]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid10.c
Merge remote-tracking branch 'md/for-next'
[karo-tx-linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *    use_far_sets_bugfixed (stored in bit 18 of layout )
43  *
44  * The data to be stored is divided into chunks using chunksize.  Each device
45  * is divided into far_copies sections.   In each section, chunks are laid out
46  * in a style similar to raid0, but near_copies copies of each chunk is stored
47  * (each on a different drive).  The starting device for each section is offset
48  * near_copies from the starting device of the previous section.  Thus there
49  * are (near_copies * far_copies) of each chunk, and each is on a different
50  * drive.  near_copies and far_copies must be at least one, and their product
51  * is at most raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of being very far
55  * apart on disk, there are adjacent stripes.
56  *
57  * The far and offset algorithms are handled slightly differently if
58  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
59  * sets that are (near_copies * far_copies) in size.  The far copied stripes
60  * are still shifted by 'near_copies' devices, but this shifting stays confined
61  * to the set rather than the entire array.  This is done to improve the number
62  * of device combinations that can fail without causing the array to fail.
63  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64  * on a device):
65  *    A B C D    A B C D E
66  *      ...         ...
67  *    D A B C    E A B C D
68  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69  *    [A B] [C D]    [A B] [C D E]
70  *    |...| |...|    |...| | ... |
71  *    [B A] [D C]    [B A] [E C D]
72  */
73
74 /*
75  * Number of guaranteed r10bios in case of extreme VM load:
76  */
77 #define NR_RAID10_BIOS 256
78
79 /* when we get a read error on a read-only array, we redirect to another
80  * device without failing the first device, or trying to over-write to
81  * correct the read error.  To keep track of bad blocks on a per-bio
82  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83  */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86  * bad-block marking which must be done from process context.  So we record
87  * the success by setting devs[n].bio to IO_MADE_GOOD
88  */
89 #define IO_MADE_GOOD ((struct bio *)2)
90
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93 /* When there are this many requests queued to be written by
94  * the raid10 thread, we become 'congested' to provide back-pressure
95  * for writeback.
96  */
97 static int max_queued_requests = 1024;
98
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103                                 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110         struct r10conf *conf = data;
111         int size = offsetof(struct r10bio, devs[conf->copies]);
112
113         /* allocate a r10bio with room for raid_disks entries in the
114          * bios array */
115         return kzalloc(size, gfp_flags);
116 }
117
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120         kfree(r10_bio);
121 }
122
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130
131 /*
132  * When performing a resync, we need to read and compare, so
133  * we need as many pages are there are copies.
134  * When performing a recovery, we need 2 bios, one for read,
135  * one for write (we recover only one drive per r10buf)
136  *
137  */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140         struct r10conf *conf = data;
141         struct page *page;
142         struct r10bio *r10_bio;
143         struct bio *bio;
144         int i, j;
145         int nalloc;
146
147         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148         if (!r10_bio)
149                 return NULL;
150
151         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153                 nalloc = conf->copies; /* resync */
154         else
155                 nalloc = 2; /* recovery */
156
157         /*
158          * Allocate bios.
159          */
160         for (j = nalloc ; j-- ; ) {
161                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162                 if (!bio)
163                         goto out_free_bio;
164                 r10_bio->devs[j].bio = bio;
165                 if (!conf->have_replacement)
166                         continue;
167                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168                 if (!bio)
169                         goto out_free_bio;
170                 r10_bio->devs[j].repl_bio = bio;
171         }
172         /*
173          * Allocate RESYNC_PAGES data pages and attach them
174          * where needed.
175          */
176         for (j = 0 ; j < nalloc; j++) {
177                 struct bio *rbio = r10_bio->devs[j].repl_bio;
178                 bio = r10_bio->devs[j].bio;
179                 for (i = 0; i < RESYNC_PAGES; i++) {
180                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181                                                &conf->mddev->recovery)) {
182                                 /* we can share bv_page's during recovery
183                                  * and reshape */
184                                 struct bio *rbio = r10_bio->devs[0].bio;
185                                 page = rbio->bi_io_vec[i].bv_page;
186                                 get_page(page);
187                         } else
188                                 page = alloc_page(gfp_flags);
189                         if (unlikely(!page))
190                                 goto out_free_pages;
191
192                         bio->bi_io_vec[i].bv_page = page;
193                         if (rbio)
194                                 rbio->bi_io_vec[i].bv_page = page;
195                 }
196         }
197
198         return r10_bio;
199
200 out_free_pages:
201         for ( ; i > 0 ; i--)
202                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203         while (j--)
204                 for (i = 0; i < RESYNC_PAGES ; i++)
205                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206         j = 0;
207 out_free_bio:
208         for ( ; j < nalloc; j++) {
209                 if (r10_bio->devs[j].bio)
210                         bio_put(r10_bio->devs[j].bio);
211                 if (r10_bio->devs[j].repl_bio)
212                         bio_put(r10_bio->devs[j].repl_bio);
213         }
214         r10bio_pool_free(r10_bio, conf);
215         return NULL;
216 }
217
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220         int i;
221         struct r10conf *conf = data;
222         struct r10bio *r10bio = __r10_bio;
223         int j;
224
225         for (j=0; j < conf->copies; j++) {
226                 struct bio *bio = r10bio->devs[j].bio;
227                 if (bio) {
228                         for (i = 0; i < RESYNC_PAGES; i++) {
229                                 safe_put_page(bio->bi_io_vec[i].bv_page);
230                                 bio->bi_io_vec[i].bv_page = NULL;
231                         }
232                         bio_put(bio);
233                 }
234                 bio = r10bio->devs[j].repl_bio;
235                 if (bio)
236                         bio_put(bio);
237         }
238         r10bio_pool_free(r10bio, conf);
239 }
240
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243         int i;
244
245         for (i = 0; i < conf->copies; i++) {
246                 struct bio **bio = & r10_bio->devs[i].bio;
247                 if (!BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250                 bio = &r10_bio->devs[i].repl_bio;
251                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252                         bio_put(*bio);
253                 *bio = NULL;
254         }
255 }
256
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259         struct r10conf *conf = r10_bio->mddev->private;
260
261         put_all_bios(conf, r10_bio);
262         mempool_free(r10_bio, conf->r10bio_pool);
263 }
264
265 static void put_buf(struct r10bio *r10_bio)
266 {
267         struct r10conf *conf = r10_bio->mddev->private;
268
269         mempool_free(r10_bio, conf->r10buf_pool);
270
271         lower_barrier(conf);
272 }
273
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276         unsigned long flags;
277         struct mddev *mddev = r10_bio->mddev;
278         struct r10conf *conf = mddev->private;
279
280         spin_lock_irqsave(&conf->device_lock, flags);
281         list_add(&r10_bio->retry_list, &conf->retry_list);
282         conf->nr_queued ++;
283         spin_unlock_irqrestore(&conf->device_lock, flags);
284
285         /* wake up frozen array... */
286         wake_up(&conf->wait_barrier);
287
288         md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298         struct bio *bio = r10_bio->master_bio;
299         int done;
300         struct r10conf *conf = r10_bio->mddev->private;
301
302         if (bio->bi_phys_segments) {
303                 unsigned long flags;
304                 spin_lock_irqsave(&conf->device_lock, flags);
305                 bio->bi_phys_segments--;
306                 done = (bio->bi_phys_segments == 0);
307                 spin_unlock_irqrestore(&conf->device_lock, flags);
308         } else
309                 done = 1;
310         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311                 bio->bi_error = -EIO;
312         if (done) {
313                 bio_endio(bio);
314                 /*
315                  * Wake up any possible resync thread that waits for the device
316                  * to go idle.
317                  */
318                 allow_barrier(conf);
319         }
320         free_r10bio(r10_bio);
321 }
322
323 /*
324  * Update disk head position estimator based on IRQ completion info.
325  */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328         struct r10conf *conf = r10_bio->mddev->private;
329
330         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331                 r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333
334 /*
335  * Find the disk number which triggered given bio
336  */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338                          struct bio *bio, int *slotp, int *replp)
339 {
340         int slot;
341         int repl = 0;
342
343         for (slot = 0; slot < conf->copies; slot++) {
344                 if (r10_bio->devs[slot].bio == bio)
345                         break;
346                 if (r10_bio->devs[slot].repl_bio == bio) {
347                         repl = 1;
348                         break;
349                 }
350         }
351
352         BUG_ON(slot == conf->copies);
353         update_head_pos(slot, r10_bio);
354
355         if (slotp)
356                 *slotp = slot;
357         if (replp)
358                 *replp = repl;
359         return r10_bio->devs[slot].devnum;
360 }
361
362 static void raid10_end_read_request(struct bio *bio)
363 {
364         int uptodate = !bio->bi_error;
365         struct r10bio *r10_bio = bio->bi_private;
366         int slot, dev;
367         struct md_rdev *rdev;
368         struct r10conf *conf = r10_bio->mddev->private;
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396                              rdev->raid_disk))
397                         uptodate = 1;
398         }
399         if (uptodate) {
400                 raid_end_bio_io(r10_bio);
401                 rdev_dec_pending(rdev, conf->mddev);
402         } else {
403                 /*
404                  * oops, read error - keep the refcount on the rdev
405                  */
406                 char b[BDEVNAME_SIZE];
407                 printk_ratelimited(KERN_ERR
408                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
409                                    mdname(conf->mddev),
410                                    bdevname(rdev->bdev, b),
411                                    (unsigned long long)r10_bio->sector);
412                 set_bit(R10BIO_ReadError, &r10_bio->state);
413                 reschedule_retry(r10_bio);
414         }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419         /* clear the bitmap if all writes complete successfully */
420         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421                         r10_bio->sectors,
422                         !test_bit(R10BIO_Degraded, &r10_bio->state),
423                         0);
424         md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429         if (atomic_dec_and_test(&r10_bio->remaining)) {
430                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431                         reschedule_retry(r10_bio);
432                 else {
433                         close_write(r10_bio);
434                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435                                 reschedule_retry(r10_bio);
436                         else
437                                 raid_end_bio_io(r10_bio);
438                 }
439         }
440 }
441
442 static void raid10_end_write_request(struct bio *bio)
443 {
444         struct r10bio *r10_bio = bio->bi_private;
445         int dev;
446         int dec_rdev = 1;
447         struct r10conf *conf = r10_bio->mddev->private;
448         int slot, repl;
449         struct md_rdev *rdev = NULL;
450
451         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453         if (repl)
454                 rdev = conf->mirrors[dev].replacement;
455         if (!rdev) {
456                 smp_rmb();
457                 repl = 0;
458                 rdev = conf->mirrors[dev].rdev;
459         }
460         /*
461          * this branch is our 'one mirror IO has finished' event handler:
462          */
463         if (bio->bi_error) {
464                 if (repl)
465                         /* Never record new bad blocks to replacement,
466                          * just fail it.
467                          */
468                         md_error(rdev->mddev, rdev);
469                 else {
470                         set_bit(WriteErrorSeen, &rdev->flags);
471                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
472                                 set_bit(MD_RECOVERY_NEEDED,
473                                         &rdev->mddev->recovery);
474                         set_bit(R10BIO_WriteError, &r10_bio->state);
475                         dec_rdev = 0;
476                 }
477         } else {
478                 /*
479                  * Set R10BIO_Uptodate in our master bio, so that
480                  * we will return a good error code for to the higher
481                  * levels even if IO on some other mirrored buffer fails.
482                  *
483                  * The 'master' represents the composite IO operation to
484                  * user-side. So if something waits for IO, then it will
485                  * wait for the 'master' bio.
486                  */
487                 sector_t first_bad;
488                 int bad_sectors;
489
490                 /*
491                  * Do not set R10BIO_Uptodate if the current device is
492                  * rebuilding or Faulty. This is because we cannot use
493                  * such device for properly reading the data back (we could
494                  * potentially use it, if the current write would have felt
495                  * before rdev->recovery_offset, but for simplicity we don't
496                  * check this here.
497                  */
498                 if (test_bit(In_sync, &rdev->flags) &&
499                     !test_bit(Faulty, &rdev->flags))
500                         set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502                 /* Maybe we can clear some bad blocks. */
503                 if (is_badblock(rdev,
504                                 r10_bio->devs[slot].addr,
505                                 r10_bio->sectors,
506                                 &first_bad, &bad_sectors)) {
507                         bio_put(bio);
508                         if (repl)
509                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510                         else
511                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512                         dec_rdev = 0;
513                         set_bit(R10BIO_MadeGood, &r10_bio->state);
514                 }
515         }
516
517         /*
518          *
519          * Let's see if all mirrored write operations have finished
520          * already.
521          */
522         one_write_done(r10_bio);
523         if (dec_rdev)
524                 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528  * RAID10 layout manager
529  * As well as the chunksize and raid_disks count, there are two
530  * parameters: near_copies and far_copies.
531  * near_copies * far_copies must be <= raid_disks.
532  * Normally one of these will be 1.
533  * If both are 1, we get raid0.
534  * If near_copies == raid_disks, we get raid1.
535  *
536  * Chunks are laid out in raid0 style with near_copies copies of the
537  * first chunk, followed by near_copies copies of the next chunk and
538  * so on.
539  * If far_copies > 1, then after 1/far_copies of the array has been assigned
540  * as described above, we start again with a device offset of near_copies.
541  * So we effectively have another copy of the whole array further down all
542  * the drives, but with blocks on different drives.
543  * With this layout, and block is never stored twice on the one device.
544  *
545  * raid10_find_phys finds the sector offset of a given virtual sector
546  * on each device that it is on.
547  *
548  * raid10_find_virt does the reverse mapping, from a device and a
549  * sector offset to a virtual address
550  */
551
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554         int n,f;
555         sector_t sector;
556         sector_t chunk;
557         sector_t stripe;
558         int dev;
559         int slot = 0;
560         int last_far_set_start, last_far_set_size;
561
562         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563         last_far_set_start *= geo->far_set_size;
564
565         last_far_set_size = geo->far_set_size;
566         last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568         /* now calculate first sector/dev */
569         chunk = r10bio->sector >> geo->chunk_shift;
570         sector = r10bio->sector & geo->chunk_mask;
571
572         chunk *= geo->near_copies;
573         stripe = chunk;
574         dev = sector_div(stripe, geo->raid_disks);
575         if (geo->far_offset)
576                 stripe *= geo->far_copies;
577
578         sector += stripe << geo->chunk_shift;
579
580         /* and calculate all the others */
581         for (n = 0; n < geo->near_copies; n++) {
582                 int d = dev;
583                 int set;
584                 sector_t s = sector;
585                 r10bio->devs[slot].devnum = d;
586                 r10bio->devs[slot].addr = s;
587                 slot++;
588
589                 for (f = 1; f < geo->far_copies; f++) {
590                         set = d / geo->far_set_size;
591                         d += geo->near_copies;
592
593                         if ((geo->raid_disks % geo->far_set_size) &&
594                             (d > last_far_set_start)) {
595                                 d -= last_far_set_start;
596                                 d %= last_far_set_size;
597                                 d += last_far_set_start;
598                         } else {
599                                 d %= geo->far_set_size;
600                                 d += geo->far_set_size * set;
601                         }
602                         s += geo->stride;
603                         r10bio->devs[slot].devnum = d;
604                         r10bio->devs[slot].addr = s;
605                         slot++;
606                 }
607                 dev++;
608                 if (dev >= geo->raid_disks) {
609                         dev = 0;
610                         sector += (geo->chunk_mask + 1);
611                 }
612         }
613 }
614
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617         struct geom *geo = &conf->geo;
618
619         if (conf->reshape_progress != MaxSector &&
620             ((r10bio->sector >= conf->reshape_progress) !=
621              conf->mddev->reshape_backwards)) {
622                 set_bit(R10BIO_Previous, &r10bio->state);
623                 geo = &conf->prev;
624         } else
625                 clear_bit(R10BIO_Previous, &r10bio->state);
626
627         __raid10_find_phys(geo, r10bio);
628 }
629
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632         sector_t offset, chunk, vchunk;
633         /* Never use conf->prev as this is only called during resync
634          * or recovery, so reshape isn't happening
635          */
636         struct geom *geo = &conf->geo;
637         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638         int far_set_size = geo->far_set_size;
639         int last_far_set_start;
640
641         if (geo->raid_disks % geo->far_set_size) {
642                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643                 last_far_set_start *= geo->far_set_size;
644
645                 if (dev >= last_far_set_start) {
646                         far_set_size = geo->far_set_size;
647                         far_set_size += (geo->raid_disks % geo->far_set_size);
648                         far_set_start = last_far_set_start;
649                 }
650         }
651
652         offset = sector & geo->chunk_mask;
653         if (geo->far_offset) {
654                 int fc;
655                 chunk = sector >> geo->chunk_shift;
656                 fc = sector_div(chunk, geo->far_copies);
657                 dev -= fc * geo->near_copies;
658                 if (dev < far_set_start)
659                         dev += far_set_size;
660         } else {
661                 while (sector >= geo->stride) {
662                         sector -= geo->stride;
663                         if (dev < (geo->near_copies + far_set_start))
664                                 dev += far_set_size - geo->near_copies;
665                         else
666                                 dev -= geo->near_copies;
667                 }
668                 chunk = sector >> geo->chunk_shift;
669         }
670         vchunk = chunk * geo->raid_disks + dev;
671         sector_div(vchunk, geo->near_copies);
672         return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /*
676  * This routine returns the disk from which the requested read should
677  * be done. There is a per-array 'next expected sequential IO' sector
678  * number - if this matches on the next IO then we use the last disk.
679  * There is also a per-disk 'last know head position' sector that is
680  * maintained from IRQ contexts, both the normal and the resync IO
681  * completion handlers update this position correctly. If there is no
682  * perfect sequential match then we pick the disk whose head is closest.
683  *
684  * If there are 2 mirrors in the same 2 devices, performance degrades
685  * because position is mirror, not device based.
686  *
687  * The rdev for the device selected will have nr_pending incremented.
688  */
689
690 /*
691  * FIXME: possibly should rethink readbalancing and do it differently
692  * depending on near_copies / far_copies geometry.
693  */
694 static struct md_rdev *read_balance(struct r10conf *conf,
695                                     struct r10bio *r10_bio,
696                                     int *max_sectors)
697 {
698         const sector_t this_sector = r10_bio->sector;
699         int disk, slot;
700         int sectors = r10_bio->sectors;
701         int best_good_sectors;
702         sector_t new_distance, best_dist;
703         struct md_rdev *best_rdev, *rdev = NULL;
704         int do_balance;
705         int best_slot;
706         struct geom *geo = &conf->geo;
707
708         raid10_find_phys(conf, r10_bio);
709         rcu_read_lock();
710 retry:
711         sectors = r10_bio->sectors;
712         best_slot = -1;
713         best_rdev = NULL;
714         best_dist = MaxSector;
715         best_good_sectors = 0;
716         do_balance = 1;
717         /*
718          * Check if we can balance. We can balance on the whole
719          * device if no resync is going on (recovery is ok), or below
720          * the resync window. We take the first readable disk when
721          * above the resync window.
