_private = r10_bio;
1412
1413                         atomic_inc(&r10_bio->remaining);
1414                         spin_lock_irqsave(&conf->device_lock, flags);
1415                         bio_list_add(&conf->pending_bio_list, mbio);
1416                         conf->pending_count++;
1417                         spin_unlock_irqrestore(&conf->device_lock, flags);
1418                         if (!mddev_check_plugged(mddev))
1419                                 md_wakeup_thread(mddev->thread);
1420                 }
1421         }
1422
1423         /* Don't remove the bias on 'remaining' (one_write_done) until
1424          * after checking if we need to go around again.
1425          */
1426
1427         if (sectors_handled < bio_sectors(bio)) {
1428                 one_write_done(r10_bio);
1429                 /* We need another r10_bio.  It has already been counted
1430                  * in bio->bi_phys_segments.
1431                  */
1432                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1433
1434                 r10_bio->master_bio = bio;
1435                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1436
1437                 r10_bio->mddev = mddev;
1438                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439                 r10_bio->state = 0;
1440                 goto retry_write;
1441         }
1442         one_write_done(r10_bio);
1443 }
1444
1445 static void make_request(struct mddev *mddev, struct bio *bio)
1446 {
1447         struct r10conf *conf = mddev->private;
1448         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1449         int chunk_sects = chunk_mask + 1;
1450
1451         struct bio *split;
1452
1453         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1454                 md_flush_request(mddev, bio);
1455                 return;
1456         }
1457
1458         md_write_start(mddev, bio);
1459
1460         do {
1461
1462                 /*
1463                  * If this request crosses a chunk boundary, we need to split
1464                  * it.
1465                  */
1466                 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1467                              bio_sectors(bio) > chunk_sects
1468                              && (conf->geo.near_copies < conf->geo.raid_disks
1469                                  || conf->prev.near_copies <
1470                                  conf->prev.raid_disks))) {
1471                         split = bio_split(bio, chunk_sects -
1472                                           (bio->bi_iter.bi_sector &
1473                                            (chunk_sects - 1)),
1474                                           GFP_NOIO, fs_bio_set);
1475                         bio_chain(split, bio);
1476                 } else {
1477                         split = bio;
1478                 }
1479
1480                 __make_request(mddev, split);
1481         } while (split != bio);
1482
1483         /* In case raid10d snuck in to freeze_array */
1484         wake_up(&conf->wait_barrier);
1485 }
1486
1487 static void status(struct seq_file *seq, struct mddev *mddev)
1488 {
1489         struct r10conf *conf = mddev->private;
1490         int i;
1491
1492         if (conf->geo.near_copies < conf->geo.raid_disks)
1493                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1494         if (conf->geo.near_copies > 1)
1495                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1496         if (conf->geo.far_copies > 1) {
1497                 if (conf->geo.far_offset)
1498                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1499                 else
1500                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1501                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1502                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1503         }
1504         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1505                                         conf->geo.raid_disks - mddev->degraded);
1506         for (i = 0; i < conf->geo.raid_disks; i++)
1507                 seq_printf(seq, "%s",
1508                               conf->mirrors[i].rdev &&
1509                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1510         seq_printf(seq, "]");
1511 }
1512
1513 /* check if there are enough drives for
1514  * every block to appear on atleast one.
1515  * Don't consider the device numbered 'ignore'
1516  * as we might be about to remove it.
1517  */
1518 static int _enough(struct r10conf *conf, int previous, int ignore)
1519 {
1520         int first = 0;
1521         int has_enough = 0;
1522         int disks, ncopies;
1523         if (previous) {
1524                 disks = conf->prev.raid_disks;
1525                 ncopies = conf->prev.near_copies;
1526         } else {
1527                 disks = conf->geo.raid_disks;
1528                 ncopies = conf->geo.near_copies;
1529         }
1530
1531         rcu_read_lock();
1532         do {
1533                 int n = conf->copies;
1534                 int cnt = 0;
1535                 int this = first;
1536                 while (n--) {
1537                         struct md_rdev *rdev;
1538                         if (this != ignore &&
1539                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1540                             test_bit(In_sync, &rdev->flags))
1541                                 cnt++;
1542                         this = (this+1) % disks;
1543                 }
1544                 if (cnt == 0)
1545                         goto out;
1546                 first = (first + ncopies) % disks;
1547         } while (first != 0);
1548         has_enough = 1;
1549 out:
1550         rcu_read_unlock();
1551         return has_enough;
1552 }
1553
1554 static int enough(struct r10conf *conf, int ignore)
1555 {
1556         /* when calling 'enough', both 'prev' and 'geo' must
1557          * be stable.
1558          * This is ensured if ->reconfig_mutex or ->device_lock
1559          * is held.
1560          */
1561         return _enough(conf, 0, ignore) &&
1562                 _enough(conf, 1, ignore);
1563 }
1564
1565 static void error(struct mddev *mddev, struct md_rdev *rdev)
1566 {
1567         char b[BDEVNAME_SIZE];
1568         struct r10conf *conf = mddev->private;
1569         unsigned long flags;
1570
1571         /*
1572          * If it is not operational, then we have already marked it as dead
1573          * else if it is the last working disks, ignore the error, let the
1574          * next level up know.
1575          * else mark the drive as failed
1576          */
1577         spin_lock_irqsave(&conf->device_lock, flags);
1578         if (test_bit(In_sync, &rdev->flags)
1579             && !enough(conf, rdev->raid_disk)) {
1580                 /*
1581                  * Don't fail the drive, just return an IO error.
1582                  */
1583                 spin_unlock_irqrestore(&conf->device_lock, flags);
1584                 return;
1585         }
1586         if (test_and_clear_bit(In_sync, &rdev->flags))
1587                 mddev->degraded++;
1588         /*
1589          * If recovery is running, make sure it aborts.
1590          */
1591         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1592         set_bit(Blocked, &rdev->flags);
1593         set_bit(Faulty, &rdev->flags);
1594         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1595         set_bit(MD_CHANGE_PENDING, &mddev->flags);
1596         spin_unlock_irqrestore(&conf->device_lock, flags);
1597         printk(KERN_ALERT
1598                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1599                "md/raid10:%s: Operation continuing on %d devices.\n",
1600                mdname(mddev), bdevname(rdev->bdev, b),
1601                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1602 }
1603
1604 static void print_conf(struct r10conf *conf)
1605 {
1606         int i;
1607         struct raid10_info *tmp;
1608
1609         printk(KERN_DEBUG "RAID10 conf printout:\n");
1610         if (!conf) {
1611                 printk(KERN_DEBUG "(!conf)\n");
1612                 return;
1613         }
1614         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1615                 conf->geo.raid_disks);
1616
1617         for (i = 0; i < conf->geo.raid_disks; i++) {
1618                 char b[BDEVNAME_SIZE];
1619                 tmp = conf->mirrors + i;
1620                 if (tmp->rdev)
1621                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1622                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1623                                 !test_bit(Faulty, &tmp->rdev->flags),
1624                                 bdevname(tmp->rdev->bdev,b));
1625         }
1626 }
1627
1628 static void close_sync(struct r10conf *conf)
1629 {
1630         wait_barrier(conf);
1631         allow_barrier(conf);
1632
1633         mempool_destroy(conf->r10buf_pool);
1634         conf->r10buf_pool = NULL;
1635 }
1636
1637 static int raid10_spare_active(struct mddev *mddev)
1638 {
1639         int i;
1640         struct r10conf *conf = mddev->private;
1641         struct raid10_info *tmp;
1642         int count = 0;
1643         unsigned long flags;
1644
1645         /*
1646          * Find all non-in_sync disks within the RAID10 configuration
1647          * and mark them in_sync
1648          */
1649         for (i = 0; i < conf->geo.raid_disks; i++) {
1650                 tmp = conf->mirrors + i;
1651                 if (tmp->replacement
1652                     && tmp->replacement->recovery_offset == MaxSector
1653                     && !test_bit(Faulty, &tmp->replacement->flags)
1654                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1655                         /* Replacement has just become active */
1656                         if (!tmp->rdev
1657                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1658                                 count++;
1659                         if (tmp->rdev) {
1660                                 /* Replaced device not technically faulty,
1661                                  * but we need to be sure it gets removed
1662                                  * and never re-added.
1663                                  */
1664                                 set_bit(Faulty, &tmp->rdev->flags);
1665                                 sysfs_notify_dirent_safe(
1666                                         tmp->rdev->sysfs_state);
1667                         }
1668                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1669                 } else if (tmp->rdev
1670                            && tmp->rdev->recovery_offset == MaxSector
1671                            && !test_bit(Faulty, &tmp->rdev->flags)
1672                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1673                         count++;
1674                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1675                 }
1676         }
1677         spin_lock_irqsave(&conf->device_lock, flags);
1678         mddev->degraded -= count;
1679         spin_unlock_irqrestore(&conf->device_lock, flags);
1680
1681         print_conf(conf);
1682         return count;
1683 }
1684
1685 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1686 {
1687         struct r10conf *conf = mddev->private;
1688         int err = -EEXIST;
1689         int mirror;
1690         int first = 0;
1691         int last = conf->geo.raid_disks - 1;
1692
1693         if (mddev->recovery_cp < MaxSector)
1694                 /* only hot-add to in-sync arrays, as recovery is
1695                  * very different from resync
1696                  */
1697                 return -EBUSY;
1698         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1699                 return -EINVAL;
1700
1701         if (rdev->raid_disk >= 0)
1702                 first = last = rdev->raid_disk;
1703
1704         if (rdev->saved_raid_disk >= first &&
1705             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1706                 mirror = rdev->saved_raid_disk;
1707         else
1708                 mirror = first;
1709         for ( ; mirror <= last ; mirror++) {
1710                 struct raid10_info *p = &conf->mirrors[mirror];
1711                 if (p->recovery_disabled == mddev->recovery_disabled)
1712                         continue;
1713                 if (p->rdev) {
1714                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1715                             p->replacement != NULL)
1716                                 continue;
1717                         clear_bit(In_sync, &rdev->flags);
1718                         set_bit(Replacement, &rdev->flags);
1719                         rdev->raid_disk = mirror;
1720                         err = 0;
1721                         if (mddev->gendisk)
1722                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1723                                                   rdev->data_offset << 9);
1724                         conf->fullsync = 1;
1725                         rcu_assign_pointer(p->replacement, rdev);
1726                         break;
1727                 }
1728
1729                 if (mddev->gendisk)
1730                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1731                                           rdev->data_offset << 9);
1732
1733                 p->head_position = 0;
1734                 p->recovery_disabled = mddev->recovery_disabled - 1;
1735                 rdev->raid_disk = mirror;
1736                 err = 0;
1737                 if (rdev->saved_raid_disk != mirror)
1738                         conf->fullsync = 1;
1739                 rcu_assign_pointer(p->rdev, rdev);
1740                 break;
1741         }
1742         md_integrity_add_rdev(rdev, mddev);
1743         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1744                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1745
1746         print_conf(conf);
1747         return err;
1748 }
1749
1750 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1751 {
1752         struct r10conf *conf = mddev->private;
1753         int err = 0;
1754         int number = rdev->raid_disk;
1755         struct md_rdev **rdevp;
1756         struct raid10_info *p = conf->mirrors + number;
1757
1758         print_conf(conf);
1759         if (rdev == p->rdev)
1760                 rdevp = &p->rdev;
1761         else if (rdev == p->replacement)
1762                 rdevp = &p->replacement;
1763         else
1764                 return 0;
1765
1766         if (test_bit(In_sync, &rdev->flags) ||
1767             atomic_read(&rdev->nr_pending)) {
1768                 err = -EBUSY;
1769                 goto abort;
1770         }
1771         /* Only remove faulty devices if recovery
1772          * is not possible.
1773          */
1774         if (!test_bit(Faulty, &rdev->flags) &&
1775             mddev->recovery_disabled != p->recovery_disabled &&
1776             (!p->replacement || p->replacement == rdev) &&
1777             number < conf->geo.raid_disks &&
1778             enough(conf, -1)) {
1779                 err = -EBUSY;
1780                 goto abort;
1781         }
1782         *rdevp = NULL;
1783         synchronize_rcu();
1784         if (atomic_read(&rdev->nr_pending)) {
1785                 /* lost the race, try later */
1786                 err = -EBUSY;
1787                 *rdevp = rdev;
1788                 goto abort;
1789         } else if (p->replacement) {
1790                 /* We must have just cleared 'rdev' */
1791                 p->rdev = p->replacement;
1792                 clear_bit(Replacement, &p->replacement->flags);
1793                 smp_mb(); /* Make sure other CPUs may see both as identical
1794                            * but will never see neither -- if they are careful.
1795                            */
1796                 p->replacement = NULL;
1797                 clear_bit(WantReplacement, &rdev->flags);
1798         } else
1799                 /* We might have just remove the Replacement as faulty
1800                  * Clear the flag just in case
1801                  */
1802                 clear_bit(WantReplacement, &rdev->flags);
1803
1804         err = md_integrity_register(mddev);
1805
1806 abort:
1807
1808         print_conf(conf);
1809         return err;
1810 }
1811
1812 static void end_sync_read(struct bio *bio)
1813 {
1814         struct r10bio *r10_bio = bio->bi_private;
1815         struct r10conf *conf = r10_bio->mddev->private;
1816         int d;
1817
1818         if (bio == r10_bio->master_bio) {
1819                 /* this is a reshape read */
1820                 d = r10_bio->read_slot; /* really the read dev */
1821         } else
1822                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1823
1824         if (!bio->bi_error)
1825                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1826         else
1827                 /* The write handler will notice the lack of
1828                  * R10BIO_Uptodate and record any errors etc
1829                  */
1830                 atomic_add(r10_bio->sectors,
1831                            &conf->mirrors[d].rdev->corrected_errors);
1832
1833         /* for reconstruct, we always reschedule after a read.
