]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         unsigned long do_wakeup = 0;
344         int i = 0;
345         unsigned long flags;
346
347         if (hash == NR_STRIPE_HASH_LOCKS) {
348                 size = NR_STRIPE_HASH_LOCKS;
349                 hash = NR_STRIPE_HASH_LOCKS - 1;
350         } else
351                 size = 1;
352         while (size) {
353                 struct list_head *list = &temp_inactive_list[size - 1];
354
355                 /*
356                  * We don't hold any lock here yet, get_active_stripe() might
357                  * remove stripes from the list
358                  */
359                 if (!list_empty_careful(list)) {
360                         spin_lock_irqsave(conf->hash_locks + hash, flags);
361                         if (list_empty(conf->inactive_list + hash) &&
362                             !list_empty(list))
363                                 atomic_dec(&conf->empty_inactive_list_nr);
364                         list_splice_tail_init(list, conf->inactive_list + hash);
365                         do_wakeup |= 1 << hash;
366                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367                 }
368                 size--;
369                 hash--;
370         }
371
372         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373                 if (do_wakeup & (1 << i))
374                         wake_up(&conf->wait_for_stripe[i]);
375         }
376
377         if (do_wakeup) {
378                 if (atomic_read(&conf->active_stripes) == 0)
379                         wake_up(&conf->wait_for_quiescent);
380                 if (conf->retry_read_aligned)
381                         md_wakeup_thread(conf->mddev->thread);
382         }
383 }
384
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387                                struct list_head *temp_inactive_list)
388 {
389         struct stripe_head *sh;
390         int count = 0;
391         struct llist_node *head;
392
393         head = llist_del_all(&conf->released_stripes);
394         head = llist_reverse_order(head);
395         while (head) {
396                 int hash;
397
398                 sh = llist_entry(head, struct stripe_head, release_list);
399                 head = llist_next(head);
400                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401                 smp_mb();
402                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403                 /*
404                  * Don't worry the bit is set here, because if the bit is set
405                  * again, the count is always > 1. This is true for
406                  * STRIPE_ON_UNPLUG_LIST bit too.
407                  */
408                 hash = sh->hash_lock_index;
409                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
410                 count++;
411         }
412
413         return count;
414 }
415
416 static void release_stripe(struct stripe_head *sh)
417 {
418         struct r5conf *conf = sh->raid_conf;
419         unsigned long flags;
420         struct list_head list;
421         int hash;
422         bool wakeup;
423
424         /* Avoid release_list until the last reference.
425          */
426         if (atomic_add_unless(&sh->count, -1, 1))
427                 return;
428
429         if (unlikely(!conf->mddev->thread) ||
430                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431                 goto slow_path;
432         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433         if (wakeup)
434                 md_wakeup_thread(conf->mddev->thread);
435         return;
436 slow_path:
437         local_irq_save(flags);
438         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440                 INIT_LIST_HEAD(&list);
441                 hash = sh->hash_lock_index;
442                 do_release_stripe(conf, sh, &list);
443                 spin_unlock(&conf->device_lock);
444                 release_inactive_stripe_list(conf, &list, hash);
445         }
446         local_irq_restore(flags);
447 }
448
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451         pr_debug("remove_hash(), stripe %llu\n",
452                 (unsigned long long)sh->sector);
453
454         hlist_del_init(&sh->hash);
455 }
456
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459         struct hlist_head *hp = stripe_hash(conf, sh->sector);
460
461         pr_debug("insert_hash(), stripe %llu\n",
462                 (unsigned long long)sh->sector);
463
464         hlist_add_head(&sh->hash, hp);
465 }
466
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470         struct stripe_head *sh = NULL;
471         struct list_head *first;
472
473         if (list_empty(conf->inactive_list + hash))
474                 goto out;
475         first = (conf->inactive_list + hash)->next;
476         sh = list_entry(first, struct stripe_head, lru);
477         list_del_init(first);
478         remove_hash(sh);
479         atomic_inc(&conf->active_stripes);
480         BUG_ON(hash != sh->hash_lock_index);
481         if (list_empty(conf->inactive_list + hash))
482                 atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484         return sh;
485 }
486
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489         struct page *p;
490         int i;
491         int num = sh->raid_conf->pool_size;
492
493         for (i = 0; i < num ; i++) {
494                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495                 p = sh->dev[i].page;
496                 if (!p)
497                         continue;
498                 sh->dev[i].page = NULL;
499                 put_page(p);
500         }
501 }
502
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505         int i;
506         int num = sh->raid_conf->pool_size;
507
508         for (i = 0; i < num; i++) {
509                 struct page *page;
510
511                 if (!(page = alloc_page(gfp))) {
512                         return 1;
513                 }
514                 sh->dev[i].page = page;
515                 sh->dev[i].orig_page = page;
516         }
517         return 0;
518 }
519
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522                             struct stripe_head *sh);
523
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526         struct r5conf *conf = sh->raid_conf;
527         int i, seq;
528
529         BUG_ON(atomic_read(&sh->count) != 0);
530         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531         BUG_ON(stripe_operations_active(sh));
532         BUG_ON(sh->batch_head);
533
534         pr_debug("init_stripe called, stripe %llu\n",
535                 (unsigned long long)sector);
536 retry:
537         seq = read_seqcount_begin(&conf->gen_lock);
538         sh->generation = conf->generation - previous;
539         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540         sh->sector = sector;
541         stripe_set_idx(sector, conf, previous, sh);
542         sh->state = 0;
543
544         for (i = sh->disks; i--; ) {
545                 struct r5dev *dev = &sh->dev[i];
546
547                 if (dev->toread || dev->read || dev->towrite || dev->written ||
548                     test_bit(R5_LOCKED, &dev->flags)) {
549                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550                                (unsigned long long)sh->sector, i, dev->toread,
551                                dev->read, dev->towrite, dev->written,
552                                test_bit(R5_LOCKED, &dev->flags));
553                         WARN_ON(1);
554                 }
555                 dev->flags = 0;
556                 raid5_build_block(sh, i, previous);
557         }
558         if (read_seqcount_retry(&conf->gen_lock, seq))
559                 goto retry;
560         sh->overwrite_disks = 0;
561         insert_hash(conf, sh);
562         sh->cpu = smp_processor_id();
563         set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567                                          short generation)
568 {
569         struct stripe_head *sh;
570
571         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573                 if (sh->sector == sector && sh->generation == generation)
574                         return sh;
575         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576         return NULL;
577 }
578
579 /*
580  * Need to check if array has failed when deciding whether to:
581  *  - start an array
582  *  - remove non-faulty devices
583  *  - add a spare
584  *  - allow a reshape
585  * This determination is simple when no reshape is happening.
586  * However if there is a reshape, we need to carefully check
587  * both the before and after sections.
588  * This is because some failed devices may only affect one
589  * of the two sections, and some non-in_sync devices may
590  * be insync in the section most affected by failed devices.
591  */
592 static int calc_degraded(struct r5conf *conf)
593 {
594         int degraded, degraded2;
595         int i;
596
597         rcu_read_lock();
598         degraded = 0;
599         for (i = 0; i < conf->previous_raid_disks; i++) {
600                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601                 if (rdev && test_bit(Faulty, &rdev->flags))
602                         rdev = rcu_dereference(conf->disks[i].replacement);
603                 if (!rdev || test_bit(Faulty, &rdev->flags))
604                         degraded++;
605                 else if (test_bit(In_sync, &rdev->flags))
606                         ;
607                 else
608                         /* not in-sync or faulty.
609                          * If the reshape increases the number of devices,
610                          * this is being recovered by the reshape, so
611                          * this 'previous' section is not in_sync.
612                          * If the number of devices is being reduced however,
613                          * the device can only be part of the array if
614                          * we are reverting a reshape, so this section will
615                          * be in-sync.
616                          */
617                         if (conf->raid_disks >= conf->previous_raid_disks)
618                                 degraded++;
619         }
620         rcu_read_unlock();
621         if (conf->raid_disks == conf->previous_raid_disks)
622                 return degraded;
623         rcu_read_lock();
624         degraded2 = 0;
625         for (i = 0; i < conf->raid_disks; i++) {
626                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627                 if (rdev && test_bit(Faulty, &rdev->flags))
628                         rdev = rcu_dereference(conf->disks[i].replacement);
629                 if (!rdev || test_bit(Faulty, &rdev->flags))
630                         degraded2++;
631                 else if (test_bit(In_sync, &rdev->flags))
632                         ;
633                 else
634                         /* not in-sync or faulty.
635                          * If reshape increases the number of devices, this
636                          * section has already been recovered, else it
637                          * almost certainly hasn't.
638                          */
639                         if (conf->raid_disks <= conf->previous_raid_disks)
640                                 degraded2++;
641         }
642         rcu_read_unlock();
643         if (degraded2 > degraded)
644                 return degraded2;
645         return degraded;
646 }
647
648 static int has_failed(struct r5conf *conf)
649 {
650         int degraded;
651
652         if (conf->mddev->reshape_position == MaxSector)
653                 return conf->mddev->degraded > conf->max_degraded;
654
655         degraded = calc_degraded(conf);
656         if (degraded > conf->max_degraded)
657                 return 1;
658         return 0;
659 }
660
661 static struct stripe_head *
662 get_active_stripe(struct r5conf *conf, sector_t sector,
663                   int previous, int noblock, int noquiesce)
664 {
665         struct stripe_head *sh;
666         int hash = stripe_hash_locks_hash(sector);
667
668         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669
670         spin_lock_irq(conf->hash_locks + hash);
671
672         do {
673                 wait_event_lock_irq(conf->wait_for_quiescent,
674                                     conf->quiesce == 0 || noquiesce,
675                                     *(conf->hash_locks + hash));
676                 sh = __find_stripe(conf, sector, conf->generation - previous);
677                 if (!sh) {
678                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679                                 sh = get_free_stripe(conf, hash);
680                                 if (!sh && !test_bit(R5_DID_ALLOC,
681                                                      &conf->cache_state))
682                                         set_bit(R5_ALLOC_MORE,
683                                                 &conf->cache_state);
684                         }
685                         if (noblock && sh == NULL)
686                                 break;
687                         if (!sh) {
688                                 set_bit(R5_INACTIVE_BLOCKED,
689                                         &conf->cache_state);
690                                 wait_event_exclusive_cmd(
691                                         conf->wait_for_stripe[hash],
692                                         !list_empty(conf->inactive_list + hash) &&
693                                         (atomic_read(&conf->active_stripes)
694                                          < (conf->max_nr_stripes * 3 / 4)
695                                          || !test_bit(R5_INACTIVE_BLOCKED,
696                                                       &conf->cache_state)),
697                                         spin_unlock_irq(conf->hash_locks + hash),
698                                         spin_lock_irq(conf->hash_locks + hash));
699                                 clear_bit(R5_INACTIVE_BLOCKED,
700                                           &conf->cache_state);
701                         } else {
702                                 init_stripe(sh, sector, previous);
703                                 atomic_inc(&sh->count);
704                         }
705                 } else if (!atomic_inc_not_zero(&sh->count)) {
706                         spin_lock(&conf->device_lock);
707                         if (!atomic_read(&sh->count)) {
708                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
709                                         atomic_inc(&conf->active_stripes);
710                                 BUG_ON(list_empty(&sh->lru) &&
711                                        !test_bit(STRIPE_EXPANDING, &sh->state));
712                                 list_del_init(&sh->lru);
713                                 if (sh->group) {
714                                         sh->group->stripes_cnt--;
715                                         sh->group = NULL;
716                                 }
717                         }
718                         atomic_inc(&sh->count);
719                         spin_unlock(&conf->device_lock);
720                 }
721         } while (sh == NULL);
722
723         if (!list_empty(conf->inactive_list + hash))
724                 wake_up(&conf->wait_for_stripe[hash]);
725
726         spin_unlock_irq(conf->hash_locks + hash);
727         return sh;
728 }
729
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738         local_irq_disable();
739         if (sh1 > sh2) {
740                 spin_lock(&sh2->stripe_lock);
741                 spin_lock_nested(&sh1->stripe_lock, 1);
742         } else {
743                 spin_lock(&sh1->stripe_lock);
744                 spin_lock_nested(&sh2->stripe_lock, 1);
745         }
746 }
747
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750         spin_unlock(&sh1->stripe_lock);
751         spin_unlock(&sh2->stripe_lock);
752         local_irq_enable();
753 }
754
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
759                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
760                 is_full_stripe_write(sh);
761 }
762
763 /* we only do back search */
764 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
765 {
766         struct stripe_head *head;
767         sector_t head_sector, tmp_sec;
768         int hash;
769         int dd_idx;
770
771         if (!stripe_can_batch(sh))
772                 return;
773         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774         tmp_sec = sh->sector;
775         if (!sector_div(tmp_sec, conf->chunk_sectors))
776                 return;
777         head_sector = sh->sector - STRIPE_SECTORS;
778
779         hash = stripe_hash_locks_hash(head_sector);
780         spin_lock_irq(conf->hash_locks + hash);
781         head = __find_stripe(conf, head_sector, conf->generation);
782         if (head && !atomic_inc_not_zero(&head->count)) {
783                 spin_lock(&conf->device_lock);
784                 if (!atomic_read(&head->count)) {
785                         if (!test_bit(STRIPE_HANDLE, &head->state))
786                                 atomic_inc(&conf->active_stripes);
787                         BUG_ON(list_empty(&head->lru) &&
788                                !test_bit(STRIPE_EXPANDING, &head->state));
789                         list_del_init(&head->lru);
790                         if (head->group) {
791                                 head->group->stripes_cnt--;
792                                 head->group = NULL;
793                         }
794                 }
795                 atomic_inc(&head->count);
796                 spin_unlock(&conf->device_lock);
797         }
798         spin_unlock_irq(conf->hash_locks + hash);
799
800         if (!head)
801                 return;
802         if (!stripe_can_batch(head))
803                 goto out;
804
805         lock_two_stripes(head, sh);
806         /* clear_batch_ready clear the flag */
807         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
808                 goto unlock_out;
809
810         if (sh->batch_head)
811                 goto unlock_out;
812
813         dd_idx = 0;
814         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
815                 dd_idx++;
816         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
817                 goto unlock_out;
818
819         if (head->batch_head) {
820                 spin_lock(&head->batch_head->batch_lock);
821                 /* This batch list is already running */
822                 if (!stripe_can_batch(head)) {
823                         spin_unlock(&head->batch_head->batch_lock);
824                         goto unlock_out;
825                 }
826
827                 /*
828                  * at this point, head's BATCH_READY could be cleared, but we
829                  * can still add the stripe to batch list
830                  */
831                 list_add(&sh->batch_list, &head->batch_list);
832                 spin_unlock(&head->batch_head->batch_lock);
833
834                 sh->batch_head = head->batch_head;
835         } else {
836                 head->batch_head = head;
837                 sh->batch_head = head->batch_head;
838                 spin_lock(&head->batch_lock);
839                 list_add_tail(&sh->batch_list, &head->batch_list);
840                 spin_unlock(&head->batch_lock);
841         }
842
843         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
844                 if (atomic_dec_return(&conf->preread_active_stripes)
845                     < IO_THRESHOLD)
846                         md_wakeup_thread(conf->mddev->thread);
847
848         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
849                 int seq = sh->bm_seq;
850                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
851                     sh->batch_head->bm_seq > seq)
852                         seq = sh->batch_head->bm_seq;
853                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
854                 sh->batch_head->bm_seq = seq;
855         }
856
857         atomic_inc(&sh->count);
858 unlock_out:
859         unlock_two_stripes(head, sh);
860 out:
861         release_stripe(head);
862 }
863
864 /* Determine if 'data_offset' or 'new_data_offset' should be used
865  * in this stripe_head.