722          */
723         if (conf->mddev->recovery_cp < MaxSector
724             && (this_sector + sectors >= conf->next_resync))
725                 do_balance = 0;
726
727         for (slot = 0; slot < conf->copies ; slot++) {
728                 sector_t first_bad;
729                 int bad_sectors;
730                 sector_t dev_sector;
731
732                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
733                         continue;
734                 disk = r10_bio->devs[slot].devnum;
735                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
736                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
737                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
738                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
739                 if (rdev == NULL ||
740                     test_bit(Faulty, &rdev->flags))
741                         continue;
742                 if (!test_bit(In_sync, &rdev->flags) &&
743                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
744                         continue;
745
746                 dev_sector = r10_bio->devs[slot].addr;
747                 if (is_badblock(rdev, dev_sector, sectors,
748                                 &first_bad, &bad_sectors)) {
749                         if (best_dist < MaxSector)
750                                 /* Already have a better slot */
751                                 continue;
752                         if (first_bad <= dev_sector) {
753                                 /* Cannot read here.  If this is the
754                                  * 'primary' device, then we must not read
755                                  * beyond 'bad_sectors' from another device.
756                                  */
757                                 bad_sectors -= (dev_sector - first_bad);
758                                 if (!do_balance && sectors > bad_sectors)
759                                         sectors = bad_sectors;
760                                 if (best_good_sectors > sectors)
761                                         best_good_sectors = sectors;
762                         } else {
763                                 sector_t good_sectors =
764                                         first_bad - dev_sector;
765                                 if (good_sectors > best_good_sectors) {
766                                         best_good_sectors = good_sectors;
767                                         best_slot = slot;
768                                         best_rdev = rdev;
769                                 }
770                                 if (!do_balance)
771                                         /* Must read from here */
772                                         break;
773                         }
774                         continue;
775                 } else
776                         best_good_sectors = sectors;
777
778                 if (!do_balance)
779                         break;
780
781                 /* This optimisation is debatable, and completely destroys
782                  * sequential read speed for 'far copies' arrays.  So only
783                  * keep it for 'near' arrays, and review those later.
784                  */
785                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
786                         break;
787
788                 /* for far > 1 always use the lowest address */
789                 if (geo->far_copies > 1)
790                         new_distance = r10_bio->devs[slot].addr;
791                 else
792                         new_distance = abs(r10_bio->devs[slot].addr -
793                                            conf->mirrors[disk].head_position);
794                 if (new_distance < best_dist) {
795                         best_dist = new_distance;
796                         best_slot = slot;
797                         best_rdev = rdev;
798                 }
799         }
800         if (slot >= conf->copies) {
801                 slot = best_slot;
802                 rdev = best_rdev;
803         }
804
805         if (slot >= 0) {
806                 atomic_inc(&rdev->nr_pending);
807                 if (test_bit(Faulty, &rdev->flags)) {
808                         /* Cannot risk returning a device that failed
809                          * before we inc'ed nr_pending
810                          */
811                         rdev_dec_pending(rdev, conf->mddev);
812                         goto retry;
813                 }
814                 r10_bio->read_slot = slot;
815         } else
816                 rdev = NULL;
817         rcu_read_unlock();
818         *max_sectors = best_good_sectors;
819
820         return rdev;
821 }
822
823 static int raid10_congested(struct mddev *mddev, int bits)
824 {
825         struct r10conf *conf = mddev->private;
826         int i, ret = 0;
827
828         if ((bits & (1 << WB_async_congested)) &&
829             conf->pending_count >= max_queued_requests)
830                 return 1;
831
832         rcu_read_lock();
833         for (i = 0;
834              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
835                      && ret == 0;
836              i++) {
837                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
838                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
839                         struct request_queue *q = bdev_get_queue(rdev->bdev);
840
841                         ret |= bdi_congested(&q->backing_dev_info, bits);
842                 }
843         }
844         rcu_read_unlock();
845         return ret;
846 }
847
848 static void flush_pending_writes(struct r10conf *conf)
849 {
850         /* Any writes that have been queued but are awaiting
851          * bitmap updates get flushed here.
852          */
853         spin_lock_irq(&conf->device_lock);
854
855         if (conf->pending_bio_list.head) {
856                 struct bio *bio;
857                 bio = bio_list_get(&conf->pending_bio_list);
858                 conf->pending_count = 0;
859                 spin_unlock_irq(&conf->device_lock);
860                 /* flush any pending bitmap writes to disk
861                  * before proceeding w/ I/O */
862                 bitmap_unplug(conf->mddev->bitmap);
863                 wake_up(&conf->wait_barrier);
864
865                 while (bio) { /* submit pending writes */
866                         struct bio *next = bio->bi_next;
867                         bio->bi_next = NULL;
868                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
869                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
870                                 /* Just ignore it */
871                                 bio_endio(bio);
872                         else
873                                 generic_make_request(bio);
874                         bio = next;
875                 }
876         } else
877                 spin_unlock_irq(&conf->device_lock);
878 }
879
880 /* Barriers....
881  * Sometimes we need to suspend IO while we do something else,
882  * either some resync/recovery, or reconfigure the array.
883  * To do this we raise a 'barrier'.
884  * The 'barrier' is a counter that can be raised multiple times
885  * to count how many activities are happening which preclude
886  * normal IO.
887  * We can only raise the barrier if there is no pending IO.
888  * i.e. if nr_pending == 0.
889  * We choose only to raise the barrier if no-one is waiting for the
890  * barrier to go down.  This means that as soon as an IO request
891  * is ready, no other operations which require a barrier will start
892  * until the IO request has had a chance.
893  *
894  * So: regular IO calls 'wait_barrier'.  When that returns there
895  *    is no backgroup IO happening,  It must arrange to call
896  *    allow_barrier when it has finished its IO.
897  * backgroup IO calls must call raise_barrier.  Once that returns
898  *    there is no normal IO happeing.  It must arrange to call
899  *    lower_barrier when the particular background IO completes.
900  */
901
902 static void raise_barrier(struct r10conf *conf, int force)
903 {
904         BUG_ON(force && !conf->barrier);
905         spin_lock_irq(&conf->resync_lock);
906
907         /* Wait until no block IO is waiting (unless 'force') */
908         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
909                             conf->resync_lock);
910
911         /* block any new IO from starting */
912         conf->barrier++;
913
914         /* Now wait for all pending IO to complete */
915         wait_event_lock_irq(conf->wait_barrier,
916                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
917                             conf->resync_lock);
918
919         spin_unlock_irq(&conf->resync_lock);
920 }
921
922 static void lower_barrier(struct r10conf *conf)
923 {
924         unsigned long flags;
925         spin_lock_irqsave(&conf->resync_lock, flags);
926         conf->barrier--;
927         spin_unlock_irqrestore(&conf->resync_lock, flags);
928         wake_up(&conf->wait_barrier);
929 }
930
931 static void wait_barrier(struct r10conf *conf)
932 {
933         spin_lock_irq(&conf->resync_lock);
934         if (conf->barrier) {
935                 conf->nr_waiting++;
936                 /* Wait for the barrier to drop.
937                  * However if there are already pending
938                  * requests (preventing the barrier from
939                  * rising completely), and the
940                  * pre-process bio queue isn't empty,
941                  * then don't wait, as we need to empty
942                  * that queue to get the nr_pending
943                  * count down.
944                  */
945                 wait_event_lock_irq(conf->wait_barrier,
946                                     !conf->barrier ||
947                                     (conf->nr_pending &&
948                                      current->bio_list &&
949                                      !bio_list_empty(current->bio_list)),
950                                     conf->resync_lock);
951                 conf->nr_waiting--;
952         }
953         conf->nr_pending++;
954         spin_unlock_irq(&conf->resync_lock);
955 }
956
957 static void allow_barrier(struct r10conf *conf)
958 {
959         unsigned long flags;
960         spin_lock_irqsave(&conf->resync_lock, flags);
961         conf->nr_pending--;
962         spin_unlock_irqrestore(&conf->resync_lock, flags);
963         wake_up(&conf->wait_barrier);
964 }
965
966 static void freeze_array(struct r10conf *conf, int extra)
967 {
968         /* stop syncio and normal IO and wait for everything to
969          * go quiet.
970          * We increment barrier and nr_waiting, and then
971          * wait until nr_pending match nr_queued+extra
972          * This is called in the context of one normal IO request
973          * that has failed. Thus any sync request that might be pending
974          * will be blocked by nr_pending, and we need to wait for
975          * pending IO requests to complete or be queued for re-try.
976          * Thus the number queued (nr_queued) plus this request (extra)
977          * must match the number of pending IOs (nr_pending) before
978          * we continue.
979          */
980         spin_lock_irq(&conf->resync_lock);
981         conf->barrier++;
982         conf->nr_waiting++;
983         wait_event_lock_irq_cmd(conf->wait_barrier,
984                                 conf->nr_pending == conf->nr_queued+extra,
985                                 conf->resync_lock,
986                                 flush_pending_writes(conf));
987
988         spin_unlock_irq(&conf->resync_lock);
989 }
990
991 static void unfreeze_array(struct r10conf *conf)
992 {
993         /* reverse the effect of the freeze */
994         spin_lock_irq(&conf->resync_lock);
995         conf->barrier--;
996         conf->nr_waiting--;
997         wake_up(&conf->wait_barrier);
998         spin_unlock_irq(&conf->resync_lock);
999 }
1000
1001 static sector_t choose_data_offset(struct r10bio *r10_bio,
1002                                    struct md_rdev *rdev)
1003 {
1004         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1005             test_bit(R10BIO_Previous, &r10_bio->state))
1006                 return rdev->data_offset;
1007         else
1008                 return rdev->new_data_offset;
1009 }
1010
1011 struct raid10_plug_cb {
1012         struct blk_plug_cb      cb;
1013         struct bio_list         pending;
1014         int                     pending_cnt;
1015 };
1016
1017 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1018 {
1019         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1020                                                    cb);
1021         struct mddev *mddev = plug->cb.data;
1022         struct r10conf *conf = mddev->private;
1023         struct bio *bio;
1024
1025         if (from_schedule || current->bio_list) {
1026                 spin_lock_irq(&conf->device_lock);
1027                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1028                 conf->pending_count += plug->pending_cnt;
1029                 spin_unlock_irq(&conf->device_lock);
1030                 wake_up(&conf->wait_barrier);
1031                 md_wakeup_thread(mddev->thread);
1032                 kfree(plug);
1033                 return;
1034         }
1035
1036         /* we aren't scheduling, so we can do the write-out directly. */
1037         bio = bio_list_get(&plug->pending);
1038         bitmap_unplug(mddev->bitmap);
1039         wake_up(&conf->wait_barrier);
1040
1041         while (bio) { /* submit pending writes */
1042                 struct bio *next = bio->bi_next;
1043                 bio->bi_next = NULL;
1044                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1045                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1046                         /* Just ignore it */
1047                         bio_endio(bio);
1048                 else
1049                         generic_make_request(bio);
1050                 bio = next;
1051         }
1052         kfree(plug);
1053 }
1054
1055 static void __make_request(struct mddev *mddev, struct bio *bio)
1056 {
1057         struct r10conf *conf = mddev->private;
1058         struct r10bio *r10_bio;
1059         struct bio *read_bio;
1060         int i;
1061         const int rw = bio_data_dir(bio);
1062         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1063         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1064         const unsigned long do_discard = (bio->bi_rw
1065                                           & (REQ_DISCARD | REQ_SECURE));
1066         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1067         unsigned long flags;
1068         struct md_rdev *blocked_rdev;
1069         struct blk_plug_cb *cb;
1070         struct raid10_plug_cb *plug = NULL;
1071         int sectors_handled;
1072         int max_sectors;
1073         int sectors;
1074
1075         /*
1076          * Register the new request and wait if the reconstruction
1077          * thread has put up a bar for new requests.
1078          * Continue immediately if no resync is active currently.
1079          */
1080         wait_barrier(conf);
1081
1082         sectors = bio_sectors(bio);
1083         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1084             bio->bi_iter.bi_sector < conf->reshape_progress &&
1085             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1086                 /* IO spans the reshape position.  Need to wait for
1087                  * reshape to pass
1088                  */
1089                 allow_barrier(conf);
1090                 wait_event(conf->wait_barrier,
1091                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1092                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1093                            sectors);
1094                 wait_barrier(conf);
1095         }
1096         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1097             bio_data_dir(bio) == WRITE &&
1098             (mddev->reshape_backwards
1099              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1100                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1101              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1102                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1103                 /* Need to update reshape_position in metadata */
1104                 mddev->reshape_position = conf->reshape_progress;
1105                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1106                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1107                 md_wakeup_thread(mddev->thread);
1108                 wait_event(mddev->sb_wait,
1109                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1110
1111                 conf->reshape_safe = mddev->reshape_position;
1112         }
1113
1114         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1115
1116         r10_bio->master_bio = bio;
1117         r10_bio->sectors = sectors;
1118
1119         r10_bio->mddev = mddev;
1120         r10_bio->sector = bio->bi_iter.bi_sector;
1121         r10_bio->state = 0;
1122
1123         /* We might need to issue multiple reads to different
1124          * devices if there are bad blocks around, so we keep
1125          * track of the number of reads in bio->bi_phys_segments.
1126          * If this is 0, there is only one r10_bio and no locking
1127          * will be needed when the request completes.  If it is
1128          * non-zero, then it is the number of not-completed requests.
1129          */
1130         bio->bi_phys_segments = 0;
1131         bio_clear_flag(bio, BIO_SEG_VALID);
1132
1133         if (rw == READ) {
1134                 /*
1135                  * read balancing logic:
1136                  */
1137                 struct md_rdev *rdev;
1138                 int slot;
1139
1140 read_again:
1141                 rdev = read_balance(conf, r10_bio, &max_sectors);
1142                 if (!rdev) {
1143                         raid_end_bio_io(r10_bio);
1144                         return;
1145                 }
1146                 slot = r10_bio->read_slot;
1147
1148                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1149                 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1150                          max_sectors);
1151
1152                 r10_bio->devs[slot].bio = read_bio;
1153                 r10_bio->devs[slot].rdev = rdev;
1154
1155                 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1156                         choose_data_offset(r10_bio, rdev);
1157                 read_bio->bi_bdev = rdev->bdev;
1158                 read_bio->bi_end_io = raid10_end_read_request;
1159                 read_bio->bi_rw = READ | do_sync;
1160                 read_bio->bi_private = r10_bio;
1161
1162                 if (max_sectors < r10_bio->sectors) {
1163                         /* Could not read all from this device, so we will
1164                          * need another r10_bio.
1165                          */
1166                         sectors_handled = (r10_bio->sector + max_sectors
1167                                            - bio->bi_iter.bi_sector);
1168                         r10_bio->sectors = max_sectors;
1169                         spin_lock_irq(&conf->device_lock);
1170                         if (bio->bi_phys_segments == 0)
1171                                 bio->bi_phys_segments = 2;
1172                         else
1173                                 bio->bi_phys_segments++;
1174                         spin_unlock_irq(&conf->device_lock);
1175                         /* Cannot call generic_make_request directly
1176                          * as that will be queued in __generic_make_request
1177                          * and subsequent mempool_alloc might block
1178                          * waiting for it.  so hand bio over to raid10d.
1179                          */
1180                         reschedule_retry(r10_bio);
1181
1182                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1183
1184                         r10_bio->master_bio = bio;
1185                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1186                         r10_bio->state = 0;
1187                         r10_bio->mddev = mddev;
1188                         r10_bio->sector = bio->bi_iter.bi_sector +
1189                                 sectors_handled;
1190                         goto read_again;
1191                 } else
1192                         generic_make_request(read_bio);
1193                 return;
1194         }
1195
1196         /*
1197          * WRITE:
1198          */
1199         if (conf->pending_count >= max_queued_requests) {
1200                 md_wakeup_thread(mddev->thread);
1201                 wait_event(conf->wait_barrier,
1202                            conf->pending_count < max_queued_requests);
1203         }
1204         /* first select target devices under rcu_lock and
1205          * inc refcount on their rdev.  Record them by setting
1206          * bios[x] to bio
1207          * If there are known/acknowledged bad blocks on any device
1208          * on which we have seen a write error, we want to avoid
1209          * writing to those blocks.  This potentially requires several
1210          * writes to write around the bad blocks.  Each set of writes
1211          * gets its own r10_bio with a set of bios attached.  The number
1212          * of r10_bios is recored in bio->bi_phys_segments just as with
1213          * the read case.
1214          */
1215
1216         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1217         raid10_find_phys(conf, r10_bio);
1218 retry_write:
1219         blocked_rdev = NULL;
1220         rcu_read_lock();
1221         max_sectors = r10_bio->sectors;
1222
1223         for (i = 0;  i < conf->copies; i++) {
1224                 int d = r10_bio->devs[i].devnum;
1225                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1226                 struct md_rdev *rrdev = rcu_dereference(
1227                         conf->mirrors[d].replacement);
1228                 if (rdev == rrdev)
1229                         rrdev = NULL;
1230                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1231                         atomic_inc(&rdev->nr_pending);
1232                         blocked_rdev = rdev;
1233                         break;
1234                 }
1235                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1236                         atomic_inc(&rrdev->nr_pending);
1237                         blocked_rdev = rrdev;
1238                         break;
1239                 }
1240                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1241                         rdev = NULL;
1242                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1243                         rrdev = NULL;
1244
1245                 r10_bio->devs[i].bio = NULL;
1246                 r10_bio->devs[i].repl_bio = NULL;
1247
1248                 if (!rdev && !rrdev) {
1249                         set_bit(R10BIO_Degraded, &r10_bio->state);
1250                         continue;
1251                 }
1252                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1253                         sector_t first_bad;
1254                         sector_t dev_sector = r10_bio->devs[i].addr;
1255                         int bad_sectors;
1256                         int is_bad;
1257
1258                         is_bad = is_badblock(rdev, dev_sector,
1259                                              max_sectors,
1260                                              &first_bad, &bad_sectors);
1261                         if (is_bad < 0) {
1262                                 /* Mustn't write here until the bad block
1263                                  * is acknowledged
1264                                  */
1265                                 atomic_inc(&rdev->nr_pending);
1266                                 set_bit(BlockedBadBlocks, &rdev->flags);
1267                                 blocked_rdev = rdev;
1268                                 break;
1269                         }
1270                         if (is_bad && first_bad <= dev_sector) {
1271                                 /* Cannot write here at all */
1272                                 bad_sectors -= (dev_sector - first_bad);
1273                                 if (bad_sectors < max_sectors)
1274                                         /* Mustn't write more than bad_sectors
1275                                          * to other devices yet
1276                                          */
1277                                         max_sectors = bad_sectors;
1278                                 /* We don't set R10BIO_Degraded as that
1279                                  * only applies if the disk is missing,
1280                                  * so it might be re-added, and we want to
1281                                  * know to recover this chunk.
1282                                  * In this case the device is here, and the
1283                                  * fact that this chunk is not in-sync is
1284                                  * recorded in the bad block log.