1834          * for resync, only after all reads
1835          */
1836         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1837         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1838             atomic_dec_and_test(&r10_bio->remaining)) {
1839                 /* we have read all the blocks,
1840                  * do the comparison in process context in raid10d
1841                  */
1842                 reschedule_retry(r10_bio);
1843         }
1844 }
1845
1846 static void end_sync_request(struct r10bio *r10_bio)
1847 {
1848         struct mddev *mddev = r10_bio->mddev;
1849
1850         while (atomic_dec_and_test(&r10_bio->remaining)) {
1851                 if (r10_bio->master_bio == NULL) {
1852                         /* the primary of several recovery bios */
1853                         sector_t s = r10_bio->sectors;
1854                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1855                             test_bit(R10BIO_WriteError, &r10_bio->state))
1856                                 reschedule_retry(r10_bio);
1857                         else
1858                                 put_buf(r10_bio);
1859                         md_done_sync(mddev, s, 1);
1860                         break;
1861                 } else {
1862                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1863                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1864                             test_bit(R10BIO_WriteError, &r10_bio->state))
1865                                 reschedule_retry(r10_bio);
1866                         else
1867                                 put_buf(r10_bio);
1868                         r10_bio = r10_bio2;
1869                 }
1870         }
1871 }
1872
1873 static void end_sync_write(struct bio *bio)
1874 {
1875         struct r10bio *r10_bio = bio->bi_private;
1876         struct mddev *mddev = r10_bio->mddev;
1877         struct r10conf *conf = mddev->private;
1878         int d;
1879         sector_t first_bad;
1880         int bad_sectors;
1881         int slot;
1882         int repl;
1883         struct md_rdev *rdev = NULL;
1884
1885         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1886         if (repl)
1887                 rdev = conf->mirrors[d].replacement;
1888         else
1889                 rdev = conf->mirrors[d].rdev;
1890
1891         if (bio->bi_error) {
1892                 if (repl)
1893                         md_error(mddev, rdev);
1894                 else {
1895                         set_bit(WriteErrorSeen, &rdev->flags);
1896                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1897                                 set_bit(MD_RECOVERY_NEEDED,
1898                                         &rdev->mddev->recovery);
1899                         set_bit(R10BIO_WriteError, &r10_bio->state);
1900                 }
1901         } else if (is_badblock(rdev,
1902                              r10_bio->devs[slot].addr,
1903                              r10_bio->sectors,
1904                              &first_bad, &bad_sectors))
1905                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1906
1907         rdev_dec_pending(rdev, mddev);
1908
1909         end_sync_request(r10_bio);
1910 }
1911
1912 /*
1913  * Note: sync and recover and handled very differently for raid10
1914  * This code is for resync.
1915  * For resync, we read through virtual addresses and read all blocks.
1916  * If there is any error, we schedule a write.  The lowest numbered
1917  * drive is authoritative.
1918  * However requests come for physical address, so we need to map.
1919  * For every physical address there are raid_disks/copies virtual addresses,
1920  * which is always are least one, but is not necessarly an integer.
1921  * This means that a physical address can span multiple chunks, so we may
1922  * have to submit multiple io requests for a single sync request.
1923  */
1924 /*
1925  * We check if all blocks are in-sync and only write to blocks that
1926  * aren't in sync
1927  */
1928 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1929 {
1930         struct r10conf *conf = mddev->private;
1931         int i, first;
1932         struct bio *tbio, *fbio;
1933         int vcnt;
1934
1935         atomic_set(&r10_bio->remaining, 1);
1936
1937         /* find the first device with a block */
1938         for (i=0; i<conf->copies; i++)
1939                 if (!r10_bio->devs[i].bio->bi_error)
1940                         break;
1941
1942         if (i == conf->copies)
1943                 goto done;
1944
1945         first = i;
1946         fbio = r10_bio->devs[i].bio;
1947
1948         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1949         /* now find blocks with errors */
1950         for (i=0 ; i < conf->copies ; i++) {
1951                 int  j, d;
1952
1953                 tbio = r10_bio->devs[i].bio;
1954
1955                 if (tbio->bi_end_io != end_sync_read)
1956                         continue;
1957                 if (i == first)
1958                         continue;
1959                 if (!r10_bio->devs[i].bio->bi_error) {
1960                         /* We know that the bi_io_vec layout is the same for
1961                          * both 'first' and 'i', so we just compare them.
1962                          * All vec entries are PAGE_SIZE;
1963                          */
1964                         int sectors = r10_bio->sectors;
1965                         for (j = 0; j < vcnt; j++) {
1966                                 int len = PAGE_SIZE;
1967                                 if (sectors < (len / 512))
1968                                         len = sectors * 512;
1969                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1970                                            page_address(tbio->bi_io_vec[j].bv_page),
1971                                            len))
1972                                         break;
1973                                 sectors -= len/512;
1974                         }
1975                         if (j == vcnt)
1976                                 continue;
1977                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1978                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1979                                 /* Don't fix anything. */
1980                                 continue;
1981                 }
1982                 /* Ok, we need to write this bio, either to correct an
1983                  * inconsistency or to correct an unreadable block.
1984                  * First we need to fixup bv_offset, bv_len and
1985                  * bi_vecs, as the read request might have corrupted these
1986                  */
1987                 bio_reset(tbio);
1988
1989                 tbio->bi_vcnt = vcnt;
1990                 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
1991                 tbio->bi_rw = WRITE;
1992                 tbio->bi_private = r10_bio;
1993                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1994                 tbio->bi_end_io = end_sync_write;
1995
1996                 bio_copy_data(tbio, fbio);
1997
1998                 d = r10_bio->devs[i].devnum;
1999                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2000                 atomic_inc(&r10_bio->remaining);
2001                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2002
2003                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2004                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2005                 generic_make_request(tbio);
2006         }
2007
2008         /* Now write out to any replacement devices
2009          * that are active
2010          */
2011         for (i = 0; i < conf->copies; i++) {
2012                 int d;
2013
2014                 tbio = r10_bio->devs[i].repl_bio;
2015                 if (!tbio || !tbio->bi_end_io)
2016                         continue;
2017                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2018                     && r10_bio->devs[i].bio != fbio)
2019                         bio_copy_data(tbio, fbio);
2020                 d = r10_bio->devs[i].devnum;
2021                 atomic_inc(&r10_bio->remaining);
2022                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2023                              bio_sectors(tbio));
2024                 generic_make_request(tbio);
2025         }
2026
2027 done:
2028         if (atomic_dec_and_test(&r10_bio->remaining)) {
2029                 md_done_sync(mddev, r10_bio->sectors, 1);
2030                 put_buf(r10_bio);
2031         }
2032 }
2033
2034 /*
2035  * Now for the recovery code.
2036  * Recovery happens across physical sectors.
2037  * We recover all non-is_sync drives by finding the virtual address of
2038  * each, and then choose a working drive that also has that virt address.
2039  * There is a separate r10_bio for each non-in_sync drive.
2040  * Only the first two slots are in use. The first for reading,
2041  * The second for writing.
2042  *
2043  */
2044 static void fix_recovery_read_error(struct r10bio *r10_bio)
2045 {
2046         /* We got a read error during recovery.
2047          * We repeat the read in smaller page-sized sections.
2048          * If a read succeeds, write it to the new device or record
2049          * a bad block if we cannot.
2050          * If a read fails, record a bad block on both old and
2051          * new devices.
2052          */
2053         struct mddev *mddev = r10_bio->mddev;
2054         struct r10conf *conf = mddev->private;
2055         struct bio *bio = r10_bio->devs[0].bio;
2056         sector_t sect = 0;
2057         int sectors = r10_bio->sectors;
2058         int idx = 0;
2059         int dr = r10_bio->devs[0].devnum;
2060         int dw = r10_bio->devs[1].devnum;
2061
2062         while (sectors) {
2063                 int s = sectors;
2064                 struct md_rdev *rdev;
2065                 sector_t addr;
2066                 int ok;
2067
2068                 if (s > (PAGE_SIZE>>9))
2069                         s = PAGE_SIZE >> 9;
2070
2071                 rdev = conf->mirrors[dr].rdev;
2072                 addr = r10_bio->devs[0].addr + sect,
2073                 ok = sync_page_io(rdev,
2074                                   addr,
2075                                   s << 9,
2076                                   bio->bi_io_vec[idx].bv_page,
2077                                   READ, false);
2078                 if (ok) {
2079                         rdev = conf->mirrors[dw].rdev;
2080                         addr = r10_bio->devs[1].addr + sect;
2081                         ok = sync_page_io(rdev,
2082                                           addr,
2083                                           s << 9,
2084                                           bio->bi_io_vec[idx].bv_page,
2085                                           WRITE, false);
2086                         if (!ok) {
2087                                 set_bit(WriteErrorSeen, &rdev->flags);
2088                                 if (!test_and_set_bit(WantReplacement,
2089                                                       &rdev->flags))
2090                                         set_bit(MD_RECOVERY_NEEDED,
2091                                                 &rdev->mddev->recovery);
2092                         }
2093                 }
2094                 if (!ok) {
2095                         /* We don't worry if we cannot set a bad block -
2096                          * it really is bad so there is no loss in not
2097                          * recording it yet
2098                          */
2099                         rdev_set_badblocks(rdev, addr, s, 0);
2100
2101                         if (rdev != conf->mirrors[dw].rdev) {
2102                                 /* need bad block on destination too */
2103                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2104                                 addr = r10_bio->devs[1].addr + sect;
2105                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2106                                 if (!ok) {
2107                                         /* just abort the recovery */
2108                                         printk(KERN_NOTICE
2109                                                "md/raid10:%s: recovery aborted"
2110                                                " due to read error\n",
2111                                                mdname(mddev));
2112
2113                                         conf->mirrors[dw].recovery_disabled
2114                                                 = mddev->recovery_disabled;
2115                                         set_bit(MD_RECOVERY_INTR,
2116                                                 &mddev->recovery);
2117                                         break;
2118                                 }
2119                         }
2120                 }
2121
2122                 sectors -= s;
2123                 sect += s;
2124                 idx++;
2125         }
2126 }
2127
2128 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2129 {
2130         struct r10conf *conf = mddev->private;
2131         int d;
2132         struct bio *wbio, *wbio2;
2133
2134         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2135                 fix_recovery_read_error(r10_bio);
2136                 end_sync_request(r10_bio);
2137                 return;
2138         }
2139
2140         /*
2141          * share the pages with the first bio
2142          * and submit the write request
2143          */
2144         d = r10_bio->devs[1].devnum;
2145         wbio = r10_bio->devs[1].bio;
2146         wbio2 = r10_bio->devs[1].repl_bio;
2147         /* Need to test wbio2->bi_end_io before we call
2148          * generic_make_request as if the former is NULL,
2149          * the latter is free to free wbio2.
2150          */
2151         if (wbio2 && !wbio2->bi_end_io)
2152                 wbio2 = NULL;
2153         if (wbio->bi_end_io) {
2154                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2155                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2156                 generic_make_request(wbio);
2157         }
2158         if (wbio2) {
2159                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2160                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2161                              bio_sectors(wbio2));
2162                 generic_make_request(wbio2);
2163         }
2164 }
2165
2166 /*
2167  * Used by fix_read_error() to decay the per rdev read_errors.
2168  * We halve the read error count for every hour that has elapsed
2169  * since the last recorded read error.
2170  *
2171  */
2172 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2173 {
2174         struct timespec cur_time_mon;
2175         unsigned long hours_since_last;
2176         unsigned int read_errors = atomic_read(&rdev->read_errors);
2177
2178         ktime_get_ts(&cur_time_mon);
2179
2180         if (rdev->last_read_error.tv_sec == 0 &&
2181             rdev->last_read_error.tv_nsec == 0) {
2182                 /* first time we've seen a read error */
2183                 rdev->last_read_error = cur_time_mon;
2184                 return;
2185         }
2186
2187         hours_since_last = (cur_time_mon.tv_sec -
2188                             rdev->last_read_error.tv_sec) / 3600;
2189
2190         rdev->last_read_error = cur_time_mon;
2191
2192         /*
2193          * if hours_since_last is > the number of bits in read_errors
2194          * just set read errors to 0. We do this to avoid
2195          * overflowing the shift of read_errors by hours_since_last.
2196          */
2197         if (hours_since_last >= 8 * sizeof(read_errors))
2198                 atomic_set(&rdev->read_errors, 0);
2199         else
2200                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2201 }
2202
2203 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2204                             int sectors, struct page *page, int rw)
2205 {
2206         sector_t first_bad;
2207         int bad_sectors;
2208
2209         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2210             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2211                 return -1;
2212         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2213                 /* success */
2214                 return 1;
2215         if (rw == WRITE) {
2216                 set_bit(WriteErrorSeen, &rdev->flags);
2217                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2218                         set_bit(MD_RECOVERY_NEEDED,
2219                                 &rdev->mddev->recovery);
2220         }
2221         /* need to record an error - either for the block or the device */
2222         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2223                 md_error(rdev->mddev, rdev);
2224         return 0;
2225 }
2226
2227 /*
2228  * This is a kernel thread which:
2229  *
2230  *      1.      Retries failed read operations on working mirrors.
2231  *      2.      Updates the raid superblock when problems encounter.
2232  *      3.      Performs writes following reads for array synchronising.
2233  */
2234
2235 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2236 {
2237         int sect = 0; /* Offset from r10_bio->sector */
2238         int sectors = r10_bio->sectors;
2239         struct md_rdev*rdev;
2240         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2241         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2242
2243         /* still own a reference to this rdev, so it cannot
2244          * have been cleared recently.