866  */
867 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
868 {
869         sector_t progress = conf->reshape_progress;
870         /* Need a memory barrier to make sure we see the value
871          * of conf->generation, or ->data_offset that was set before
872          * reshape_progress was updated.
873          */
874         smp_rmb();
875         if (progress == MaxSector)
876                 return 0;
877         if (sh->generation == conf->generation - 1)
878                 return 0;
879         /* We are in a reshape, and this is a new-generation stripe,
880          * so use new_data_offset.
881          */
882         return 1;
883 }
884
885 static void
886 raid5_end_read_request(struct bio *bi);
887 static void
888 raid5_end_write_request(struct bio *bi);
889
890 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
891 {
892         struct r5conf *conf = sh->raid_conf;
893         int i, disks = sh->disks;
894         struct stripe_head *head_sh = sh;
895
896         might_sleep();
897
898         for (i = disks; i--; ) {
899                 int rw;
900                 int replace_only = 0;
901                 struct bio *bi, *rbi;
902                 struct md_rdev *rdev, *rrdev = NULL;
903
904                 sh = head_sh;
905                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
906                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
907                                 rw = WRITE_FUA;
908                         else
909                                 rw = WRITE;
910                         if (test_bit(R5_Discard, &sh->dev[i].flags))
911                                 rw |= REQ_DISCARD;
912                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
913                         rw = READ;
914                 else if (test_and_clear_bit(R5_WantReplace,
915                                             &sh->dev[i].flags)) {
916                         rw = WRITE;
917                         replace_only = 1;
918                 } else
919                         continue;
920                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
921                         rw |= REQ_SYNC;
922
923 again:
924                 bi = &sh->dev[i].req;
925                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
926
927                 rcu_read_lock();
928                 rrdev = rcu_dereference(conf->disks[i].replacement);
929                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
930                 rdev = rcu_dereference(conf->disks[i].rdev);
931                 if (!rdev) {
932                         rdev = rrdev;
933                         rrdev = NULL;
934                 }
935                 if (rw & WRITE) {
936                         if (replace_only)
937                                 rdev = NULL;
938                         if (rdev == rrdev)
939                                 /* We raced and saw duplicates */
940                                 rrdev = NULL;
941                 } else {
942                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
943                                 rdev = rrdev;
944                         rrdev = NULL;
945                 }
946
947                 if (rdev && test_bit(Faulty, &rdev->flags))
948                         rdev = NULL;
949                 if (rdev)
950                         atomic_inc(&rdev->nr_pending);
951                 if (rrdev && test_bit(Faulty, &rrdev->flags))
952                         rrdev = NULL;
953                 if (rrdev)
954                         atomic_inc(&rrdev->nr_pending);
955                 rcu_read_unlock();
956
957                 /* We have already checked bad blocks for reads.  Now
958                  * need to check for writes.  We never accept write errors
959                  * on the replacement, so we don't to check rrdev.
960                  */
961                 while ((rw & WRITE) && rdev &&
962                        test_bit(WriteErrorSeen, &rdev->flags)) {
963                         sector_t first_bad;
964                         int bad_sectors;
965                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
966                                               &first_bad, &bad_sectors);
967                         if (!bad)
968                                 break;
969
970                         if (bad < 0) {
971                                 set_bit(BlockedBadBlocks, &rdev->flags);
972                                 if (!conf->mddev->external &&
973                                     conf->mddev->flags) {
974                                         /* It is very unlikely, but we might
975                                          * still need to write out the
976                                          * bad block log - better give it
977                                          * a chance*/
978                                         md_check_recovery(conf->mddev);
979                                 }
980                                 /*
981                                  * Because md_wait_for_blocked_rdev
982                                  * will dec nr_pending, we must
983                                  * increment it first.
984                                  */
985                                 atomic_inc(&rdev->nr_pending);
986                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
987                         } else {
988                                 /* Acknowledged bad block - skip the write */
989                                 rdev_dec_pending(rdev, conf->mddev);
990                                 rdev = NULL;
991                         }
992                 }
993
994                 if (rdev) {
995                         if (s->syncing || s->expanding || s->expanded
996                             || s->replacing)
997                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
998
999                         set_bit(STRIPE_IO_STARTED, &sh->state);
1000
1001                         bio_reset(bi);
1002                         bi->bi_bdev = rdev->bdev;
1003                         bi->bi_rw = rw;
1004                         bi->bi_end_io = (rw & WRITE)
1005                                 ? raid5_end_write_request
1006                                 : raid5_end_read_request;
1007                         bi->bi_private = sh;
1008
1009                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1010                                 __func__, (unsigned long long)sh->sector,
1011                                 bi->bi_rw, i);
1012                         atomic_inc(&sh->count);
1013                         if (sh != head_sh)
1014                                 atomic_inc(&head_sh->count);
1015                         if (use_new_offset(conf, sh))
1016                                 bi->bi_iter.bi_sector = (sh->sector
1017                                                  + rdev->new_data_offset);
1018                         else
1019                                 bi->bi_iter.bi_sector = (sh->sector
1020                                                  + rdev->data_offset);
1021                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1022                                 bi->bi_rw |= REQ_NOMERGE;
1023
1024                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1025                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1026                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1027                         bi->bi_vcnt = 1;
1028                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1029                         bi->bi_io_vec[0].bv_offset = 0;
1030                         bi->bi_iter.bi_size = STRIPE_SIZE;
1031                         /*
1032                          * If this is discard request, set bi_vcnt 0. We don't
1033                          * want to confuse SCSI because SCSI will replace payload
1034                          */
1035                         if (rw & REQ_DISCARD)
1036                                 bi->bi_vcnt = 0;
1037                         if (rrdev)
1038                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1039
1040                         if (conf->mddev->gendisk)
1041                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1042                                                       bi, disk_devt(conf->mddev->gendisk),
1043                                                       sh->dev[i].sector);
1044                         generic_make_request(bi);
1045                 }
1046                 if (rrdev) {
1047                         if (s->syncing || s->expanding || s->expanded
1048                             || s->replacing)
1049                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1050
1051                         set_bit(STRIPE_IO_STARTED, &sh->state);
1052
1053                         bio_reset(rbi);
1054                         rbi->bi_bdev = rrdev->bdev;
1055                         rbi->bi_rw = rw;
1056                         BUG_ON(!(rw & WRITE));
1057                         rbi->bi_end_io = raid5_end_write_request;
1058                         rbi->bi_private = sh;
1059
1060                         pr_debug("%s: for %llu schedule op %ld on "
1061                                  "replacement disc %d\n",
1062                                 __func__, (unsigned long long)sh->sector,
1063                                 rbi->bi_rw, i);
1064                         atomic_inc(&sh->count);
1065                         if (sh != head_sh)
1066                                 atomic_inc(&head_sh->count);
1067                         if (use_new_offset(conf, sh))
1068                                 rbi->bi_iter.bi_sector = (sh->sector
1069                                                   + rrdev->new_data_offset);
1070                         else
1071                                 rbi->bi_iter.bi_sector = (sh->sector
1072                                                   + rrdev->data_offset);
1073                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1074                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1075                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1076                         rbi->bi_vcnt = 1;
1077                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1078                         rbi->bi_io_vec[0].bv_offset = 0;
1079                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1080                         /*
1081                          * If this is discard request, set bi_vcnt 0. We don't
1082                          * want to confuse SCSI because SCSI will replace payload
1083                          */
1084                         if (rw & REQ_DISCARD)
1085                                 rbi->bi_vcnt = 0;
1086                         if (conf->mddev->gendisk)
1087                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1088                                                       rbi, disk_devt(conf->mddev->gendisk),
1089                                                       sh->dev[i].sector);
1090                         generic_make_request(rbi);
1091                 }
1092                 if (!rdev && !rrdev) {
1093                         if (rw & WRITE)
1094                                 set_bit(STRIPE_DEGRADED, &sh->state);
1095                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1096                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1097                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1098                         set_bit(STRIPE_HANDLE, &sh->state);
1099                 }
1100
1101                 if (!head_sh->batch_head)
1102                         continue;
1103                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1104                                       batch_list);
1105                 if (sh != head_sh)
1106                         goto again;
1107         }
1108 }
1109
1110 static struct dma_async_tx_descriptor *
1111 async_copy_data(int frombio, struct bio *bio, struct page **page,
1112         sector_t sector, struct dma_async_tx_descriptor *tx,
1113         struct stripe_head *sh)
1114 {
1115         struct bio_vec bvl;
1116         struct bvec_iter iter;
1117         struct page *bio_page;
1118         int page_offset;
1119         struct async_submit_ctl submit;
1120         enum async_tx_flags flags = 0;
1121
1122         if (bio->bi_iter.bi_sector >= sector)
1123                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1124         else
1125                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1126
1127         if (frombio)
1128                 flags |= ASYNC_TX_FENCE;
1129         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1130
1131         bio_for_each_segment(bvl, bio, iter) {
1132                 int len = bvl.bv_len;
1133                 int clen;
1134                 int b_offset = 0;
1135
1136                 if (page_offset < 0) {
1137                         b_offset = -page_offset;
1138                         page_offset += b_offset;
1139                         len -= b_offset;
1140                 }
1141
1142                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1143                         clen = STRIPE_SIZE - page_offset;
1144                 else
1145                         clen = len;
1146
1147                 if (clen > 0) {
1148                         b_offset += bvl.bv_offset;
1149                         bio_page = bvl.bv_page;
1150                         if (frombio) {
1151                                 if (sh->raid_conf->skip_copy &&
1152                                     b_offset == 0 && page_offset == 0 &&
1153                                     clen == STRIPE_SIZE)
1154                                         *page = bio_page;
1155                                 else
1156                                         tx = async_memcpy(*page, bio_page, page_offset,
1157                                                   b_offset, clen, &submit);
1158                         } else
1159                                 tx = async_memcpy(bio_page, *page, b_offset,
1160                                                   page_offset, clen, &submit);
1161                 }
1162                 /* chain the operations */
1163                 submit.depend_tx = tx;
1164
1165                 if (clen < len) /* hit end of page */
1166                         break;
1167                 page_offset +=  len;
1168         }
1169
1170         return tx;
1171 }
1172
1173 static void ops_complete_biofill(void *stripe_head_ref)
1174 {
1175         struct stripe_head *sh = stripe_head_ref;
1176         struct bio_list return_bi = BIO_EMPTY_LIST;
1177         int i;
1178
1179         pr_debug("%s: stripe %llu\n", __func__,
1180                 (unsigned long long)sh->sector);
1181
1182         /* clear completed biofills */
1183         for (i = sh->disks; i--; ) {
1184                 struct r5dev *dev = &sh->dev[i];
1185
1186                 /* acknowledge completion of a biofill operation */
1187                 /* and check if we need to reply to a read request,
1188                  * new R5_Wantfill requests are held off until
1189                  * !STRIPE_BIOFILL_RUN
1190                  */
1191                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1192                         struct bio *rbi, *rbi2;
1193
1194                         BUG_ON(!dev->read);
1195                         rbi = dev->read;
1196                         dev->read = NULL;
1197                         while (rbi && rbi->bi_iter.bi_sector <
1198                                 dev->sector + STRIPE_SECTORS) {
1199                                 rbi2 = r5_next_bio(rbi, dev->sector);
1200                                 if (!raid5_dec_bi_active_stripes(rbi))
1201                                         bio_list_add(&return_bi, rbi);
1202                                 rbi = rbi2;
1203                         }
1204                 }
1205         }
1206         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1207
1208         return_io(&return_bi);
1209
1210         set_bit(STRIPE_HANDLE, &sh->state);
1211         release_stripe(sh);
1212 }
1213
1214 static void ops_run_biofill(struct stripe_head *sh)
1215 {
1216         struct dma_async_tx_descriptor *tx = NULL;
1217         struct async_submit_ctl submit;
1218         int i;
1219
1220         BUG_ON(sh->batch_head);
1221         pr_debug("%s: stripe %llu\n", __func__,
1222                 (unsigned long long)sh->sector);
1223
1224         for (i = sh->disks; i--; ) {
1225                 struct r5dev *dev = &sh->dev[i];
1226                 if (test_bit(R5_Wantfill, &dev->flags)) {
1227                         struct bio *rbi;
1228                         spin_lock_irq(&sh->stripe_lock);
1229                         dev->read = rbi = dev->toread;
1230                         dev->toread = NULL;
1231                         spin_unlock_irq(&sh->stripe_lock);
1232                         while (rbi && rbi->bi_iter.bi_sector <
1233                                 dev->sector + STRIPE_SECTORS) {
1234                                 tx = async_copy_data(0, rbi, &dev->page,
1235                                         dev->sector, tx, sh);
1236                                 rbi = r5_next_bio(rbi, dev->sector);
1237                         }
1238                 }
1239         }
1240
1241         atomic_inc(&sh->count);
1242         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1243         async_trigger_callback(&submit);
1244 }
1245
1246 static void mark_target_uptodate(struct stripe_head *sh, int target)
1247 {
1248         struct r5dev *tgt;
1249
1250         if (target < 0)
1251                 return;
1252
1253         tgt = &sh->dev[target];
1254         set_bit(R5_UPTODATE, &tgt->flags);
1255         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1256         clear_bit(R5_Wantcompute, &tgt->flags);
1257 }
1258
1259 static void ops_complete_compute(void *stripe_head_ref)
1260 {
1261         struct stripe_head *sh = stripe_head_ref;
1262
1263         pr_debug("%s: stripe %llu\n", __func__,
1264                 (unsigned long long)sh->sector);
1265
1266         /* mark the computed target(s) as uptodate */
1267         mark_target_uptodate(sh, sh->ops.target);
1268         mark_target_uptodate(sh, sh->ops.target2);
1269
1270         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1271         if (sh->check_state == check_state_compute_run)
1272                 sh->check_state = check_state_compute_result;
1273         set_bit(STRIPE_HANDLE, &sh->state);
1274         release_stripe(sh);
1275 }
1276
1277 /* return a pointer to the address conversion region of the scribble buffer */
1278 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1279                                  struct raid5_percpu *percpu, int i)
1280 {
1281         void *addr;
1282
1283         addr = flex_array_get(percpu->scribble, i);
1284         return addr + sizeof(struct page *) * (sh->disks + 2);
1285 }
1286
1287 /* return a pointer to the address conversion region of the scribble buffer */
1288 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1289 {
1290         void *addr;
1291
1292         addr = flex_array_get(percpu->scribble, i);
1293         return addr;
1294 }
1295
1296 static struct dma_async_tx_descriptor *
1297 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1298 {
1299         int disks = sh->disks;
1300         struct page **xor_srcs = to_addr_page(percpu, 0);
1301         int target = sh->ops.target;
1302         struct r5dev *tgt = &sh->dev[target];
1303         struct page *xor_dest = tgt->page;
1304         int count = 0;
1305         struct dma_async_tx_descriptor *tx;
1306         struct async_submit_ctl submit;
1307         int i;
1308
1309         BUG_ON(sh->batch_head);
1310
1311         pr_debug("%s: stripe %llu block: %d\n",
1312                 __func__, (unsigned long long)sh->sector, target);
1313         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1314
1315         for (i = disks; i--; )
1316                 if (i != target)
1317                         xor_srcs[count++] = sh->dev[i].page;
1318
1319         atomic_inc(&sh->count);
1320
1321         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1322                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1323         if (unlikely(count == 1))
1324                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1325         else
1326                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1327
1328         return tx;
1329 }
1330
1331 /* set_syndrome_sources - populate source buffers for gen_syndrome
1332  * @srcs - (struct page *) array of size sh->disks
1333  * @sh - stripe_head to parse
1334  *
1335  * Populates srcs in proper layout order for the stripe and returns the
1336  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1337  * destination buffer is recorded in srcs[count] and the Q destination
1338  * is recorded in srcs[count+1]].