1285                                  */
1286                                 continue;
1287                         }
1288                         if (is_bad) {
1289                                 int good_sectors = first_bad - dev_sector;
1290                                 if (good_sectors < max_sectors)
1291                                         max_sectors = good_sectors;
1292                         }
1293                 }
1294                 if (rdev) {
1295                         r10_bio->devs[i].bio = bio;
1296                         atomic_inc(&rdev->nr_pending);
1297                 }
1298                 if (rrdev) {
1299                         r10_bio->devs[i].repl_bio = bio;
1300                         atomic_inc(&rrdev->nr_pending);
1301                 }
1302         }
1303         rcu_read_unlock();
1304
1305         if (unlikely(blocked_rdev)) {
1306                 /* Have to wait for this device to get unblocked, then retry */
1307                 int j;
1308                 int d;
1309
1310                 for (j = 0; j < i; j++) {
1311                         if (r10_bio->devs[j].bio) {
1312                                 d = r10_bio->devs[j].devnum;
1313                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1314                         }
1315                         if (r10_bio->devs[j].repl_bio) {
1316                                 struct md_rdev *rdev;
1317                                 d = r10_bio->devs[j].devnum;
1318                                 rdev = conf->mirrors[d].replacement;
1319                                 if (!rdev) {
1320                                         /* Race with remove_disk */
1321                                         smp_mb();
1322                                         rdev = conf->mirrors[d].rdev;
1323                                 }
1324                                 rdev_dec_pending(rdev, mddev);
1325                         }
1326                 }
1327                 allow_barrier(conf);
1328                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1329                 wait_barrier(conf);
1330                 goto retry_write;
1331         }
1332
1333         if (max_sectors < r10_bio->sectors) {
1334                 /* We are splitting this into multiple parts, so
1335                  * we need to prepare for allocating another r10_bio.
1336                  */
1337                 r10_bio->sectors = max_sectors;
1338                 spin_lock_irq(&conf->device_lock);
1339                 if (bio->bi_phys_segments == 0)
1340                         bio->bi_phys_segments = 2;
1341                 else
1342                         bio->bi_phys_segments++;
1343                 spin_unlock_irq(&conf->device_lock);
1344         }
1345         sectors_handled = r10_bio->sector + max_sectors -
1346                 bio->bi_iter.bi_sector;
1347
1348         atomic_set(&r10_bio->remaining, 1);
1349         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1350
1351         for (i = 0; i < conf->copies; i++) {
1352                 struct bio *mbio;
1353                 int d = r10_bio->devs[i].devnum;
1354                 if (r10_bio->devs[i].bio) {
1355                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1356                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1357                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1358                                  max_sectors);
1359                         r10_bio->devs[i].bio = mbio;
1360
1361                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1362                                            choose_data_offset(r10_bio,
1363                                                               rdev));
1364                         mbio->bi_bdev = rdev->bdev;
1365                         mbio->bi_end_io = raid10_end_write_request;
1366                         mbio->bi_rw =
1367                                 WRITE | do_sync | do_fua | do_discard | do_same;
1368                         mbio->bi_private = r10_bio;
1369
1370                         atomic_inc(&r10_bio->remaining);
1371
1372                         cb = blk_check_plugged(raid10_unplug, mddev,
1373                                                sizeof(*plug));
1374                         if (cb)
1375                                 plug = container_of(cb, struct raid10_plug_cb,
1376                                                     cb);
1377                         else
1378                                 plug = NULL;
1379                         spin_lock_irqsave(&conf->device_lock, flags);
1380                         if (plug) {
1381                                 bio_list_add(&plug->pending, mbio);
1382                                 plug->pending_cnt++;
1383                         } else {
1384                                 bio_list_add(&conf->pending_bio_list, mbio);
1385                                 conf->pending_count++;
1386                         }
1387                         spin_unlock_irqrestore(&conf->device_lock, flags);
1388                         if (!plug)
1389                                 md_wakeup_thread(mddev->thread);
1390                 }
1391
1392                 if (r10_bio->devs[i].repl_bio) {
1393                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1394                         if (rdev == NULL) {
1395                                 /* Replacement just got moved to main 'rdev' */
1396                                 smp_mb();
1397                                 rdev = conf->mirrors[d].rdev;
1398                         }
1399                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1400                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1401                                  max_sectors);
1402                         r10_bio->devs[i].repl_bio = mbio;
1403
1404                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1405                                            choose_data_offset(
1406                                                    r10_bio, rdev));
1407                         mbio->bi_bdev = rdev->bdev;
1408                         mbio->bi_end_io = raid10_end_write_request;
1409                         mbio->bi_rw =
1410                                 WRITE | do_sync | do_fua | do_discard | do_same;
1411                         mbio->bi_private = r10_bio;
1412
1413                         atomic_inc(&r10_bio->remaining);
1414                         spin_lock_irqsave(&conf->device_lock, flags);
1415                         bio_list_add(&conf->pending_bio_list, mbio);
1416                         conf->pending_count++;
1417                         spin_unlock_irqrestore(&conf->device_lock, flags);
1418                         if (!mddev_check_plugged(mddev))
1419                                 md_wakeup_thread(mddev->thread);
1420                 }
1421         }
1422
1423         /* Don't remove the bias on 'remaining' (one_write_done) until
1424          * after checking if we need to go around again.
1425          */
1426
1427         if (sectors_handled < bio_sectors(bio)) {
1428                 one_write_done(r10_bio);
1429                 /* We need another r10_bio.  It has already been counted
1430                  * in bio->bi_phys_segments.
1431                  */
1432                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1433
1434                 r10_bio->master_bio = bio;
1435                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1436
1437                 r10_bio->mddev = mddev;
1438                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439                 r10_bio->state = 0;
1440                 goto retry_write;
1441         }
1442         one_write_done(r10_bio);
1443 }
1444
1445 static void make_request(struct mddev *mddev, struct bio *bio)
1446 {
1447         struct r10conf *conf = mddev->private;
1448         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1449         int chunk_sects = chunk_mask + 1;
1450
1451         struct bio *split;
1452
1453         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1454                 md_flush_request(mddev, bio);
1455                 return;
1456         }
1457
1458         md_write_start(mddev, bio);
1459
1460         do {
1461
1462                 /*
1463                  * If this request crosses a chunk boundary, we need to split
1464                  * it.
1465                  */
1466                 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1467                              bio_sectors(bio) > chunk_sects
1468                              && (conf->geo.near_copies < conf->geo.raid_disks
1469                                  || conf->prev.near_copies <
1470                                  conf->prev.raid_disks))) {
1471                         split = bio_split(bio, chunk_sects -
1472                                           (bio->bi_iter.bi_sector &
1473                                            (chunk_sects - 1)),
1474                                           GFP_NOIO, fs_bio_set);
1475                         bio_chain(split, bio);
1476                 } else {
1477                         split = bio;
1478                 }
1479
1480                 __make_request(mddev, split);
1481         } while (split != bio);
1482
1483         /* In case raid10d snuck in to freeze_array */
1484         wake_up(&conf->wait_barrier);
1485 }
1486
1487 static void status(struct seq_file *seq, struct mddev *mddev)
1488 {
1489         struct r10conf *conf = mddev->private;
1490         int i;
1491
1492         if (conf->geo.near_copies < conf->geo.raid_disks)
1493                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1494         if (conf->geo.near_copies > 1)
1495                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1496         if (conf->geo.far_copies > 1) {
1497                 if (conf->geo.far_offset)
1498                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1499                 else
1500                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1501                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1502                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1503         }
1504         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1505                                         conf->geo.raid_disks - mddev->degraded);
1506         for (i = 0; i < conf->geo.raid_disks; i++)
1507                 seq_printf(seq, "%s",
1508                               conf->mirrors[i].rdev &&
1509                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1510         seq_printf(seq, "]");
1511 }
1512
1513 /* check if there are enough drives for
1514  * every block to appear on atleast one.
1515  * Don't consider the device numbered 'ignore'
1516  * as we might be about to remove it.
1517  */
1518 static int _enough(struct r10conf *conf, int previous, int ignore)
1519 {
1520         int first = 0;
1521         int has_enough = 0;
1522         int disks, ncopies;
1523         if (previous) {
1524                 disks = conf->prev.raid_disks;
1525                 ncopies = conf->prev.near_copies;
1526         } else {
1527                 disks = conf->geo.raid_disks;
1528                 ncopies = conf->geo.near_copies;
1529         }
1530
1531         rcu_read_lock();
1532         do {
1533                 int n = conf->copies;
1534                 int cnt = 0;
1535                 int this = first;
1536                 while (n--) {
1537                         struct md_rdev *rdev;
1538                         if (this != ignore &&
1539                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1540                             test_bit(In_sync, &rdev->flags))
1541                                 cnt++;
1542                         this = (this+1) % disks;
1543                 }
1544                 if (cnt == 0)
1545                         goto out;
1546                 first = (first + ncopies) % disks;
1547         } while (first != 0);
1548         has_enough = 1;
1549 out:
1550         rcu_read_unlock();
1551         return has_enough;
1552 }
1553
1554 static int enough(struct r10conf *conf, int ignore)
1555 {
1556         /* when calling 'enough', both 'prev' and 'geo' must
1557          * be stable.
1558          * This is ensured if ->reconfig_mutex or ->device_lock
1559          * is held.
1560          */
1561         return _enough(conf, 0, ignore) &&
1562                 _enough(conf, 1, ignore);
1563 }
1564
1565 static void error(struct mddev *mddev, struct md_rdev *rdev)
1566 {
1567         char b[BDEVNAME_SIZE];
1568         struct r10conf *conf = mddev->private;
1569         unsigned long flags;
1570
1571         /*
1572          * If it is not operational, then we have already marked it as dead
1573          * else if it is the last working disks, ignore the error, let the
1574          * next level up know.
1575          * else mark the drive as failed
1576          */
1577         spin_lock_irqsave(&conf->device_lock, flags);
1578         if (test_bit(In_sync, &rdev->flags)
1579             && !enough(conf, rdev->raid_disk)) {
1580                 /*
1581                  * Don't fail the drive, just return an IO error.
1582                  */
1583                 spin_unlock_irqrestore(&conf->device_lock, flags);
1584                 return;
1585         }
1586         if (test_and_clear_bit(In_sync, &rdev->flags))
1587                 mddev->degraded++;
1588         /*
1589          * If recovery is running, make sure it aborts.
1590          */
1591         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1592         set_bit(Blocked, &rdev->flags);
1593         set_bit(Faulty, &rdev->flags);
1594         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1595         set_bit(MD_CHANGE_PENDING, &mddev->flags);
1596         spin_unlock_irqrestore(&conf->device_lock, flags);
1597         printk(KERN_ALERT
1598                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1599                "md/raid10:%s: Operation continuing on %d devices.\n",
1600                mdname(mddev), bdevname(rdev->bdev, b),
1601                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1602 }
1603
1604 static void print_conf(struct r10conf *conf)
1605 {
1606         int i;
1607         struct raid10_info *tmp;
1608
1609         printk(KERN_DEBUG "RAID10 conf printout:\n");
1610         if (!conf) {
1611                 printk(KERN_DEBUG "(!conf)\n");
1612                 return;
1613         }
1614         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1615                 conf->geo.raid_disks);
1616
1617         for (i = 0; i < conf->geo.raid_disks; i++) {
1618                 char b[BDEVNAME_SIZE];
1619                 tmp = conf->mirrors + i;
1620                 if (tmp->rdev)
1621                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1622                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1623                                 !test_bit(Faulty, &tmp->rdev->flags),
1624                                 bdevname(tmp->rdev->bdev,b));
1625         }
1626 }
1627
1628 static void close_sync(struct r10conf *conf)
1629 {
1630         wait_barrier(conf);
1631         allow_barrier(conf);
1632
1633         mempool_destroy(conf->r10buf_pool);
1634         conf->r10buf_pool = NULL;
1635 }
1636
1637 static int raid10_spare_active(struct mddev *mddev)
1638 {
1639         int i;
1640         struct r10conf *conf = mddev->private;
1641         struct raid10_info *tmp;
1642         int count = 0;
1643         unsigned long flags;
1644
1645         /*
1646          * Find all non-in_sync disks within the RAID10 configuration
1647          * and mark them in_sync
1648          */
1649         for (i = 0; i < conf->geo.raid_disks; i++) {
1650                 tmp = conf->mirrors + i;
1651                 if (tmp->replacement
1652                     && tmp->replacement->recovery_offset == MaxSector
1653                     && !test_bit(Faulty, &tmp->replacement->flags)
1654                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1655                         /* Replacement has just become active */
1656                         if (!tmp->rdev
1657                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1658                                 count++;
1659                         if (tmp->rdev) {
1660                                 /* Replaced device not technically faulty,
1661                                  * but we need to be sure it gets removed
1662                                  * and never re-added.
1663                                  */
1664                                 set_bit(Faulty, &tmp->rdev->flags);
1665                                 sysfs_notify_dirent_safe(
1666                                         tmp->rdev->sysfs_state);
1667                         }
1668                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1669                 } else if (tmp->rdev
1670                            && tmp->rdev->recovery_offset == MaxSector
1671                            && !test_bit(Faulty, &tmp->rdev->flags)
1672                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1673                         count++;
1674                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1675                 }
1676         }
1677         spin_lock_irqsave(&conf->device_lock, flags);
1678         mddev->degraded -= count;
1679         spin_unlock_irqrestore(&conf->device_lock, flags);
1680
1681         print_conf(conf);
1682         return count;
1683 }
1684
1685 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1686 {
1687         struct r10conf *conf = mddev->private;
1688         int err = -EEXIST;
1689         int mirror;
1690         int first = 0;
1691         int last = conf->geo.raid_disks - 1;
1692
1693         if (mddev->recovery_cp < MaxSector)
1694                 /* only hot-add to in-sync arrays, as recovery is
1695                  * very different from resync
1696                  */
1697                 return -EBUSY;
1698         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1699                 return -EINVAL;
1700
1701         if (rdev->raid_disk >= 0)
1702                 first = last = rdev->raid_disk;
1703
1704         if (rdev->saved_raid_disk >= first &&
1705             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1706                 mirror = rdev->saved_raid_disk;
1707         else
1708                 mirror = first;
1709         for ( ; mirror <= last ; mirror++) {
1710                 struct raid10_info *p = &conf->mirrors[mirror];
1711                 if (p->recovery_disabled == mddev->recovery_disabled)
1712                         continue;
1713                 if (p->rdev) {
1714                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1715                             p->replacement != NULL)
1716                                 continue;
1717                         clear_bit(In_sync, &rdev->flags);
1718                         set_bit(Replacement, &rdev->flags);
1719                         rdev->raid_disk = mirror;
1720                         err = 0;
1721                         if (mddev->gendisk)
1722                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1723                                                   rdev->data_offset << 9);
1724                         conf->fullsync = 1;
1725                         rcu_assign_pointer(p->replacement, rdev);
1726                         break;
1727                 }
1728
1729                 if (mddev->gendisk)
1730                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1731                                           rdev->data_offset << 9);
1732
1733                 p->head_position = 0;
1734                 p->recovery_disabled = mddev->recovery_disabled - 1;
1735                 rdev->raid_disk = mirror;
1736                 err = 0;
1737                 if (rdev->saved_raid_disk != mirror)
1738                         conf->fullsync = 1;
1739                 rcu_assign_pointer(p->rdev, rdev);
1740                 break;
1741         }
1742         mddev_suspend(mddev);
1743         md_integrity_add_rdev(rdev, mddev);
1744         mddev_resume(mddev);
1745         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1746                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1747
1748         print_conf(conf);
1749         return err;
1750 }
1751
1752 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1753 {
1754         struct r10conf *conf = mddev->private;
1755         int err = 0;
1756         int number = rdev->raid_disk;
1757         struct md_rdev **rdevp;
1758         struct raid10_info *p = conf->mirrors + number;
1759
1760         print_conf(conf);
1761         if (rdev == p->rdev)
1762                 rdevp = &p->rdev;
1763         else if (rdev == p->replacement)
1764                 rdevp = &p->replacement;
1765         else
1766                 return 0;
1767
1768         if (test_bit(In_sync, &rdev->flags) ||
1769             atomic_read(&rdev->nr_pending)) {
1770                 err = -EBUSY;
1771                 goto abort;
1772         }
1773         /* Only remove faulty devices if recovery
1774          * is not possible.
1775          */
1776         if (!test_bit(Faulty, &rdev->flags) &&
1777             mddev->recovery_disabled != p->recovery_disabled &&
1778             (!p->replacement || p->replacement == rdev) &&
1779             number < conf->geo.raid_disks &&
1780             enough(conf, -1)) {
1781                 err = -EBUSY;
1782                 goto abort;
1783         }
1784         *rdevp = NULL;
1785         synchronize_rcu();
1786         if (atomic_read(&rdev->nr_pending)) {
1787                 /* lost the race, try later */
1788                 err = -EBUSY;
1789                 *rdevp = rdev;
1790                 goto abort;
1791         } else if (p->replacement) {
1792                 /* We must have just cleared 'rdev' */
1793                 p->rdev = p->replacement;
1794                 clear_bit(Replacement, &p->replacement->flags);
1795                 smp_mb(); /* Make sure other CPUs may see both as identical
1796                            * but will never see neither -- if they are careful.
1797                            */
1798                 p->replacement = NULL;
1799                 clear_bit(WantReplacement, &rdev->flags);
1800         } else
1801                 /* We might have just remove the Replacement as faulty
1802                  * Clear the flag just in case
1803                  */
1804                 clear_bit(WantReplacement, &rdev->flags);
1805
1806         err = md_integrity_register(mddev);
1807
1808 abort:
1809
1810         print_conf(conf);
1811         return err;
1812 }
1813
1814 static void end_sync_read(struct bio *bio)
1815 {
1816         struct r10bio *r10_bio = bio->bi_private;
1817         struct r10conf *conf = r10_bio->mddev->private;
1818         int d;
1819
1820         if (bio == r10_bio->master_bio) {
1821                 /* this is a reshape read */
1822                 d = r10_bio->read_slot; /* really the read dev */
1823         } else
1824                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1825
1826         if (!bio->bi_error)
1827                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1828         else
1829                 /* The write handler will notice the lack of
1830                  * R10BIO_Uptodate and record any errors etc
1831                  */
1832                 atomic_add(r10_bio->sectors,
1833                            &conf->mirrors[d].rdev->corrected_errors);
1834
1835         /* for reconstruct, we always reschedule after a read.