2245          */
2246         rdev = conf->mirrors[d].rdev;
2247
2248         if (test_bit(Faulty, &rdev->flags))
2249                 /* drive has already been failed, just ignore any
2250                    more fix_read_error() attempts */
2251                 return;
2252
2253         check_decay_read_errors(mddev, rdev);
2254         atomic_inc(&rdev->read_errors);
2255         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2256                 char b[BDEVNAME_SIZE];
2257                 bdevname(rdev->bdev, b);
2258
2259                 printk(KERN_NOTICE
2260                        "md/raid10:%s: %s: Raid device exceeded "
2261                        "read_error threshold [cur %d:max %d]\n",
2262                        mdname(mddev), b,
2263                        atomic_read(&rdev->read_errors), max_read_errors);
2264                 printk(KERN_NOTICE
2265                        "md/raid10:%s: %s: Failing raid device\n",
2266                        mdname(mddev), b);
2267                 md_error(mddev, conf->mirrors[d].rdev);
2268                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2269                 return;
2270         }
2271
2272         while(sectors) {
2273                 int s = sectors;
2274                 int sl = r10_bio->read_slot;
2275                 int success = 0;
2276                 int start;
2277
2278                 if (s > (PAGE_SIZE>>9))
2279                         s = PAGE_SIZE >> 9;
2280
2281                 rcu_read_lock();
2282                 do {
2283                         sector_t first_bad;
2284                         int bad_sectors;
2285
2286                         d = r10_bio->devs[sl].devnum;
2287                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2288                         if (rdev &&
2289                             test_bit(In_sync, &rdev->flags) &&
2290                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2291                                         &first_bad, &bad_sectors) == 0) {
2292                                 atomic_inc(&rdev->nr_pending);
2293                                 rcu_read_unlock();
2294                                 success = sync_page_io(rdev,
2295                                                        r10_bio->devs[sl].addr +
2296                                                        sect,
2297                                                        s<<9,
2298                                                        conf->tmppage, READ, false);
2299                                 rdev_dec_pending(rdev, mddev);
2300                                 rcu_read_lock();
2301                                 if (success)
2302                                         break;
2303                         }
2304                         sl++;
2305                         if (sl == conf->copies)
2306                                 sl = 0;
2307                 } while (!success && sl != r10_bio->read_slot);
2308                 rcu_read_unlock();
2309
2310                 if (!success) {
2311                         /* Cannot read from anywhere, just mark the block
2312                          * as bad on the first device to discourage future
2313                          * reads.
2314                          */
2315                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2316                         rdev = conf->mirrors[dn].rdev;
2317
2318                         if (!rdev_set_badblocks(
2319                                     rdev,
2320                                     r10_bio->devs[r10_bio->read_slot].addr
2321                                     + sect,
2322                                     s, 0)) {
2323                                 md_error(mddev, rdev);
2324                                 r10_bio->devs[r10_bio->read_slot].bio
2325                                         = IO_BLOCKED;
2326                         }
2327                         break;
2328                 }
2329
2330                 start = sl;
2331                 /* write it back and re-read */
2332                 rcu_read_lock();
2333                 while (sl != r10_bio->read_slot) {
2334                         char b[BDEVNAME_SIZE];
2335
2336                         if (sl==0)
2337                                 sl = conf->copies;
2338                         sl--;
2339                         d = r10_bio->devs[sl].devnum;
2340                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2341                         if (!rdev ||
2342                             !test_bit(In_sync, &rdev->flags))
2343                                 continue;
2344
2345                         atomic_inc(&rdev->nr_pending);
2346                         rcu_read_unlock();
2347                         if (r10_sync_page_io(rdev,
2348                                              r10_bio->devs[sl].addr +
2349                                              sect,
2350                                              s, conf->tmppage, WRITE)
2351                             == 0) {
2352                                 /* Well, this device is dead */
2353                                 printk(KERN_NOTICE
2354                                        "md/raid10:%s: read correction "
2355                                        "write failed"
2356                                        " (%d sectors at %llu on %s)\n",
2357                                        mdname(mddev), s,
2358                                        (unsigned long long)(
2359                                                sect +
2360                                                choose_data_offset(r10_bio,
2361                                                                   rdev)),
2362                                        bdevname(rdev->bdev, b));
2363                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2364                                        "drive\n",
2365                                        mdname(mddev),
2366                                        bdevname(rdev->bdev, b));
2367                         }
2368                         rdev_dec_pending(rdev, mddev);
2369                         rcu_read_lock();
2370                 }
2371                 sl = start;
2372                 while (sl != r10_bio->read_slot) {
2373                         char b[BDEVNAME_SIZE];
2374
2375                         if (sl==0)
2376                                 sl = conf->copies;
2377                         sl--;
2378                         d = r10_bio->devs[sl].devnum;
2379                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2380                         if (!rdev ||
2381                             !test_bit(In_sync, &rdev->flags))
2382                                 continue;
2383
2384                         atomic_inc(&rdev->nr_pending);
2385                         rcu_read_unlock();
2386                         switch (r10_sync_page_io(rdev,
2387                                              r10_bio->devs[sl].addr +
2388                                              sect,
2389                                              s, conf->tmppage,
2390                                                  READ)) {
2391                         case 0:
2392                                 /* Well, this device is dead */
2393                                 printk(KERN_NOTICE
2394                                        "md/raid10:%s: unable to read back "
2395                                        "corrected sectors"
2396                                        " (%d sectors at %llu on %s)\n",
2397                                        mdname(mddev), s,
2398                                        (unsigned long long)(
2399                                                sect +
2400                                                choose_data_offset(r10_bio, rdev)),
2401                                        bdevname(rdev->bdev, b));
2402                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2403                                        "drive\n",
2404                                        mdname(mddev),
2405                                        bdevname(rdev->bdev, b));
2406                                 break;
2407                         case 1:
2408                                 printk(KERN_INFO
2409                                        "md/raid10:%s: read error corrected"
2410                                        " (%d sectors at %llu on %s)\n",
2411                                        mdname(mddev), s,
2412                                        (unsigned long long)(
2413                                                sect +
2414                                                choose_data_offset(r10_bio, rdev)),
2415                                        bdevname(rdev->bdev, b));
2416                                 atomic_add(s, &rdev->corrected_errors);
2417                         }
2418
2419                         rdev_dec_pending(rdev, mddev);
2420                         rcu_read_lock();
2421                 }
2422                 rcu_read_unlock();
2423
2424                 sectors -= s;
2425                 sect += s;
2426         }
2427 }
2428
2429 static int narrow_write_error(struct r10bio *r10_bio, int i)
2430 {
2431         struct bio *bio = r10_bio->master_bio;
2432         struct mddev *mddev = r10_bio->mddev;
2433         struct r10conf *conf = mddev->private;
2434         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2435         /* bio has the data to be written to slot 'i' where
2436          * we just recently had a write error.
2437          * We repeatedly clone the bio and trim down to one block,
2438          * then try the write.  Where the write fails we record
2439          * a bad block.
2440          * It is conceivable that the bio doesn't exactly align with
2441          * blocks.  We must handle this.
2442          *
2443          * We currently own a reference to the rdev.
2444          */
2445
2446         int block_sectors;
2447         sector_t sector;
2448         int sectors;
2449         int sect_to_write = r10_bio->sectors;
2450         int ok = 1;
2451
2452         if (rdev->badblocks.shift < 0)
2453                 return 0;
2454
2455         block_sectors = roundup(1 << rdev->badblocks.shift,
2456                                 bdev_logical_block_size(rdev->bdev) >> 9);
2457         sector = r10_bio->sector;
2458         sectors = ((r10_bio->sector + block_sectors)
2459                    & ~(sector_t)(block_sectors - 1))
2460                 - sector;
2461
2462         while (sect_to_write) {
2463                 struct bio *wbio;
2464                 if (sectors > sect_to_write)
2465                         sectors = sect_to_write;
2466                 /* Write at 'sector' for 'sectors' */
2467                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2468                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2469                 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2470                                    choose_data_offset(r10_bio, rdev) +
2471                                    (sector - r10_bio->sector));
2472                 wbio->bi_bdev = rdev->bdev;
2473                 if (submit_bio_wait(WRITE, wbio) < 0)
2474                         /* Failure! */
2475                         ok = rdev_set_badblocks(rdev, sector,
2476                                                 sectors, 0)
2477                                 && ok;
2478
2479                 bio_put(wbio);
2480                 sect_to_write -= sectors;
2481                 sector += sectors;
2482                 sectors = block_sectors;
2483         }
2484         return ok;
2485 }
2486
2487 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2488 {
2489         int slot = r10_bio->read_slot;
2490         struct bio *bio;
2491         struct r10conf *conf = mddev->private;
2492         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2493         char b[BDEVNAME_SIZE];
2494         unsigned long do_sync;
2495         int max_sectors;
2496
2497         /* we got a read error. Maybe the drive is bad.  Maybe just
2498          * the block and we can fix it.
2499          * We freeze all other IO, and try reading the block from
2500          * other devices.  When we find one, we re-write
2501          * and check it that fixes the read error.
2502          * This is all done synchronously while the array is
2503          * frozen.
2504          */
2505         bio = r10_bio->devs[slot].bio;
2506         bdevname(bio->bi_bdev, b);
2507         bio_put(bio);
2508         r10_bio->devs[slot].bio = NULL;
2509
2510         if (mddev->ro == 0) {
2511                 freeze_array(conf, 1);
2512                 fix_read_error(conf, mddev, r10_bio);
2513                 unfreeze_array(conf);
2514         } else
2515                 r10_bio->devs[slot].bio = IO_BLOCKED;
2516
2517         rdev_dec_pending(rdev, mddev);
2518
2519 read_more:
2520         rdev = read_balance(conf, r10_bio, &max_sectors);
2521         if (rdev == NULL) {
2522                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2523                        " read error for block %llu\n",
2524                        mdname(mddev), b,
2525                        (unsigned long long)r10_bio->sector);
2526                 raid_end_bio_io(r10_bio);
2527                 return;
2528         }
2529
2530         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2531         slot = r10_bio->read_slot;
2532         printk_ratelimited(
2533                 KERN_ERR
2534                 "md/raid10:%s: %s: redirecting "
2535                 "sector %llu to another mirror\n",
2536                 mdname(mddev),
2537                 bdevname(rdev->bdev, b),
2538                 (unsigned long long)r10_bio->sector);
2539         bio = bio_clone_mddev(r10_bio->master_bio,
2540                               GFP_NOIO, mddev);
2541         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2542         r10_bio->devs[slot].bio = bio;
2543         r10_bio->devs[slot].rdev = rdev;
2544         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2545                 + choose_data_offset(r10_bio, rdev);
2546         bio->bi_bdev = rdev->bdev;
2547         bio->bi_rw = READ | do_sync;
2548         bio->bi_private = r10_bio;
2549         bio->bi_end_io = raid10_end_read_request;
2550         if (max_sectors < r10_bio->sectors) {
2551                 /* Drat - have to split this up more */
2552                 struct bio *mbio = r10_bio->master_bio;
2553                 int sectors_handled =
2554                         r10_bio->sector + max_sectors
2555                         - mbio->bi_iter.bi_sector;
2556                 r10_bio->sectors = max_sectors;
2557                 spin_lock_irq(&conf->device_lock);
2558                 if (mbio->bi_phys_segments == 0)
2559                         mbio->bi_phys_segments = 2;
2560                 else
2561                         mbio->bi_phys_segments++;
2562                 spin_unlock_irq(&conf->device_lock);
2563                 generic_make_request(bio);
2564
2565                 r10_bio = mempool_alloc(conf->r10bio_pool,
2566                                         GFP_NOIO);
2567                 r10_bio->master_bio = mbio;
2568                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2569                 r10_bio->state = 0;
2570                 set_bit(R10BIO_ReadError,
2571                         &r10_bio->state);
2572                 r10_bio->mddev = mddev;
2573                 r10_bio->sector = mbio->bi_iter.bi_sector
2574                         + sectors_handled;
2575
2576                 goto read_more;
2577         } else
2578                 generic_make_request(bio);
2579 }
2580
2581 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2582 {
2583         /* Some sort of write request has finished and it
2584          * succeeded in writing where we thought there was a
2585          * bad block.  So forget the bad block.
2586          * Or possibly if failed and we need to record
2587          * a bad block.