1339  */
1340 static int set_syndrome_sources(struct page **srcs,
1341                                 struct stripe_head *sh,
1342                                 int srctype)
1343 {
1344         int disks = sh->disks;
1345         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1346         int d0_idx = raid6_d0(sh);
1347         int count;
1348         int i;
1349
1350         for (i = 0; i < disks; i++)
1351                 srcs[i] = NULL;
1352
1353         count = 0;
1354         i = d0_idx;
1355         do {
1356                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1357                 struct r5dev *dev = &sh->dev[i];
1358
1359                 if (i == sh->qd_idx || i == sh->pd_idx ||
1360                     (srctype == SYNDROME_SRC_ALL) ||
1361                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1362                      test_bit(R5_Wantdrain, &dev->flags)) ||
1363                     (srctype == SYNDROME_SRC_WRITTEN &&
1364                      dev->written))
1365                         srcs[slot] = sh->dev[i].page;
1366                 i = raid6_next_disk(i, disks);
1367         } while (i != d0_idx);
1368
1369         return syndrome_disks;
1370 }
1371
1372 static struct dma_async_tx_descriptor *
1373 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1374 {
1375         int disks = sh->disks;
1376         struct page **blocks = to_addr_page(percpu, 0);
1377         int target;
1378         int qd_idx = sh->qd_idx;
1379         struct dma_async_tx_descriptor *tx;
1380         struct async_submit_ctl submit;
1381         struct r5dev *tgt;
1382         struct page *dest;
1383         int i;
1384         int count;
1385
1386         BUG_ON(sh->batch_head);
1387         if (sh->ops.target < 0)
1388                 target = sh->ops.target2;
1389         else if (sh->ops.target2 < 0)
1390                 target = sh->ops.target;
1391         else
1392                 /* we should only have one valid target */
1393                 BUG();
1394         BUG_ON(target < 0);
1395         pr_debug("%s: stripe %llu block: %d\n",
1396                 __func__, (unsigned long long)sh->sector, target);
1397
1398         tgt = &sh->dev[target];
1399         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1400         dest = tgt->page;
1401
1402         atomic_inc(&sh->count);
1403
1404         if (target == qd_idx) {
1405                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1406                 blocks[count] = NULL; /* regenerating p is not necessary */
1407                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1408                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1409                                   ops_complete_compute, sh,
1410                                   to_addr_conv(sh, percpu, 0));
1411                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1412         } else {
1413                 /* Compute any data- or p-drive using XOR */
1414                 count = 0;
1415                 for (i = disks; i-- ; ) {
1416                         if (i == target || i == qd_idx)
1417                                 continue;
1418                         blocks[count++] = sh->dev[i].page;
1419                 }
1420
1421                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1422                                   NULL, ops_complete_compute, sh,
1423                                   to_addr_conv(sh, percpu, 0));
1424                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1425         }
1426
1427         return tx;
1428 }
1429
1430 static struct dma_async_tx_descriptor *
1431 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1432 {
1433         int i, count, disks = sh->disks;
1434         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1435         int d0_idx = raid6_d0(sh);
1436         int faila = -1, failb = -1;
1437         int target = sh->ops.target;
1438         int target2 = sh->ops.target2;
1439         struct r5dev *tgt = &sh->dev[target];
1440         struct r5dev *tgt2 = &sh->dev[target2];
1441         struct dma_async_tx_descriptor *tx;
1442         struct page **blocks = to_addr_page(percpu, 0);
1443         struct async_submit_ctl submit;
1444
1445         BUG_ON(sh->batch_head);
1446         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1447                  __func__, (unsigned long long)sh->sector, target, target2);
1448         BUG_ON(target < 0 || target2 < 0);
1449         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1450         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1451
1452         /* we need to open-code set_syndrome_sources to handle the
1453          * slot number conversion for 'faila' and 'failb'
1454          */
1455         for (i = 0; i < disks ; i++)
1456                 blocks[i] = NULL;
1457         count = 0;
1458         i = d0_idx;
1459         do {
1460                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1461
1462                 blocks[slot] = sh->dev[i].page;
1463
1464                 if (i == target)
1465                         faila = slot;
1466                 if (i == target2)
1467                         failb = slot;
1468                 i = raid6_next_disk(i, disks);
1469         } while (i != d0_idx);
1470
1471         BUG_ON(faila == failb);
1472         if (failb < faila)
1473                 swap(faila, failb);
1474         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1475                  __func__, (unsigned long long)sh->sector, faila, failb);
1476
1477         atomic_inc(&sh->count);
1478
1479         if (failb == syndrome_disks+1) {
1480                 /* Q disk is one of the missing disks */
1481                 if (faila == syndrome_disks) {
1482                         /* Missing P+Q, just recompute */
1483                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1484                                           ops_complete_compute, sh,
1485                                           to_addr_conv(sh, percpu, 0));
1486                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1487                                                   STRIPE_SIZE, &submit);
1488                 } else {
1489                         struct page *dest;
1490                         int data_target;
1491                         int qd_idx = sh->qd_idx;
1492
1493                         /* Missing D+Q: recompute D from P, then recompute Q */
1494                         if (target == qd_idx)
1495                                 data_target = target2;
1496                         else
1497                                 data_target = target;
1498
1499                         count = 0;
1500                         for (i = disks; i-- ; ) {
1501                                 if (i == data_target || i == qd_idx)
1502                                         continue;
1503                                 blocks[count++] = sh->dev[i].page;
1504                         }
1505                         dest = sh->dev[data_target].page;
1506                         init_async_submit(&submit,
1507                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1508                                           NULL, NULL, NULL,
1509                                           to_addr_conv(sh, percpu, 0));
1510                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1511                                        &submit);
1512
1513                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1514                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1515                                           ops_complete_compute, sh,
1516                                           to_addr_conv(sh, percpu, 0));
1517                         return async_gen_syndrome(blocks, 0, count+2,
1518                                                   STRIPE_SIZE, &submit);
1519                 }
1520         } else {
1521                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1522                                   ops_complete_compute, sh,
1523                                   to_addr_conv(sh, percpu, 0));
1524                 if (failb == syndrome_disks) {
1525                         /* We're missing D+P. */
1526                         return async_raid6_datap_recov(syndrome_disks+2,
1527                                                        STRIPE_SIZE, faila,
1528                                                        blocks, &submit);
1529                 } else {
1530                         /* We're missing D+D. */
1531                         return async_raid6_2data_recov(syndrome_disks+2,
1532                                                        STRIPE_SIZE, faila, failb,
1533                                                        blocks, &submit);
1534                 }
1535         }
1536 }
1537
1538 static void ops_complete_prexor(void *stripe_head_ref)
1539 {
1540         struct stripe_head *sh = stripe_head_ref;
1541
1542         pr_debug("%s: stripe %llu\n", __func__,
1543                 (unsigned long long)sh->sector);
1544 }
1545
1546 static struct dma_async_tx_descriptor *
1547 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1548                 struct dma_async_tx_descriptor *tx)
1549 {
1550         int disks = sh->disks;
1551         struct page **xor_srcs = to_addr_page(percpu, 0);
1552         int count = 0, pd_idx = sh->pd_idx, i;
1553         struct async_submit_ctl submit;
1554
1555         /* existing parity data subtracted */
1556         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1557
1558         BUG_ON(sh->batch_head);
1559         pr_debug("%s: stripe %llu\n", __func__,
1560                 (unsigned long long)sh->sector);
1561
1562         for (i = disks; i--; ) {
1563                 struct r5dev *dev = &sh->dev[i];
1564                 /* Only process blocks that are known to be uptodate */
1565                 if (test_bit(R5_Wantdrain, &dev->flags))
1566                         xor_srcs[count++] = dev->page;
1567         }
1568
1569         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1570                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1571         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1572
1573         return tx;
1574 }
1575
1576 static struct dma_async_tx_descriptor *
1577 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1578                 struct dma_async_tx_descriptor *tx)
1579 {
1580         struct page **blocks = to_addr_page(percpu, 0);
1581         int count;
1582         struct async_submit_ctl submit;
1583
1584         pr_debug("%s: stripe %llu\n", __func__,
1585                 (unsigned long long)sh->sector);
1586
1587         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1588
1589         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1590                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1591         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1592
1593         return tx;
1594 }
1595
1596 static struct dma_async_tx_descriptor *
1597 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1598 {
1599         int disks = sh->disks;
1600         int i;
1601         struct stripe_head *head_sh = sh;
1602
1603         pr_debug("%s: stripe %llu\n", __func__,
1604                 (unsigned long long)sh->sector);
1605
1606         for (i = disks; i--; ) {
1607                 struct r5dev *dev;
1608                 struct bio *chosen;
1609
1610                 sh = head_sh;
1611                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1612                         struct bio *wbi;
1613
1614 again:
1615                         dev = &sh->dev[i];
1616                         spin_lock_irq(&sh->stripe_lock);
1617                         chosen = dev->towrite;
1618                         dev->towrite = NULL;
1619                         sh->overwrite_disks = 0;
1620                         BUG_ON(dev->written);
1621                         wbi = dev->written = chosen;
1622                         spin_unlock_irq(&sh->stripe_lock);
1623                         WARN_ON(dev->page != dev->orig_page);
1624
1625                         while (wbi && wbi->bi_iter.bi_sector <
1626                                 dev->sector + STRIPE_SECTORS) {
1627                                 if (wbi->bi_rw & REQ_FUA)
1628                                         set_bit(R5_WantFUA, &dev->flags);
1629                                 if (wbi->bi_rw & REQ_SYNC)
1630                                         set_bit(R5_SyncIO, &dev->flags);
1631                                 if (wbi->bi_rw & REQ_DISCARD)
1632                                         set_bit(R5_Discard, &dev->flags);
1633                                 else {
1634                                         tx = async_copy_data(1, wbi, &dev->page,
1635                                                 dev->sector, tx, sh);
1636                                         if (dev->page != dev->orig_page) {
1637                                                 set_bit(R5_SkipCopy, &dev->flags);
1638                                                 clear_bit(R5_UPTODATE, &dev->flags);
1639                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1640                                         }
1641                                 }
1642                                 wbi = r5_next_bio(wbi, dev->sector);
1643                         }
1644
1645                         if (head_sh->batch_head) {
1646                                 sh = list_first_entry(&sh->batch_list,
1647                                                       struct stripe_head,
1648                                                       batch_list);
1649                                 if (sh == head_sh)
1650                                         continue;
1651                                 goto again;
1652                         }
1653                 }
1654         }
1655
1656         return tx;
1657 }
1658
1659 static void ops_complete_reconstruct(void *stripe_head_ref)
1660 {
1661         struct stripe_head *sh = stripe_head_ref;
1662         int disks = sh->disks;
1663         int pd_idx = sh->pd_idx;
1664         int qd_idx = sh->qd_idx;
1665         int i;
1666         bool fua = false, sync = false, discard = false;
1667
1668         pr_debug("%s: stripe %llu\n", __func__,
1669                 (unsigned long long)sh->sector);
1670
1671         for (i = disks; i--; ) {
1672                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1673                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1674                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1675         }
1676
1677         for (i = disks; i--; ) {
1678                 struct r5dev *dev = &sh->dev[i];
1679
1680                 if (dev->written || i == pd_idx || i == qd_idx) {
1681                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1682                                 set_bit(R5_UPTODATE, &dev->flags);
1683                         if (fua)
1684                                 set_bit(R5_WantFUA, &dev->flags);
1685                         if (sync)
1686                                 set_bit(R5_SyncIO, &dev->flags);
1687                 }
1688         }
1689
1690         if (sh->reconstruct_state == reconstruct_state_drain_run)
1691                 sh->reconstruct_state = reconstruct_state_drain_result;
1692         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1693                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1694         else {
1695                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1696                 sh->reconstruct_state = reconstruct_state_result;
1697         }
1698
1699         set_bit(STRIPE_HANDLE, &sh->state);
1700         release_stripe(sh);
1701 }
1702
1703 static void
1704 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1705                      struct dma_async_tx_descriptor *tx)
1706 {
1707         int disks = sh->disks;
1708         struct page **xor_srcs;
1709         struct async_submit_ctl submit;
1710         int count, pd_idx = sh->pd_idx, i;
1711         struct page *xor_dest;
1712         int prexor = 0;
1713         unsigned long flags;
1714         int j = 0;
1715         struct stripe_head *head_sh = sh;
1716         int last_stripe;
1717
1718         pr_debug("%s: stripe %llu\n", __func__,
1719                 (unsigned long long)sh->sector);
1720
1721         for (i = 0; i < sh->disks; i++) {
1722                 if (pd_idx == i)
1723                         continue;
1724                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1725                         break;
1726         }
1727         if (i >= sh->disks) {
1728                 atomic_inc(&sh->count);
1729                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1730                 ops_complete_reconstruct(sh);
1731                 return;
1732         }
1733 again:
1734         count = 0;
1735         xor_srcs = to_addr_page(percpu, j);
1736         /* check if prexor is active which means only process blocks
1737          * that are part of a read-modify-write (written)
1738          */
1739         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1740                 prexor = 1;
1741                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1742                 for (i = disks; i--; ) {
1743                         struct r5dev *dev = &sh->dev[i];