1836          * for resync, only after all reads
1837          */
1838         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1839         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1840             atomic_dec_and_test(&r10_bio->remaining)) {
1841                 /* we have read all the blocks,
1842                  * do the comparison in process context in raid10d
1843                  */
1844                 reschedule_retry(r10_bio);
1845         }
1846 }
1847
1848 static void end_sync_request(struct r10bio *r10_bio)
1849 {
1850         struct mddev *mddev = r10_bio->mddev;
1851
1852         while (atomic_dec_and_test(&r10_bio->remaining)) {
1853                 if (r10_bio->master_bio == NULL) {
1854                         /* the primary of several recovery bios */
1855                         sector_t s = r10_bio->sectors;
1856                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1857                             test_bit(R10BIO_WriteError, &r10_bio->state))
1858                                 reschedule_retry(r10_bio);
1859                         else
1860                                 put_buf(r10_bio);
1861                         md_done_sync(mddev, s, 1);
1862                         break;
1863                 } else {
1864                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1865                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1866                             test_bit(R10BIO_WriteError, &r10_bio->state))
1867                                 reschedule_retry(r10_bio);
1868                         else
1869                                 put_buf(r10_bio);
1870                         r10_bio = r10_bio2;
1871                 }
1872         }
1873 }
1874
1875 static void end_sync_write(struct bio *bio)
1876 {
1877         struct r10bio *r10_bio = bio->bi_private;
1878         struct mddev *mddev = r10_bio->mddev;
1879         struct r10conf *conf = mddev->private;
1880         int d;
1881         sector_t first_bad;
1882         int bad_sectors;
1883         int slot;
1884         int repl;
1885         struct md_rdev *rdev = NULL;
1886
1887         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1888         if (repl)
1889                 rdev = conf->mirrors[d].replacement;
1890         else
1891                 rdev = conf->mirrors[d].rdev;
1892
1893         if (bio->bi_error) {
1894                 if (repl)
1895                         md_error(mddev, rdev);
1896                 else {
1897                         set_bit(WriteErrorSeen, &rdev->flags);
1898                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1899                                 set_bit(MD_RECOVERY_NEEDED,
1900                                         &rdev->mddev->recovery);
1901                         set_bit(R10BIO_WriteError, &r10_bio->state);
1902                 }
1903         } else if (is_badblock(rdev,
1904                              r10_bio->devs[slot].addr,
1905                              r10_bio->sectors,
1906                              &first_bad, &bad_sectors))
1907                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1908
1909         rdev_dec_pending(rdev, mddev);
1910
1911         end_sync_request(r10_bio);
1912 }
1913
1914 /*
1915  * Note: sync and recover and handled very differently for raid10
1916  * This code is for resync.
1917  * For resync, we read through virtual addresses and read all blocks.
1918  * If there is any error, we schedule a write.  The lowest numbered
1919  * drive is authoritative.
1920  * However requests come for physical address, so we need to map.
1921  * For every physical address there are raid_disks/copies virtual addresses,
1922  * which is always are least one, but is not necessarly an integer.
1923  * This means that a physical address can span multiple chunks, so we may
1924  * have to submit multiple io requests for a single sync request.
1925  */
1926 /*
1927  * We check if all blocks are in-sync and only write to blocks that
1928  * aren't in sync
1929  */
1930 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1931 {
1932         struct r10conf *conf = mddev->private;
1933         int i, first;
1934         struct bio *tbio, *fbio;
1935         int vcnt;
1936
1937         atomic_set(&r10_bio->remaining, 1);
1938
1939         /* find the first device with a block */
1940         for (i=0; i<conf->copies; i++)
1941                 if (!r10_bio->devs[i].bio->bi_error)
1942                         break;
1943
1944         if (i == conf->copies)
1945                 goto done;
1946
1947         first = i;
1948         fbio = r10_bio->devs[i].bio;
1949
1950         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1951         /* now find blocks with errors */
1952         for (i=0 ; i < conf->copies ; i++) {
1953                 int  j, d;
1954
1955                 tbio = r10_bio->devs[i].bio;
1956
1957                 if (tbio->bi_end_io != end_sync_read)
1958                         continue;
1959                 if (i == first)
1960                         continue;
1961                 if (!r10_bio->devs[i].bio->bi_error) {
1962                         /* We know that the bi_io_vec layout is the same for
1963                          * both 'first' and 'i', so we just compare them.
1964                          * All vec entries are PAGE_SIZE;
1965                          */
1966                         int sectors = r10_bio->sectors;
1967                         for (j = 0; j < vcnt; j++) {
1968                                 int len = PAGE_SIZE;
1969                                 if (sectors < (len / 512))
1970                                         len = sectors * 512;
1971                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1972                                            page_address(tbio->bi_io_vec[j].bv_page),
1973                                            len))
1974                                         break;
1975                                 sectors -= len/512;
1976                         }
1977                         if (j == vcnt)
1978                                 continue;
1979                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1980                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1981                                 /* Don't fix anything. */
1982                                 continue;
1983                 }
1984                 /* Ok, we need to write this bio, either to correct an
1985                  * inconsistency or to correct an unreadable block.
1986                  * First we need to fixup bv_offset, bv_len and
1987                  * bi_vecs, as the read request might have corrupted these
1988                  */
1989                 bio_reset(tbio);
1990
1991                 tbio->bi_vcnt = vcnt;
1992                 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
1993                 tbio->bi_rw = WRITE;
1994                 tbio->bi_private = r10_bio;
1995                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1996                 tbio->bi_end_io = end_sync_write;
1997
1998                 bio_copy_data(tbio, fbio);
1999
2000                 d = r10_bio->devs[i].devnum;
2001                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2002                 atomic_inc(&r10_bio->remaining);
2003                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2004
2005                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2006                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2007                 generic_make_request(tbio);
2008         }
2009
2010         /* Now write out to any replacement devices
2011          * that are active
2012          */
2013         for (i = 0; i < conf->copies; i++) {
2014                 int d;
2015
2016                 tbio = r10_bio->devs[i].repl_bio;
2017                 if (!tbio || !tbio->bi_end_io)
2018                         continue;
2019                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2020                     && r10_bio->devs[i].bio != fbio)
2021                         bio_copy_data(tbio, fbio);
2022                 d = r10_bio->devs[i].devnum;
2023                 atomic_inc(&r10_bio->remaining);
2024                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2025                              bio_sectors(tbio));
2026                 generic_make_request(tbio);
2027         }
2028
2029 done:
2030         if (atomic_dec_and_test(&r10_bio->remaining)) {
2031                 md_done_sync(mddev, r10_bio->sectors, 1);
2032                 put_buf(r10_bio);
2033         }
2034 }
2035
2036 /*
2037  * Now for the recovery code.
2038  * Recovery happens across physical sectors.
2039  * We recover all non-is_sync drives by finding the virtual address of
2040  * each, and then choose a working drive that also has that virt address.
2041  * There is a separate r10_bio for each non-in_sync drive.
2042  * Only the first two slots are in use. The first for reading,
2043  * The second for writing.
2044  *
2045  */
2046 static void fix_recovery_read_error(struct r10bio *r10_bio)
2047 {
2048         /* We got a read error during recovery.
2049          * We repeat the read in smaller page-sized sections.
2050          * If a read succeeds, write it to the new device or record
2051          * a bad block if we cannot.
2052          * If a read fails, record a bad block on both old and
2053          * new devices.
2054          */
2055         struct mddev *mddev = r10_bio->mddev;
2056         struct r10conf *conf = mddev->private;
2057         struct bio *bio = r10_bio->devs[0].bio;
2058         sector_t sect = 0;
2059         int sectors = r10_bio->sectors;
2060         int idx = 0;
2061         int dr = r10_bio->devs[0].devnum;
2062         int dw = r10_bio->devs[1].devnum;
2063
2064         while (sectors) {
2065                 int s = sectors;
2066                 struct md_rdev *rdev;
2067                 sector_t addr;
2068                 int ok;
2069
2070                 if (s > (PAGE_SIZE>>9))
2071                         s = PAGE_SIZE >> 9;
2072
2073                 rdev = conf->mirrors[dr].rdev;
2074                 addr = r10_bio->devs[0].addr + sect,
2075                 ok = sync_page_io(rdev,
2076                                   addr,
2077                                   s << 9,
2078                                   bio->bi_io_vec[idx].bv_page,
2079                                   READ, false);
2080                 if (ok) {
2081                         rdev = conf->mirrors[dw].rdev;
2082                         addr = r10_bio->devs[1].addr + sect;
2083                         ok = sync_page_io(rdev,
2084                                           addr,
2085                                           s << 9,
2086                                           bio->bi_io_vec[idx].bv_page,
2087                                           WRITE, false);
2088                         if (!ok) {
2089                                 set_bit(WriteErrorSeen, &rdev->flags);
2090                                 if (!test_and_set_bit(WantReplacement,
2091                                                       &rdev->flags))
2092                                         set_bit(MD_RECOVERY_NEEDED,
2093                                                 &rdev->mddev->recovery);
2094                         }
2095                 }
2096                 if (!ok) {
2097                         /* We don't worry if we cannot set a bad block -
2098                          * it really is bad so there is no loss in not
2099                          * recording it yet
2100                          */
2101                         rdev_set_badblocks(rdev, addr, s, 0);
2102
2103                         if (rdev != conf->mirrors[dw].rdev) {
2104                                 /* need bad block on destination too */
2105                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2106                                 addr = r10_bio->devs[1].addr + sect;
2107                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2108                                 if (!ok) {
2109                                         /* just abort the recovery */
2110                                         printk(KERN_NOTICE
2111                                                "md/raid10:%s: recovery aborted"
2112                                                " due to read error\n",
2113                                                mdname(mddev));
2114
2115                                         conf->mirrors[dw].recovery_disabled
2116                                                 = mddev->recovery_disabled;
2117                                         set_bit(MD_RECOVERY_INTR,
2118                                                 &mddev->recovery);
2119                                         break;
2120                                 }
2121                         }
2122                 }
2123
2124                 sectors -= s;
2125                 sect += s;
2126                 idx++;
2127         }
2128 }
2129
2130 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2131 {
2132         struct r10conf *conf = mddev->private;
2133         int d;
2134         struct bio *wbio, *wbio2;
2135
2136         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2137                 fix_recovery_read_error(r10_bio);
2138                 end_sync_request(r10_bio);
2139                 return;
2140         }
2141
2142         /*
2143          * share the pages with the first bio
2144          * and submit the write request
2145          */
2146         d = r10_bio->devs[1].devnum;
2147         wbio = r10_bio->devs[1].bio;
2148         wbio2 = r10_bio->devs[1].repl_bio;
2149         /* Need to test wbio2->bi_end_io before we call
2150          * generic_make_request as if the former is NULL,
2151          * the latter is free to free wbio2.
2152          */
2153         if (wbio2 && !wbio2->bi_end_io)
2154                 wbio2 = NULL;
2155         if (wbio->bi_end_io) {
2156                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2157                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2158                 generic_make_request(wbio);
2159         }
2160         if (wbio2) {
2161                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2162                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2163                              bio_sectors(wbio2));
2164                 generic_make_request(wbio2);
2165         }
2166 }
2167
2168 /*
2169  * Used by fix_read_error() to decay the per rdev read_errors.
2170  * We halve the read error count for every hour that has elapsed
2171  * since the last recorded read error.
2172  *
2173  */
2174 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2175 {
2176         struct timespec cur_time_mon;
2177         unsigned long hours_since_last;
2178         unsigned int read_errors = atomic_read(&rdev->read_errors);
2179
2180         ktime_get_ts(&cur_time_mon);
2181
2182         if (rdev->last_read_error.tv_sec == 0 &&
2183             rdev->last_read_error.tv_nsec == 0) {
2184                 /* first time we've seen a read error */
2185                 rdev->last_read_error = cur_time_mon;
2186                 return;
2187         }
2188
2189         hours_since_last = (cur_time_mon.tv_sec -
2190                             rdev->last_read_error.tv_sec) / 3600;
2191
2192         rdev->last_read_error = cur_time_mon;
2193
2194         /*
2195          * if hours_since_last is > the number of bits in read_errors
2196          * just set read errors to 0. We do this to avoid
2197          * overflowing the shift of read_errors by hours_since_last.
2198          */
2199         if (hours_since_last >= 8 * sizeof(read_errors))
2200                 atomic_set(&rdev->read_errors, 0);
2201         else
2202                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2203 }
2204
2205 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2206                             int sectors, struct page *page, int rw)
2207 {
2208         sector_t first_bad;
2209         int bad_sectors;
2210
2211         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2212             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2213                 return -1;
2214         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2215                 /* success */
2216                 return 1;
2217         if (rw == WRITE) {
2218                 set_bit(WriteErrorSeen, &rdev->flags);
2219                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2220                         set_bit(MD_RECOVERY_NEEDED,
2221                                 &rdev->mddev->recovery);
2222         }
2223         /* need to record an error - either for the block or the device */
2224         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2225                 md_error(rdev->mddev, rdev);
2226         return 0;
2227 }
2228
2229 /*
2230  * This is a kernel thread which:
2231  *
2232  *      1.      Retries failed read operations on working mirrors.
2233  *      2.      Updates the raid superblock when problems encounter.
2234  *      3.      Performs writes following reads for array synchronising.
2235  */
2236
2237 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2238 {
2239         int sect = 0; /* Offset from r10_bio->sector */
2240         int sectors = r10_bio->sectors;
2241         struct md_rdev*rdev;
2242         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2243         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2244
2245         /* still own a reference to this rdev, so it cannot
2246          * have been cleared recently.
2247          */
2248         rdev = conf->mirrors[d].rdev;
2249
2250         if (test_bit(Faulty, &rdev->flags))
2251                 /* drive has already been failed, just ignore any
2252                    more fix_read_error() attempts */
2253                 return;
2254
2255         check_decay_read_errors(mddev, rdev);
2256         atomic_inc(&rdev->read_errors);
2257         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2258                 char b[BDEVNAME_SIZE];
2259                 bdevname(rdev->bdev, b);
2260
2261                 printk(KERN_NOTICE
2262                        "md/raid10:%s: %s: Raid device exceeded "
2263                        "read_error threshold [cur %d:max %d]\n",
2264                        mdname(mddev), b,
2265                        atomic_read(&rdev->read_errors), max_read_errors);
2266                 printk(KERN_NOTICE
2267                        "md/raid10:%s: %s: Failing raid device\n",
2268                        mdname(mddev), b);
2269                 md_error(mddev, conf->mirrors[d].rdev);
2270                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2271                 return;
2272         }
2273
2274         while(sectors) {
2275                 int s = sectors;
2276                 int sl = r10_bio->read_slot;
2277                 int success = 0;
2278                 int start;
2279
2280                 if (s > (PAGE_SIZE>>9))
2281                         s = PAGE_SIZE >> 9;
2282
2283                 rcu_read_lock();
2284                 do {
2285                         sector_t first_bad;
2286                         int bad_sectors;
2287
2288                         d = r10_bio->devs[sl].devnum;
2289                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2290                         if (rdev &&
2291                             test_bit(In_sync, &rdev->flags) &&
2292                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2293                                         &first_bad, &bad_sectors) == 0) {
2294                                 atomic_inc(&rdev->nr_pending);
2295                                 rcu_read_unlock();
2296                                 success = sync_page_io(rdev,
2297                                                        r10_bio->devs[sl].addr +
2298                                                        sect,
2299                                                        s<<9,
2300                                                        conf->tmppage, READ, false);
2301                                 rdev_dec_pending(rdev, mddev);
2302                                 rcu_read_lock();
2303                                 if (success)
2304                                         break;
2305                         }
2306                         sl++;
2307                         if (sl == conf->copies)
2308                                 sl = 0;
2309                 } while (!success && sl != r10_bio->read_slot);
2310                 rcu_read_unlock();
2311
2312                 if (!success) {
2313                         /* Cannot read from anywhere, just mark the block
2314                          * as bad on the first device to discourage future
2315                          * reads.
2316                          */
2317                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2318                         rdev = conf->mirrors[dn].rdev;
2319
2320                         if (!rdev_set_badblocks(
2321                                     rdev,
2322                                     r10_bio->devs[r10_bio->read_slot].addr
2323                                     + sect,
2324                                     s, 0)) {
2325                                 md_error(mddev, rdev);
2326                                 r10_bio->devs[r10_bio->read_slot].bio
2327                                         = IO_BLOCKED;
2328                         }
2329                         break;
2330                 }
2331
2332                 start = sl;
2333                 /* write it back and re-read */
2334                 rcu_read_lock();
2335                 while (sl != r10_bio->read_slot) {
2336                         char b[BDEVNAME_SIZE];
2337
2338                         if (sl==0)
2339                                 sl = conf->copies;
2340                         sl--;
2341                         d = r10_bio->devs[sl].devnum;
2342                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2343                         if (!rdev ||
2344                             !test_bit(In_sync, &rdev->flags))
2345                                 continue;
2346
2347                         atomic_inc(&rdev->nr_pending);
2348                         rcu_read_unlock();
2349                         if (r10_sync_page_io(rdev,
2350                                              r10_bio->devs[sl].addr +
2351                                              sect,
2352                                              s, conf->tmppage, WRITE)
2353                             == 0) {
2354                                 /* Well, this device is dead */
2355                                 printk(KERN_NOTICE
2356                                        "md/raid10:%s: read correction "
2357                                        "write failed"
2358                                        " (%d sectors at %llu on %s)\n",
2359                                        mdname(mddev), s,
2360                                        (unsigned long long)(
2361                                                sect +
2362                                                choose_data_offset(r10_bio,
2363                                                                   rdev)),
2364                                        bdevname(rdev->bdev, b));
2365                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2366                                        "drive\n",
2367                                        mdname(mddev),
2368                                        bdevname(rdev->bdev, b));
2369                         }
2370                         rdev_dec_pending(rdev, mddev);
2371                         rcu_read_lock();
2372                 }
2373                 sl = start;
2374                 while (sl != r10_bio->read_slot) {
2375                         char b[BDEVNAME_SIZE];
2376
2377                         if (sl==0)
2378                                 sl = conf->copies;
2379                         sl--;
2380                         d = r10_bio->devs[sl].devnum;
2381                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2382                         if (!rdev ||
2383                             !test_bit(In_sync, &rdev->flags))
2384                                 continue;
2385
2386                         atomic_inc(&rdev->nr_pending);
2387                         rcu_read_unlock();
2388                         switch (r10_sync_page_io(rdev,
2389                                              r10_bio->devs[sl].addr +
2390                                              sect,
2391                                              s, conf->tmppage,
2392                                                  READ)) {
2393                         case 0:
2394                                 /* Well, this device is dead */
2395                                 printk(KERN_NOTICE
2396                                        "md/raid10:%s: unable to read back "
2397                                        "corrected sectors"
2398                                        " (%d sectors at %llu on %s)\n",
2399                                        mdname(mddev), s,
2400                                        (unsigned long long)(
2401                                                sect +
2402                                                choose_data_offset(r10_bio, rdev)),
2403                                        bdevname(rdev->bdev, b));
2404                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2405                                        "drive\n",
2406                                        mdname(mddev),
2407                                        bdevname(rdev->bdev, b));
2408                                 break;
2409                         case 1:
2410                                 printk(KERN_INFO
2411                                        "md/raid10:%s: read error corrected"
2412                                        " (%d sectors at %llu on %s)\n",
2413                                        mdname(mddev), s,
2414                                        (unsigned long long)(
2415                                                sect +
2416                                                choose_data_offset(r10_bio, rdev)),
2417                                        bdevname(rdev->bdev, b));
2418                                 atomic_add(s, &rdev->corrected_errors);
2419                         }
2420
2421                         rdev_dec_pending(rdev, mddev);
2422                         rcu_read_lock();
2423                 }
2424                 rcu_read_unlock();
2425
2426                 sectors -= s;
2427                 sect += s;
2428         }
2429 }
2430
2431 static int narrow_write_error(struct r10bio *r10_bio, int i)
2432 {
2433         struct bio *bio = r10_bio->master_bio;
2434         struct mddev *mddev = r10_bio->mddev;
2435         struct r10conf *conf = mddev->private;
2436         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2437         /* bio has the data to be written to slot 'i' where
2438          * we just recently had a write error.
2439          * We repeatedly clone the bio and trim down to one block,
2440          * then try the write.  Where the write fails we record
2441          * a bad block.
2442          * It is conceivable that the bio doesn't exactly align with
2443          * blocks.  We must handle this.
2444          *
2445          * We currently own a reference to the rdev.