2588          */
2589         int m;
2590         struct md_rdev *rdev;
2591
2592         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2593             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2594                 for (m = 0; m < conf->copies; m++) {
2595                         int dev = r10_bio->devs[m].devnum;
2596                         rdev = conf->mirrors[dev].rdev;
2597                         if (r10_bio->devs[m].bio == NULL)
2598                                 continue;
2599                         if (!r10_bio->devs[m].bio->bi_error) {
2600                                 rdev_clear_badblocks(
2601                                         rdev,
2602                                         r10_bio->devs[m].addr,
2603                                         r10_bio->sectors, 0);
2604                         } else {
2605                                 if (!rdev_set_badblocks(
2606                                             rdev,
2607                                             r10_bio->devs[m].addr,
2608                                             r10_bio->sectors, 0))
2609                                         md_error(conf->mddev, rdev);
2610                         }
2611                         rdev = conf->mirrors[dev].replacement;
2612                         if (r10_bio->devs[m].repl_bio == NULL)
2613                                 continue;
2614
2615                         if (!r10_bio->devs[m].repl_bio->bi_error) {
2616                                 rdev_clear_badblocks(
2617                                         rdev,
2618                                         r10_bio->devs[m].addr,
2619                                         r10_bio->sectors, 0);
2620                         } else {
2621                                 if (!rdev_set_badblocks(
2622                                             rdev,
2623                                             r10_bio->devs[m].addr,
2624                                             r10_bio->sectors, 0))
2625                                         md_error(conf->mddev, rdev);
2626                         }
2627                 }
2628                 put_buf(r10_bio);
2629         } else {
2630                 bool fail = false;
2631                 for (m = 0; m < conf->copies; m++) {
2632                         int dev = r10_bio->devs[m].devnum;
2633                         struct bio *bio = r10_bio->devs[m].bio;
2634                         rdev = conf->mirrors[dev].rdev;
2635                         if (bio == IO_MADE_GOOD) {
2636                                 rdev_clear_badblocks(
2637                                         rdev,
2638                                         r10_bio->devs[m].addr,
2639                                         r10_bio->sectors, 0);
2640                                 rdev_dec_pending(rdev, conf->mddev);
2641                         } else if (bio != NULL && bio->bi_error) {
2642                                 fail = true;
2643                                 if (!narrow_write_error(r10_bio, m)) {
2644                                         md_error(conf->mddev, rdev);
2645                                         set_bit(R10BIO_Degraded,
2646                                                 &r10_bio->state);
2647                                 }
2648                                 rdev_dec_pending(rdev, conf->mddev);
2649                         }
2650                         bio = r10_bio->devs[m].repl_bio;
2651                         rdev = conf->mirrors[dev].replacement;
2652                         if (rdev && bio == IO_MADE_GOOD) {
2653                                 rdev_clear_badblocks(
2654                                         rdev,
2655                                         r10_bio->devs[m].addr,
2656                                         r10_bio->sectors, 0);
2657                                 rdev_dec_pending(rdev, conf->mddev);
2658                         }
2659                 }
2660                 if (fail) {
2661                         spin_lock_irq(&conf->device_lock);
2662                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2663                         spin_unlock_irq(&conf->device_lock);
2664                         md_wakeup_thread(conf->mddev->thread);
2665                 } else {
2666                         if (test_bit(R10BIO_WriteError,
2667                                      &r10_bio->state))
2668                                 close_write(r10_bio);
2669                         raid_end_bio_io(r10_bio);
2670                 }
2671         }
2672 }
2673
2674 static void raid10d(struct md_thread *thread)
2675 {
2676         struct mddev *mddev = thread->mddev;
2677         struct r10bio *r10_bio;
2678         unsigned long flags;
2679         struct r10conf *conf = mddev->private;
2680         struct list_head *head = &conf->retry_list;
2681         struct blk_plug plug;
2682
2683         md_check_recovery(mddev);
2684
2685         if (!list_empty_careful(&conf->bio_end_io_list) &&
2686             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2687                 LIST_HEAD(tmp);
2688                 spin_lock_irqsave(&conf->device_lock, flags);
2689                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2690                         list_add(&tmp, &conf->bio_end_io_list);
2691                         list_del_init(&conf->bio_end_io_list);
2692                 }
2693                 spin_unlock_irqrestore(&conf->device_lock, flags);
2694                 while (!list_empty(&tmp)) {
2695                         r10_bio = list_first_entry(&tmp, struct r10bio,
2696                                                    retry_list);
2697                         list_del(&r10_bio->retry_list);
2698                         if (mddev->degraded)
2699                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2700
2701                         if (test_bit(R10BIO_WriteError,
2702                                      &r10_bio->state))
2703                                 close_write(r10_bio);
2704                         raid_end_bio_io(r10_bio);
2705                 }
2706         }
2707
2708         blk_start_plug(&plug);
2709         for (;;) {
2710
2711                 flush_pending_writes(conf);
2712
2713                 spin_lock_irqsave(&conf->device_lock, flags);
2714                 if (list_empty(head)) {
2715                         spin_unlock_irqrestore(&conf->device_lock, flags);
2716                         break;
2717                 }
2718                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2719                 list_del(head->prev);
2720                 conf->nr_queued--;
2721                 spin_unlock_irqrestore(&conf->device_lock, flags);
2722
2723                 mddev = r10_bio->mddev;
2724                 conf = mddev->private;
2725                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2726                     test_bit(R10BIO_WriteError, &r10_bio->state))
2727                         handle_write_completed(conf, r10_bio);
2728                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2729                         reshape_request_write(mddev, r10_bio);
2730                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2731                         sync_request_write(mddev, r10_bio);
2732                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2733                         recovery_request_write(mddev, r10_bio);
2734                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2735                         handle_read_error(mddev, r10_bio);
2736                 else {
2737                         /* just a partial read to be scheduled from a
2738                          * separate context
2739                          */
2740                         int slot = r10_bio->read_slot;
2741                         generic_make_request(r10_bio->devs[slot].bio);
2742                 }
2743
2744                 cond_resched();
2745                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2746                         md_check_recovery(mddev);
2747         }
2748         blk_finish_plug(&plug);
2749 }
2750
2751 static int init_resync(struct r10conf *conf)
2752 {
2753         int buffs;
2754         int i;
2755
2756         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2757         BUG_ON(conf->r10buf_pool);
2758         conf->have_replacement = 0;
2759         for (i = 0; i < conf->geo.raid_disks; i++)
2760                 if (conf->mirrors[i].replacement)
2761                         conf->have_replacement = 1;
2762         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2763         if (!conf->r10buf_pool)
2764                 return -ENOMEM;
2765         conf->next_resync = 0;
2766         return 0;
2767 }
2768
2769 /*
2770  * perform a "sync" on one "block"
2771  *
2772  * We need to make sure that no normal I/O request - particularly write
2773  * requests - conflict with active sync requests.
2774  *
2775  * This is achieved by tracking pending requests and a 'barrier' concept
2776  * that can be installed to exclude normal IO requests.
2777  *
2778  * Resync and recovery are handled very differently.
2779  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2780  *
2781  * For resync, we iterate over virtual addresses, read all copies,
2782  * and update if there are differences.  If only one copy is live,
2783  * skip it.
2784  * For recovery, we iterate over physical addresses, read a good
2785  * value for each non-in_sync drive, and over-write.
2786  *
2787  * So, for recovery we may have several outstanding complex requests for a
2788  * given address, one for each out-of-sync device.  We model this by allocating
2789  * a number of r10_bio structures, one for each out-of-sync device.
2790  * As we setup these structures, we collect all bio's together into a list
2791  * which we then process collectively to add pages, and then process again
2792  * to pass to generic_make_request.
2793  *
2794  * The r10_bio structures are linked using a borrowed master_bio pointer.
2795  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2796  * has its remaining count decremented to 0, the whole complex operation
2797  * is complete.
2798  *
2799  */
2800
2801 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2802                              int *skipped)
2803 {
2804         struct r10conf *conf = mddev->private;
2805         struct r10bio *r10_bio;
2806         struct bio *biolist = NULL, *bio;
2807         sector_t max_sector, nr_sectors;
2808         int i;
2809         int max_sync;
2810         sector_t sync_blocks;
2811         sector_t sectors_skipped = 0;
2812         int chunks_skipped = 0;
2813         sector_t chunk_mask = conf->geo.chunk_mask;
2814
2815         if (!conf->r10buf_pool)
2816                 if (init_resync(conf))
2817                         return 0;
2818
2819         /*
2820          * Allow skipping a full rebuild for incremental assembly
2821          * of a clean array, like RAID1 does.
2822          */
2823         if (mddev->bitmap == NULL &&
2824             mddev->recovery_cp == MaxSector &&
2825             mddev->reshape_position == MaxSector &&
2826             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2827             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2828             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2829             conf->fullsync == 0) {
2830                 *skipped = 1;
2831                 return mddev->dev_sectors - sector_nr;
2832         }
2833
2834  skipped:
2835         max_sector = mddev->dev_sectors;
2836         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2837             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2838                 max_sector = mddev->resync_max_sectors;
2839         if (sector_nr >= max_sector) {
2840                 /* If we aborted, we need to abort the
2841                  * sync on the 'current' bitmap chucks (there can
2842                  * be several when recovering multiple devices).
2843                  * as we may have started syncing it but not finished.
2844                  * We can find the current address in
2845                  * mddev->curr_resync, but for recovery,
2846                  * we need to convert that to several
2847                  * virtual addresses.
2848                  */
2849                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2850                         end_reshape(conf);
2851                         close_sync(conf);
2852                         return 0;
2853                 }
2854
2855                 if (mddev->curr_resync < max_sector) { /* aborted */
2856                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2857                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2858                                                 &sync_blocks, 1);
2859                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2860                                 sector_t sect =
2861                                         raid10_find_virt(conf, mddev->curr_resync, i);
2862                                 bitmap_end_sync(mddev->bitmap, sect,
2863                                                 &sync_blocks, 1);
2864                         }
2865                 } else {
2866                         /* completed sync */
2867                         if ((!mddev->bitmap || conf->fullsync)
2868                             && conf->have_replacement
2869                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2870                                 /* Completed a full sync so the replacements
2871                                  * are now fully recovered.
2872                                  */
2873                                 for (i = 0; i < conf->geo.raid_disks; i++)
2874                                         if (conf->mirrors[i].replacement)
2875                                                 conf->mirrors[i].replacement
2876                                                         ->recovery_offset
2877                                                         = MaxSector;
2878                         }
2879                         conf->fullsync = 0;
2880                 }
2881                 bitmap_close_sync(mddev->bitmap);
2882                 close_sync(conf);
2883                 *skipped = 1;
2884                 return sectors_skipped;
2885         }
2886
2887         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2888                 return reshape_request(mddev, sector_nr, skipped);
2889
2890         if (chunks_skipped >= conf->geo.raid_disks) {
2891                 /* if there has been nothing to do on any drive,
2892                  * then there is nothing to do at all..
2893                  */
2894                 *skipped = 1;
2895                 return (max_sector - sector_nr) + sectors_skipped;
2896         }
2897
2898         if (max_sector > mddev->resync_max)
2899                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2900
2901         /* make sure whole request will fit in a chunk - if chunks
2902          * are meaningful
2903          */
2904         if (conf->geo.near_copies < conf->geo.raid_disks &&
2905             max_sector > (sector_nr | chunk_mask))
2906                 max_sector = (sector_nr | chunk_mask) + 1;
2907
2908         /* Again, very different code for resync and recovery.
2909          * Both must result in an r10bio with a list of bios that
2910          * have bi_end_io, bi_sector, bi_bdev set,
2911          * and bi_private set to the r10bio.
2912          * For recovery, we may actually create several r10bios
2913          * with 2 bios in each, that correspond to the bios in the main one.
2914          * In this case, the subordinate r10bios link back through a
2915          * borrowed master_bio pointer, and the counter in the master
2916          * includes a ref from each subordinate.
2917          */
2918         /* First, we decide what to do and set ->bi_end_io
2919          * To end_sync_read if we want to read, and
2920          * end_sync_write if we will want to write.
2921          */
2922
2923         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2924         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2925                 /* recovery... the complicated one */
2926                 int j;
2927                 r10_bio = NULL;
2928
2929                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2930                         int still_degraded;
2931                         struct r10bio *rb2;
2932                         sector_t sect;
2933                         int must_sync;
2934                         int any_working;
2935                         struct raid10_info *mirror = &conf->mirrors[i];
2936
2937                         if ((mirror->rdev == NULL ||
2938                              test_bit(In_sync, &mirror->rdev->flags))
2939                             &&
2940                             (mirror->replacement == NULL ||
2941                              test_bit(Faulty,
2942                                       &mirror->replacement->flags)))
2943                                 continue;
2944
2945                         still_degraded = 0;
2946                         /* want to reconstruct this device */
2947                         rb2 = r10_bio;
2948                         sect = raid10_find_virt(conf, sector_nr, i);
2949                         if (sect >= mddev->resync_max_sectors) {
2950                                 /* last stripe is not complete - don't
2951                                  * try to recover this sector.
2952                                  */
2953                                 continue;
2954                         }
2955                         /* Unless we are doing a full sync, or a replacement
2956                          * we only need to recover the block if it is set in
2957                          * the bitmap
2958                          */
2959                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2960                                                       &sync_blocks, 1);
2961                         if (sync_blocks < max_sync)
2962                                 max_sync = sync_blocks;
2963                         if (!must_sync &&
2964                             mirror->replacement == NULL &&
2965                             !conf->fullsync) {
2966                                 /* yep, skip the sync_blocks here, but don't assume
2967                                  * that there will never be anything to do here
2968                                  */
2969                                 chunks_skipped = -1;
2970                                 continue;
2971                         }
2972
2973                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2974                         r10_bio->state = 0;
2975                         raise_barrier(conf, rb2 != NULL);
2976                         atomic_set(&r10_bio->remaining, 0);
2977
2978                         r10_bio->master_bio = (struct bio*)rb2;
2979                         if (rb2)
2980                                 atomic_inc(&rb2->remaining);
2981                         r10_bio->mddev = mddev;
2982                         set_bit(R10BIO_IsRecover, &r10_bio->state);
2983                         r10_bio->sector = sect;
2984
2985                         raid10_find_phys(conf, r10_bio);
2986
2987                         /* Need to check if the array will still be
2988                          * degraded
2989                          */
2990                         for (j = 0; j < conf->geo.raid_disks; j++)
2991                                 if (conf->mirrors[j].rdev == NULL ||
2992                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2993                                         still_degraded = 1;
2994                                         break;
2995                                 }
2996
2997                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2998                                                       &sync_blocks, still_degraded);
2999
3000                         any_working = 0;
3001                         for (j=0; j<conf->copies;j++) {
3002                                 int k;
3003                                 int d = r10_bio->devs[j].devnum;
3004                                 sector_t from_addr, to_addr;
3005                                 struct md_rdev *rdev;
3006                                 sector_t sector, first_bad;
3007                                 int bad_sectors;
3008                                 if (!conf->mirrors[d].rdev ||
3009                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3010                                         continue;
3011                                 /* This is where we read from */
3012                                 any_working = 1;
3013                                 rdev = conf->mirrors[d].rdev;
3014                                 sector = r10_bio->devs[j].addr;
3015
3016                                 if (is_badblock(rdev, sector, max_sync,
3017                                                 &first_bad, &bad_sectors)) {
3018                                         if (first_bad > sector)
3019                                                 max_sync = first_bad - sector;
3020                                         else {
3021                                                 bad_sectors -= (sector
3022                                                                 - first_bad);
3023                                                 if (max_sync > bad_sectors)
3024                                                         max_sync = bad_sectors;
3025                                                 continue;
3026                                         }
3027                                 }
3028                                 bio = r10_bio->devs[0].bio;
3029                                 bio_reset(bio);
3030                                 bio->bi_next = biolist;
3031                                 biolist = bio;
3032                                 bio->bi_private = r10_bio;
3033                                 bio->bi_end_io = end_sync_read;
3034                                 bio->bi_rw = READ;
3035                                 from_addr = r10_bio->devs[j].addr;
3036                                 bio->bi_iter.bi_sector = from_addr +
3037                                         rdev->data_offset;
3038                                 bio->bi_bdev = rdev->bdev;
3039                                 atomic_inc(&rdev->nr_pending);
3040                                 /* and we write to 'i' (if not in_sync) */
3041
3042                                 for (k=0; k<conf->copies; k++)
3043                                         if (r10_bio->devs[k].devnum == i)
3044                                                 break;
3045                                 BUG_ON(k == conf->copies);
3046                                 to_addr = r10_bio->devs[k].addr;
3047                                 r10_bio->devs[0].devnum = d;
3048                                 r10_bio->devs[0].addr = from_addr;
3049                                 r10_bio->devs[1].devnum = i;
3050                                 r10_bio->devs[1].addr = to_addr;
3051
3052                                 rdev = mirror->rdev;
3053                                 if (!test_bit(In_sync, &rdev->flags)) {
3054                                         bio = r10_bio->devs[1].bio;
3055                                         bio_reset(bio);
3056                                         bio->bi_next = biolist;
3057                                         biolist = bio;
3058                                         bio->bi_private = r10_bio;
3059                                         bio->bi_end_io = end_sync_write;
3060                                         bio->bi_rw = WRITE;
3061                                         bio->bi_iter.bi_sector = to_addr
3062                                                 + rdev->data_offset;
3063                                         bio->bi_bdev = rdev->bdev;
3064                                         atomic_inc(&r10_bio->remaining);
3065                                 } else
3066                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3067
3068                                 /* and maybe write to replacement */
3069                                 bio = r10_bio->devs[1].repl_bio;
3070                                 if (bio)
3071                                         bio->bi_end_io = NULL;
3072                                 rdev = mirror->replacement;
3073                                 /* Note: if rdev != NULL, then bio
3074                                  * cannot be NULL as r10buf_pool_alloc will
3075                                  * have allocated it.