1744                         if (head_sh->dev[i].written)
1745                                 xor_srcs[count++] = dev->page;
1746                 }
1747         } else {
1748                 xor_dest = sh->dev[pd_idx].page;
1749                 for (i = disks; i--; ) {
1750                         struct r5dev *dev = &sh->dev[i];
1751                         if (i != pd_idx)
1752                                 xor_srcs[count++] = dev->page;
1753                 }
1754         }
1755
1756         /* 1/ if we prexor'd then the dest is reused as a source
1757          * 2/ if we did not prexor then we are redoing the parity
1758          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1759          * for the synchronous xor case
1760          */
1761         last_stripe = !head_sh->batch_head ||
1762                 list_first_entry(&sh->batch_list,
1763                                  struct stripe_head, batch_list) == head_sh;
1764         if (last_stripe) {
1765                 flags = ASYNC_TX_ACK |
1766                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1767
1768                 atomic_inc(&head_sh->count);
1769                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1770                                   to_addr_conv(sh, percpu, j));
1771         } else {
1772                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1773                 init_async_submit(&submit, flags, tx, NULL, NULL,
1774                                   to_addr_conv(sh, percpu, j));
1775         }
1776
1777         if (unlikely(count == 1))
1778                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1779         else
1780                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1781         if (!last_stripe) {
1782                 j++;
1783                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1784                                       batch_list);
1785                 goto again;
1786         }
1787 }
1788
1789 static void
1790 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1791                      struct dma_async_tx_descriptor *tx)
1792 {
1793         struct async_submit_ctl submit;
1794         struct page **blocks;
1795         int count, i, j = 0;
1796         struct stripe_head *head_sh = sh;
1797         int last_stripe;
1798         int synflags;
1799         unsigned long txflags;
1800
1801         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1802
1803         for (i = 0; i < sh->disks; i++) {
1804                 if (sh->pd_idx == i || sh->qd_idx == i)
1805                         continue;
1806                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1807                         break;
1808         }
1809         if (i >= sh->disks) {
1810                 atomic_inc(&sh->count);
1811                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1812                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1813                 ops_complete_reconstruct(sh);
1814                 return;
1815         }
1816
1817 again:
1818         blocks = to_addr_page(percpu, j);
1819
1820         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1821                 synflags = SYNDROME_SRC_WRITTEN;
1822                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1823         } else {
1824                 synflags = SYNDROME_SRC_ALL;
1825                 txflags = ASYNC_TX_ACK;
1826         }
1827
1828         count = set_syndrome_sources(blocks, sh, synflags);
1829         last_stripe = !head_sh->batch_head ||
1830                 list_first_entry(&sh->batch_list,
1831                                  struct stripe_head, batch_list) == head_sh;
1832
1833         if (last_stripe) {
1834                 atomic_inc(&head_sh->count);
1835                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1836                                   head_sh, to_addr_conv(sh, percpu, j));
1837         } else
1838                 init_async_submit(&submit, 0, tx, NULL, NULL,
1839                                   to_addr_conv(sh, percpu, j));
1840         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1841         if (!last_stripe) {
1842                 j++;
1843                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1844                                       batch_list);
1845                 goto again;
1846         }
1847 }
1848
1849 static void ops_complete_check(void *stripe_head_ref)
1850 {
1851         struct stripe_head *sh = stripe_head_ref;
1852
1853         pr_debug("%s: stripe %llu\n", __func__,
1854                 (unsigned long long)sh->sector);
1855
1856         sh->check_state = check_state_check_result;
1857         set_bit(STRIPE_HANDLE, &sh->state);
1858         release_stripe(sh);
1859 }
1860
1861 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1862 {
1863         int disks = sh->disks;
1864         int pd_idx = sh->pd_idx;
1865         int qd_idx = sh->qd_idx;
1866         struct page *xor_dest;
1867         struct page **xor_srcs = to_addr_page(percpu, 0);
1868         struct dma_async_tx_descriptor *tx;
1869         struct async_submit_ctl submit;
1870         int count;
1871         int i;
1872
1873         pr_debug("%s: stripe %llu\n", __func__,
1874                 (unsigned long long)sh->sector);
1875
1876         BUG_ON(sh->batch_head);
1877         count = 0;
1878         xor_dest = sh->dev[pd_idx].page;
1879         xor_srcs[count++] = xor_dest;
1880         for (i = disks; i--; ) {
1881                 if (i == pd_idx || i == qd_idx)
1882                         continue;
1883                 xor_srcs[count++] = sh->dev[i].page;
1884         }
1885
1886         init_async_submit(&submit, 0, NULL, NULL, NULL,
1887                           to_addr_conv(sh, percpu, 0));
1888         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1889                            &sh->ops.zero_sum_result, &submit);
1890
1891         atomic_inc(&sh->count);
1892         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1893         tx = async_trigger_callback(&submit);
1894 }
1895
1896 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1897 {
1898         struct page **srcs = to_addr_page(percpu, 0);
1899         struct async_submit_ctl submit;
1900         int count;
1901
1902         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1903                 (unsigned long long)sh->sector, checkp);
1904
1905         BUG_ON(sh->batch_head);
1906         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1907         if (!checkp)
1908                 srcs[count] = NULL;
1909
1910         atomic_inc(&sh->count);
1911         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1912                           sh, to_addr_conv(sh, percpu, 0));
1913         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1914                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1915 }
1916
1917 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1918 {
1919         int overlap_clear = 0, i, disks = sh->disks;
1920         struct dma_async_tx_descriptor *tx = NULL;
1921         struct r5conf *conf = sh->raid_conf;
1922         int level = conf->level;
1923         struct raid5_percpu *percpu;
1924         unsigned long cpu;
1925
1926         cpu = get_cpu();
1927         percpu = per_cpu_ptr(conf->percpu, cpu);
1928         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1929                 ops_run_biofill(sh);
1930                 overlap_clear++;
1931         }
1932
1933         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1934                 if (level < 6)
1935                         tx = ops_run_compute5(sh, percpu);
1936                 else {
1937                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1938                                 tx = ops_run_compute6_1(sh, percpu);
1939                         else
1940                                 tx = ops_run_compute6_2(sh, percpu);
1941                 }
1942                 /* terminate the chain if reconstruct is not set to be run */
1943                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1944                         async_tx_ack(tx);
1945         }
1946
1947         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1948                 if (level < 6)
1949                         tx = ops_run_prexor5(sh, percpu, tx);
1950                 else
1951                         tx = ops_run_prexor6(sh, percpu, tx);
1952         }
1953
1954         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1955                 tx = ops_run_biodrain(sh, tx);
1956                 overlap_clear++;
1957         }
1958
1959         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1960                 if (level < 6)
1961                         ops_run_reconstruct5(sh, percpu, tx);
1962                 else
1963                         ops_run_reconstruct6(sh, percpu, tx);
1964         }
1965
1966         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1967                 if (sh->check_state == check_state_run)
1968                         ops_run_check_p(sh, percpu);
1969                 else if (sh->check_state == check_state_run_q)
1970                         ops_run_check_pq(sh, percpu, 0);
1971                 else if (sh->check_state == check_state_run_pq)
1972                         ops_run_check_pq(sh, percpu, 1);
1973                 else
1974                         BUG();
1975         }
1976
1977         if (overlap_clear && !sh->batch_head)
1978                 for (i = disks; i--; ) {
1979                         struct r5dev *dev = &sh->dev[i];
1980                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1981                                 wake_up(&sh->raid_conf->wait_for_overlap);
1982                 }
1983         put_cpu();
1984 }
1985
1986 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1987 {
1988         struct stripe_head *sh;
1989
1990         sh = kmem_cache_zalloc(sc, gfp);
1991         if (sh) {
1992                 spin_lock_init(&sh->stripe_lock);
1993                 spin_lock_init(&sh->batch_lock);
1994                 INIT_LIST_HEAD(&sh->batch_list);
1995                 INIT_LIST_HEAD(&sh->lru);
1996                 atomic_set(&sh->count, 1);
1997         }
1998         return sh;
1999 }
2000 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2001 {
2002         struct stripe_head *sh;
2003
2004         sh = alloc_stripe(conf->slab_cache, gfp);
2005         if (!sh)
2006                 return 0;
2007
2008         sh->raid_conf = conf;
2009
2010         if (grow_buffers(sh, gfp)) {
2011                 shrink_buffers(sh);
2012                 kmem_cache_free(conf->slab_cache, sh);
2013                 return 0;
2014         }
2015         sh->hash_lock_index =
2016                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2017         /* we just created an active stripe so... */
2018         atomic_inc(&conf->active_stripes);
2019
2020         release_stripe(sh);
2021         conf->max_nr_stripes++;
2022         return 1;
2023 }
2024
2025 static int grow_stripes(struct r5conf *conf, int num)
2026 {
2027         struct kmem_cache *sc;
2028         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2029
2030         if (conf->mddev->gendisk)
2031                 sprintf(conf->cache_name[0],
2032                         "raid%d-%s", conf->level, mdname(conf->mddev));
2033         else
2034                 sprintf(conf->cache_name[0],
2035                         "raid%d-%p", conf->level, conf->mddev);
2036         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2037
2038         conf->active_name = 0;
2039         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2040                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2041                                0, 0, NULL);
2042         if (!sc)
2043                 return 1;
2044         conf->slab_cache = sc;
2045         conf->pool_size = devs;
2046         while (num--)
2047                 if (!grow_one_stripe(conf, GFP_KERNEL))
2048                         return 1;
2049
2050         return 0;
2051 }
2052
2053 /**
2054  * scribble_len - return the required size of the scribble region
2055  * @num - total number of disks in the array
2056  *
2057  * The size must be enough to contain:
2058  * 1/ a struct page pointer for each device in the array +2
2059  * 2/ room to convert each entry in (1) to its corresponding dma
2060  *    (dma_map_page()) or page (page_address()) address.
2061  *
2062  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2063  * calculate over all devices (not just the data blocks), using zeros in place
2064  * of the P and Q blocks.
2065  */
2066 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2067 {
2068         struct flex_array *ret;
2069         size_t len;
2070
2071         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2072         ret = flex_array_alloc(len, cnt, flags);
2073         if (!ret)
2074                 return NULL;
2075         /* always prealloc all elements, so no locking is required */
2076         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2077                 flex_array_free(ret);
2078                 return NULL;
2079         }
2080         return ret;
2081 }
2082
2083 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2084 {
2085         unsigned long cpu;
2086         int err = 0;
2087
2088         mddev_suspend(conf->mddev);
2089         get_online_cpus();
2090         for_each_present_cpu(cpu) {
2091                 struct raid5_percpu *percpu;
2092                 struct flex_array *scribble;
2093
2094                 percpu = per_cpu_ptr(conf->percpu, cpu);
2095                 scribble = scribble_alloc(new_disks,
2096                                           new_sectors / STRIPE_SECTORS,
2097                                           GFP_NOIO);
2098
2099                 if (scribble) {
2100                         flex_array_free(percpu->scribble);
2101                         percpu->scribble = scribble;
2102                 } else {
2103                         err = -ENOMEM;
2104                         break;
2105                 }
2106         }
2107         put_online_cpus();
2108         mddev_resume(conf->mddev);
2109         return err;
2110 }
2111
2112 static int resize_stripes(struct r5conf *conf, int newsize)
2113 {
2114         /* Make all the stripes able to hold 'newsize' devices.
2115          * New slots in each stripe get 'page' set to a new page.
2116          *
2117          * This happens in stages:
2118          * 1/ create a new kmem_cache and allocate the required number of
2119          *    stripe_heads.
2120          * 2/ gather all the old stripe_heads and transfer the pages across
2121          *    to the new stripe_heads.  This will have the side effect of
2122          *    freezing the array as once all stripe_heads have been collected,
2123          *    no IO will be possible.  Old stripe heads are freed once their
2124          *    pages have been transferred over, and the old kmem_cache is
2125          *    freed when all stripes are done.
2126          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2127          *    we simple return a failre status - no need to clean anything up.
2128          * 4/ allocate new pages for the new slots in the new stripe_heads.
2129          *    If this fails, we don't bother trying the shrink the
2130          *    stripe_heads down again, we just leave them as they are.
2131          *    As each stripe_head is processed the new one is released into
2132          *    active service.
2133          *
2134          * Once step2 is started, we cannot afford to wait for a write,
2135          * so we use GFP_NOIO allocations.
2136          */
2137         struct stripe_head *osh, *nsh;
2138         LIST_HEAD(newstripes);
2139         struct disk_info *ndisks;
2140         int err;
2141         struct kmem_cache *sc;
2142         int i;
2143         int hash, cnt;
2144
2145         if (newsize <= conf->pool_size)
2146                 return 0; /* never bother to shrink */
2147
2148         err = md_allow_write(conf->mddev);
2149         if (err)
2150                 return err;
2151
2152         /* Step 1 */
2153         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2154                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2155                                0, 0, NULL);
2156         if (!sc)
2157                 return -ENOMEM;
2158
2159         /* Need to ensure auto-resizing doesn't interfere */
2160         mutex_lock(&conf->cache_size_mutex);
2161
2162         for (i = conf->max_nr_stripes; i; i--) {
2163                 nsh = alloc_stripe(sc, GFP_KERNEL);
2164                 if (!nsh)
2165                         break;
2166
2167                 nsh->raid_conf = conf;
2168                 list_add(&nsh->lru, &newstripes);
2169         }
2170         if (i) {
2171                 /* didn't get enough, give up */
2172                 while (!list_empty(&newstripes)) {
2173                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2174                         list_del(&nsh->lru);
2175                         kmem_cache_free(sc, nsh);
2176                 }
2177                 kmem_cache_destroy(sc);
2178                 mutex_unlock(&conf->cache_size_mutex);
2179                 return -ENOMEM;
2180         }
2181         /* Step 2 - Must use GFP_NOIO now.