2446          */
2447
2448         int block_sectors;
2449         sector_t sector;
2450         int sectors;
2451         int sect_to_write = r10_bio->sectors;
2452         int ok = 1;
2453
2454         if (rdev->badblocks.shift < 0)
2455                 return 0;
2456
2457         block_sectors = roundup(1 << rdev->badblocks.shift,
2458                                 bdev_logical_block_size(rdev->bdev) >> 9);
2459         sector = r10_bio->sector;
2460         sectors = ((r10_bio->sector + block_sectors)
2461                    & ~(sector_t)(block_sectors - 1))
2462                 - sector;
2463
2464         while (sect_to_write) {
2465                 struct bio *wbio;
2466                 if (sectors > sect_to_write)
2467                         sectors = sect_to_write;
2468                 /* Write at 'sector' for 'sectors' */
2469                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2470                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2471                 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2472                                    choose_data_offset(r10_bio, rdev) +
2473                                    (sector - r10_bio->sector));
2474                 wbio->bi_bdev = rdev->bdev;
2475                 if (submit_bio_wait(WRITE, wbio) < 0)
2476                         /* Failure! */
2477                         ok = rdev_set_badblocks(rdev, sector,
2478                                                 sectors, 0)
2479                                 && ok;
2480
2481                 bio_put(wbio);
2482                 sect_to_write -= sectors;
2483                 sector += sectors;
2484                 sectors = block_sectors;
2485         }
2486         return ok;
2487 }
2488
2489 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2490 {
2491         int slot = r10_bio->read_slot;
2492         struct bio *bio;
2493         struct r10conf *conf = mddev->private;
2494         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2495         char b[BDEVNAME_SIZE];
2496         unsigned long do_sync;
2497         int max_sectors;
2498
2499         /* we got a read error. Maybe the drive is bad.  Maybe just
2500          * the block and we can fix it.
2501          * We freeze all other IO, and try reading the block from
2502          * other devices.  When we find one, we re-write
2503          * and check it that fixes the read error.
2504          * This is all done synchronously while the array is
2505          * frozen.
2506          */
2507         bio = r10_bio->devs[slot].bio;
2508         bdevname(bio->bi_bdev, b);
2509         bio_put(bio);
2510         r10_bio->devs[slot].bio = NULL;
2511
2512         if (mddev->ro == 0) {
2513                 freeze_array(conf, 1);
2514                 fix_read_error(conf, mddev, r10_bio);
2515                 unfreeze_array(conf);
2516         } else
2517                 r10_bio->devs[slot].bio = IO_BLOCKED;
2518
2519         rdev_dec_pending(rdev, mddev);
2520
2521 read_more:
2522         rdev = read_balance(conf, r10_bio, &max_sectors);
2523         if (rdev == NULL) {
2524                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2525                        " read error for block %llu\n",
2526                        mdname(mddev), b,
2527                        (unsigned long long)r10_bio->sector);
2528                 raid_end_bio_io(r10_bio);
2529                 return;
2530         }
2531
2532         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2533         slot = r10_bio->read_slot;
2534         printk_ratelimited(
2535                 KERN_ERR
2536                 "md/raid10:%s: %s: redirecting "
2537                 "sector %llu to another mirror\n",
2538                 mdname(mddev),
2539                 bdevname(rdev->bdev, b),
2540                 (unsigned long long)r10_bio->sector);
2541         bio = bio_clone_mddev(r10_bio->master_bio,
2542                               GFP_NOIO, mddev);
2543         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2544         r10_bio->devs[slot].bio = bio;
2545         r10_bio->devs[slot].rdev = rdev;
2546         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2547                 + choose_data_offset(r10_bio, rdev);
2548         bio->bi_bdev = rdev->bdev;
2549         bio->bi_rw = READ | do_sync;
2550         bio->bi_private = r10_bio;
2551         bio->bi_end_io = raid10_end_read_request;
2552         if (max_sectors < r10_bio->sectors) {
2553                 /* Drat - have to split this up more */
2554                 struct bio *mbio = r10_bio->master_bio;
2555                 int sectors_handled =
2556                         r10_bio->sector + max_sectors
2557                         - mbio->bi_iter.bi_sector;
2558                 r10_bio->sectors = max_sectors;
2559                 spin_lock_irq(&conf->device_lock);
2560                 if (mbio->bi_phys_segments == 0)
2561                         mbio->bi_phys_segments = 2;
2562                 else
2563                         mbio->bi_phys_segments++;
2564                 spin_unlock_irq(&conf->device_lock);
2565                 generic_make_request(bio);
2566
2567                 r10_bio = mempool_alloc(conf->r10bio_pool,
2568                                         GFP_NOIO);
2569                 r10_bio->master_bio = mbio;
2570                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2571                 r10_bio->state = 0;
2572                 set_bit(R10BIO_ReadError,
2573                         &r10_bio->state);
2574                 r10_bio->mddev = mddev;
2575                 r10_bio->sector = mbio->bi_iter.bi_sector
2576                         + sectors_handled;
2577
2578                 goto read_more;
2579         } else
2580                 generic_make_request(bio);
2581 }
2582
2583 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2584 {
2585         /* Some sort of write request has finished and it
2586          * succeeded in writing where we thought there was a
2587          * bad block.  So forget the bad block.
2588          * Or possibly if failed and we need to record
2589          * a bad block.
2590          */
2591         int m;
2592         struct md_rdev *rdev;
2593
2594         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2595             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2596                 for (m = 0; m < conf->copies; m++) {
2597                         int dev = r10_bio->devs[m].devnum;
2598                         rdev = conf->mirrors[dev].rdev;
2599                         if (r10_bio->devs[m].bio == NULL)
2600                                 continue;
2601                         if (!r10_bio->devs[m].bio->bi_error) {
2602                                 rdev_clear_badblocks(
2603                                         rdev,
2604                                         r10_bio->devs[m].addr,
2605                                         r10_bio->sectors, 0);
2606                         } else {
2607                                 if (!rdev_set_badblocks(
2608                                             rdev,
2609                                             r10_bio->devs[m].addr,
2610                                             r10_bio->sectors, 0))
2611                                         md_error(conf->mddev, rdev);
2612                         }
2613                         rdev = conf->mirrors[dev].replacement;
2614                         if (r10_bio->devs[m].repl_bio == NULL)
2615                                 continue;
2616
2617                         if (!r10_bio->devs[m].repl_bio->bi_error) {
2618                                 rdev_clear_badblocks(
2619                                         rdev,
2620                                         r10_bio->devs[m].addr,
2621                                         r10_bio->sectors, 0);
2622                         } else {
2623                                 if (!rdev_set_badblocks(
2624                                             rdev,
2625                                             r10_bio->devs[m].addr,
2626                                             r10_bio->sectors, 0))
2627                                         md_error(conf->mddev, rdev);
2628                         }
2629                 }
2630                 put_buf(r10_bio);
2631         } else {
2632                 bool fail = false;
2633                 for (m = 0; m < conf->copies; m++) {
2634                         int dev = r10_bio->devs[m].devnum;
2635                         struct bio *bio = r10_bio->devs[m].bio;
2636                         rdev = conf->mirrors[dev].rdev;
2637                         if (bio == IO_MADE_GOOD) {
2638                                 rdev_clear_badblocks(
2639                                         rdev,
2640                                         r10_bio->devs[m].addr,
2641                                         r10_bio->sectors, 0);
2642                                 rdev_dec_pending(rdev, conf->mddev);
2643                         } else if (bio != NULL && bio->bi_error) {
2644                                 fail = true;
2645                                 if (!narrow_write_error(r10_bio, m)) {
2646                                         md_error(conf->mddev, rdev);
2647                                         set_bit(R10BIO_Degraded,
2648                                                 &r10_bio->state);
2649                                 }
2650                                 rdev_dec_pending(rdev, conf->mddev);
2651                         }
2652                         bio = r10_bio->devs[m].repl_bio;
2653                         rdev = conf->mirrors[dev].replacement;
2654                         if (rdev && bio == IO_MADE_GOOD) {
2655                                 rdev_clear_badblocks(
2656                                         rdev,
2657                                         r10_bio->devs[m].addr,
2658                                         r10_bio->sectors, 0);
2659                                 rdev_dec_pending(rdev, conf->mddev);
2660                         }
2661                 }
2662                 if (fail) {
2663                         spin_lock_irq(&conf->device_lock);
2664                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2665                         spin_unlock_irq(&conf->device_lock);
2666                         md_wakeup_thread(conf->mddev->thread);
2667                 } else {
2668                         if (test_bit(R10BIO_WriteError,
2669                                      &r10_bio->state))
2670                                 close_write(r10_bio);
2671                         raid_end_bio_io(r10_bio);
2672                 }
2673         }
2674 }
2675
2676 static void raid10d(struct md_thread *thread)
2677 {
2678         struct mddev *mddev = thread->mddev;
2679         struct r10bio *r10_bio;
2680         unsigned long flags;
2681         struct r10conf *conf = mddev->private;
2682         struct list_head *head = &conf->retry_list;
2683         struct blk_plug plug;
2684
2685         md_check_recovery(mddev);
2686
2687         if (!list_empty_careful(&conf->bio_end_io_list) &&
2688             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2689                 LIST_HEAD(tmp);
2690                 spin_lock_irqsave(&conf->device_lock, flags);
2691                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2692                         list_add(&tmp, &conf->bio_end_io_list);
2693                         list_del_init(&conf->bio_end_io_list);
2694                 }
2695                 spin_unlock_irqrestore(&conf->device_lock, flags);
2696                 while (!list_empty(&tmp)) {
2697                         r10_bio = list_first_entry(&tmp, struct r10bio,
2698                                                    retry_list);
2699                         list_del(&r10_bio->retry_list);
2700                         if (mddev->degraded)
2701                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2702
2703                         if (test_bit(R10BIO_WriteError,
2704                                      &r10_bio->state))
2705                                 close_write(r10_bio);
2706                         raid_end_bio_io(r10_bio);
2707                 }
2708         }
2709
2710         blk_start_plug(&plug);
2711         for (;;) {
2712
2713                 flush_pending_writes(conf);
2714
2715                 spin_lock_irqsave(&conf->device_lock, flags);
2716                 if (list_empty(head)) {
2717                         spin_unlock_irqrestore(&conf->device_lock, flags);
2718                         break;
2719                 }
2720                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2721                 list_del(head->prev);
2722                 conf->nr_queued--;
2723                 spin_unlock_irqrestore(&conf->device_lock, flags);
2724
2725                 mddev = r10_bio->mddev;
2726                 conf = mddev->private;
2727                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2728                     test_bit(R10BIO_WriteError, &r10_bio->state))
2729                         handle_write_completed(conf, r10_bio);
2730                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2731                         reshape_request_write(mddev, r10_bio);
2732                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2733                         sync_request_write(mddev, r10_bio);
2734                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2735                         recovery_request_write(mddev, r10_bio);
2736                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2737                         handle_read_error(mddev, r10_bio);
2738                 else {
2739                         /* just a partial read to be scheduled from a
2740                          * separate context
2741                          */
2742                         int slot = r10_bio->read_slot;
2743                         generic_make_request(r10_bio->devs[slot].bio);
2744                 }
2745
2746                 cond_resched();
2747                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2748                         md_check_recovery(mddev);
2749         }
2750         blk_finish_plug(&plug);
2751 }
2752
2753 static int init_resync(struct r10conf *conf)
2754 {
2755         int buffs;
2756         int i;
2757
2758         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2759         BUG_ON(conf->r10buf_pool);
2760         conf->have_replacement = 0;
2761         for (i = 0; i < conf->geo.raid_disks; i++)
2762                 if (conf->mirrors[i].replacement)
2763                         conf->have_replacement = 1;
2764         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2765         if (!conf->r10buf_pool)
2766                 return -ENOMEM;
2767         conf->next_resync = 0;
2768         return 0;
2769 }
2770
2771 /*
2772  * perform a "sync" on one "block"
2773  *
2774  * We need to make sure that no normal I/O request - particularly write
2775  * requests - conflict with active sync requests.
2776  *
2777  * This is achieved by tracking pending requests and a 'barrier' concept
2778  * that can be installed to exclude normal IO requests.
2779  *
2780  * Resync and recovery are handled very differently.
2781  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2782  *
2783  * For resync, we iterate over virtual addresses, read all copies,
2784  * and update if there are differences.  If only one copy is live,
2785  * skip it.
2786  * For recovery, we iterate over physical addresses, read a good
2787  * value for each non-in_sync drive, and over-write.
2788  *
2789  * So, for recovery we may have several outstanding complex requests for a
2790  * given address, one for each out-of-sync device.  We model this by allocating
2791  * a number of r10_bio structures, one for each out-of-sync device.
2792  * As we setup these structures, we collect all bio's together into a list
2793  * which we then process collectively to add pages, and then process again
2794  * to pass to generic_make_request.
2795  *
2796  * The r10_bio structures are linked using a borrowed master_bio pointer.
2797  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2798  * has its remaining count decremented to 0, the whole complex operation
2799  * is complete.
2800  *
2801  */
2802
2803 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2804                              int *skipped)
2805 {
2806         struct r10conf *conf = mddev->private;
2807         struct r10bio *r10_bio;
2808         struct bio *biolist = NULL, *bio;
2809         sector_t max_sector, nr_sectors;
2810         int i;
2811         int max_sync;
2812         sector_t sync_blocks;
2813         sector_t sectors_skipped = 0;
2814         int chunks_skipped = 0;
2815         sector_t chunk_mask = conf->geo.chunk_mask;
2816
2817         if (!conf->r10buf_pool)
2818                 if (init_resync(conf))
2819                         return 0;
2820
2821         /*
2822          * Allow skipping a full rebuild for incremental assembly
2823          * of a clean array, like RAID1 does.
2824          */
2825         if (mddev->bitmap == NULL &&
2826             mddev->recovery_cp == MaxSector &&
2827             mddev->reshape_position == MaxSector &&
2828             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2829             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2830             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2831             conf->fullsync == 0) {
2832                 *skipped = 1;
2833                 return mddev->dev_sectors - sector_nr;
2834         }
2835
2836  skipped:
2837         max_sector = mddev->dev_sectors;
2838         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2839             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2840                 max_sector = mddev->resync_max_sectors;
2841         if (sector_nr >= max_sector) {
2842                 /* If we aborted, we need to abort the
2843                  * sync on the 'current' bitmap chucks (there can
2844                  * be several when recovering multiple devices).
2845                  * as we may have started syncing it but not finished.
2846                  * We can find the current address in
2847                  * mddev->curr_resync, but for recovery,
2848                  * we need to convert that to several
2849                  * virtual addresses.
2850                  */
2851                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2852                         end_reshape(conf);
2853                         close_sync(conf);
2854                         return 0;
2855                 }
2856
2857                 if (mddev->curr_resync < max_sector) { /* aborted */
2858                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2859                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2860                                                 &sync_blocks, 1);
2861                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2862                                 sector_t sect =
2863                                         raid10_find_virt(conf, mddev->curr_resync, i);
2864                                 bitmap_end_sync(mddev->bitmap, sect,
2865                                                 &sync_blocks, 1);
2866                         }
2867                 } else {
2868                         /* completed sync */
2869                         if ((!mddev->bitmap || conf->fullsync)
2870                             && conf->have_replacement
2871                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2872                                 /* Completed a full sync so the replacements
2873                                  * are now fully recovered.
2874                                  */
2875                                 for (i = 0; i < conf->geo.raid_disks; i++)
2876                                         if (conf->mirrors[i].replacement)
2877                                                 conf->mirrors[i].replacement
2878                                                         ->recovery_offset
2879                                                         = MaxSector;
2880                         }
2881                         conf->fullsync = 0;
2882                 }
2883                 bitmap_close_sync(mddev->bitmap);
2884                 close_sync(conf);
2885                 *skipped = 1;
2886                 return sectors_skipped;
2887         }
2888
2889         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2890                 return reshape_request(mddev, sector_nr, skipped);
2891
2892         if (chunks_skipped >= conf->geo.raid_disks) {
2893                 /* if there has been nothing to do on any drive,
2894                  * then there is nothing to do at all..
2895                  */
2896                 *skipped = 1;
2897                 return (max_sector - sector_nr) + sectors_skipped;
2898         }
2899
2900         if (max_sector > mddev->resync_max)
2901                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2902
2903         /* make sure whole request will fit in a chunk - if chunks
2904          * are meaningful
2905          */
2906         if (conf->geo.near_copies < conf->geo.raid_disks &&
2907             max_sector > (sector_nr | chunk_mask))
2908                 max_sector = (sector_nr | chunk_mask) + 1;
2909
2910         /* Again, very different code for resync and recovery.
2911          * Both must result in an r10bio with a list of bios that
2912          * have bi_end_io, bi_sector, bi_bdev set,
2913          * and bi_private set to the r10bio.
2914          * For recovery, we may actually create several r10bios
2915          * with 2 bios in each, that correspond to the bios in the main one.
2916          * In this case, the subordinate r10bios link back through a
2917          * borrowed master_bio pointer, and the counter in the master
2918          * includes a ref from each subordinate.
2919          */
2920         /* First, we decide what to do and set ->bi_end_io
2921          * To end_sync_read if we want to read, and
2922          * end_sync_write if we will want to write.
2923          */
2924
2925         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2926         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2927                 /* recovery... the complicated one */
2928                 int j;
2929                 r10_bio = NULL;
2930
2931                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2932                         int still_degraded;
2933                         struct r10bio *rb2;
2934                         sector_t sect;
2935                         int must_sync;
2936                         int any_working;
2937                         struct raid10_info *mirror = &conf->mirrors[i];
2938
2939                         if ((mirror->rdev == NULL ||
2940                              test_bit(In_sync, &mirror->rdev->flags))
2941                             &&
2942                             (mirror->replacement == NULL ||
2943                              test_bit(Faulty,
2944                                       &mirror->replacement->flags)))
2945                                 continue;
2946
2947                         still_degraded = 0;
2948                         /* want to reconstruct this device */
2949                         rb2 = r10_bio;
2950                         sect = raid10_find_virt(conf, sector_nr, i);
2951                         if (sect >= mddev->resync_max_sectors) {
2952                                 /* last stripe is not complete - don't
2953                                  * try to recover this sector.