3076                                  * So the second test here is pointless.
3077                                  * But it keeps semantic-checkers happy, and
3078                                  * this comment keeps human reviewers
3079                                  * happy.
3080                                  */
3081                                 if (rdev == NULL || bio == NULL ||
3082                                     test_bit(Faulty, &rdev->flags))
3083                                         break;
3084                                 bio_reset(bio);
3085                                 bio->bi_next = biolist;
3086                                 biolist = bio;
3087                                 bio->bi_private = r10_bio;
3088                                 bio->bi_end_io = end_sync_write;
3089                                 bio->bi_rw = WRITE;
3090                                 bio->bi_iter.bi_sector = to_addr +
3091                                         rdev->data_offset;
3092                                 bio->bi_bdev = rdev->bdev;
3093                                 atomic_inc(&r10_bio->remaining);
3094                                 break;
3095                         }
3096                         if (j == conf->copies) {
3097                                 /* Cannot recover, so abort the recovery or
3098                                  * record a bad block */
3099                                 if (any_working) {
3100                                         /* problem is that there are bad blocks
3101                                          * on other device(s)
3102                                          */
3103                                         int k;
3104                                         for (k = 0; k < conf->copies; k++)
3105                                                 if (r10_bio->devs[k].devnum == i)
3106                                                         break;
3107                                         if (!test_bit(In_sync,
3108                                                       &mirror->rdev->flags)
3109                                             && !rdev_set_badblocks(
3110                                                     mirror->rdev,
3111                                                     r10_bio->devs[k].addr,
3112                                                     max_sync, 0))
3113                                                 any_working = 0;
3114                                         if (mirror->replacement &&
3115                                             !rdev_set_badblocks(
3116                                                     mirror->replacement,
3117                                                     r10_bio->devs[k].addr,
3118                                                     max_sync, 0))
3119                                                 any_working = 0;
3120                                 }
3121                                 if (!any_working)  {
3122                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3123                                                               &mddev->recovery))
3124                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3125                                                        "working devices for recovery.\n",
3126                                                        mdname(mddev));
3127                                         mirror->recovery_disabled
3128                                                 = mddev->recovery_disabled;
3129                                 }
3130                                 put_buf(r10_bio);
3131                                 if (rb2)
3132                                         atomic_dec(&rb2->remaining);
3133                                 r10_bio = rb2;
3134                                 break;
3135                         }
3136                 }
3137                 if (biolist == NULL) {
3138                         while (r10_bio) {
3139                                 struct r10bio *rb2 = r10_bio;
3140                                 r10_bio = (struct r10bio*) rb2->master_bio;
3141                                 rb2->master_bio = NULL;
3142                                 put_buf(rb2);
3143                         }
3144                         goto giveup;
3145                 }
3146         } else {
3147                 /* resync. Schedule a read for every block at this virt offset */
3148                 int count = 0;
3149
3150                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3151
3152                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3153                                        &sync_blocks, mddev->degraded) &&
3154                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3155                                                  &mddev->recovery)) {
3156                         /* We can skip this block */
3157                         *skipped = 1;
3158                         return sync_blocks + sectors_skipped;
3159                 }
3160                 if (sync_blocks < max_sync)
3161                         max_sync = sync_blocks;
3162                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3163                 r10_bio->state = 0;
3164
3165                 r10_bio->mddev = mddev;
3166                 atomic_set(&r10_bio->remaining, 0);
3167                 raise_barrier(conf, 0);
3168                 conf->next_resync = sector_nr;
3169
3170                 r10_bio->master_bio = NULL;
3171                 r10_bio->sector = sector_nr;
3172                 set_bit(R10BIO_IsSync, &r10_bio->state);
3173                 raid10_find_phys(conf, r10_bio);
3174                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3175
3176                 for (i = 0; i < conf->copies; i++) {
3177                         int d = r10_bio->devs[i].devnum;
3178                         sector_t first_bad, sector;
3179                         int bad_sectors;
3180
3181                         if (r10_bio->devs[i].repl_bio)
3182                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3183
3184                         bio = r10_bio->devs[i].bio;
3185                         bio_reset(bio);
3186                         bio->bi_error = -EIO;
3187                         if (conf->mirrors[d].rdev == NULL ||
3188                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3189                                 continue;
3190                         sector = r10_bio->devs[i].addr;
3191                         if (is_badblock(conf->mirrors[d].rdev,
3192                                         sector, max_sync,
3193                                         &first_bad, &bad_sectors)) {
3194                                 if (first_bad > sector)
3195                                         max_sync = first_bad - sector;
3196                                 else {
3197                                         bad_sectors -= (sector - first_bad);
3198                                         if (max_sync > bad_sectors)
3199                                                 max_sync = bad_sectors;
3200                                         continue;
3201                                 }
3202                         }
3203                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3204                         atomic_inc(&r10_bio->remaining);
3205                         bio->bi_next = biolist;
3206                         biolist = bio;
3207                         bio->bi_private = r10_bio;
3208                         bio->bi_end_io = end_sync_read;
3209                         bio->bi_rw = READ;
3210                         bio->bi_iter.bi_sector = sector +
3211                                 conf->mirrors[d].rdev->data_offset;
3212                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3213                         count++;
3214
3215                         if (conf->mirrors[d].replacement == NULL ||
3216                             test_bit(Faulty,
3217                                      &conf->mirrors[d].replacement->flags))
3218                                 continue;
3219
3220                         /* Need to set up for writing to the replacement */
3221                         bio = r10_bio->devs[i].repl_bio;
3222                         bio_reset(bio);
3223                         bio->bi_error = -EIO;
3224
3225                         sector = r10_bio->devs[i].addr;
3226                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3227                         bio->bi_next = biolist;
3228                         biolist = bio;
3229                         bio->bi_private = r10_bio;
3230                         bio->bi_end_io = end_sync_write;
3231                         bio->bi_rw = WRITE;
3232                         bio->bi_iter.bi_sector = sector +
3233                                 conf->mirrors[d].replacement->data_offset;
3234                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3235                         count++;
3236                 }
3237
3238                 if (count < 2) {
3239                         for (i=0; i<conf->copies; i++) {
3240                                 int d = r10_bio->devs[i].devnum;
3241                                 if (r10_bio->devs[i].bio->bi_end_io)
3242                                         rdev_dec_pending(conf->mirrors[d].rdev,
3243                                                          mddev);
3244                                 if (r10_bio->devs[i].repl_bio &&
3245                                     r10_bio->devs[i].repl_bio->bi_end_io)
3246                                         rdev_dec_pending(
3247                                                 conf->mirrors[d].replacement,
3248                                                 mddev);
3249                         }
3250                         put_buf(r10_bio);
3251                         biolist = NULL;
3252                         goto giveup;
3253                 }
3254         }
3255
3256         nr_sectors = 0;
3257         if (sector_nr + max_sync < max_sector)
3258                 max_sector = sector_nr + max_sync;
3259         do {
3260                 struct page *page;
3261                 int len = PAGE_SIZE;
3262                 if (sector_nr + (len>>9) > max_sector)
3263                         len = (max_sector - sector_nr) << 9;
3264                 if (len == 0)
3265                         break;
3266                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3267                         struct bio *bio2;
3268                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3269                         if (bio_add_page(bio, page, len, 0))
3270                                 continue;
3271
3272                         /* stop here */
3273                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3274                         for (bio2 = biolist;
3275                              bio2 && bio2 != bio;
3276                              bio2 = bio2->bi_next) {
3277                                 /* remove last page from this bio */
3278                                 bio2->bi_vcnt--;
3279                                 bio2->bi_iter.bi_size -= len;
3280                                 bio_clear_flag(bio2, BIO_SEG_VALID);
3281                         }
3282                         goto bio_full;
3283                 }
3284                 nr_sectors += len>>9;
3285                 sector_nr += len>>9;
3286         } while (biolist->bi_vcnt < RESYNC_PAGES);
3287  bio_full:
3288         r10_bio->sectors = nr_sectors;
3289
3290         while (biolist) {
3291                 bio = biolist;
3292                 biolist = biolist->bi_next;
3293
3294                 bio->bi_next = NULL;
3295                 r10_bio = bio->bi_private;
3296                 r10_bio->sectors = nr_sectors;
3297
3298                 if (bio->bi_end_io == end_sync_read) {
3299                         md_sync_acct(bio->bi_bdev, nr_sectors);
3300                         bio->bi_error = 0;
3301                         generic_make_request(bio);
3302                 }
3303         }
3304
3305         if (sectors_skipped)
3306                 /* pretend they weren't skipped, it makes
3307                  * no important difference in this case
3308                  */
3309                 md_done_sync(mddev, sectors_skipped, 1);
3310
3311         return sectors_skipped + nr_sectors;
3312  giveup:
3313         /* There is nowhere to write, so all non-sync
3314          * drives must be failed or in resync, all drives
3315          * have a bad block, so try the next chunk...
3316          */
3317         if (sector_nr + max_sync < max_sector)
3318                 max_sector = sector_nr + max_sync;
3319
3320         sectors_skipped += (max_sector - sector_nr);
3321         chunks_skipped ++;
3322         sector_nr = max_sector;
3323         goto skipped;
3324 }
3325
3326 static sector_t
3327 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3328 {
3329         sector_t size;
3330         struct r10conf *conf = mddev->private;
3331
3332         if (!raid_disks)
3333                 raid_disks = min(conf->geo.raid_disks,
3334                                  conf->prev.raid_disks);
3335         if (!sectors)
3336                 sectors = conf->dev_sectors;
3337
3338         size = sectors >> conf->geo.chunk_shift;
3339         sector_div(size, conf->geo.far_copies);
3340         size = size * raid_disks;
3341         sector_div(size, conf->geo.near_copies);
3342
3343         return size << conf->geo.chunk_shift;
3344 }
3345
3346 static void calc_sectors(struct r10conf *conf, sector_t size)
3347 {
3348         /* Calculate the number of sectors-per-device that will
3349          * actually be used, and set conf->dev_sectors and
3350          * conf->stride
3351          */
3352
3353         size = size >> conf->geo.chunk_shift;
3354         sector_div(size, conf->geo.far_copies);
3355         size = size * conf->geo.raid_disks;
3356         sector_div(size, conf->geo.near_copies);
3357         /* 'size' is now the number of chunks in the array */
3358         /* calculate "used chunks per device" */
3359         size = size * conf->copies;
3360
3361         /* We need to round up when dividing by raid_disks to
3362          * get the stride size.