2182          * OK, we have enough stripes, start collecting inactive
2183          * stripes and copying them over
2184          */
2185         hash = 0;
2186         cnt = 0;
2187         list_for_each_entry(nsh, &newstripes, lru) {
2188                 lock_device_hash_lock(conf, hash);
2189                 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2190                                     !list_empty(conf->inactive_list + hash),
2191                                     unlock_device_hash_lock(conf, hash),
2192                                     lock_device_hash_lock(conf, hash));
2193                 osh = get_free_stripe(conf, hash);
2194                 unlock_device_hash_lock(conf, hash);
2195
2196                 for(i=0; i<conf->pool_size; i++) {
2197                         nsh->dev[i].page = osh->dev[i].page;
2198                         nsh->dev[i].orig_page = osh->dev[i].page;
2199                 }
2200                 nsh->hash_lock_index = hash;
2201                 kmem_cache_free(conf->slab_cache, osh);
2202                 cnt++;
2203                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2204                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2205                         hash++;
2206                         cnt = 0;
2207                 }
2208         }
2209         kmem_cache_destroy(conf->slab_cache);
2210
2211         /* Step 3.
2212          * At this point, we are holding all the stripes so the array
2213          * is completely stalled, so now is a good time to resize
2214          * conf->disks and the scribble region
2215          */
2216         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2217         if (ndisks) {
2218                 for (i=0; i<conf->raid_disks; i++)
2219                         ndisks[i] = conf->disks[i];
2220                 kfree(conf->disks);
2221                 conf->disks = ndisks;
2222         } else
2223                 err = -ENOMEM;
2224
2225         mutex_unlock(&conf->cache_size_mutex);
2226         /* Step 4, return new stripes to service */
2227         while(!list_empty(&newstripes)) {
2228                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2229                 list_del_init(&nsh->lru);
2230
2231                 for (i=conf->raid_disks; i < newsize; i++)
2232                         if (nsh->dev[i].page == NULL) {
2233                                 struct page *p = alloc_page(GFP_NOIO);
2234                                 nsh->dev[i].page = p;
2235                                 nsh->dev[i].orig_page = p;
2236                                 if (!p)
2237                                         err = -ENOMEM;
2238                         }
2239                 release_stripe(nsh);
2240         }
2241         /* critical section pass, GFP_NOIO no longer needed */
2242
2243         conf->slab_cache = sc;
2244         conf->active_name = 1-conf->active_name;
2245         if (!err)
2246                 conf->pool_size = newsize;
2247         return err;
2248 }
2249
2250 static int drop_one_stripe(struct r5conf *conf)
2251 {
2252         struct stripe_head *sh;
2253         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2254
2255         spin_lock_irq(conf->hash_locks + hash);
2256         sh = get_free_stripe(conf, hash);
2257         spin_unlock_irq(conf->hash_locks + hash);
2258         if (!sh)
2259                 return 0;
2260         BUG_ON(atomic_read(&sh->count));
2261         shrink_buffers(sh);
2262         kmem_cache_free(conf->slab_cache, sh);
2263         atomic_dec(&conf->active_stripes);
2264         conf->max_nr_stripes--;
2265         return 1;
2266 }
2267
2268 static void shrink_stripes(struct r5conf *conf)
2269 {
2270         while (conf->max_nr_stripes &&
2271                drop_one_stripe(conf))
2272                 ;
2273
2274         kmem_cache_destroy(conf->slab_cache);
2275         conf->slab_cache = NULL;
2276 }
2277
2278 static void raid5_end_read_request(struct bio * bi)
2279 {
2280         struct stripe_head *sh = bi->bi_private;
2281         struct r5conf *conf = sh->raid_conf;
2282         int disks = sh->disks, i;
2283         char b[BDEVNAME_SIZE];
2284         struct md_rdev *rdev = NULL;
2285         sector_t s;
2286
2287         for (i=0 ; i<disks; i++)
2288                 if (bi == &sh->dev[i].req)
2289                         break;
2290
2291         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2292                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2293                 bi->bi_error);
2294         if (i == disks) {
2295                 BUG();
2296                 return;
2297         }
2298         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2299                 /* If replacement finished while this request was outstanding,
2300                  * 'replacement' might be NULL already.
2301                  * In that case it moved down to 'rdev'.
2302                  * rdev is not removed until all requests are finished.
2303                  */
2304                 rdev = conf->disks[i].replacement;
2305         if (!rdev)
2306                 rdev = conf->disks[i].rdev;
2307
2308         if (use_new_offset(conf, sh))
2309                 s = sh->sector + rdev->new_data_offset;
2310         else
2311                 s = sh->sector + rdev->data_offset;
2312         if (!bi->bi_error) {
2313                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2314                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2315                         /* Note that this cannot happen on a
2316                          * replacement device.  We just fail those on
2317                          * any error
2318                          */
2319                         printk_ratelimited(
2320                                 KERN_INFO
2321                                 "md/raid:%s: read error corrected"
2322                                 " (%lu sectors at %llu on %s)\n",
2323                                 mdname(conf->mddev), STRIPE_SECTORS,
2324                                 (unsigned long long)s,
2325                                 bdevname(rdev->bdev, b));
2326                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2327                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2328                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2329                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2330                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2331
2332                 if (atomic_read(&rdev->read_errors))
2333                         atomic_set(&rdev->read_errors, 0);
2334         } else {
2335                 const char *bdn = bdevname(rdev->bdev, b);
2336                 int retry = 0;
2337                 int set_bad = 0;
2338
2339                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2340                 atomic_inc(&rdev->read_errors);
2341                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2342                         printk_ratelimited(
2343                                 KERN_WARNING
2344                                 "md/raid:%s: read error on replacement device "
2345                                 "(sector %llu on %s).\n",
2346                                 mdname(conf->mddev),
2347                                 (unsigned long long)s,
2348                                 bdn);
2349                 else if (conf->mddev->degraded >= conf->max_degraded) {
2350                         set_bad = 1;
2351                         printk_ratelimited(
2352                                 KERN_WARNING
2353                                 "md/raid:%s: read error not correctable "
2354                                 "(sector %llu on %s).\n",
2355                                 mdname(conf->mddev),
2356                                 (unsigned long long)s,
2357                                 bdn);
2358                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2359                         /* Oh, no!!! */
2360                         set_bad = 1;
2361                         printk_ratelimited(
2362                                 KERN_WARNING
2363                                 "md/raid:%s: read error NOT corrected!! "
2364                                 "(sector %llu on %s).\n",
2365                                 mdname(conf->mddev),
2366                                 (unsigned long long)s,
2367                                 bdn);
2368                 } else if (atomic_read(&rdev->read_errors)
2369                          > conf->max_nr_stripes)
2370                         printk(KERN_WARNING
2371                                "md/raid:%s: Too many read errors, failing device %s.\n",
2372                                mdname(conf->mddev), bdn);
2373                 else
2374                         retry = 1;
2375                 if (set_bad && test_bit(In_sync, &rdev->flags)
2376                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2377                         retry = 1;
2378                 if (retry)
2379                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2380                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2381                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2382                         } else
2383                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2384                 else {
2385                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2386                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2387                         if (!(set_bad
2388                               && test_bit(In_sync, &rdev->flags)
2389                               && rdev_set_badblocks(
2390                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2391                                 md_error(conf->mddev, rdev);
2392                 }
2393         }
2394         rdev_dec_pending(rdev, conf->mddev);
2395         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2396         set_bit(STRIPE_HANDLE, &sh->state);
2397         release_stripe(sh);
2398 }
2399
2400 static void raid5_end_write_request(struct bio *bi)
2401 {
2402         struct stripe_head *sh = bi->bi_private;
2403         struct r5conf *conf = sh->raid_conf;
2404         int disks = sh->disks, i;
2405         struct md_rdev *uninitialized_var(rdev);
2406         sector_t first_bad;
2407         int bad_sectors;
2408         int replacement = 0;
2409
2410         for (i = 0 ; i < disks; i++) {
2411                 if (bi == &sh->dev[i].req) {
2412                         rdev = conf->disks[i].rdev;
2413                         break;
2414                 }
2415                 if (bi == &sh->dev[i].rreq) {
2416                         rdev = conf->disks[i].replacement;
2417                         if (rdev)
2418                                 replacement = 1;
2419                         else
2420                                 /* rdev was removed and 'replacement'
2421                                  * replaced it.  rdev is not removed
2422                                  * until all requests are finished.
2423                                  */
2424                                 rdev = conf->disks[i].rdev;
2425                         break;
2426                 }
2427         }
2428         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2429                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2430                 bi->bi_error);
2431         if (i == disks) {
2432                 BUG();
2433                 return;
2434         }
2435
2436         if (replacement) {
2437                 if (bi->bi_error)
2438                         md_error(conf->mddev, rdev);
2439                 else if (is_badblock(rdev, sh->sector,
2440                                      STRIPE_SECTORS,
2441                                      &first_bad, &bad_sectors))
2442                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2443         } else {
2444                 if (bi->bi_error) {
2445                         set_bit(STRIPE_DEGRADED, &sh->state);
2446                         set_bit(WriteErrorSeen, &rdev->flags);
2447                         set_bit(R5_WriteError, &sh->dev[i].flags);
2448                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2449                                 set_bit(MD_RECOVERY_NEEDED,
2450                                         &rdev->mddev->recovery);
2451                 } else if (is_badblock(rdev, sh->sector,
2452                                        STRIPE_SECTORS,
2453                                        &first_bad, &bad_sectors)) {
2454                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2455                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2456                                 /* That was a successful write so make
2457                                  * sure it looks like we already did
2458                                  * a re-write.
2459                                  */
2460                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2461                 }
2462         }
2463         rdev_dec_pending(rdev, conf->mddev);
2464
2465         if (sh->batch_head && bi->bi_error && !replacement)
2466                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2467
2468         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2469                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2470         set_bit(STRIPE_HANDLE, &sh->state);
2471         release_stripe(sh);
2472
2473         if (sh->batch_head && sh != sh->batch_head)
2474                 release_stripe(sh->batch_head);
2475 }
2476
2477 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2478
2479 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2480 {
2481         struct r5dev *dev = &sh->dev[i];
2482
2483         bio_init(&dev->req);
2484         dev->req.bi_io_vec = &dev->vec;
2485         dev->req.bi_max_vecs = 1;
2486         dev->req.bi_private = sh;
2487
2488         bio_init(&dev->rreq);
2489         dev->rreq.bi_io_vec = &dev->rvec;
2490         dev->rreq.bi_max_vecs = 1;
2491         dev->rreq.bi_private = sh;
2492
2493         dev->flags = 0;
2494         dev->sector = compute_blocknr(sh, i, previous);
2495 }
2496
2497 static void error(struct mddev *mddev, struct md_rdev *rdev)
2498 {
2499         char b[BDEVNAME_SIZE];
2500         struct r5conf *conf = mddev->private;
2501         unsigned long flags;
2502         pr_debug("raid456: error called\n");
2503
2504         spin_lock_irqsave(&conf->device_lock, flags);
2505         clear_bit(In_sync, &rdev->flags);
2506         mddev->degraded = calc_degraded(conf);
2507         spin_unlock_irqrestore(&conf->device_lock, flags);
2508         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2509
2510         set_bit(Blocked, &rdev->flags);
2511         set_bit(Faulty, &rdev->flags);
2512         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2513         set_bit(MD_CHANGE_PENDING, &mddev->flags);
2514         printk(KERN_ALERT
2515                "md/raid:%s: Disk failure on %s, disabling device.\n"
2516                "md/raid:%s: Operation continuing on %d devices.\n",
2517                mdname(mddev),
2518                bdevname(rdev->bdev, b),
2519                mdname(mddev),
2520                conf->raid_disks - mddev->degraded);
2521 }
2522
2523 /*
2524  * Input: a 'big' sector number,
2525  * Output: index of the data and parity disk, and the sector # in them.
2526  */
2527 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2528                                      int previous, int *dd_idx,
2529                                      struct stripe_head *sh)
2530 {
2531         sector_t stripe, stripe2;
2532         sector_t chunk_number;
2533         unsigned int chunk_offset;
2534         int pd_idx, qd_idx;
2535         int ddf_layout = 0;
2536         sector_t new_sector;
2537         int algorithm = previous ? conf->prev_algo
2538                                  : conf->algorithm;
2539         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2540                                          : conf->chunk_sectors;
2541         int raid_disks = previous ? conf->previous_raid_disks
2542                                   : conf->raid_disks;
2543         int data_disks = raid_disks - conf->max_degraded;
2544
2545         /* First compute the information on this sector */
2546
2547         /*
2548          * Compute the chunk number and the sector offset inside the chunk
2549          */
2550         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2551         chunk_number = r_sector;
2552
2553         /*
2554          * Compute the stripe number
2555          */
2556         stripe = chunk_number;
2557         *dd_idx = sector_div(stripe, data_disks);
2558         stripe2 = stripe;
2559         /*
2560          * Select the parity disk based on the user selected algorithm.