2954                                  */
2955                                 continue;
2956                         }
2957                         /* Unless we are doing a full sync, or a replacement
2958                          * we only need to recover the block if it is set in
2959                          * the bitmap
2960                          */
2961                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2962                                                       &sync_blocks, 1);
2963                         if (sync_blocks < max_sync)
2964                                 max_sync = sync_blocks;
2965                         if (!must_sync &&
2966                             mirror->replacement == NULL &&
2967                             !conf->fullsync) {
2968                                 /* yep, skip the sync_blocks here, but don't assume
2969                                  * that there will never be anything to do here
2970                                  */
2971                                 chunks_skipped = -1;
2972                                 continue;
2973                         }
2974
2975                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2976                         r10_bio->state = 0;
2977                         raise_barrier(conf, rb2 != NULL);
2978                         atomic_set(&r10_bio->remaining, 0);
2979
2980                         r10_bio->master_bio = (struct bio*)rb2;
2981                         if (rb2)
2982                                 atomic_inc(&rb2->remaining);
2983                         r10_bio->mddev = mddev;
2984                         set_bit(R10BIO_IsRecover, &r10_bio->state);
2985                         r10_bio->sector = sect;
2986
2987                         raid10_find_phys(conf, r10_bio);
2988
2989                         /* Need to check if the array will still be
2990                          * degraded
2991                          */
2992                         for (j = 0; j < conf->geo.raid_disks; j++)
2993                                 if (conf->mirrors[j].rdev == NULL ||
2994                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2995                                         still_degraded = 1;
2996                                         break;
2997                                 }
2998
2999                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3000                                                       &sync_blocks, still_degraded);
3001
3002                         any_working = 0;
3003                         for (j=0; j<conf->copies;j++) {
3004                                 int k;
3005                                 int d = r10_bio->devs[j].devnum;
3006                                 sector_t from_addr, to_addr;
3007                                 struct md_rdev *rdev;
3008                                 sector_t sector, first_bad;
3009                                 int bad_sectors;
3010                                 if (!conf->mirrors[d].rdev ||
3011                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3012                                         continue;
3013                                 /* This is where we read from */
3014                                 any_working = 1;
3015                                 rdev = conf->mirrors[d].rdev;
3016                                 sector = r10_bio->devs[j].addr;
3017
3018                                 if (is_badblock(rdev, sector, max_sync,
3019                                                 &first_bad, &bad_sectors)) {
3020                                         if (first_bad > sector)
3021                                                 max_sync = first_bad - sector;
3022                                         else {
3023                                                 bad_sectors -= (sector
3024                                                                 - first_bad);
3025                                                 if (max_sync > bad_sectors)
3026                                                         max_sync = bad_sectors;
3027                                                 continue;
3028                                         }
3029                                 }
3030                                 bio = r10_bio->devs[0].bio;
3031                                 bio_reset(bio);
3032                                 bio->bi_next = biolist;
3033                                 biolist = bio;
3034                                 bio->bi_private = r10_bio;
3035                                 bio->bi_end_io = end_sync_read;
3036                                 bio->bi_rw = READ;
3037                                 from_addr = r10_bio->devs[j].addr;
3038                                 bio->bi_iter.bi_sector = from_addr +
3039                                         rdev->data_offset;
3040                                 bio->bi_bdev = rdev->bdev;
3041                                 atomic_inc(&rdev->nr_pending);
3042                                 /* and we write to 'i' (if not in_sync) */
3043
3044                                 for (k=0; k<conf->copies; k++)
3045                                         if (r10_bio->devs[k].devnum == i)
3046                                                 break;
3047                                 BUG_ON(k == conf->copies);
3048                                 to_addr = r10_bio->devs[k].addr;
3049                                 r10_bio->devs[0].devnum = d;
3050                                 r10_bio->devs[0].addr = from_addr;
3051                                 r10_bio->devs[1].devnum = i;
3052                                 r10_bio->devs[1].addr = to_addr;
3053
3054                                 rdev = mirror->rdev;
3055                                 if (!test_bit(In_sync, &rdev->flags)) {
3056                                         bio = r10_bio->devs[1].bio;
3057                                         bio_reset(bio);
3058                                         bio->bi_next = biolist;
3059                                         biolist = bio;
3060                                         bio->bi_private = r10_bio;
3061                                         bio->bi_end_io = end_sync_write;
3062                                         bio->bi_rw = WRITE;
3063                                         bio->bi_iter.bi_sector = to_addr
3064                                                 + rdev->data_offset;
3065                                         bio->bi_bdev = rdev->bdev;
3066                                         atomic_inc(&r10_bio->remaining);
3067                                 } else
3068                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3069
3070                                 /* and maybe write to replacement */
3071                                 bio = r10_bio->devs[1].repl_bio;
3072                                 if (bio)
3073                                         bio->bi_end_io = NULL;
3074                                 rdev = mirror->replacement;
3075                                 /* Note: if rdev != NULL, then bio
3076                                  * cannot be NULL as r10buf_pool_alloc will
3077                                  * have allocated it.
3078                                  * So the second test here is pointless.
3079                                  * But it keeps semantic-checkers happy, and
3080                                  * this comment keeps human reviewers
3081                                  * happy.
3082                                  */
3083                                 if (rdev == NULL || bio == NULL ||
3084                                     test_bit(Faulty, &rdev->flags))
3085                                         break;
3086                                 bio_reset(bio);
3087                                 bio->bi_next = biolist;
3088                                 biolist = bio;
3089                                 bio->bi_private = r10_bio;
3090                                 bio->bi_end_io = end_sync_write;
3091                                 bio->bi_rw = WRITE;
3092                                 bio->bi_iter.bi_sector = to_addr +
3093                                         rdev->data_offset;
3094                                 bio->bi_bdev = rdev->bdev;
3095                                 atomic_inc(&r10_bio->remaining);
3096                                 break;
3097                         }
3098                         if (j == conf->copies) {
3099                                 /* Cannot recover, so abort the recovery or
3100                                  * record a bad block */
3101                                 if (any_working) {
3102                                         /* problem is that there are bad blocks
3103                                          * on other device(s)
3104                                          */
3105                                         int k;
3106                                         for (k = 0; k < conf->copies; k++)
3107                                                 if (r10_bio->devs[k].devnum == i)
3108                                                         break;
3109                                         if (!test_bit(In_sync,
3110                                                       &mirror->rdev->flags)
3111                                             && !rdev_set_badblocks(
3112                                                     mirror->rdev,
3113                                                     r10_bio->devs[k].addr,
3114                                                     max_sync, 0))
3115                                                 any_working = 0;
3116                                         if (mirror->replacement &&
3117                                             !rdev_set_badblocks(
3118                                                     mirror->replacement,
3119                                                     r10_bio->devs[k].addr,
3120                                                     max_sync, 0))
3121                                                 any_working = 0;
3122                                 }
3123                                 if (!any_working)  {
3124                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3125                                                               &mddev->recovery))
3126                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3127                                                        "working devices for recovery.\n",
3128                                                        mdname(mddev));
3129                                         mirror->recovery_disabled
3130                                                 = mddev->recovery_disabled;
3131                                 }
3132                                 put_buf(r10_bio);
3133                                 if (rb2)
3134                                         atomic_dec(&rb2->remaining);
3135                                 r10_bio = rb2;
3136                                 break;
3137                         }
3138                 }
3139                 if (biolist == NULL) {
3140                         while (r10_bio) {
3141                                 struct r10bio *rb2 = r10_bio;
3142                                 r10_bio = (struct r10bio*) rb2->master_bio;
3143                                 rb2->master_bio = NULL;
3144                                 put_buf(rb2);
3145                         }
3146                         goto giveup;
3147                 }
3148         } else {
3149                 /* resync. Schedule a read for every block at this virt offset */
3150                 int count = 0;
3151
3152                 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3153
3154                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3155                                        &sync_blocks, mddev->degraded) &&
3156                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3157                                                  &mddev->recovery)) {
3158                         /* We can skip this block */
3159                         *skipped = 1;
3160                         return sync_blocks + sectors_skipped;
3161                 }
3162                 if (sync_blocks < max_sync)
3163                         max_sync = sync_blocks;
3164                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3165                 r10_bio->state = 0;
3166
3167                 r10_bio->mddev = mddev;
3168                 atomic_set(&r10_bio->remaining, 0);
3169                 raise_barrier(conf, 0);
3170                 conf->next_resync = sector_nr;
3171
3172                 r10_bio->master_bio = NULL;
3173                 r10_bio->sector = sector_nr;
3174                 set_bit(R10BIO_IsSync, &r10_bio->state);
3175                 raid10_find_phys(conf, r10_bio);
3176                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3177
3178                 for (i = 0; i < conf->copies; i++) {
3179                         int d = r10_bio->devs[i].devnum;
3180                         sector_t first_bad, sector;
3181                         int bad_sectors;
3182
3183                         if (r10_bio->devs[i].repl_bio)
3184                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3185
3186                         bio = r10_bio->devs[i].bio;
3187                         bio_reset(bio);
3188                         bio->bi_error = -EIO;
3189                         if (conf->mirrors[d].rdev == NULL ||
3190                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3191                                 continue;
3192                         sector = r10_bio->devs[i].addr;
3193                         if (is_badblock(conf->mirrors[d].rdev,
3194                                         sector, max_sync,
3195                                         &first_bad, &bad_sectors)) {
3196                                 if (first_bad > sector)
3197                                         max_sync = first_bad - sector;
3198                                 else {
3199                                         bad_sectors -= (sector - first_bad);
3200                                         if (max_sync > bad_sectors)
3201                                                 max_sync = bad_sectors;
3202                                         continue;
3203                                 }
3204                         }
3205                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3206                         atomic_inc(&r10_bio->remaining);
3207                         bio->bi_next = biolist;
3208                         biolist = bio;
3209                         bio->bi_private = r10_bio;
3210                         bio->bi_end_io = end_sync_read;
3211                         bio->bi_rw = READ;
3212                         bio->bi_iter.bi_sector = sector +
3213                                 conf->mirrors[d].rdev->data_offset;
3214                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3215                         count++;
3216
3217                         if (conf->mirrors[d].replacement == NULL ||
3218                             test_bit(Faulty,
3219                                      &conf->mirrors[d].replacement->flags))
3220                                 continue;
3221
3222                         /* Need to set up for writing to the replacement */
3223                         bio = r10_bio->devs[i].repl_bio;
3224                         bio_reset(bio);
3225                         bio->bi_error = -EIO;
3226
3227                         sector = r10_bio->devs[i].addr;
3228                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3229                         bio->bi_next = biolist;
3230                         biolist = bio;
3231                         bio->bi_private = r10_bio;
3232                         bio->bi_end_io = end_sync_write;
3233                         bio->bi_rw = WRITE;
3234                         bio->bi_iter.bi_sector = sector +
3235                                 conf->mirrors[d].replacement->data_offset;
3236                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3237                         count++;
3238                 }
3239
3240                 if (count < 2) {
3241                         for (i=0; i<conf->copies; i++) {
3242                                 int d = r10_bio->devs[i].devnum;
3243                                 if (r10_bio->devs[i].bio->bi_end_io)
3244                                         rdev_dec_pending(conf->mirrors[d].rdev,
3245                                                          mddev);
3246                                 if (r10_bio->devs[i].repl_bio &&
3247                                     r10_bio->devs[i].repl_bio->bi_end_io)
3248                                         rdev_dec_pending(
3249                                                 conf->mirrors[d].replacement,
3250                                                 mddev);
3251                         }
3252                         put_buf(r10_bio);
3253                         biolist = NULL;
3254                         goto giveup;
3255                 }
3256         }
3257
3258         nr_sectors = 0;
3259         if (sector_nr + max_sync < max_sector)
3260                 max_sector = sector_nr + max_sync;
3261         do {
3262                 struct page *page;
3263                 int len = PAGE_SIZE;
3264                 if (sector_nr + (len>>9) > max_sector)
3265                         len = (max_sector - sector_nr) << 9;
3266                 if (len == 0)
3267                         break;
3268                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3269                         struct bio *bio2;
3270                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3271                         if (bio_add_page(bio, page, len, 0))
3272                                 continue;
3273
3274                         /* stop here */
3275                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3276                         for (bio2 = biolist;
3277                              bio2 && bio2 != bio;
3278                              bio2 = bio2->bi_next) {
3279                                 /* remove last page from this bio */
3280                                 bio2->bi_vcnt--;
3281                                 bio2->bi_iter.bi_size -= len;
3282                                 bio_clear_flag(bio2, BIO_SEG_VALID);
3283                         }
3284                         goto bio_full;
3285                 }
3286                 nr_sectors += len>>9;
3287                 sector_nr += len>>9;
3288         } while (biolist->bi_vcnt < RESYNC_PAGES);
3289  bio_full:
3290         r10_bio->sectors = nr_sectors;
3291
3292         while (biolist) {
3293                 bio = biolist;
3294                 biolist = biolist->bi_next;
3295
3296                 bio->bi_next = NULL;
3297                 r10_bio = bio->bi_private;
3298                 r10_bio->sectors = nr_sectors;
3299
3300                 if (bio->bi_end_io == end_sync_read) {
3301                         md_sync_acct(bio->bi_bdev, nr_sectors);
3302                         bio->bi_error = 0;
3303                         generic_make_request(bio);
3304                 }
3305         }
3306
3307         if (sectors_skipped)
3308                 /* pretend they weren't skipped, it makes
3309                  * no important difference in this case
3310                  */
3311                 md_done_sync(mddev, sectors_skipped, 1);
3312
3313         return sectors_skipped + nr_sectors;
3314  giveup:
3315         /* There is nowhere to write, so all non-sync
3316          * drives must be failed or in resync, all drives
3317          * have a bad block, so try the next chunk...
3318          */
3319         if (sector_nr + max_sync < max_sector)
3320                 max_sector = sector_nr + max_sync;
3321
3322         sectors_skipped += (max_sector - sector_nr);
3323         chunks_skipped ++;
3324         sector_nr = max_sector;
3325         goto skipped;
3326 }
3327
3328 static sector_t
3329 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3330 {
3331         sector_t size;
3332         struct r10conf *conf = mddev->private;
3333
3334         if (!raid_disks)
3335                 raid_disks = min(conf->geo.raid_disks,
3336                                  conf->prev.raid_disks);
3337         if (!sectors)
3338                 sectors = conf->dev_sectors;
3339
3340         size = sectors >> conf->geo.chunk_shift;
3341         sector_div(size, conf->geo.far_copies);
3342         size = size * raid_disks;
3343         sector_div(size, conf->geo.near_copies);
3344
3345         return size << conf->geo.chunk_shift;
3346 }
3347
3348 static void calc_sectors(struct r10conf *conf, sector_t size)
3349 {
3350         /* Calculate the number of sectors-per-device that will
3351          * actually be used, and set conf->dev_sectors and
3352          * conf->stride
3353          */
3354
3355         size = size >> conf->geo.chunk_shift;
3356         sector_div(size, conf->geo.far_copies);
3357         size = size * conf->geo.raid_disks;
3358         sector_div(size, conf->geo.near_copies);
3359         /* 'size' is now the number of chunks in the array */
3360         /* calculate "used chunks per device" */
3361         size = size * conf->copies;
3362
3363         /* We need to round up when dividing by raid_disks to
3364          * get the stride size.
3365          */
3366         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3367
3368         conf->dev_sectors = size << conf->geo.chunk_shift;
3369
3370         if (conf->geo.far_offset)
3371                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3372         else {
3373                 sector_div(size, conf->geo.far_copies);
3374                 conf->geo.stride = size << conf->geo.chunk_shift;
3375         }
3376 }
3377
3378 enum geo_type {geo_new, geo_old, geo_start};
3379 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3380 {
3381         int nc, fc, fo;
3382         int layout, chunk, disks;
3383         switch (new) {
3384         case geo_old:
3385                 layout = mddev->layout;
3386                 chunk = mddev->chunk_sectors;
3387                 disks = mddev->raid_disks - mddev->delta_disks;
3388                 break;
3389         case geo_new:
3390                 layout = mddev->new_layout;
3391                 chunk = mddev->new_chunk_sectors;
3392                 disks = mddev->raid_disks;
3393                 break;
3394         default: /* avoid 'may be unused' warnings */
3395         case geo_start: /* new when starting reshape - raid_disks not
3396                          * updated yet. */
3397                 layout = mddev->new_layout;
3398                 chunk = mddev->new_chunk_sectors;
3399                 disks = mddev->raid_disks + mddev->delta_disks;
3400                 break;
3401         }
3402         if (layout >> 19)
3403                 return -1;
3404         if (chunk < (PAGE_SIZE >> 9) ||
3405             !is_power_of_2(chunk))
3406                 return -2;
3407         nc = layout & 255;
3408         fc = (layout >> 8) & 255;
3409         fo = layout & (1<<16);
3410         geo->raid_disks = disks;
3411         geo->near_copies = nc;
3412         geo->far_copies = fc;
3413         geo->far_offset = fo;
3414         switch (layout >> 17) {
3415         case 0: /* original layout.  simple but not always optimal */
3416                 geo->far_set_size = disks;
3417                 break;
3418         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3419                  * actually using this, but leave code here just in case.*/
3420                 geo->far_set_size = disks/fc;
3421                 WARN(geo->far_set_size < fc,
3422                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3423                 break;
3424         case 2: /* "improved" layout fixed to match documentation */
3425                 geo->far_set_size = fc * nc;
3426                 break;
3427         default: /* Not a valid layout */
3428                 return -1;
3429         }
3430         geo->chunk_mask = chunk - 1;
3431         geo->chunk_shift = ffz(~chunk);
3432         return nc*fc;
3433 }
3434
3435 static struct r10conf *setup_conf(struct mddev *mddev)
3436 {
3437         struct r10conf *conf = NULL;
3438         int err = -EINVAL;
3439         struct geom geo;
3440         int copies;
3441
3442         copies = setup_geo(&geo, mddev, geo_new);
3443
3444         if (copies == -2) {
3445                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3446                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3447                        mdname(mddev), PAGE_SIZE);
3448                 goto out;
3449         }
3450
3451         if (copies < 2 || copies > mddev->raid_disks) {
3452                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3453                        mdname(mddev), mddev->new_layout);
3454                 goto out;
3455         }
3456
3457         err = -ENOMEM;
3458         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3459         if (!conf)
3460                 goto out;
3461
3462         /* FIXME calc properly */
3463         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3464                                                             max(0,-mddev->delta_disks)),
3465                                 GFP_KERNEL);
3466         if (!conf->mirrors)
3467                 goto out;
3468
3469         conf->tmppage = alloc_page(GFP_KERNEL);
3470         if (!conf->tmppage)
3471                 goto out;
3472
3473         conf->geo = geo;
3474         conf->copies = copies;
3475         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3476                                            r10bio_pool_free, conf);
3477         if (!conf->r10bio_pool)
3478                 goto out;
3479
3480         calc_sectors(conf, mddev->dev_sectors);
3481         if (mddev->reshape_position == MaxSector) {
3482                 conf->prev = conf->geo;
3483                 conf->reshape_progress = MaxSector;
3484         } else {
3485                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3486                         err = -EINVAL;
3487                         goto out;
3488                 }
3489                 conf->reshape_progress = mddev->reshape_position;
3490                 if (conf->prev.far_offset)
3491                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3492                 else
3493                         /* far_copies must be 1 */
3494                         conf->prev.stride = conf->dev_sectors;
3495         }
3496         conf->reshape_safe = conf->reshape_progress;
3497         spin_lock_init(&conf->device_lock);
3498         INIT_LIST_HEAD(&conf->retry_list);
3499         INIT_LIST_HEAD(&conf->bio_end_io_list);
3500
3501         spin_lock_init(&conf->resync_lock);
3502         init_waitqueue_head(&conf->wait_barrier);
3503
3504         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3505         if (!conf->thread)
3506                 goto out;
3507
3508         conf->mddev = mddev;
3509         return conf;
3510
3511  out:
3512         if (err == -ENOMEM)
3513                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3514                        mdname(mddev));
3515         if (conf) {
3516                 mempool_destroy(conf->r10bio_pool);
3517                 kfree(conf->mirrors);
3518                 safe_put_page(conf->tmppage);
3519                 kfree(conf);
3520         }
3521         return ERR_PTR(err);
3522 }
3523
3524 static int run(struct mddev *mddev)
3525 {
3526         struct r10conf *conf;
3527         int i, disk_idx, chunk_size;
3528         struct raid10_info *disk;
3529         struct md_rdev *rdev;
3530         sector_t size;
3531         sector_t min_offset_diff = 0;
3532         int first = 1;
3533         bool discard_supported = false;
3534
3535         if (mddev->private == NULL) {
3536                 conf = setup_conf(mddev);
3537                 if (IS_ERR(conf))
3538                         return PTR_ERR(conf);
3539                 mddev->private = conf;
3540         }
3541         conf = mddev->private;
3542         if (!conf)
3543                 goto out;
3544
3545         mddev->thread = conf->thread;
3546         conf->thread = NULL;
3547
3548         chunk_size = mddev->chunk_sectors << 9;
3549         if (mddev->queue) {
3550                 blk_queue_max_discard_sectors(mddev->queue,
3551                                               mddev->chunk_sectors);
3552                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3553                 blk_queue_io_min(mddev->queue, chunk_size);
3554                 if (conf->geo.raid_disks % conf->geo.near_copies)
3555                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3556                 else
3557                         blk_queue_io_opt(mddev->queue, chunk_size *
3558                                          (conf->geo.raid_disks / conf->geo.near_copies));
3559         }
3560
3561         rdev_for_each(rdev, mddev) {
3562                 long long diff;
3563                 struct request_queue *q;
3564
3565                 disk_idx = rdev->raid_disk;
3566                 if (disk_idx < 0)
3567                         continue;
3568                 if (disk_idx >= conf->geo.raid_disks &&
3569                     disk_idx >= conf->prev.raid_disks)
3570                         continue;
3571                 disk = conf->mirrors + disk_idx;
3572
3573                 if (test_bit(Replacement, &rdev->flags)) {
3574                         if (disk->replacement)
3575                                 goto out_free_conf;
3576                         disk->replacement = rdev;
3577                 } else {
3578                         if (disk->rdev)
3579                                 goto out_free_conf;
3580                         disk->rdev = rdev;
3581                 }
3582                 q = bdev_get_queue(rdev->bdev);
3583                 diff = (rdev->new_data_offset - rdev->data_offset);
3584                 if (!mddev->reshape_backwards)
3585                         diff = -diff;
3586                 if (diff < 0)
3587                         diff = 0;
3588                 if (first || diff < min_offset_diff)
3589                         min_offset_diff = diff;
3590
3591                 if (mddev->gendisk)
3592                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3593                                           rdev->data_offset << 9);
3594
3595                 disk->head_position = 0;
3596
3597                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3598                         discard_supported = true;
3599         }
3600
3601         if (mddev->queue) {
3602                 if (discard_supported)
3603                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3604                                                 mddev->queue);
3605                 else
3606                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3607                                                   mddev->queue);
3608         }
3609         /* need to check that every block has at least one working mirror */
3610         if (!enough(conf, -1)) {
3611                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3612                        mdname(mddev));
3613                 goto out_free_conf;
3614         }
3615
3616         if (conf->reshape_progress != MaxSector) {
3617                 /* must ensure that shape change is supported */
3618                 if (conf->geo.far_copies != 1 &&
3619                     conf->geo.far_offset == 0)
3620                         goto out_free_conf;
3621                 if (conf->prev.far_copies != 1 &&
3622                     conf->prev.far_offset == 0)
3623                         goto out_free_conf;
3624         }
3625
3626         mddev->degraded = 0;
3627         for (i = 0;
3628              i < conf->geo.raid_disks
3629                      || i < conf->prev.raid_disks;
3630              i++) {
3631
3632                 disk = conf->mirrors + i;
3633
3634                 if (!disk->rdev && disk->replacement) {
3635                         /* The replacement is all we have - use it */
3636                         disk->rdev = disk->replacement;
3637                         disk->replacement = NULL;
3638                         clear_bit(Replacement, &disk->rdev->flags);
3639                 }
3640
3641                 if (!disk->rdev ||
3642                     !test_bit(In_sync, &disk->rdev->flags)) {
3643                         disk->head_position = 0;
3644                         mddev->degraded++;
3645                         if (disk->rdev &&
3646                             disk->rdev->saved_raid_disk < 0)
3647                                 conf->fullsync = 1;
3648                 }
3649                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3650         }
3651
3652         if (mddev->recovery_cp != MaxSector)
3653                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3654                        " -- starting background reconstruction\n",
3655                        mdname(mddev));
3656         printk(KERN_INFO
3657                 "md/raid10:%s: active with %d out of %d devices\n",
3658                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3659                 conf->geo.raid_disks);
3660         /*
3661          * Ok, everything is just fine now
3662          */
3663         mddev->dev_sectors = conf->dev_sectors;
3664         size = raid10_size(mddev, 0, 0);
3665         md_set_array_sectors(mddev, size);
3666         mddev->resync_max_sectors = size;
3667
3668         if (mddev->queue) {
3669                 int stripe = conf->geo.raid_disks *
3670                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3671
3672                 /* Calculate max read-ahead size.