3363          */
3364         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3365
3366         conf->dev_sectors = size << conf->geo.chunk_shift;
3367
3368         if (conf->geo.far_offset)
3369                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3370         else {
3371                 sector_div(size, conf->geo.far_copies);
3372                 conf->geo.stride = size << conf->geo.chunk_shift;
3373         }
3374 }
3375
3376 enum geo_type {geo_new, geo_old, geo_start};
3377 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3378 {
3379         int nc, fc, fo;
3380         int layout, chunk, disks;
3381         switch (new) {
3382         case geo_old:
3383                 layout = mddev->layout;
3384                 chunk = mddev->chunk_sectors;
3385                 disks = mddev->raid_disks - mddev->delta_disks;
3386                 break;
3387         case geo_new:
3388                 layout = mddev->new_layout;
3389                 chunk = mddev->new_chunk_sectors;
3390                 disks = mddev->raid_disks;
3391                 break;
3392         default: /* avoid 'may be unused' warnings */
3393         case geo_start: /* new when starting reshape - raid_disks not
3394                          * updated yet. */
3395                 layout = mddev->new_layout;
3396                 chunk = mddev->new_chunk_sectors;
3397                 disks = mddev->raid_disks + mddev->delta_disks;
3398                 break;
3399         }
3400         if (layout >> 19)
3401                 return -1;
3402         if (chunk < (PAGE_SIZE >> 9) ||
3403             !is_power_of_2(chunk))
3404                 return -2;
3405         nc = layout & 255;
3406         fc = (layout >> 8) & 255;
3407         fo = layout & (1<<16);
3408         geo->raid_disks = disks;
3409         geo->near_copies = nc;
3410         geo->far_copies = fc;
3411         geo->far_offset = fo;
3412         switch (layout >> 17) {
3413         case 0: /* original layout.  simple but not always optimal */
3414                 geo->far_set_size = disks;
3415                 break;
3416         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3417                  * actually using this, but leave code here just in case.*/
3418                 geo->far_set_size = disks/fc;
3419                 WARN(geo->far_set_size < fc,
3420                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3421                 break;
3422         case 2: /* "improved" layout fixed to match documentation */
3423                 geo->far_set_size = fc * nc;
3424                 break;
3425         default: /* Not a valid layout */
3426                 return -1;
3427         }
3428         geo->chunk_mask = chunk - 1;
3429         geo->chunk_shift = ffz(~chunk);
3430         return nc*fc;
3431 }
3432
3433 static struct r10conf *setup_conf(struct mddev *mddev)
3434 {
3435         struct r10conf *conf = NULL;
3436         int err = -EINVAL;
3437         struct geom geo;
3438         int copies;
3439
3440         copies = setup_geo(&geo, mddev, geo_new);
3441
3442         if (copies == -2) {
3443                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3444                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3445                        mdname(mddev), PAGE_SIZE);
3446                 goto out;
3447         }
3448
3449         if (copies < 2 || copies > mddev->raid_disks) {
3450                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3451                        mdname(mddev), mddev->new_layout);
3452                 goto out;
3453         }
3454
3455         err = -ENOMEM;
3456         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3457         if (!conf)
3458                 goto out;
3459
3460         /* FIXME calc properly */
3461         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3462                                                             max(0,-mddev->delta_disks)),
3463                                 GFP_KERNEL);
3464         if (!conf->mirrors)
3465                 goto out;
3466
3467         conf->tmppage = alloc_page(GFP_KERNEL);
3468         if (!conf->tmppage)
3469                 goto out;
3470
3471         conf->geo = geo;
3472         conf->copies = copies;
3473         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3474                                            r10bio_pool_free, conf);
3475         if (!conf->r10bio_pool)
3476                 goto out;
3477
3478         calc_sectors(conf, mddev->dev_sectors);
3479         if (mddev->reshape_position == MaxSector) {
3480                 conf->prev = conf->geo;
3481                 conf->reshape_progress = MaxSector;
3482         } else {
3483                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3484                         err = -EINVAL;
3485                         goto out;
3486                 }
3487                 conf->reshape_progress = mddev->reshape_position;
3488                 if (conf->prev.far_offset)
3489                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3490                 else
3491                         /* far_copies must be 1 */
3492                         conf->prev.stride = conf->dev_sectors;
3493         }
3494         conf->reshape_safe = conf->reshape_progress;
3495         spin_lock_init(&conf->device_lock);
3496         INIT_LIST_HEAD(&conf->retry_list);
3497         INIT_LIST_HEAD(&conf->bio_end_io_list);
3498
3499         spin_lock_init(&conf->resync_lock);
3500         init_waitqueue_head(&conf->wait_barrier);
3501
3502         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3503         if (!conf->thread)
3504                 goto out;
3505
3506         conf->mddev = mddev;
3507         return conf;
3508
3509  out:
3510         if (err == -ENOMEM)
3511                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3512                        mdname(mddev));
3513         if (conf) {
3514                 mempool_destroy(conf->r10bio_pool);
3515                 kfree(conf->mirrors);
3516                 safe_put_page(conf->tmppage);
3517                 kfree(conf);
3518         }
3519         return ERR_PTR(err);
3520 }
3521
3522 static int run(struct mddev *mddev)
3523 {
3524         struct r10conf *conf;
3525         int i, disk_idx, chunk_size;
3526         struct raid10_info *disk;
3527         struct md_rdev *rdev;
3528         sector_t size;
3529         sector_t min_offset_diff = 0;
3530         int first = 1;
3531         bool discard_supported = false;
3532
3533         if (mddev->private == NULL) {
3534                 conf = setup_conf(mddev);
3535                 if (IS_ERR(conf))
3536                         return PTR_ERR(conf);
3537                 mddev->private = conf;
3538         }
3539         conf = mddev->private;
3540         if (!conf)
3541                 goto out;
3542
3543         mddev->thread = conf->thread;
3544         conf->thread = NULL;
3545
3546         chunk_size = mddev->chunk_sectors << 9;
3547         if (mddev->queue) {
3548                 blk_queue_max_discard_sectors(mddev->queue,
3549                                               mddev->chunk_sectors);
3550                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3551                 blk_queue_io_min(mddev->queue, chunk_size);
3552                 if (conf->geo.raid_disks % conf->geo.near_copies)
3553                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3554                 else
3555                         blk_queue_io_opt(mddev->queue, chunk_size *
3556                                          (conf->geo.raid_disks / conf->geo.near_copies));
3557         }
3558
3559         rdev_for_each(rdev, mddev) {
3560                 long long diff;
3561                 struct request_queue *q;
3562
3563                 disk_idx = rdev->raid_disk;
3564                 if (disk_idx < 0)
3565                         continue;
3566                 if (disk_idx >= conf->geo.raid_disks &&
3567                     disk_idx >= conf->prev.raid_disks)
3568                         continue;
3569                 disk = conf->mirrors + disk_idx;
3570
3571                 if (test_bit(Replacement, &rdev->flags)) {
3572                         if (disk->replacement)
3573                                 goto out_free_conf;
3574                         disk->replacement = rdev;
3575                 } else {
3576                         if (disk->rdev)
3577                                 goto out_free_conf;
3578                         disk->rdev = rdev;
3579                 }
3580                 q = bdev_get_queue(rdev->bdev);
3581                 diff = (rdev->new_data_offset - rdev->data_offset);
3582                 if (!mddev->reshape_backwards)
3583                         diff = -diff;
3584                 if (diff < 0)
3585                         diff = 0;
3586                 if (first || diff < min_offset_diff)
3587                         min_offset_diff = diff;
3588
3589                 if (mddev->gendisk)
3590                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3591                                           rdev->data_offset << 9);
3592
3593                 disk->head_position = 0;
3594
3595                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3596                         discard_supported = true;
3597         }
3598
3599         if (mddev->queue) {
3600                 if (discard_supported)
3601                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3602                                                 mddev->queue);
3603                 else
3604                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3605                                                   mddev->queue);
3606         }
3607         /* need to check that every block has at least one working mirror */
3608         if (!enough(conf, -1)) {
3609                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3610                        mdname(mddev));
3611                 goto out_free_conf;
3612         }
3613
3614         if (conf->reshape_progress != MaxSector) {
3615                 /* must ensure that shape change is supported */
3616                 if (conf->geo.far_copies != 1 &&
3617                     conf->geo.far_offset == 0)
3618                         goto out_free_conf;
3619                 if (conf->prev.far_copies != 1 &&
3620                     conf->prev.far_offset == 0)
3621                         goto out_free_conf;
3622         }
3623
3624         mddev->degraded = 0;
3625         for (i = 0;
3626              i < conf->geo.raid_disks
3627                      || i < conf->prev.raid_disks;
3628              i++) {
3629
3630                 disk = conf->mirrors + i;
3631
3632                 if (!disk->rdev && disk->replacement) {
3633                         /* The replacement is all we have - use it */
3634                         disk->rdev = disk->replacement;
3635                         disk->replacement = NULL;
3636                         clear_bit(Replacement, &disk->rdev->flags);
3637                 }
3638
3639                 if (!disk->rdev ||
3640                     !test_bit(In_sync, &disk->rdev->flags)) {
3641                         disk->head_position = 0;
3642                         mddev->degraded++;
3643                         if (disk->rdev &&
3644                             disk->rdev->saved_raid_disk < 0)
3645                                 conf->fullsync = 1;
3646                 }
3647                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3648         }
3649
3650         if (mddev->recovery_cp != MaxSector)
3651                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3652                        " -- starting background reconstruction\n",
3653                        mdname(mddev));
3654         printk(KERN_INFO
3655                 "md/raid10:%s: active with %d out of %d devices\n",
3656                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3657                 conf->geo.raid_disks);
3658         /*
3659          * Ok, everything is just fine now
3660          */
3661         mddev->dev_sectors = conf->dev_sectors;
3662         size = raid10_size(mddev, 0, 0);
3663         md_set_array_sectors(mddev, size);
3664         mddev->resync_max_sectors = size;
3665
3666         if (mddev->queue) {
3667                 int stripe = conf->geo.raid_disks *
3668                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3669
3670                 /* Calculate max read-ahead size.
3671                  * We need to readahead at least twice a whole stripe....
3672                  * maybe...
3673                  */
3674                 stripe /= conf->geo.near_copies;
3675                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3676                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3677         }
3678
3679         if (md_integrity_register(mddev))
3680                 goto out_free_conf;
3681
3682         if (conf->reshape_progress != MaxSector) {
3683                 unsigned long before_length, after_length;
3684
3685                 before_length = ((1 << conf->prev.chunk_shift) *
3686                                  conf->prev.far_copies);
3687                 after_length = ((1 << conf->geo.chunk_shift) *
3688                                 conf->geo.far_copies);
3689
3690                 if (max(before_length, after_length) > min_offset_diff) {
3691                         /* This cannot work */
3692                         printk("md/raid10: offset difference not enough to continue reshape\n");
3693                         goto out_free_conf;
3694                 }
3695                 conf->offset_diff = min_offset_diff;
3696
3697                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3698                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3699                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3700                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3701                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3702                                                         "reshape");
3703         }
3704
3705         return 0;
3706
3707 out_free_conf:
3708         md_unregister_thread(&mddev->thread);
3709         mempool_destroy(conf->r10bio_pool);
3710         safe_put_page(conf->tmppage);
3711         kfree(conf->mirrors);
3712         kfree(conf);
3713         mddev->private = NULL;
3714 out:
3715         return -EIO;
3716 }
3717
3718 static void raid10_free(struct mddev *mddev, void *priv)
3719 {
3720         struct r10conf *conf = priv;
3721
3722         mempool_destroy(conf->r10bio_pool);
3723         safe_put_page(conf->tmppage);
3724         kfree(conf->mirrors);
3725         kfree(conf->mirrors_old);
3726         kfree(conf->mirrors_new);
3727         kfree(conf);
3728 }
3729
3730 static void raid10_quiesce(struct mddev *mddev, int state)
3731 {
3732         struct r10conf *conf = mddev->private;
3733
3734         switch(state) {
3735         case 1:
3736                 raise_barrier(conf, 0);
3737                 break;
3738         case 0:
3739                 lower_barrier(conf);
3740                 break;
3741         }
3742 }
3743
3744 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3745 {
3746         /* Resize of 'far' arrays is not supported.
3747          * For 'near' and 'offset' arrays we can set the
3748          * number of sectors used to be an appropriate multiple
3749          * of the chunk size.
3750          * For 'offset', this is far_copies*chunksize.
3751          * For 'near' the multiplier is the LCM of
3752          * near_copies and raid_disks.
3753          * So if far_copies > 1 && !far_offset, fail.
3754          * Else find LCM(raid_disks, near_copy)*far_copies and
3755          * multiply by chunk_size.  Then round to this number.
3756          * This is mostly done by raid10_size()
3757          */
3758         struct r10conf *conf = mddev->private;
3759         sector_t oldsize, size;
3760
3761         if (mddev->reshape_position != MaxSector)
3762                 return -EBUSY;
3763
3764         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3765                 return -EINVAL;
3766
3767         oldsize = raid10_size(mddev, 0, 0);
3768         size = raid10_size(mddev, sectors, 0);
3769         if (mddev->external_size &&
3770             mddev->array_sectors > size)
3771                 return -EINVAL;
3772         if (mddev->bitmap) {
3773                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3774                 if (ret)
3775                         return ret;
3776         }
3777         md_set_array_sectors(mddev, size);
3778         set_capacity(mddev->gendisk, mddev->array_sectors);
3779         revalidate_disk(mddev->gendisk);
3780         if (sectors > mddev->dev_sectors &&
3781             mddev->recovery_cp > oldsize) {
3782                 mddev->recovery_cp = oldsize;
3783                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3784         }
3785         calc_sectors(conf, sectors);
3786         mddev->dev_sectors = conf->dev_sectors;
3787         mddev->resync_max_sectors = size;
3788         return 0;
3789 }
3790
3791 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3792 {
3793         struct md_rdev *rdev;
3794         struct r10conf *conf;
3795
3796         if (mddev->degraded > 0) {
3797                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3798                        mdname(mddev));
3799                 return ERR_PTR(-EINVAL);
3800         }
3801         sector_div(size, devs);
3802
3803         /* Set new parameters */
3804         mddev->new_level = 10;
3805         /* new layout: far_copies = 1, near_copies = 2 */
3806         mddev->new_layout = (1<<8) + 2;
3807         mddev->new_chunk_sectors = mddev->chunk_sectors;
3808         mddev->delta_disks = mddev->raid_disks;
3809         mddev->raid_disks *= 2;
3810         /* make sure it will be not marked as dirty */
3811         mddev->recovery_cp = MaxSector;
3812         mddev->dev_sectors = size;
3813
3814         conf = setup_conf(mddev);
3815         if (!IS_ERR(conf)) {
3816                 rdev_for_each(rdev, mddev)
3817                         if (rdev->raid_disk >= 0) {
3818                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3819                                 rdev->sectors = size;
3820                         }
3821                 conf->barrier = 1;
3822         }
3823
3824         return conf;
3825 }
3826
3827 static void *raid10_takeover(struct mddev *mddev)
3828 {
3829         struct r0conf *raid0_conf;
3830
3831         /* raid10 can take over:
3832          *  raid0 - providing it has only two drives
3833          */
3834         if (mddev->level == 0) {
3835                 /* for raid0 takeover only one zone is supported */
3836                 raid0_conf = mddev->private;
3837                 if (raid0_conf->nr_strip_zones > 1) {
3838                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3839                                " with more than one zone.\n",
3840                                mdname(mddev));
3841                         return ERR_PTR(-EINVAL);
3842                 }
3843                 return raid10_takeover_raid0(mddev,
3844                         raid0_conf->strip_zone->zone_end,
3845                         raid0_conf->strip_zone->nb_dev);
3846         }
3847         return ERR_PTR(-EINVAL);
3848 }
3849
3850 static int raid10_check_reshape(struct mddev *mddev)
3851 {
3852         /* Called when there is a request to change
3853          * - layout (to ->new_layout)
3854          * - chunk size (to ->new_chunk_sectors)
3855          * - raid_disks (by delta_disks)
3856          * or when trying to restart a reshape that was ongoing.