2561          */
2562         pd_idx = qd_idx = -1;
2563         switch(conf->level) {
2564         case 4:
2565                 pd_idx = data_disks;
2566                 break;
2567         case 5:
2568                 switch (algorithm) {
2569                 case ALGORITHM_LEFT_ASYMMETRIC:
2570                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2571                         if (*dd_idx >= pd_idx)
2572                                 (*dd_idx)++;
2573                         break;
2574                 case ALGORITHM_RIGHT_ASYMMETRIC:
2575                         pd_idx = sector_div(stripe2, raid_disks);
2576                         if (*dd_idx >= pd_idx)
2577                                 (*dd_idx)++;
2578                         break;
2579                 case ALGORITHM_LEFT_SYMMETRIC:
2580                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2581                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2582                         break;
2583                 case ALGORITHM_RIGHT_SYMMETRIC:
2584                         pd_idx = sector_div(stripe2, raid_disks);
2585                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2586                         break;
2587                 case ALGORITHM_PARITY_0:
2588                         pd_idx = 0;
2589                         (*dd_idx)++;
2590                         break;
2591                 case ALGORITHM_PARITY_N:
2592                         pd_idx = data_disks;
2593                         break;
2594                 default:
2595                         BUG();
2596                 }
2597                 break;
2598         case 6:
2599
2600                 switch (algorithm) {
2601                 case ALGORITHM_LEFT_ASYMMETRIC:
2602                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2603                         qd_idx = pd_idx + 1;
2604                         if (pd_idx == raid_disks-1) {
2605                                 (*dd_idx)++;    /* Q D D D P */
2606                                 qd_idx = 0;
2607                         } else if (*dd_idx >= pd_idx)
2608                                 (*dd_idx) += 2; /* D D P Q D */
2609                         break;
2610                 case ALGORITHM_RIGHT_ASYMMETRIC:
2611                         pd_idx = sector_div(stripe2, raid_disks);
2612                         qd_idx = pd_idx + 1;
2613                         if (pd_idx == raid_disks-1) {
2614                                 (*dd_idx)++;    /* Q D D D P */
2615                                 qd_idx = 0;
2616                         } else if (*dd_idx >= pd_idx)
2617                                 (*dd_idx) += 2; /* D D P Q D */
2618                         break;
2619                 case ALGORITHM_LEFT_SYMMETRIC:
2620                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2621                         qd_idx = (pd_idx + 1) % raid_disks;
2622                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2623                         break;
2624                 case ALGORITHM_RIGHT_SYMMETRIC:
2625                         pd_idx = sector_div(stripe2, raid_disks);
2626                         qd_idx = (pd_idx + 1) % raid_disks;
2627                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2628                         break;
2629
2630                 case ALGORITHM_PARITY_0:
2631                         pd_idx = 0;
2632                         qd_idx = 1;
2633                         (*dd_idx) += 2;
2634                         break;
2635                 case ALGORITHM_PARITY_N:
2636                         pd_idx = data_disks;
2637                         qd_idx = data_disks + 1;
2638                         break;
2639
2640                 case ALGORITHM_ROTATING_ZERO_RESTART:
2641                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2642                          * of blocks for computing Q is different.
2643                          */
2644                         pd_idx = sector_div(stripe2, raid_disks);
2645                         qd_idx = pd_idx + 1;
2646                         if (pd_idx == raid_disks-1) {
2647                                 (*dd_idx)++;    /* Q D D D P */
2648                                 qd_idx = 0;
2649                         } else if (*dd_idx >= pd_idx)
2650                                 (*dd_idx) += 2; /* D D P Q D */
2651                         ddf_layout = 1;
2652                         break;
2653
2654                 case ALGORITHM_ROTATING_N_RESTART:
2655                         /* Same a left_asymmetric, by first stripe is
2656                          * D D D P Q  rather than
2657                          * Q D D D P
2658                          */
2659                         stripe2 += 1;
2660                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2661                         qd_idx = pd_idx + 1;
2662                         if (pd_idx == raid_disks-1) {
2663                                 (*dd_idx)++;    /* Q D D D P */
2664                                 qd_idx = 0;
2665                         } else if (*dd_idx >= pd_idx)
2666                                 (*dd_idx) += 2; /* D D P Q D */
2667                         ddf_layout = 1;
2668                         break;
2669
2670                 case ALGORITHM_ROTATING_N_CONTINUE:
2671                         /* Same as left_symmetric but Q is before P */
2672                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2673                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2674                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2675                         ddf_layout = 1;
2676                         break;
2677
2678                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2679                         /* RAID5 left_asymmetric, with Q on last device */
2680                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2681                         if (*dd_idx >= pd_idx)
2682                                 (*dd_idx)++;
2683                         qd_idx = raid_disks - 1;
2684                         break;
2685
2686                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2687                         pd_idx = sector_div(stripe2, raid_disks-1);
2688                         if (*dd_idx >= pd_idx)
2689                                 (*dd_idx)++;
2690                         qd_idx = raid_disks - 1;
2691                         break;
2692
2693                 case ALGORITHM_LEFT_SYMMETRIC_6:
2694                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2695                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2696                         qd_idx = raid_disks - 1;
2697                         break;
2698
2699                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2700                         pd_idx = sector_div(stripe2, raid_disks-1);
2701                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2702                         qd_idx = raid_disks - 1;
2703                         break;
2704
2705                 case ALGORITHM_PARITY_0_6:
2706                         pd_idx = 0;
2707                         (*dd_idx)++;
2708                         qd_idx = raid_disks - 1;
2709                         break;
2710
2711                 default:
2712                         BUG();
2713                 }
2714                 break;
2715         }
2716
2717         if (sh) {
2718                 sh->pd_idx = pd_idx;
2719                 sh->qd_idx = qd_idx;
2720                 sh->ddf_layout = ddf_layout;
2721         }
2722         /*
2723          * Finally, compute the new sector number
2724          */
2725         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2726         return new_sector;
2727 }
2728
2729 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2730 {
2731         struct r5conf *conf = sh->raid_conf;
2732         int raid_disks = sh->disks;
2733         int data_disks = raid_disks - conf->max_degraded;
2734         sector_t new_sector = sh->sector, check;
2735         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2736                                          : conf->chunk_sectors;
2737         int algorithm = previous ? conf->prev_algo
2738                                  : conf->algorithm;
2739         sector_t stripe;
2740         int chunk_offset;
2741         sector_t chunk_number;
2742         int dummy1, dd_idx = i;
2743         sector_t r_sector;
2744         struct stripe_head sh2;
2745
2746         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2747         stripe = new_sector;
2748
2749         if (i == sh->pd_idx)
2750                 return 0;
2751         switch(conf->level) {
2752         case 4: break;
2753         case 5:
2754                 switch (algorithm) {
2755                 case ALGORITHM_LEFT_ASYMMETRIC:
2756                 case ALGORITHM_RIGHT_ASYMMETRIC:
2757                         if (i > sh->pd_idx)
2758                                 i--;
2759                         break;
2760                 case ALGORITHM_LEFT_SYMMETRIC:
2761                 case ALGORITHM_RIGHT_SYMMETRIC:
2762                         if (i < sh->pd_idx)
2763                                 i += raid_disks;
2764                         i -= (sh->pd_idx + 1);
2765                         break;
2766                 case ALGORITHM_PARITY_0:
2767                         i -= 1;
2768                         break;
2769                 case ALGORITHM_PARITY_N:
2770                         break;
2771                 default:
2772                         BUG();
2773                 }
2774                 break;
2775         case 6:
2776                 if (i == sh->qd_idx)
2777                         return 0; /* It is the Q disk */
2778                 switch (algorithm) {
2779                 case ALGORITHM_LEFT_ASYMMETRIC:
2780                 case ALGORITHM_RIGHT_ASYMMETRIC:
2781                 case ALGORITHM_ROTATING_ZERO_RESTART:
2782                 case ALGORITHM_ROTATING_N_RESTART:
2783                         if (sh->pd_idx == raid_disks-1)
2784                                 i--;    /* Q D D D P */
2785                         else if (i > sh->pd_idx)
2786                                 i -= 2; /* D D P Q D */
2787                         break;
2788                 case ALGORITHM_LEFT_SYMMETRIC:
2789                 case ALGORITHM_RIGHT_SYMMETRIC:
2790                         if (sh->pd_idx == raid_disks-1)
2791                                 i--; /* Q D D D P */
2792                         else {
2793                                 /* D D P Q D */
2794                                 if (i < sh->pd_idx)
2795                                         i += raid_disks;
2796                                 i -= (sh->pd_idx + 2);
2797                         }
2798                         break;
2799                 case ALGORITHM_PARITY_0:
2800                         i -= 2;
2801                         break;
2802                 case ALGORITHM_PARITY_N:
2803                         break;
2804                 case ALGORITHM_ROTATING_N_CONTINUE:
2805                         /* Like left_symmetric, but P is before Q */
2806                         if (sh->pd_idx == 0)
2807                                 i--;    /* P D D D Q */
2808                         else {
2809                                 /* D D Q P D */
2810                                 if (i < sh->pd_idx)
2811                                         i += raid_disks;
2812                                 i -= (sh->pd_idx + 1);
2813                         }
2814                         break;
2815                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2816                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2817                         if (i > sh->pd_idx)
2818                                 i--;
2819                         break;
2820                 case ALGORITHM_LEFT_SYMMETRIC_6:
2821                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2822                         if (i < sh->pd_idx)
2823                                 i += data_disks + 1;
2824                         i -= (sh->pd_idx + 1);
2825                         break;
2826                 case ALGORITHM_PARITY_0_6:
2827                         i -= 1;
2828                         break;
2829                 default:
2830                         BUG();
2831                 }
2832                 break;
2833         }
2834
2835         chunk_number = stripe * data_disks + i;
2836         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2837
2838         check = raid5_compute_sector(conf, r_sector,
2839                                      previous, &dummy1, &sh2);
2840         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2841                 || sh2.qd_idx != sh->qd_idx) {
2842                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2843                        mdname(conf->mddev));
2844                 return 0;
2845         }
2846         return r_sector;
2847 }
2848
2849 static void
2850 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2851                          int rcw, int expand)
2852 {
2853         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2854         struct r5conf *conf = sh->raid_conf;
2855         int level = conf->level;
2856
2857         if (rcw) {
2858
2859                 for (i = disks; i--; ) {
2860                         struct r5dev *dev = &sh->dev[i];
2861
2862                         if (dev->towrite) {
2863                                 set_bit(R5_LOCKED, &dev->flags);
2864                                 set_bit(R5_Wantdrain, &dev->flags);
2865                                 if (!expand)
2866                                         clear_bit(R5_UPTODATE, &dev->flags);
2867                                 s->locked++;
2868                         }
2869                 }
2870                 /* if we are not expanding this is a proper write request, and
2871                  * there will be bios with new data to be drained into the
2872                  * stripe cache
2873                  */
2874                 if (!expand) {
2875                         if (!s->locked)
2876                                 /* False alarm, nothing to do */
2877                                 return;
2878                         sh->reconstruct_state = reconstruct_state_drain_run;
2879                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2880                 } else
2881                         sh->reconstruct_state = reconstruct_state_run;
2882
2883                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2884
2885                 if (s->locked + conf->max_degraded == disks)
2886                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2887                                 atomic_inc(&conf->pending_full_writes);
2888         } else {
2889                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2890                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2891                 BUG_ON(level == 6 &&
2892                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2893                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2894
2895                 for (i = disks; i--; ) {
2896                         struct r5dev *dev = &sh->dev[i];
2897                         if (i == pd_idx || i == qd_idx)
2898                                 continue;
2899
2900                         if (dev->towrite &&
2901                             (test_bit(R5_UPTODATE, &dev->flags) ||
2902                              test_bit(R5_Wantcompute, &dev->flags))) {
2903                                 set_bit(R5_Wantdrain, &dev->flags);
2904                                 set_bit(R5_LOCKED, &dev->flags);
2905                                 clear_bit(R5_UPTODATE, &dev->flags);
2906                                 s->locked++;
2907                         }
2908                 }
2909                 if (!s->locked)
2910                         /* False alarm - nothing to do */
2911                         return;
2912                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2913                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2914                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2915                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2916         }
2917
2918         /* keep the parity disk(s) locked while asynchronous operations
2919          * are in flight
2920          */
2921         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2922         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2923         s->locked++;
2924
2925         if (level == 6) {
2926                 int qd_idx = sh->qd_idx;
2927                 struct r5dev *dev = &sh->dev[qd_idx];
2928
2929                 set_bit(R5_LOCKED, &dev->flags);
2930                 clear_bit(R5_UPTODATE, &dev->flags);
2931                 s->locked++;
2932         }
2933
2934         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2935                 __func__, (unsigned long long)sh->sector,
2936                 s->locked, s->ops_request);
2937 }
2938
2939 /*
2940  * Each stripe/dev can have one or more bion attached.
2941  * toread/towrite point to the first in a chain.
2942  * The bi_next chain must be in order.
2943  */
2944 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2945                           int forwrite, int previous)
2946 {
2947         struct bio **bip;
2948         struct r5conf *conf = sh->raid_conf;
2949         int firstwrite=0;
2950
2951         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2952                 (unsigned long long)bi->bi_iter.bi_sector,
2953                 (unsigned long long)sh->sector);
2954
2955         /*
2956          * If several bio share a stripe. The bio bi_phys_segments acts as a
2957          * reference count to avoid race. The reference count should already be
2958          * increased before this function is called (for example, in
2959          * make_request()), so other bio sharing this stripe will not free the
2960          * stripe. If a stripe is owned by one stripe, the stripe lock will
2961          * protect it.
2962          */
2963         spin_lock_irq(&sh->stripe_lock);
2964         /* Don't allow new IO added to stripes in batch list */
2965         if (sh->batch_head)
2966                 goto overlap;
2967         if (forwrite) {
2968                 bip = &sh->dev[dd_idx].towrite;
2969                 if (*bip == NULL)
2970                         firstwrite = 1;
2971         } else
2972                 bip = &sh->dev[dd_idx].toread;
2973         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2974                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2975                         goto overlap;
2976                 bip = & (*bip)->bi_next;
2977         }
2978         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2979                 goto overlap;
2980
2981         if (!forwrite || previous)
2982                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2983
2984         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2985         if (*bip)
2986                 bi->bi_next = *bip;
2987         *bip = bi;
2988         raid5_inc_bi_active_stripes(bi);
2989
2990         if (forwrite) {
2991                 /* check if page is covered */
2992                 sector_t sector = sh->dev[dd_idx].sector;
2993                 for (bi=sh->dev[dd_idx].towrite;
2994                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2995                              bi && bi->bi_iter.bi_sector <= sector;
2996                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2997                         if (bio_end_sector(bi) >= sector)
2998                                 sector = bio_end_sector(bi);
2999                 }
3000                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3001                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3002                                 sh->overwrite_disks++;
3003         }
3004
3005         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3006                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3007                 (unsigned long long)sh->sector, dd_idx);
3008
3009         if (conf->mddev->bitmap && firstwrite) {
3010                 /* Cannot hold spinlock over bitmap_startwrite,
3011                  * but must ensure this isn't added to a batch until
3012                  * we have added to the bitmap and set bm_seq.
3013                  * So set STRIPE_BITMAP_PENDING to prevent
3014                  * batching.
3015                  * If multiple add_stripe_bio() calls race here they
3016                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3017                  * to complete "bitmap_startwrite" gets to set
3018                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3019                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3020                  * any more.