3673                  * We need to readahead at least twice a whole stripe....
3674                  * maybe...
3675                  */
3676                 stripe /= conf->geo.near_copies;
3677                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3678                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3679         }
3680
3681         if (md_integrity_register(mddev))
3682                 goto out_free_conf;
3683
3684         if (conf->reshape_progress != MaxSector) {
3685                 unsigned long before_length, after_length;
3686
3687                 before_length = ((1 << conf->prev.chunk_shift) *
3688                                  conf->prev.far_copies);
3689                 after_length = ((1 << conf->geo.chunk_shift) *
3690                                 conf->geo.far_copies);
3691
3692                 if (max(before_length, after_length) > min_offset_diff) {
3693                         /* This cannot work */
3694                         printk("md/raid10: offset difference not enough to continue reshape\n");
3695                         goto out_free_conf;
3696                 }
3697                 conf->offset_diff = min_offset_diff;
3698
3699                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3700                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3701                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3702                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3703                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3704                                                         "reshape");
3705         }
3706
3707         return 0;
3708
3709 out_free_conf:
3710         md_unregister_thread(&mddev->thread);
3711         mempool_destroy(conf->r10bio_pool);
3712         safe_put_page(conf->tmppage);
3713         kfree(conf->mirrors);
3714         kfree(conf);
3715         mddev->private = NULL;
3716 out:
3717         return -EIO;
3718 }
3719
3720 static void raid10_free(struct mddev *mddev, void *priv)
3721 {
3722         struct r10conf *conf = priv;
3723
3724         mempool_destroy(conf->r10bio_pool);
3725         safe_put_page(conf->tmppage);
3726         kfree(conf->mirrors);
3727         kfree(conf->mirrors_old);
3728         kfree(conf->mirrors_new);
3729         kfree(conf);
3730 }
3731
3732 static void raid10_quiesce(struct mddev *mddev, int state)
3733 {
3734         struct r10conf *conf = mddev->private;
3735
3736         switch(state) {
3737         case 1:
3738                 raise_barrier(conf, 0);
3739                 break;
3740         case 0:
3741                 lower_barrier(conf);
3742                 break;
3743         }
3744 }
3745
3746 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3747 {
3748         /* Resize of 'far' arrays is not supported.
3749          * For 'near' and 'offset' arrays we can set the
3750          * number of sectors used to be an appropriate multiple
3751          * of the chunk size.
3752          * For 'offset', this is far_copies*chunksize.
3753          * For 'near' the multiplier is the LCM of
3754          * near_copies and raid_disks.
3755          * So if far_copies > 1 && !far_offset, fail.
3756          * Else find LCM(raid_disks, near_copy)*far_copies and
3757          * multiply by chunk_size.  Then round to this number.
3758          * This is mostly done by raid10_size()
3759          */
3760         struct r10conf *conf = mddev->private;
3761         sector_t oldsize, size;
3762
3763         if (mddev->reshape_position != MaxSector)
3764                 return -EBUSY;
3765
3766         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3767                 return -EINVAL;
3768
3769         oldsize = raid10_size(mddev, 0, 0);
3770         size = raid10_size(mddev, sectors, 0);
3771         if (mddev->external_size &&
3772             mddev->array_sectors > size)
3773                 return -EINVAL;
3774         if (mddev->bitmap) {
3775                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3776                 if (ret)
3777                         return ret;
3778         }
3779         md_set_array_sectors(mddev, size);
3780         set_capacity(mddev->gendisk, mddev->array_sectors);
3781         revalidate_disk(mddev->gendisk);
3782         if (sectors > mddev->dev_sectors &&
3783             mddev->recovery_cp > oldsize) {
3784                 mddev->recovery_cp = oldsize;
3785                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3786         }
3787         calc_sectors(conf, sectors);
3788         mddev->dev_sectors = conf->dev_sectors;
3789         mddev->resync_max_sectors = size;
3790         return 0;
3791 }
3792
3793 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3794 {
3795         struct md_rdev *rdev;
3796         struct r10conf *conf;
3797
3798         if (mddev->degraded > 0) {
3799                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3800                        mdname(mddev));
3801                 return ERR_PTR(-EINVAL);
3802         }
3803         sector_div(size, devs);
3804
3805         /* Set new parameters */
3806         mddev->new_level = 10;
3807         /* new layout: far_copies = 1, near_copies = 2 */
3808         mddev->new_layout = (1<<8) + 2;
3809         mddev->new_chunk_sectors = mddev->chunk_sectors;
3810         mddev->delta_disks = mddev->raid_disks;
3811         mddev->raid_disks *= 2;
3812         /* make sure it will be not marked as dirty */
3813         mddev->recovery_cp = MaxSector;
3814         mddev->dev_sectors = size;
3815
3816         conf = setup_conf(mddev);
3817         if (!IS_ERR(conf)) {
3818                 rdev_for_each(rdev, mddev)
3819                         if (rdev->raid_disk >= 0) {
3820                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3821                                 rdev->sectors = size;
3822                         }
3823                 conf->barrier = 1;
3824         }
3825
3826         return conf;
3827 }
3828
3829 static void *raid10_takeover(struct mddev *mddev)
3830 {
3831         struct r0conf *raid0_conf;
3832
3833         /* raid10 can take over:
3834          *  raid0 - providing it has only two drives
3835          */
3836         if (mddev->level == 0) {
3837                 /* for raid0 takeover only one zone is supported */
3838                 raid0_conf = mddev->private;
3839                 if (raid0_conf->nr_strip_zones > 1) {
3840                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3841                                " with more than one zone.\n",
3842                                mdname(mddev));
3843                         return ERR_PTR(-EINVAL);
3844                 }
3845                 return raid10_takeover_raid0(mddev,
3846                         raid0_conf->strip_zone->zone_end,
3847                         raid0_conf->strip_zone->nb_dev);
3848         }
3849         return ERR_PTR(-EINVAL);
3850 }
3851
3852 static int raid10_check_reshape(struct mddev *mddev)
3853 {
3854         /* Called when there is a request to change
3855          * - layout (to ->new_layout)
3856          * - chunk size (to ->new_chunk_sectors)
3857          * - raid_disks (by delta_disks)
3858          * or when trying to restart a reshape that was ongoing.
3859          *
3860          * We need to validate the request and possibly allocate
3861          * space if that might be an issue later.
3862          *
3863          * Currently we reject any reshape of a 'far' mode array,
3864          * allow chunk size to change if new is generally acceptable,
3865          * allow raid_disks to increase, and allow
3866          * a switch between 'near' mode and 'offset' mode.
3867          */
3868         struct r10conf *conf = mddev->private;
3869         struct geom geo;
3870
3871         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3872                 return -EINVAL;
3873
3874         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3875                 /* mustn't change number of copies */
3876                 return -EINVAL;
3877         if (geo.far_copies > 1 && !geo.far_offset)
3878                 /* Cannot switch to 'far' mode */
3879                 return -EINVAL;
3880
3881         if (mddev->array_sectors & geo.chunk_mask)
3882                         /* not factor of array size */
3883                         return -EINVAL;
3884
3885         if (!enough(conf, -1))
3886                 return -EINVAL;
3887
3888         kfree(conf->mirrors_new);
3889         conf->mirrors_new = NULL;
3890         if (mddev->delta_disks > 0) {
3891                 /* allocate new 'mirrors' list */
3892                 conf->mirrors_new = kzalloc(
3893                         sizeof(struct raid10_info)
3894                         *(mddev->raid_disks +
3895                           mddev->delta_disks),
3896                         GFP_KERNEL);
3897                 if (!conf->mirrors_new)
3898                         return -ENOMEM;
3899         }
3900         return 0;
3901 }
3902
3903 /*
3904  * Need to check if array has failed when deciding whether to:
3905  *  - start an array
3906  *  - remove non-faulty devices
3907  *  - add a spare
3908  *  - allow a reshape
3909  * This determination is simple when no reshape is happening.
3910  * However if there is a reshape, we need to carefully check
3911  * both the before and after sections.
3912  * This is because some failed devices may only affect one
3913  * of the two sections, and some non-in_sync devices may
3914  * be insync in the section most affected by failed devices.
3915  */
3916 static int calc_degraded(struct r10conf *conf)
3917 {
3918         int degraded, degraded2;
3919         int i;
3920
3921         rcu_read_lock();
3922         degraded = 0;
3923         /* 'prev' section first */
3924         for (i = 0; i < conf->prev.raid_disks; i++) {
3925                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3926                 if (!rdev || test_bit(Faulty, &rdev->flags))
3927                         degraded++;
3928                 else if (!test_bit(In_sync, &rdev->flags))
3929                         /* When we can reduce the number of devices in
3930                          * an array, this might not contribute to
3931                          * 'degraded'.  It does now.
3932                          */
3933                         degraded++;
3934         }
3935         rcu_read_unlock();
3936         if (conf->geo.raid_disks == conf->prev.raid_disks)
3937                 return degraded;
3938         rcu_read_lock();
3939         degraded2 = 0;
3940         for (i = 0; i < conf->geo.raid_disks; i++) {
3941                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3942                 if (!rdev || test_bit(Faulty, &rdev->flags))
3943                         degraded2++;
3944                 else if (!test_bit(In_sync, &rdev->flags)) {
3945                         /* If reshape is increasing the number of devices,
3946                          * this section has already been recovered, so
3947                          * it doesn't contribute to degraded.
3948                          * else it does.
3949                          */
3950                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
3951                                 degraded2++;
3952                 }
3953         }
3954         rcu_read_unlock();
3955         if (degraded2 > degraded)
3956                 return degraded2;
3957         return degraded;
3958 }
3959
3960 static int raid10_start_reshape(struct mddev *mddev)
3961 {
3962         /* A 'reshape' has been requested. This commits
3963          * the various 'new' fields and sets MD_RECOVER_RESHAPE
3964          * This also checks if there are enough spares and adds them
3965          * to the array.
3966          * We currently require enough spares to make the final
3967          * array non-degraded.  We also require that the difference
3968          * between old and new data_offset - on each device - is
3969          * enough that we never risk over-writing.
3970          */
3971
3972         unsigned long before_length, after_length;
3973         sector_t min_offset_diff = 0;
3974         int first = 1;
3975         struct geom new;
3976         struct r10conf *conf = mddev->private;
3977         struct md_rdev *rdev;
3978         int spares = 0;
3979         int ret;
3980
3981         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3982                 return -EBUSY;
3983
3984         if (setup_geo(&new, mddev, geo_start) != conf->copies)
3985                 return -EINVAL;
3986
3987         before_length = ((1 << conf->prev.chunk_shift) *
3988                          conf->prev.far_copies);
3989         after_length = ((1 << conf->geo.chunk_shift) *
3990                         conf->geo.far_copies);
3991
3992         rdev_for_each(rdev, mddev) {
3993                 if (!test_bit(In_sync, &rdev->flags)
3994                     && !test_bit(Faulty, &rdev->flags))
3995                         spares++;
3996                 if (rdev->raid_disk >= 0) {
3997                         long long diff = (rdev->new_data_offset
3998                                           - rdev->data_offset);
3999                         if (!mddev->reshape_backwards)
4000                                 diff = -diff;
4001                         if (diff < 0)
4002                                 diff = 0;
4003                         if (first || diff < min_offset_diff)
4004                                 min_offset_diff = diff;
4005                 }
4006         }
4007
4008         if (max(before_length, after_length) > min_offset_diff)
4009                 return -EINVAL;
4010
4011         if (spares < mddev->delta_disks)
4012                 return -EINVAL;
4013
4014         conf->offset_diff = min_offset_diff;
4015         spin_lock_irq(&conf->device_lock);
4016         if (conf->mirrors_new) {
4017                 memcpy(conf->mirrors_new, conf->mirrors,
4018                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4019                 smp_mb();
4020                 kfree(conf->mirrors_old);
4021                 conf->mirrors_old = conf->mirrors;
4022                 conf->mirrors = conf->mirrors_new;
4023                 conf->mirrors_new = NULL;
4024         }
4025         setup_geo(&conf->geo, mddev, geo_start);
4026         smp_mb();
4027         if (mddev->reshape_backwards) {
4028                 sector_t size = raid10_size(mddev, 0, 0);
4029                 if (size < mddev->array_sectors) {
4030                         spin_unlock_irq(&conf->device_lock);
4031                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4032                                mdname(mddev));
4033                         return -EINVAL;
4034                 }
4035                 mddev->resync_max_sectors = size;
4036                 conf->reshape_progress = size;
4037         } else
4038                 conf->reshape_progress = 0;
4039         conf->reshape_safe = conf->reshape_progress;
4040         spin_unlock_irq(&conf->device_lock);
4041
4042         if (mddev->delta_disks && mddev->bitmap) {
4043                 ret = bitmap_resize(mddev->bitmap,
4044                                     raid10_size(mddev, 0,
4045                                                 conf->geo.raid_disks),
4046                                     0, 0);
4047                 if (ret)
4048                         goto abort;
4049         }
4050         if (mddev->delta_disks > 0) {
4051                 rdev_for_each(rdev, mddev)
4052                         if (rdev->raid_disk < 0 &&
4053                             !test_bit(Faulty, &rdev->flags)) {
4054                                 if (raid10_add_disk(mddev, rdev) == 0) {
4055                                         if (rdev->raid_disk >=
4056                                             conf->prev.raid_disks)
4057                                                 set_bit(In_sync, &rdev->flags);
4058                                         else
4059                                                 rdev->recovery_offset = 0;
4060
4061                                         if (sysfs_link_rdev(mddev, rdev))
4062                                                 /* Failure here  is OK */;
4063                                 }
4064                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4065                                    && !test_bit(Faulty, &rdev->flags)) {
4066                                 /* This is a spare that was manually added */
4067                                 set_bit(In_sync, &rdev->flags);
4068                         }
4069         }
4070         /* When a reshape changes the number of devices,
4071          * ->degraded is measured against the larger of the
4072          * pre and  post numbers.