3857          *
3858          * We need to validate the request and possibly allocate
3859          * space if that might be an issue later.
3860          *
3861          * Currently we reject any reshape of a 'far' mode array,
3862          * allow chunk size to change if new is generally acceptable,
3863          * allow raid_disks to increase, and allow
3864          * a switch between 'near' mode and 'offset' mode.
3865          */
3866         struct r10conf *conf = mddev->private;
3867         struct geom geo;
3868
3869         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3870                 return -EINVAL;
3871
3872         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3873                 /* mustn't change number of copies */
3874                 return -EINVAL;
3875         if (geo.far_copies > 1 && !geo.far_offset)
3876                 /* Cannot switch to 'far' mode */
3877                 return -EINVAL;
3878
3879         if (mddev->array_sectors & geo.chunk_mask)
3880                         /* not factor of array size */
3881                         return -EINVAL;
3882
3883         if (!enough(conf, -1))
3884                 return -EINVAL;
3885
3886         kfree(conf->mirrors_new);
3887         conf->mirrors_new = NULL;
3888         if (mddev->delta_disks > 0) {
3889                 /* allocate new 'mirrors' list */
3890                 conf->mirrors_new = kzalloc(
3891                         sizeof(struct raid10_info)
3892                         *(mddev->raid_disks +
3893                           mddev->delta_disks),
3894                         GFP_KERNEL);
3895                 if (!conf->mirrors_new)
3896                         return -ENOMEM;
3897         }
3898         return 0;
3899 }
3900
3901 /*
3902  * Need to check if array has failed when deciding whether to:
3903  *  - start an array
3904  *  - remove non-faulty devices
3905  *  - add a spare
3906  *  - allow a reshape
3907  * This determination is simple when no reshape is happening.
3908  * However if there is a reshape, we need to carefully check
3909  * both the before and after sections.
3910  * This is because some failed devices may only affect one
3911  * of the two sections, and some non-in_sync devices may
3912  * be insync in the section most affected by failed devices.
3913  */
3914 static int calc_degraded(struct r10conf *conf)
3915 {
3916         int degraded, degraded2;
3917         int i;
3918
3919         rcu_read_lock();
3920         degraded = 0;
3921         /* 'prev' section first */
3922         for (i = 0; i < conf->prev.raid_disks; i++) {
3923                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3924                 if (!rdev || test_bit(Faulty, &rdev->flags))
3925                         degraded++;
3926                 else if (!test_bit(In_sync, &rdev->flags))
3927                         /* When we can reduce the number of devices in
3928                          * an array, this might not contribute to
3929                          * 'degraded'.  It does now.
3930                          */
3931                         degraded++;
3932         }
3933         rcu_read_unlock();
3934         if (conf->geo.raid_disks == conf->prev.raid_disks)
3935                 return degraded;
3936         rcu_read_lock();
3937         degraded2 = 0;
3938         for (i = 0; i < conf->geo.raid_disks; i++) {
3939                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3940                 if (!rdev || test_bit(Faulty, &rdev->flags))
3941                         degraded2++;
3942                 else if (!test_bit(In_sync, &rdev->flags)) {
3943                         /* If reshape is increasing the number of devices,
3944                          * this section has already been recovered, so
3945                          * it doesn't contribute to degraded.
3946                          * else it does.
3947                          */
3948                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
3949                                 degraded2++;
3950                 }
3951         }
3952         rcu_read_unlock();
3953         if (degraded2 > degraded)
3954                 return degraded2;
3955         return degraded;
3956 }
3957
3958 static int raid10_start_reshape(struct mddev *mddev)
3959 {
3960         /* A 'reshape' has been requested. This commits
3961          * the various 'new' fields and sets MD_RECOVER_RESHAPE
3962          * This also checks if there are enough spares and adds them
3963          * to the array.
3964          * We currently require enough spares to make the final
3965          * array non-degraded.  We also require that the difference
3966          * between old and new data_offset - on each device - is
3967          * enough that we never risk over-writing.
3968          */
3969
3970         unsigned long before_length, after_length;
3971         sector_t min_offset_diff = 0;
3972         int first = 1;
3973         struct geom new;
3974         struct r10conf *conf = mddev->private;
3975         struct md_rdev *rdev;
3976         int spares = 0;
3977         int ret;
3978
3979         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3980                 return -EBUSY;
3981
3982         if (setup_geo(&new, mddev, geo_start) != conf->copies)
3983                 return -EINVAL;
3984
3985         before_length = ((1 << conf->prev.chunk_shift) *
3986                          conf->prev.far_copies);
3987         after_length = ((1 << conf->geo.chunk_shift) *
3988                         conf->geo.far_copies);
3989
3990         rdev_for_each(rdev, mddev) {
3991                 if (!test_bit(In_sync, &rdev->flags)
3992                     && !test_bit(Faulty, &rdev->flags))
3993                         spares++;
3994                 if (rdev->raid_disk >= 0) {
3995                         long long diff = (rdev->new_data_offset
3996                                           - rdev->data_offset);
3997                         if (!mddev->reshape_backwards)
3998                                 diff = -diff;
3999                         if (diff < 0)
4000                                 diff = 0;
4001                         if (first || diff < min_offset_diff)
4002                                 min_offset_diff = diff;
4003                 }
4004         }
4005
4006         if (max(before_length, after_length) > min_offset_diff)
4007                 return -EINVAL;
4008
4009         if (spares < mddev->delta_disks)
4010                 return -EINVAL;
4011
4012         conf->offset_diff = min_offset_diff;
4013         spin_lock_irq(&conf->device_lock);
4014         if (conf->mirrors_new) {
4015                 memcpy(conf->mirrors_new, conf->mirrors,
4016                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4017                 smp_mb();
4018                 kfree(conf->mirrors_old);
4019                 conf->mirrors_old = conf->mirrors;
4020                 conf->mirrors = conf->mirrors_new;
4021                 conf->mirrors_new = NULL;
4022         }
4023         setup_geo(&conf->geo, mddev, geo_start);
4024         smp_mb();
4025         if (mddev->reshape_backwards) {
4026                 sector_t size = raid10_size(mddev, 0, 0);
4027                 if (size < mddev->array_sectors) {
4028                         spin_unlock_irq(&conf->device_lock);
4029                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4030                                mdname(mddev));
4031                         return -EINVAL;
4032                 }
4033                 mddev->resync_max_sectors = size;
4034                 conf->reshape_progress = size;
4035         } else
4036                 conf->reshape_progress = 0;
4037         conf->reshape_safe = conf->reshape_progress;
4038         spin_unlock_irq(&conf->device_lock);
4039
4040         if (mddev->delta_disks && mddev->bitmap) {
4041                 ret = bitmap_resize(mddev->bitmap,
4042                                     raid10_size(mddev, 0,
4043                                                 conf->geo.raid_disks),
4044                                     0, 0);
4045                 if (ret)
4046                         goto abort;
4047         }
4048         if (mddev->delta_disks > 0) {
4049                 rdev_for_each(rdev, mddev)
4050                         if (rdev->raid_disk < 0 &&
4051                             !test_bit(Faulty, &rdev->flags)) {
4052                                 if (raid10_add_disk(mddev, rdev) == 0) {
4053                                         if (rdev->raid_disk >=
4054                                             conf->prev.raid_disks)
4055                                                 set_bit(In_sync, &rdev->flags);
4056                                         else
4057                                                 rdev->recovery_offset = 0;
4058
4059                                         if (sysfs_link_rdev(mddev, rdev))
4060                                                 /* Failure here  is OK */;
4061                                 }
4062                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4063                                    && !test_bit(Faulty, &rdev->flags)) {
4064                                 /* This is a spare that was manually added */
4065                                 set_bit(In_sync, &rdev->flags);
4066                         }
4067         }
4068         /* When a reshape changes the number of devices,
4069          * ->degraded is measured against the larger of the
4070          * pre and  post numbers.
4071          */
4072         spin_lock_irq(&conf->device_lock);
4073         mddev->degraded = calc_degraded(conf);
4074         spin_unlock_irq(&conf->device_lock);
4075         mddev->raid_disks = conf->geo.raid_disks;
4076         mddev->reshape_position = conf->reshape_progress;
4077         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4078
4079         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4080         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4081         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4082         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4083         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4084
4085         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4086                                                 "reshape");
4087         if (!mddev->sync_thread) {
4088                 ret = -EAGAIN;
4089                 goto abort;
4090         }
4091         conf->reshape_checkpoint = jiffies;
4092         md_wakeup_thread(mddev->sync_thread);
4093         md_new_event(mddev);
4094         return 0;
4095
4096 abort:
4097         mddev->recovery = 0;
4098         spin_lock_irq(&conf->device_lock);
4099         conf->geo = conf->prev;
4100         mddev->raid_disks = conf->geo.raid_disks;
4101         rdev_for_each(rdev, mddev)
4102                 rdev->new_data_offset = rdev->data_offset;
4103         smp_wmb();
4104         conf->reshape_progress = MaxSector;
4105         conf->reshape_safe = MaxSector;
4106         mddev->reshape_position = MaxSector;
4107         spin_unlock_irq(&conf->device_lock);
4108         return ret;
4109 }
4110
4111 /* Calculate the last device-address that could contain
4112  * any block from the chunk that includes the array-address 's'
4113  * and report the next address.
4114  * i.e. the address returned will be chunk-aligned and after
4115  * any data that is in the chunk containing 's'.
4116  */
4117 static sector_t last_dev_address(sector_t s, struct geom *geo)
4118 {
4119         s = (s | geo->chunk_mask) + 1;
4120         s >>= geo->chunk_shift;
4121         s *= geo->near_copies;
4122         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4123         s *= geo->far_copies;
4124         s <<= geo->chunk_shift;
4125         return s;
4126 }
4127
4128 /* Calculate the first device-address that could contain
4129  * any block from the chunk that includes the array-address 's'.
4130  * This too will be the start of a chunk
4131  */
4132 static sector_t first_dev_address(sector_t s, struct geom *geo)
4133 {
4134         s >>= geo->chunk_shift;
4135         s *= geo->near_copies;
4136         sector_div(s, geo->raid_disks);
4137         s *= geo->far_copies;
4138         s <<= geo->chunk_shift;
4139         return s;
4140 }
4141
4142 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4143                                 int *skipped)
4144 {
4145         /* We simply copy at most one chunk (smallest of old and new)
4146          * at a time, possibly less if that exceeds RESYNC_PAGES,
4147          * or we hit a bad block or something.
4148          * This might mean we pause for normal IO in the middle of
4149          * a chunk, but that is not a problem as mddev->reshape_position
4150          * can record any location.
4151          *
4152          * If we will want to write to a location that isn't
4153          * yet recorded as 'safe' (i.e. in metadata on disk) then
4154          * we need to flush all reshape requests and update the metadata.
4155          *
4156          * When reshaping forwards (e.g. to more devices), we interpret
4157          * 'safe' as the earliest block which might not have been copied
4158          * down yet.  We divide this by previous stripe size and multiply
4159          * by previous stripe length to get lowest device offset that we
4160          * cannot write to yet.
4161          * We interpret 'sector_nr' as an address that we want to write to.
4162          * From this we use last_device_address() to find where we might
4163          * write to, and first_device_address on the  'safe' position.
4164          * If this 'next' write position is after the 'safe' position,
4165          * we must update the metadata to increase the 'safe' position.
4166          *
4167          * When reshaping backwards, we round in the opposite direction
4168          * and perform the reverse test:  next write position must not be
4169          * less than current safe position.
4170          *
4171          * In all this the minimum difference in data offsets
4172          * (conf->offset_diff - always positive) allows a bit of slack,
4173          * so next can be after 'safe', but not by more than offset_diff
4174          *
4175          * We need to prepare all the bios here before we start any IO
4176          * to ensure the size we choose is acceptable to all devices.
4177          * The means one for each copy for write-out and an extra one for
4178          * read-in.
4179          * We store the read-in bio in ->master_bio and the others in
4180          * ->devs[x].bio and ->devs[x].repl_bio.
4181          */
4182         struct r10conf *conf = mddev->private;
4183         struct r10bio *r10_bio;
4184         sector_t next, safe, last;
4185         int max_sectors;
4186         int nr_sectors;
4187         int s;
4188         struct md_rdev *rdev;
4189         int need_flush = 0;
4190         struct bio *blist;
4191         struct bio *bio, *read_bio;
4192         int sectors_done = 0;
4193
4194         if (sector_nr == 0) {
4195                 /* If restarting in the middle, skip the initial sectors */
4196                 if (mddev->reshape_backwards &&
4197                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4198                         sector_nr = (raid10_size(mddev, 0, 0)
4199                                      - conf->reshape_progress);
4200                 } else if (!mddev->reshape_backwards &&
4201                            conf->reshape_progress > 0)
4202                         sector_nr = conf->reshape_progress;
4203                 if (sector_nr) {
4204                         mddev->curr_resync_completed = sector_nr;
4205                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4206                         *skipped = 1;
4207                         return sector_nr;
4208                 }
4209         }
4210
4211         /* We don't use sector_nr to track where we are up to
4212          * as that doesn't work well for ->reshape_backwards.
4213          * So just use ->reshape_progress.