3021                  */
3022                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3023                 spin_unlock_irq(&sh->stripe_lock);
3024                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3025                                   STRIPE_SECTORS, 0);
3026                 spin_lock_irq(&sh->stripe_lock);
3027                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3028                 if (!sh->batch_head) {
3029                         sh->bm_seq = conf->seq_flush+1;
3030                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3031                 }
3032         }
3033         spin_unlock_irq(&sh->stripe_lock);
3034
3035         if (stripe_can_batch(sh))
3036                 stripe_add_to_batch_list(conf, sh);
3037         return 1;
3038
3039  overlap:
3040         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3041         spin_unlock_irq(&sh->stripe_lock);
3042         return 0;
3043 }
3044
3045 static void end_reshape(struct r5conf *conf);
3046
3047 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3048                             struct stripe_head *sh)
3049 {
3050         int sectors_per_chunk =
3051                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3052         int dd_idx;
3053         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3054         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3055
3056         raid5_compute_sector(conf,
3057                              stripe * (disks - conf->max_degraded)
3058                              *sectors_per_chunk + chunk_offset,
3059                              previous,
3060                              &dd_idx, sh);
3061 }
3062
3063 static void
3064 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3065                                 struct stripe_head_state *s, int disks,
3066                                 struct bio_list *return_bi)
3067 {
3068         int i;
3069         BUG_ON(sh->batch_head);
3070         for (i = disks; i--; ) {
3071                 struct bio *bi;
3072                 int bitmap_end = 0;
3073
3074                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3075                         struct md_rdev *rdev;
3076                         rcu_read_lock();
3077                         rdev = rcu_dereference(conf->disks[i].rdev);
3078                         if (rdev && test_bit(In_sync, &rdev->flags))
3079                                 atomic_inc(&rdev->nr_pending);
3080                         else
3081                                 rdev = NULL;
3082                         rcu_read_unlock();
3083                         if (rdev) {
3084                                 if (!rdev_set_badblocks(
3085                                             rdev,
3086                                             sh->sector,
3087                                             STRIPE_SECTORS, 0))
3088                                         md_error(conf->mddev, rdev);
3089                                 rdev_dec_pending(rdev, conf->mddev);
3090                         }
3091                 }
3092                 spin_lock_irq(&sh->stripe_lock);
3093                 /* fail all writes first */
3094                 bi = sh->dev[i].towrite;
3095                 sh->dev[i].towrite = NULL;
3096                 sh->overwrite_disks = 0;
3097                 spin_unlock_irq(&sh->stripe_lock);
3098                 if (bi)
3099                         bitmap_end = 1;
3100
3101                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3102                         wake_up(&conf->wait_for_overlap);
3103
3104                 while (bi && bi->bi_iter.bi_sector <
3105                         sh->dev[i].sector + STRIPE_SECTORS) {
3106                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3107
3108                         bi->bi_error = -EIO;
3109                         if (!raid5_dec_bi_active_stripes(bi)) {
3110                                 md_write_end(conf->mddev);
3111                                 bio_list_add(return_bi, bi);
3112                         }
3113                         bi = nextbi;
3114                 }
3115                 if (bitmap_end)
3116                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3117                                 STRIPE_SECTORS, 0, 0);
3118                 bitmap_end = 0;
3119                 /* and fail all 'written' */
3120                 bi = sh->dev[i].written;
3121                 sh->dev[i].written = NULL;
3122                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3123                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3124                         sh->dev[i].page = sh->dev[i].orig_page;
3125                 }
3126
3127                 if (bi) bitmap_end = 1;
3128                 while (bi && bi->bi_iter.bi_sector <
3129                        sh->dev[i].sector + STRIPE_SECTORS) {
3130                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3131
3132                         bi->bi_error = -EIO;
3133                         if (!raid5_dec_bi_active_stripes(bi)) {
3134                                 md_write_end(conf->mddev);
3135                                 bio_list_add(return_bi, bi);
3136                         }
3137                         bi = bi2;
3138                 }
3139
3140                 /* fail any reads if this device is non-operational and
3141                  * the data has not reached the cache yet.
3142                  */
3143                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3144                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3145                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3146                         spin_lock_irq(&sh->stripe_lock);
3147                         bi = sh->dev[i].toread;
3148                         sh->dev[i].toread = NULL;
3149                         spin_unlock_irq(&sh->stripe_lock);
3150                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3151                                 wake_up(&conf->wait_for_overlap);
3152                         if (bi)
3153                                 s->to_read--;
3154                         while (bi && bi->bi_iter.bi_sector <
3155                                sh->dev[i].sector + STRIPE_SECTORS) {
3156                                 struct bio *nextbi =
3157                                         r5_next_bio(bi, sh->dev[i].sector);
3158
3159                                 bi->bi_error = -EIO;
3160                                 if (!raid5_dec_bi_active_stripes(bi))
3161                                         bio_list_add(return_bi, bi);
3162                                 bi = nextbi;
3163                         }
3164                 }
3165                 if (bitmap_end)
3166                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3167                                         STRIPE_SECTORS, 0, 0);
3168                 /* If we were in the middle of a write the parity block might
3169                  * still be locked - so just clear all R5_LOCKED flags
3170                  */
3171                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3172         }
3173         s->to_write = 0;
3174         s->written = 0;
3175
3176         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3177                 if (atomic_dec_and_test(&conf->pending_full_writes))
3178                         md_wakeup_thread(conf->mddev->thread);
3179 }
3180
3181 static void
3182 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3183                    struct stripe_head_state *s)
3184 {
3185         int abort = 0;
3186         int i;
3187
3188         BUG_ON(sh->batch_head);
3189         clear_bit(STRIPE_SYNCING, &sh->state);
3190         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3191                 wake_up(&conf->wait_for_overlap);
3192         s->syncing = 0;
3193         s->replacing = 0;
3194         /* There is nothing more to do for sync/check/repair.
3195          * Don't even need to abort as that is handled elsewhere
3196          * if needed, and not always wanted e.g. if there is a known
3197          * bad block here.
3198          * For recover/replace we need to record a bad block on all
3199          * non-sync devices, or abort the recovery
3200          */
3201         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3202                 /* During recovery devices cannot be removed, so
3203                  * locking and refcounting of rdevs is not needed
3204                  */
3205                 for (i = 0; i < conf->raid_disks; i++) {
3206                         struct md_rdev *rdev = conf->disks[i].rdev;
3207                         if (rdev
3208                             && !test_bit(Faulty, &rdev->flags)
3209                             && !test_bit(In_sync, &rdev->flags)
3210                             && !rdev_set_badblocks(rdev, sh->sector,
3211                                                    STRIPE_SECTORS, 0))
3212                                 abort = 1;
3213                         rdev = conf->disks[i].replacement;
3214                         if (rdev
3215                             && !test_bit(Faulty, &rdev->flags)
3216                             && !test_bit(In_sync, &rdev->flags)
3217                             && !rdev_set_badblocks(rdev, sh->sector,
3218                                                    STRIPE_SECTORS, 0))
3219                                 abort = 1;
3220                 }
3221                 if (abort)
3222                         conf->recovery_disabled =
3223                                 conf->mddev->recovery_disabled;
3224         }
3225         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3226 }
3227
3228 static int want_replace(struct stripe_head *sh, int disk_idx)
3229 {
3230         struct md_rdev *rdev;
3231         int rv = 0;
3232         /* Doing recovery so rcu locking not required */
3233         rdev = sh->raid_conf->disks[disk_idx].replacement;
3234         if (rdev
3235             && !test_bit(Faulty, &rdev->flags)
3236             && !test_bit(In_sync, &rdev->flags)
3237             && (rdev->recovery_offset <= sh->sector
3238                 || rdev->mddev->recovery_cp <= sh->sector))
3239                 rv = 1;
3240
3241         return rv;
3242 }
3243
3244 /* fetch_block - checks the given member device to see if its data needs
3245  * to be read or computed to satisfy a request.
3246  *
3247  * Returns 1 when no more member devices need to be checked, otherwise returns
3248  * 0 to tell the loop in handle_stripe_fill to continue
3249  */
3250
3251 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3252                            int disk_idx, int disks)
3253 {
3254         struct r5dev *dev = &sh->dev[disk_idx];
3255         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3256                                   &sh->dev[s->failed_num[1]] };
3257         int i;
3258
3259
3260         if (test_bit(R5_LOCKED, &dev->flags) ||
3261             test_bit(R5_UPTODATE, &dev->flags))
3262                 /* No point reading this as we already have it or have
3263                  * decided to get it.
3264                  */
3265                 return 0;
3266
3267         if (dev->toread ||
3268             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3269                 /* We need this block to directly satisfy a request */
3270                 return 1;
3271
3272         if (s->syncing || s->expanding ||
3273             (s->replacing && want_replace(sh, disk_idx)))
3274                 /* When syncing, or expanding we read everything.
3275                  * When replacing, we need the replaced block.
3276                  */
3277                 return 1;
3278
3279         if ((s->failed >= 1 && fdev[0]->toread) ||
3280             (s->failed >= 2 && fdev[1]->toread))
3281                 /* If we want to read from a failed device, then
3282                  * we need to actually read every other device.
3283                  */
3284                 return 1;
3285
3286         /* Sometimes neither read-modify-write nor reconstruct-write
3287          * cycles can work.  In those cases we read every block we
3288          * can.  Then the parity-update is certain to have enough to
3289          * work with.
3290          * This can only be a problem when we need to write something,
3291          * and some device has failed.  If either of those tests
3292          * fail we need look no further.
3293          */
3294         if (!s->failed || !s->to_write)
3295                 return 0;
3296
3297         if (test_bit(R5_Insync, &dev->flags) &&
3298             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3299                 /* Pre-reads at not permitted until after short delay
3300                  * to gather multiple requests.  However if this
3301                  * device is no Insync, the block could only be be computed
3302                  * and there is no need to delay that.
3303                  */
3304                 return 0;
3305
3306         for (i = 0; i < s->failed && i < 2; i++) {
3307                 if (fdev[i]->towrite &&
3308                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3309                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3310                         /* If we have a partial write to a failed
3311                          * device, then we will need to reconstruct
3312                          * the content of that device, so all other
3313                          * devices must be read.
3314                          */
3315                         return 1;
3316         }
3317
3318         /* If we are forced to do a reconstruct-write, either because
3319          * the current RAID6 implementation only supports that, or
3320          * or because parity cannot be trusted and we are currently
3321          * recovering it, there is extra need to be careful.
3322          * If one of the devices that we would need to read, because
3323          * it is not being overwritten (and maybe not written at all)
3324          * is missing/faulty, then we need to read everything we can.
3325          */
3326         if (sh->raid_conf->level != 6 &&
3327             sh->sector < sh->raid_conf->mddev->recovery_cp)
3328                 /* reconstruct-write isn't being forced */
3329                 return 0;
3330         for (i = 0; i < s->failed && i < 2; i++) {
3331                 if (s->failed_num[i] != sh->pd_idx &&
3332                     s->failed_num[i] != sh->qd_idx &&
3333                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3334                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3335                         return 1;
3336         }
3337
3338         return 0;
3339 }
3340
3341 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3342                        int disk_idx, int disks)
3343 {
3344         struct r5dev *dev = &sh->dev[disk_idx];
3345
3346         /* is the data in this block needed, and can we get it? */
3347         if (need_this_block(sh, s, disk_idx, disks)) {
3348                 /* we would like to get this block, possibly by computing it,
3349                  * otherwise read it if the backing disk is insync
3350                  */
3351                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3352                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3353                 BUG_ON(sh->batch_head);
3354                 if ((s->uptodate == disks - 1) &&
3355                     (s->failed && (disk_idx == s->failed_num[0] ||
3356                                    disk_idx == s->failed_num[1]))) {
3357                         /* have disk failed, and we're requested to fetch it;
3358                          * do compute it
3359                          */
3360                         pr_debug("Computing stripe %llu block %d\n",
3361                                (unsigned long long)sh->sector, disk_idx);
3362                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3363                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3364                         set_bit(R5_Wantcompute, &dev->flags);
3365                         sh->ops.target = disk_idx;
3366                         sh->ops.target2 = -1; /* no 2nd target */
3367                         s->req_compute = 1;
3368                         /* Careful: from this point on 'uptodate' is in the eye
3369                          * of raid_run_ops which services 'compute' operations
3370                          * before writes. R5_Wantcompute flags a block that will
3371                          * be R5_UPTODATE by the time it is needed for a
3372                          * subsequent operation.
3373                          */
3374                         s->uptodate++;
3375                         return 1;
3376                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3377                         /* Computing 2-failure is *very* expensive; only
3378                          * do it if failed >= 2
3379                          */
3380                         int other;
3381                         for (other = disks; other--; ) {
3382                                 if (other == disk_idx)
3383                                         continue;
3384                                 if (!test_bit(R5_UPTODATE,
3385                                       &sh->dev[other].flags))
3386                                         break;
3387                         }
3388                         BUG_ON(other < 0);
3389                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3390                                (unsigned long long)sh->sector,
3391                                disk_idx, other);
3392                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3393                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3394                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3395                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3396                         sh->ops.target = disk_idx;
3397                         sh->ops.target2 = other;
3398                         s->uptodate += 2;
3399                         s->req_compute = 1;
3400                         return 1;
3401                 } else if (test_bit(R5_Insync, &dev->flags)) {
3402                         set_bit(R5_LOCKED, &dev->flags);
3403                         set_bit(R5_Wantread, &dev->flags);
3404                         s->locked++;
3405                         pr_debug("Reading block %d (sync=%d)\n",
3406                                 disk_idx, s->syncing);
3407                 }
3408         }
3409
3410         return 0;
3411 }
3412
3413 /**
3414  * handle_stripe_fill - read or compute data to satisfy pending requests.
3415  */
3416 static void handle_stripe_fill(struct stripe_head *sh,
3417                                struct stripe_head_state *s,
3418                                int disks)
3419 {
3420         int i;
3421
3422         /* look for blocks to read/compute, skip this if a compute
3423          * is already in flight, or if the stripe contents are in the
3424          * midst of changing due to a write
3425          */
3426         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3427             !sh->reconstruct_state)
3428                 for (i = disks; i--; )
3429                         if (fetch_block(sh, s, i, disks))
3430                                 break;
3431         set_bit(STRIPE_HANDLE, &sh->state);
3432 }
3433
3434 static void break_stripe_batch_list(struct stripe_head *head_sh,
3435                                     unsigned long handle_flags);
3436 /* handle_stripe_clean_event
3437  * any written block on an uptodate or failed drive can be returned.