4073          */
4074         spin_lock_irq(&conf->device_lock);
4075         mddev->degraded = calc_degraded(conf);
4076         spin_unlock_irq(&conf->device_lock);
4077         mddev->raid_disks = conf->geo.raid_disks;
4078         mddev->reshape_position = conf->reshape_progress;
4079         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4080
4081         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4082         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4083         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4084         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4085         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4086
4087         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4088                                                 "reshape");
4089         if (!mddev->sync_thread) {
4090                 ret = -EAGAIN;
4091                 goto abort;
4092         }
4093         conf->reshape_checkpoint = jiffies;
4094         md_wakeup_thread(mddev->sync_thread);
4095         md_new_event(mddev);
4096         return 0;
4097
4098 abort:
4099         mddev->recovery = 0;
4100         spin_lock_irq(&conf->device_lock);
4101         conf->geo = conf->prev;
4102         mddev->raid_disks = conf->geo.raid_disks;
4103         rdev_for_each(rdev, mddev)
4104                 rdev->new_data_offset = rdev->data_offset;
4105         smp_wmb();
4106         conf->reshape_progress = MaxSector;
4107         conf->reshape_safe = MaxSector;
4108         mddev->reshape_position = MaxSector;
4109         spin_unlock_irq(&conf->device_lock);
4110         return ret;
4111 }
4112
4113 /* Calculate the last device-address that could contain
4114  * any block from the chunk that includes the array-address 's'
4115  * and report the next address.
4116  * i.e. the address returned will be chunk-aligned and after
4117  * any data that is in the chunk containing 's'.
4118  */
4119 static sector_t last_dev_address(sector_t s, struct geom *geo)
4120 {
4121         s = (s | geo->chunk_mask) + 1;
4122         s >>= geo->chunk_shift;
4123         s *= geo->near_copies;
4124         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4125         s *= geo->far_copies;
4126         s <<= geo->chunk_shift;
4127         return s;
4128 }
4129
4130 /* Calculate the first device-address that could contain
4131  * any block from the chunk that includes the array-address 's'.
4132  * This too will be the start of a chunk
4133  */
4134 static sector_t first_dev_address(sector_t s, struct geom *geo)
4135 {
4136         s >>= geo->chunk_shift;
4137         s *= geo->near_copies;
4138         sector_div(s, geo->raid_disks);
4139         s *= geo->far_copies;
4140         s <<= geo->chunk_shift;
4141         return s;
4142 }
4143
4144 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4145                                 int *skipped)
4146 {
4147         /* We simply copy at most one chunk (smallest of old and new)
4148          * at a time, possibly less if that exceeds RESYNC_PAGES,
4149          * or we hit a bad block or something.
4150          * This might mean we pause for normal IO in the middle of
4151          * a chunk, but that is not a problem as mddev->reshape_position
4152          * can record any location.
4153          *
4154          * If we will want to write to a location that isn't
4155          * yet recorded as 'safe' (i.e. in metadata on disk) then
4156          * we need to flush all reshape requests and update the metadata.
4157          *
4158          * When reshaping forwards (e.g. to more devices), we interpret
4159          * 'safe' as the earliest block which might not have been copied
4160          * down yet.  We divide this by previous stripe size and multiply
4161          * by previous stripe length to get lowest device offset that we
4162          * cannot write to yet.
4163          * We interpret 'sector_nr' as an address that we want to write to.
4164          * From this we use last_device_address() to find where we might
4165          * write to, and first_device_address on the  'safe' position.
4166          * If this 'next' write position is after the 'safe' position,
4167          * we must update the metadata to increase the 'safe' position.
4168          *
4169          * When reshaping backwards, we round in the opposite direction
4170          * and perform the reverse test:  next write position must not be
4171          * less than current safe position.
4172          *
4173          * In all this the minimum difference in data offsets
4174          * (conf->offset_diff - always positive) allows a bit of slack,
4175          * so next can be after 'safe', but not by more than offset_diff
4176          *
4177          * We need to prepare all the bios here before we start any IO
4178          * to ensure the size we choose is acceptable to all devices.
4179          * The means one for each copy for write-out and an extra one for
4180          * read-in.
4181          * We store the read-in bio in ->master_bio and the others in
4182          * ->devs[x].bio and ->devs[x].repl_bio.
4183          */
4184         struct r10conf *conf = mddev->private;
4185         struct r10bio *r10_bio;
4186         sector_t next, safe, last;
4187         int max_sectors;
4188         int nr_sectors;
4189         int s;
4190         struct md_rdev *rdev;
4191         int need_flush = 0;
4192         struct bio *blist;
4193         struct bio *bio, *read_bio;
4194         int sectors_done = 0;
4195
4196         if (sector_nr == 0) {
4197                 /* If restarting in the middle, skip the initial sectors */
4198                 if (mddev->reshape_backwards &&
4199                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4200                         sector_nr = (raid10_size(mddev, 0, 0)
4201                                      - conf->reshape_progress);
4202                 } else if (!mddev->reshape_backwards &&
4203                            conf->reshape_progress > 0)
4204                         sector_nr = conf->reshape_progress;
4205                 if (sector_nr) {
4206                         mddev->curr_resync_completed = sector_nr;
4207                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4208                         *skipped = 1;
4209                         return sector_nr;
4210                 }
4211         }
4212
4213         /* We don't use sector_nr to track where we are up to
4214          * as that doesn't work well for ->reshape_backwards.
4215          * So just use ->reshape_progress.
4216          */
4217         if (mddev->reshape_backwards) {
4218                 /* 'next' is the earliest device address that we might
4219                  * write to for this chunk in the new layout
4220                  */
4221                 next = first_dev_address(conf->reshape_progress - 1,
4222                                          &conf->geo);
4223
4224                 /* 'safe' is the last device address that we might read from
4225                  * in the old layout after a restart
4226                  */
4227                 safe = last_dev_address(conf->reshape_safe - 1,
4228                                         &conf->prev);
4229
4230                 if (next + conf->offset_diff < safe)
4231                         need_flush = 1;
4232
4233                 last = conf->reshape_progress - 1;
4234                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4235                                                & conf->prev.chunk_mask);
4236                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4237                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4238         } else {
4239                 /* 'next' is after the last device address that we
4240                  * might write to for this chunk in the new layout
4241                  */
4242                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4243
4244                 /* 'safe' is the earliest device address that we might
4245                  * read from in the old layout after a restart
4246                  */
4247                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4248
4249                 /* Need to update metadata if 'next' might be beyond 'safe'
4250                  * as that would possibly corrupt data
4251                  */
4252                 if (next > safe + conf->offset_diff)
4253                         need_flush = 1;
4254
4255                 sector_nr = conf->reshape_progress;
4256                 last  = sector_nr | (conf->geo.chunk_mask
4257                                      & conf->prev.chunk_mask);
4258
4259                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4260                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4261         }
4262
4263         if (need_flush ||
4264             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4265                 /* Need to update reshape_position in metadata */
4266                 wait_barrier(conf);
4267                 mddev->reshape_position = conf->reshape_progress;
4268                 if (mddev->reshape_backwards)
4269                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4270                                 - conf->reshape_progress;
4271                 else
4272                         mddev->curr_resync_completed = conf->reshape_progress;
4273                 conf->reshape_checkpoint = jiffies;
4274                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4275                 md_wakeup_thread(mddev->thread);
4276                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4277                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4278                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4279                         allow_barrier(conf);
4280                         return sectors_done;
4281                 }
4282                 conf->reshape_safe = mddev->reshape_position;
4283                 allow_barrier(conf);
4284         }
4285
4286 read_more:
4287         /* Now schedule reads for blocks from sector_nr to last */
4288         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4289         r10_bio->state = 0;
4290         raise_barrier(conf, sectors_done != 0);
4291         atomic_set(&r10_bio->remaining, 0);
4292         r10_bio->mddev = mddev;
4293         r10_bio->sector = sector_nr;
4294         set_bit(R10BIO_IsReshape, &r10_bio->state);
4295         r10_bio->sectors = last - sector_nr + 1;
4296         rdev = read_balance(conf, r10_bio, &max_sectors);
4297         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4298
4299         if (!rdev) {
4300                 /* Cannot read from here, so need to record bad blocks
4301                  * on all the target devices.
4302                  */
4303                 // FIXME
4304                 mempool_free(r10_bio, conf->r10buf_pool);
4305                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4306                 return sectors_done;
4307         }
4308
4309         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4310
4311         read_bio->bi_bdev = rdev->bdev;
4312         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4313                                + rdev->data_offset);
4314         read_bio->bi_private = r10_bio;
4315         read_bio->bi_end_io = end_sync_read;
4316         read_bio->bi_rw = READ;
4317         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4318         read_bio->bi_error = 0;
4319         read_bio->bi_vcnt = 0;
4320         read_bio->bi_iter.bi_size = 0;
4321         r10_bio->master_bio = read_bio;
4322         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4323
4324         /* Now find the locations in the new layout */
4325         __raid10_find_phys(&conf->geo, r10_bio);
4326
4327         blist = read_bio;
4328         read_bio->bi_next = NULL;
4329
4330         for (s = 0; s < conf->copies*2; s++) {
4331                 struct bio *b;
4332                 int d = r10_bio->devs[s/2].devnum;
4333                 struct md_rdev *rdev2;
4334                 if (s&1) {
4335                         rdev2 = conf->mirrors[d].replacement;
4336                         b = r10_bio->devs[s/2].repl_bio;
4337                 } else {
4338                         rdev2 = conf->mirrors[d].rdev;
4339                         b = r10_bio->devs[s/2].bio;
4340                 }
4341                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4342                         continue;
4343
4344                 bio_reset(b);
4345                 b->bi_bdev = rdev2->bdev;
4346                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4347                         rdev2->new_data_offset;
4348                 b->bi_private = r10_bio;
4349                 b->bi_end_io = end_reshape_write;
4350                 b->bi_rw = WRITE;
4351                 b->bi_next = blist;
4352                 blist = b;
4353         }
4354
4355         /* Now add as many pages as possible to all of these bios. */
4356
4357         nr_sectors = 0;
4358         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4359                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4360                 int len = (max_sectors - s) << 9;
4361                 if (len > PAGE_SIZE)
4362                         len = PAGE_SIZE;
4363                 for (bio = blist; bio ; bio = bio->bi_next) {
4364                         struct bio *bio2;
4365                         if (bio_add_page(bio, page, len, 0))
4366                                 continue;
4367
4368                         /* Didn't fit, must stop */
4369                         for (bio2 = blist;
4370                              bio2 && bio2 != bio;
4371                              bio2 = bio2->bi_next) {
4372                                 /* Remove last page from this bio */
4373                                 bio2->bi_vcnt--;
4374                                 bio2->bi_iter.bi_size -= len;
4375                                 bio_clear_flag(bio2, BIO_SEG_VALID);
4376                         }
4377                         goto bio_full;
4378                 }
4379                 sector_nr += len >> 9;
4380                 nr_sectors += len >> 9;
4381         }
4382 bio_full:
4383         r10_bio->sectors = nr_sectors;
4384
4385         /* Now submit the read */
4386         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4387         atomic_inc(&r10_bio->remaining);
4388         read_bio->bi_next = NULL;
4389         generic_make_request(read_bio);
4390         sector_nr += nr_sectors;
4391         sectors_done += nr_sectors;
4392         if (sector_nr <= last)
4393                 goto read_more;
4394
4395         /* Now that we have done the whole section we can
4396          * update reshape_progress
4397          */
4398         if (mddev->reshape_backwards)
4399                 conf->reshape_progress -= sectors_done;
4400         else
4401                 conf->reshape_progress += sectors_done;
4402
4403         return sectors_done;
4404 }
4405
4406 static void end_reshape_request(struct r10bio *r10_bio);
4407 static int handle_reshape_read_error(struct mddev *mddev,
4408                                      struct r10bio *r10_bio);
4409 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4410 {
4411         /* Reshape read completed.  Hopefully we have a block
4412          * to write out.
4413          * If we got a read error then we do sync 1-page reads from
4414          * elsewhere until we find the data - or give up.
4415          */
4416         struct r10conf *conf = mddev->private;
4417         int s;
4418
4419         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4420                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4421                         /* Reshape has been aborted */
4422                         md_done_sync(mddev, r10_bio->sectors, 0);
4423                         return;
4424                 }
4425
4426         /* We definitely have the data in the pages, schedule the
4427          * writes.
4428          */
4429         atomic_set(&r10_bio->remaining, 1);
4430         for (s = 0; s < conf->copies*2; s++) {
4431                 struct bio *b;
4432                 int d = r10_bio->devs[s/2].devnum;
4433                 struct md_rdev *rdev;
4434                 if (s&1) {
4435                         rdev = conf->mirrors[d].replacement;
4436                         b = r10_bio->devs[s/2].repl_bio;
4437                 } else {
4438                         rdev = conf->mirrors[d].rdev;
4439                         b = r10_bio->devs[s/2].bio;
4440                 }
4441                 if (!rdev || test_bit(Faulty, &rdev->flags))
4442                         continue;
4443                 atomic_inc(&rdev->nr_pending);
4444                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4445                 atomic_inc(&r10_bio->remaining);
4446                 b->bi_next = NULL;
4447                 generic_make_request(b);
4448         }
4449         end_reshape_request(r10_bio);
4450 }
4451
4452 static void end_reshape(struct r10conf *conf)
4453 {
4454         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4455                 return;
4456
4457         spin_lock_irq(&conf->device_lock);
4458         conf->prev = conf->geo;
4459         md_finish_reshape(conf->mddev);
4460         smp_wmb();
4461         conf->reshape_progress = MaxSector;
4462         conf->reshape_safe = MaxSector;
4463         spin_unlock_irq(&conf->device_lock);
4464
4465         /* read-ahead size must cover two whole stripes, which is
4466          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4467          */
4468         if (conf->mddev->queue) {
4469                 int stripe = conf->geo.raid_disks *
4470                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4471                 stripe /= conf->geo.near_copies;
4472                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4473                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4474         }
4475         conf->fullsync = 0;
4476 }
4477
4478 static int handle_reshape_read_error(struct mddev *mddev,
4479                                      struct r10bio *r10_bio)
4480 {
4481         /* Use sync reads to get the blocks from somewhere else */
4482         int sectors = r10_bio->sectors;
4483         struct r10conf *conf = mddev->private;
4484         struct {
4485                 struct r10bio r10_bio;
4486                 struct r10dev devs[conf->copies];
4487         } on_stack;
4488         struct r10bio *r10b = &on_stack.r10_bio;
4489         int slot = 0;
4490         int idx = 0;
4491         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4492
4493         r10b->sector = r10_bio->sector;
4494         __raid10_find_phys(&conf->prev, r10b);
4495
4496         while (sectors) {
4497                 int s = sectors;
4498                 int success = 0;
4499                 int first_slot = slot;
4500
4501                 if (s > (PAGE_SIZE >> 9))
4502                         s = PAGE_SIZE >> 9;
4503
4504                 while (!success) {
4505                         int d = r10b->devs[slot].devnum;
4506                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4507                         sector_t addr;
4508                         if (rdev == NULL ||
4509                             test_bit(Faulty, &rdev->flags) ||
4510                             !test_bit(In_sync, &rdev->flags))
4511                                 goto failed;
4512
4513                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4514                         success = sync_page_io(rdev,
4515                                                addr,
4516                                                s << 9,
4517                                                bvec[idx].bv_page,
4518                                                READ, false);
4519                         if (success)
4520                                 break;
4521                 failed:
4522                         slot++;
4523                         if (slot >= conf->copies)
4524                                 slot = 0;
4525                         if (slot == first_slot)
4526                                 break;
4527                 }
4528                 if (!success) {
4529                         /* couldn't read this block, must give up */
4530                         set_bit(MD_RECOVERY_INTR,
4531                                 &mddev->recovery);
4532                         return -EIO;
4533                 }
4534                 sectors -= s;
4535                 idx++;
4536         }
4537         return 0;
4538 }
4539
4540 static void end_reshape_write(struct bio *bio)
4541 {
4542         struct r10bio *r10_bio = bio->bi_private;
4543         struct mddev *mddev = r10_bio->mddev;
4544         struct r10conf *conf = mddev->private;
4545         int d;
4546         int slot;
4547         int repl;
4548         struct md_rdev *rdev = NULL;
4549
4550         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4551         if (repl)
4552                 rdev = conf->mirrors[d].replacement;
4553         if (!rdev) {
4554                 smp_mb();
4555                 rdev = conf->mirrors[d].rdev;
4556         }
4557
4558         if (bio->bi_error) {
4559                 /* FIXME should record badblock */
4560                 md_error(mddev, rdev);
4561         }
4562
4563         rdev_dec_pending(rdev, mddev);
4564         end_reshape_request(r10_bio);
4565 }
4566
4567 static void end_reshape_request(struct r10bio *r10_bio)
4568 {
4569         if (!atomic_dec_and_test(&r10_bio->remaining))
4570                 return;
4571         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4572         bio_put(r10_bio->master_bio);
4573         put_buf(r10_bio);
4574 }
4575
4576 static void raid10_finish_reshape(struct mddev *mddev)
4577 {
4578         struct r10conf *conf = mddev->private;
4579
4580         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4581                 return;
4582
4583         if (mddev->delta_disks > 0) {
4584                 sector_t size = raid10_size(mddev, 0, 0);
4585                 md_set_array_sectors(mddev, size);
4586                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4587                         mddev->recovery_cp = mddev->resync_max_sectors;
4588                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4589                 }
4590                 mddev->resync_max_sectors = size;
4591                 set_capacity(mddev->gendisk, mddev->array_sectors);
4592                 revalidate_disk(mddev->gendisk);
4593         } else {
4594                 int d;
4595                 for (d = conf->geo.raid_disks ;
4596                      d < conf->geo.raid_disks - mddev->delta_disks;
4597                      d++) {
4598                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4599                         if (rdev)
4600                                 clear_bit(In_sync, &rdev->flags);
4601                         rdev = conf->mirrors[d].replacement;
4602                         if (rdev)
4603                                 clear_bit(In_sync, &rdev->flags);
4604                 }
4605         }
4606         mddev->layout = mddev->new_layout;
4607         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4608         mddev->reshape_position = MaxSector;
4609         mddev->delta_disks = 0;
4610         mddev->reshape_backwards = 0;
4611 }
4612
4613 static struct md_personality raid10_personality =
4614 {
4615         .name           = "raid10",
4616         .level          = 10,
4617         .owner          = THIS_MODULE,
4618         .make_request   = make_request,
4619         .run            = run,
4620         .free           = raid10_free,
4621         .status         = status,
4622         .error_handler  = error,
4623         .hot_add_disk   = raid10_add_disk,
4624         .hot_remove_disk= raid10_remove_disk,
4625         .spare_active   = raid10_spare_active,
4626         .sync_request   = sync_request,
4627         .quiesce        = raid10_quiesce,
4628         .size           = raid10_size,
4629         .resize         = raid10_resize,
4630         .takeover       = raid10_takeover,
4631         .check_reshape  = raid10_check_reshape,
4632         .start_reshape  = raid10_start_reshape,
4633         .finish_reshape = raid10_finish_reshape,
4634         .congested      = raid10_congested,
4635 };
4636
4637 static int __init raid_init(void)
4638 {
4639         return register_md_personality(&raid10_personality);
4640 }
4641
4642 static void raid_exit(void)
4643 {
4644         unregister_md_personality(&raid10_personality);
4645 }
4646
4647 module_init(raid_init);
4648 module_exit(raid_exit);
4649 MODULE_LICENSE("GPL");
4650 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4651 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4652 MODULE_ALIAS("md-raid10");
4653 MODULE_ALIAS("md-level-10");
4654
4655 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);