4214          */
4215         if (mddev->reshape_backwards) {
4216                 /* 'next' is the earliest device address that we might
4217                  * write to for this chunk in the new layout
4218                  */
4219                 next = first_dev_address(conf->reshape_progress - 1,
4220                                          &conf->geo);
4221
4222                 /* 'safe' is the last device address that we might read from
4223                  * in the old layout after a restart
4224                  */
4225                 safe = last_dev_address(conf->reshape_safe - 1,
4226                                         &conf->prev);
4227
4228                 if (next + conf->offset_diff < safe)
4229                         need_flush = 1;
4230
4231                 last = conf->reshape_progress - 1;
4232                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4233                                                & conf->prev.chunk_mask);
4234                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4235                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4236         } else {
4237                 /* 'next' is after the last device address that we
4238                  * might write to for this chunk in the new layout
4239                  */
4240                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4241
4242                 /* 'safe' is the earliest device address that we might
4243                  * read from in the old layout after a restart
4244                  */
4245                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4246
4247                 /* Need to update metadata if 'next' might be beyond 'safe'
4248                  * as that would possibly corrupt data
4249                  */
4250                 if (next > safe + conf->offset_diff)
4251                         need_flush = 1;
4252
4253                 sector_nr = conf->reshape_progress;
4254                 last  = sector_nr | (conf->geo.chunk_mask
4255                                      & conf->prev.chunk_mask);
4256
4257                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4258                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4259         }
4260
4261         if (need_flush ||
4262             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4263                 /* Need to update reshape_position in metadata */
4264                 wait_barrier(conf);
4265                 mddev->reshape_position = conf->reshape_progress;
4266                 if (mddev->reshape_backwards)
4267                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4268                                 - conf->reshape_progress;
4269                 else
4270                         mddev->curr_resync_completed = conf->reshape_progress;
4271                 conf->reshape_checkpoint = jiffies;
4272                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4273                 md_wakeup_thread(mddev->thread);
4274                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4275                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4276                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4277                         allow_barrier(conf);
4278                         return sectors_done;
4279                 }
4280                 conf->reshape_safe = mddev->reshape_position;
4281                 allow_barrier(conf);
4282         }
4283
4284 read_more:
4285         /* Now schedule reads for blocks from sector_nr to last */
4286         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4287         r10_bio->state = 0;
4288         raise_barrier(conf, sectors_done != 0);
4289         atomic_set(&r10_bio->remaining, 0);
4290         r10_bio->mddev = mddev;
4291         r10_bio->sector = sector_nr;
4292         set_bit(R10BIO_IsReshape, &r10_bio->state);
4293         r10_bio->sectors = last - sector_nr + 1;
4294         rdev = read_balance(conf, r10_bio, &max_sectors);
4295         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4296
4297         if (!rdev) {
4298                 /* Cannot read from here, so need to record bad blocks
4299                  * on all the target devices.
4300                  */
4301                 // FIXME
4302                 mempool_free(r10_bio, conf->r10buf_pool);
4303                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4304                 return sectors_done;
4305         }
4306
4307         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4308
4309         read_bio->bi_bdev = rdev->bdev;
4310         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4311                                + rdev->data_offset);
4312         read_bio->bi_private = r10_bio;
4313         read_bio->bi_end_io = end_sync_read;
4314         read_bio->bi_rw = READ;
4315         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4316         read_bio->bi_error = 0;
4317         read_bio->bi_vcnt = 0;
4318         read_bio->bi_iter.bi_size = 0;
4319         r10_bio->master_bio = read_bio;
4320         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4321
4322         /* Now find the locations in the new layout */
4323         __raid10_find_phys(&conf->geo, r10_bio);
4324
4325         blist = read_bio;
4326         read_bio->bi_next = NULL;
4327
4328         for (s = 0; s < conf->copies*2; s++) {
4329                 struct bio *b;
4330                 int d = r10_bio->devs[s/2].devnum;
4331                 struct md_rdev *rdev2;
4332                 if (s&1) {
4333                         rdev2 = conf->mirrors[d].replacement;
4334                         b = r10_bio->devs[s/2].repl_bio;
4335                 } else {
4336                         rdev2 = conf->mirrors[d].rdev;
4337                         b = r10_bio->devs[s/2].bio;
4338                 }
4339                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4340                         continue;
4341
4342                 bio_reset(b);
4343                 b->bi_bdev = rdev2->bdev;
4344                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4345                         rdev2->new_data_offset;
4346                 b->bi_private = r10_bio;
4347                 b->bi_end_io = end_reshape_write;
4348                 b->bi_rw = WRITE;
4349                 b->bi_next = blist;
4350                 blist = b;
4351         }
4352
4353         /* Now add as many pages as possible to all of these bios. */
4354
4355         nr_sectors = 0;
4356         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4357                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4358                 int len = (max_sectors - s) << 9;
4359                 if (len > PAGE_SIZE)
4360                         len = PAGE_SIZE;
4361                 for (bio = blist; bio ; bio = bio->bi_next) {
4362                         struct bio *bio2;
4363                         if (bio_add_page(bio, page, len, 0))
4364                                 continue;
4365
4366                         /* Didn't fit, must stop */
4367                         for (bio2 = blist;
4368                              bio2 && bio2 != bio;
4369                              bio2 = bio2->bi_next) {
4370                                 /* Remove last page from this bio */
4371                                 bio2->bi_vcnt--;
4372                                 bio2->bi_iter.bi_size -= len;
4373                                 bio_clear_flag(bio2, BIO_SEG_VALID);
4374                         }
4375                         goto bio_full;
4376                 }
4377                 sector_nr += len >> 9;
4378                 nr_sectors += len >> 9;
4379         }
4380 bio_full:
4381         r10_bio->sectors = nr_sectors;
4382
4383         /* Now submit the read */
4384         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4385         atomic_inc(&r10_bio->remaining);
4386         read_bio->bi_next = NULL;
4387         generic_make_request(read_bio);
4388         sector_nr += nr_sectors;
4389         sectors_done += nr_sectors;
4390         if (sector_nr <= last)
4391                 goto read_more;
4392
4393         /* Now that we have done the whole section we can
4394          * update reshape_progress
4395          */
4396         if (mddev->reshape_backwards)
4397                 conf->reshape_progress -= sectors_done;
4398         else
4399                 conf->reshape_progress += sectors_done;
4400
4401         return sectors_done;
4402 }
4403
4404 static void end_reshape_request(struct r10bio *r10_bio);
4405 static int handle_reshape_read_error(struct mddev *mddev,
4406                                      struct r10bio *r10_bio);
4407 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4408 {
4409         /* Reshape read completed.  Hopefully we have a block
4410          * to write out.
4411          * If we got a read error then we do sync 1-page reads from
4412          * elsewhere until we find the data - or give up.
4413          */
4414         struct r10conf *conf = mddev->private;
4415         int s;
4416
4417         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4418                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4419                         /* Reshape has been aborted */
4420                         md_done_sync(mddev, r10_bio->sectors, 0);
4421                         return;
4422                 }
4423
4424         /* We definitely have the data in the pages, schedule the
4425          * writes.
4426          */
4427         atomic_set(&r10_bio->remaining, 1);
4428         for (s = 0; s < conf->copies*2; s++) {
4429                 struct bio *b;
4430                 int d = r10_bio->devs[s/2].devnum;
4431                 struct md_rdev *rdev;
4432                 if (s&1) {
4433                         rdev = conf->mirrors[d].replacement;
4434                         b = r10_bio->devs[s/2].repl_bio;
4435                 } else {
4436                         rdev = conf->mirrors[d].rdev;
4437                         b = r10_bio->devs[s/2].bio;
4438                 }
4439                 if (!rdev || test_bit(Faulty, &rdev->flags))
4440                         continue;
4441                 atomic_inc(&rdev->nr_pending);
4442                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4443                 atomic_inc(&r10_bio->remaining);
4444                 b->bi_next = NULL;
4445                 generic_make_request(b);
4446         }
4447         end_reshape_request(r10_bio);
4448 }
4449
4450 static void end_reshape(struct r10conf *conf)
4451 {
4452         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4453                 return;
4454
4455         spin_lock_irq(&conf->device_lock);
4456         conf->prev = conf->geo;
4457         md_finish_reshape(conf->mddev);
4458         smp_wmb();
4459         conf->reshape_progress = MaxSector;
4460         conf->reshape_safe = MaxSector;
4461         spin_unlock_irq(&conf->device_lock);
4462
4463         /* read-ahead size must cover two whole stripes, which is
4464          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4465          */
4466         if (conf->mddev->queue) {
4467                 int stripe = conf->geo.raid_disks *
4468                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4469                 stripe /= conf->geo.near_copies;
4470                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4471                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4472         }
4473         conf->fullsync = 0;
4474 }
4475
4476 static int handle_reshape_read_error(struct mddev *mddev,
4477                                      struct r10bio *r10_bio)
4478 {
4479         /* Use sync reads to get the blocks from somewhere else */
4480         int sectors = r10_bio->sectors;
4481         struct r10conf *conf = mddev->private;
4482         struct {
4483                 struct r10bio r10_bio;
4484                 struct r10dev devs[conf->copies];
4485         } on_stack;
4486         struct r10bio *r10b = &on_stack.r10_bio;
4487         int slot = 0;
4488         int idx = 0;
4489         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4490
4491         r10b->sector = r10_bio->sector;
4492         __raid10_find_phys(&conf->prev, r10b);
4493
4494         while (sectors) {
4495                 int s = sectors;
4496                 int success = 0;
4497                 int first_slot = slot;
4498
4499                 if (s > (PAGE_SIZE >> 9))
4500                         s = PAGE_SIZE >> 9;
4501
4502                 while (!success) {
4503                         int d = r10b->devs[slot].devnum;
4504                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4505                         sector_t addr;
4506                         if (rdev == NULL ||
4507                             test_bit(Faulty, &rdev->flags) ||
4508                             !test_bit(In_sync, &rdev->flags))
4509                                 goto failed;
4510
4511                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4512                         success = sync_page_io(rdev,
4513                                                addr,
4514                                                s << 9,
4515                                                bvec[idx].bv_page,
4516                                                READ, false);
4517                         if (success)
4518                                 break;
4519                 failed:
4520                         slot++;
4521                         if (slot >= conf->copies)
4522                                 slot = 0;
4523                         if (slot == first_slot)
4524                                 break;
4525                 }
4526                 if (!success) {
4527                         /* couldn't read this block, must give up */
4528                         set_bit(MD_RECOVERY_INTR,
4529                                 &mddev->recovery);
4530                         return -EIO;
4531                 }
4532                 sectors -= s;
4533                 idx++;
4534         }
4535         return 0;
4536 }
4537
4538 static void end_reshape_write(struct bio *bio)
4539 {
4540         struct r10bio *r10_bio = bio->bi_private;
4541         struct mddev *mddev = r10_bio->mddev;
4542         struct r10conf *conf = mddev->private;
4543         int d;
4544         int slot;
4545         int repl;
4546         struct md_rdev *rdev = NULL;
4547
4548         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4549         if (repl)
4550                 rdev = conf->mirrors[d].replacement;
4551         if (!rdev) {
4552                 smp_mb();
4553                 rdev = conf->mirrors[d].rdev;
4554         }
4555
4556         if (bio->bi_error) {
4557                 /* FIXME should record badblock */
4558                 md_error(mddev, rdev);
4559         }
4560
4561         rdev_dec_pending(rdev, mddev);
4562         end_reshape_request(r10_bio);
4563 }
4564
4565 static void end_reshape_request(struct r10bio *r10_bio)
4566 {
4567         if (!atomic_dec_and_test(&r10_bio->remaining))
4568                 return;
4569         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4570         bio_put(r10_bio->master_bio);
4571         put_buf(r10_bio);
4572 }
4573
4574 static void raid10_finish_reshape(struct mddev *mddev)
4575 {
4576         struct r10conf *conf = mddev->private;
4577
4578         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4579                 return;
4580
4581         if (mddev->delta_disks > 0) {
4582                 sector_t size = raid10_size(mddev, 0, 0);
4583                 md_set_array_sectors(mddev, size);
4584                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4585                         mddev->recovery_cp = mddev->resync_max_sectors;
4586                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4587                 }
4588                 mddev->resync_max_sectors = size;
4589                 set_capacity(mddev->gendisk, mddev->array_sectors);
4590                 revalidate_disk(mddev->gendisk);
4591         } else {
4592                 int d;
4593                 for (d = conf->geo.raid_disks ;
4594                      d < conf->geo.raid_disks - mddev->delta_disks;
4595                      d++) {
4596                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4597                         if (rdev)
4598                                 clear_bit(In_sync, &rdev->flags);
4599                         rdev = conf->mirrors[d].replacement;
4600                         if (rdev)
4601                                 clear_bit(In_sync, &rdev->flags);
4602                 }
4603         }
4604         mddev->layout = mddev->new_layout;
4605         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4606         mddev->reshape_position = MaxSector;
4607         mddev->delta_disks = 0;
4608         mddev->reshape_backwards = 0;
4609 }
4610
4611 static struct md_personality raid10_personality =
4612 {
4613         .name           = "raid10",
4614         .level          = 10,
4615         .owner          = THIS_MODULE,
4616         .make_request   = make_request,
4617         .run            = run,
4618         .free           = raid10_free,
4619         .status         = status,
4620         .error_handler  = error,
4621         .hot_add_disk   = raid10_add_disk,
4622         .hot_remove_disk= raid10_remove_disk,
4623         .spare_active   = raid10_spare_active,
4624         .sync_request   = sync_request,
4625         .quiesce        = raid10_quiesce,
4626         .size           = raid10_size,
4627         .resize         = raid10_resize,
4628         .takeover       = raid10_takeover,
4629         .check_reshape  = raid10_check_reshape,
4630         .start_reshape  = raid10_start_reshape,
4631         .finish_reshape = raid10_finish_reshape,
4632         .congested      = raid10_congested,
4633 };
4634
4635 static int __init raid_init(void)
4636 {
4637         return register_md_personality(&raid10_personality);
4638 }
4639
4640 static void raid_exit(void)
4641 {
4642         unregister_md_personality(&raid10_personality);
4643 }
4644
4645 module_init(raid_init);
4646 module_exit(raid_exit);
4647 MODULE_LICENSE("GPL");
4648 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4649 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4650 MODULE_ALIAS("md-raid10");
4651 MODULE_ALIAS("md-level-10");
4652
4653 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);