3438  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3439  * never LOCKED, so we don't need to test 'failed' directly.
3440  */
3441 static void handle_stripe_clean_event(struct r5conf *conf,
3442         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3443 {
3444         int i;
3445         struct r5dev *dev;
3446         int discard_pending = 0;
3447         struct stripe_head *head_sh = sh;
3448         bool do_endio = false;
3449
3450         for (i = disks; i--; )
3451                 if (sh->dev[i].written) {
3452                         dev = &sh->dev[i];
3453                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3454                             (test_bit(R5_UPTODATE, &dev->flags) ||
3455                              test_bit(R5_Discard, &dev->flags) ||
3456                              test_bit(R5_SkipCopy, &dev->flags))) {
3457                                 /* We can return any write requests */
3458                                 struct bio *wbi, *wbi2;
3459                                 pr_debug("Return write for disc %d\n", i);
3460                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3461                                         clear_bit(R5_UPTODATE, &dev->flags);
3462                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3463                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3464                                 }
3465                                 do_endio = true;
3466
3467 returnbi:
3468                                 dev->page = dev->orig_page;
3469                                 wbi = dev->written;
3470                                 dev->written = NULL;
3471                                 while (wbi && wbi->bi_iter.bi_sector <
3472                                         dev->sector + STRIPE_SECTORS) {
3473                                         wbi2 = r5_next_bio(wbi, dev->sector);
3474                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3475                                                 md_write_end(conf->mddev);
3476                                                 bio_list_add(return_bi, wbi);
3477                                         }
3478                                         wbi = wbi2;
3479                                 }
3480                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3481                                                 STRIPE_SECTORS,
3482                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3483                                                 0);
3484                                 if (head_sh->batch_head) {
3485                                         sh = list_first_entry(&sh->batch_list,
3486                                                               struct stripe_head,
3487                                                               batch_list);
3488                                         if (sh != head_sh) {
3489                                                 dev = &sh->dev[i];
3490                                                 goto returnbi;
3491                                         }
3492                                 }
3493                                 sh = head_sh;
3494                                 dev = &sh->dev[i];
3495                         } else if (test_bit(R5_Discard, &dev->flags))
3496                                 discard_pending = 1;
3497                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3498                         WARN_ON(dev->page != dev->orig_page);
3499                 }
3500         if (!discard_pending &&
3501             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3502                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3503                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3504                 if (sh->qd_idx >= 0) {
3505                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3506                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3507                 }
3508                 /* now that discard is done we can proceed with any sync */
3509                 clear_bit(STRIPE_DISCARD, &sh->state);
3510                 /*
3511                  * SCSI discard will change some bio fields and the stripe has
3512                  * no updated data, so remove it from hash list and the stripe
3513                  * will be reinitialized
3514                  */
3515                 spin_lock_irq(&conf->device_lock);
3516 unhash:
3517                 remove_hash(sh);
3518                 if (head_sh->batch_head) {
3519                         sh = list_first_entry(&sh->batch_list,
3520                                               struct stripe_head, batch_list);
3521                         if (sh != head_sh)
3522                                         goto unhash;
3523                 }
3524                 spin_unlock_irq(&conf->device_lock);
3525                 sh = head_sh;
3526
3527                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3528                         set_bit(STRIPE_HANDLE, &sh->state);
3529
3530         }
3531
3532         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3533                 if (atomic_dec_and_test(&conf->pending_full_writes))
3534                         md_wakeup_thread(conf->mddev->thread);
3535
3536         if (head_sh->batch_head && do_endio)
3537                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3538 }
3539
3540 static void handle_stripe_dirtying(struct r5conf *conf,
3541                                    struct stripe_head *sh,
3542                                    struct stripe_head_state *s,
3543                                    int disks)
3544 {
3545         int rmw = 0, rcw = 0, i;
3546         sector_t recovery_cp = conf->mddev->recovery_cp;
3547
3548         /* Check whether resync is now happening or should start.
3549          * If yes, then the array is dirty (after unclean shutdown or
3550          * initial creation), so parity in some stripes might be inconsistent.
3551          * In this case, we need to always do reconstruct-write, to ensure
3552          * that in case of drive failure or read-error correction, we
3553          * generate correct data from the parity.
3554          */
3555         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3556             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3557              s->failed == 0)) {
3558                 /* Calculate the real rcw later - for now make it
3559                  * look like rcw is cheaper
3560                  */
3561                 rcw = 1; rmw = 2;
3562                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3563                          conf->rmw_level, (unsigned long long)recovery_cp,
3564                          (unsigned long long)sh->sector);
3565         } else for (i = disks; i--; ) {
3566                 /* would I have to read this buffer for read_modify_write */
3567                 struct r5dev *dev = &sh->dev[i];
3568                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3569                     !test_bit(R5_LOCKED, &dev->flags) &&
3570                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3571                       test_bit(R5_Wantcompute, &dev->flags))) {
3572                         if (test_bit(R5_Insync, &dev->flags))
3573                                 rmw++;
3574                         else
3575                                 rmw += 2*disks;  /* cannot read it */
3576                 }
3577                 /* Would I have to read this buffer for reconstruct_write */
3578                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3579                     i != sh->pd_idx && i != sh->qd_idx &&
3580                     !test_bit(R5_LOCKED, &dev->flags) &&
3581                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3582                     test_bit(R5_Wantcompute, &dev->flags))) {
3583                         if (test_bit(R5_Insync, &dev->flags))
3584                                 rcw++;
3585                         else
3586                                 rcw += 2*disks;
3587                 }
3588         }
3589         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3590                 (unsigned long long)sh->sector, rmw, rcw);
3591         set_bit(STRIPE_HANDLE, &sh->state);
3592         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3593                 /* prefer read-modify-write, but need to get some data */
3594                 if (conf->mddev->queue)
3595                         blk_add_trace_msg(conf->mddev->queue,
3596                                           "raid5 rmw %llu %d",
3597                                           (unsigned long long)sh->sector, rmw);
3598                 for (i = disks; i--; ) {
3599                         struct r5dev *dev = &sh->dev[i];
3600                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3601                             !test_bit(R5_LOCKED, &dev->flags) &&
3602                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3603                             test_bit(R5_Wantcompute, &dev->flags)) &&
3604                             test_bit(R5_Insync, &dev->flags)) {
3605                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3606                                              &sh->state)) {
3607                                         pr_debug("Read_old block %d for r-m-w\n",
3608                                                  i);
3609                                         set_bit(R5_LOCKED, &dev->flags);
3610                                         set_bit(R5_Wantread, &dev->flags);
3611                                         s->locked++;
3612                                 } else {
3613                                         set_bit(STRIPE_DELAYED, &sh->state);
3614                                         set_bit(STRIPE_HANDLE, &sh->state);
3615                                 }
3616                         }
3617                 }
3618         }
3619         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3620                 /* want reconstruct write, but need to get some data */
3621                 int qread =0;
3622                 rcw = 0;
3623                 for (i = disks; i--; ) {
3624                         struct r5dev *dev = &sh->dev[i];
3625                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3626                             i != sh->pd_idx && i != sh->qd_idx &&
3627                             !test_bit(R5_LOCKED, &dev->flags) &&
3628                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3629                               test_bit(R5_Wantcompute, &dev->flags))) {
3630                                 rcw++;
3631                                 if (test_bit(R5_Insync, &dev->flags) &&
3632                                     test_bit(STRIPE_PREREAD_ACTIVE,
3633                                              &sh->state)) {
3634                                         pr_debug("Read_old block "
3635                                                 "%d for Reconstruct\n", i);
3636                                         set_bit(R5_LOCKED, &dev->flags);
3637                                         set_bit(R5_Wantread, &dev->flags);
3638                                         s->locked++;
3639                                         qread++;
3640                                 } else {
3641                                         set_bit(STRIPE_DELAYED, &sh->state);
3642                                         set_bit(STRIPE_HANDLE, &sh->state);
3643                                 }
3644                         }
3645                 }
3646                 if (rcw && conf->mddev->queue)
3647                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3648                                           (unsigned long long)sh->sector,
3649                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3650         }
3651
3652         if (rcw > disks && rmw > disks &&
3653             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3654                 set_bit(STRIPE_DELAYED, &sh->state);
3655
3656         /* now if nothing is locked, and if we have enough data,
3657          * we can start a write request
3658          */
3659         /* since handle_stripe can be called at any time we need to handle the
3660          * case where a compute block operation has been submitted and then a
3661          * subsequent call wants to start a write request.  raid_run_ops only
3662          * handles the case where compute block and reconstruct are requested
3663          * simultaneously.  If this is not the case then new writes need to be
3664          * held off until the compute completes.
3665          */
3666         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3667             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3668             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3669                 schedule_reconstruction(sh, s, rcw == 0, 0);
3670 }
3671
3672 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3673                                 struct stripe_head_state *s, int disks)
3674 {
3675         struct r5dev *dev = NULL;
3676
3677         BUG_ON(sh->batch_head);
3678         set_bit(STRIPE_HANDLE, &sh->state);
3679
3680         switch (sh->check_state) {
3681         case check_state_idle:
3682                 /* start a new check operation if there are no failures */
3683                 if (s->failed == 0) {
3684                         BUG_ON(s->uptodate != disks);
3685                         sh->check_state = check_state_run;
3686                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3687                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3688                         s->uptodate--;
3689                         break;
3690                 }
3691                 dev = &sh->dev[s->failed_num[0]];
3692                 /* fall through */
3693         case check_state_compute_result:
3694                 sh->check_state = check_state_idle;
3695                 if (!dev)
3696                         dev = &sh->dev[sh->pd_idx];
3697
3698                 /* check that a write has not made the stripe insync */
3699                 if (test_bit(STRIPE_INSYNC, &sh->state))
3700                         break;
3701
3702                 /* either failed parity check, or recovery is happening */
3703                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3704                 BUG_ON(s->uptodate != disks);
3705
3706                 set_bit(R5_LOCKED, &dev->flags);
3707                 s->locked++;
3708                 set_bit(R5_Wantwrite, &dev->flags);
3709
3710                 clear_bit(STRIPE_DEGRADED, &sh->state);
3711                 set_bit(STRIPE_INSYNC, &sh->state);
3712                 break;
3713         case check_state_run:
3714                 break; /* we will be called again upon completion */
3715         case check_state_check_result:
3716                 sh->check_state = check_state_idle;
3717
3718                 /* if a failure occurred during the check operation, leave
3719                  * STRIPE_INSYNC not set and let the stripe be handled again
3720                  */
3721                 if (s->failed)
3722                         break;
3723
3724                 /* handle a successful check operation, if parity is correct
3725                  * we are done.  Otherwise update the mismatch count and repair
3726                  * parity if !MD_RECOVERY_CHECK
3727                  */
3728                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3729                         /* parity is correct (on disc,
3730                          * not in buffer any more)
3731                          */
3732                         set_bit(STRIPE_INSYNC, &sh->state);
3733                 else {
3734                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3735                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3736                                 /* don't try to repair!! */
3737                                 set_bit(STRIPE_INSYNC, &sh->state);
3738                         else {
3739                                 sh->check_state = check_state_compute_run;
3740                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3741                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3742                                 set_bit(R5_Wantcompute,
3743                                         &sh->dev[sh->pd_idx].flags);
3744                                 sh->ops.target = sh->pd_idx;
3745                                 sh->ops.target2 = -1;
3746                                 s->uptodate++;
3747                         }
3748                 }
3749                 break;
3750         case check_state_compute_run:
3751                 break;
3752         default:
3753                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3754                        __func__, sh->check_state,
3755                        (unsigned long long) sh->sector);
3756                 BUG();
3757         }
3758 }
3759
3760 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3761                                   struct stripe_head_state *s,
3762                                   int disks)
3763 {
3764         int pd_idx = sh->pd_idx;
3765         int qd_idx = sh->qd_idx;
3766         struct r5dev *dev;
3767
3768         BUG_ON(sh->batch_head);
3769         set_bit(STRIPE_HANDLE, &sh->state);
3770
3771         BUG_ON(s->failed > 2);
3772
3773         /* Want to check and possibly repair P and Q.
3774          * However there could be one 'failed' device, in which
3775          * case we can only check one of them, possibly using the
3776          * other to generate missing data
3777          */
3778
3779         switch (sh->check_state) {
3780         case check_state_idle:
3781                 /* start a new check operation if there are < 2 failures */
3782                 if (s->failed == s->q_failed) {
3783                         /* The only possible failed device holds Q, so it
3784                          * makes sense to check P (If anything else were failed,
3785                          * we would have used P to recreate it).
3786                          */
3787                         sh->check_state = check_state_run;
3788                 }
3789                 if (!s->q_failed && s->failed < 2) {
3790                         /* Q is not failed, and we didn't use it to generate
3791                          * anything, so it makes sense to check it
3792                          */
3793                         if (sh->check_state == check_state_run)
3794                                 sh->check_state = check_state_run_pq;
3795                         else
3796                                 sh->check_state = check_state_run_q;
3797                 }
3798
3799                 /* discard potentially stale zero_sum_result */
3800                 sh->ops.zero_sum_result = 0;
3801
3802                 if (sh->check_state == check_state_run) {
3803                         /* async_xor_zero_sum destroys the contents of P */
3804                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3805                         s->uptodate--;
3806                 }
3807                 if (sh->check_state >= check_state_run &&
3808                     sh->check_state <= check_state_run_pq) {
3809                         /* async_syndrome_zero_sum preserves P and Q, so
3810                          * no need to mark them !uptodate here
3811                          */
3812                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3813                         break;
3814                 }
3815
3816                 /* we have 2-disk failure */
3817                 BUG_ON(s->failed != 2);
3818                 /* fall through */
3819         case check_state_compute_result:
3820                 sh->check_state = check_state_idle;
3821
3822                 /* check that a write has not made the stripe insync */
3823                 if (test_bit(STRIPE_INSYNC, &sh->state))
3824                         break;
3825
3826                 /* now write out any block on a failed drive,
3827                  * or P or Q if they were recomputed
3828                  */
3829                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3830                 if (s->failed == 2) {
3831                         dev = &sh->dev[s->failed_num[1]];
3832                         s->locked++;
3833                         set_bit(R5_LOCKED, &dev->flags);
3834                         set_bit(R5_Wantwrite, &dev->flags);
3835                 }
3836                 if (s->failed >= 1) {
3837                         dev = &sh->dev[s->failed_num[0]];
3838                         s->locked++;
3839                         set_bit(R5_LOCKED, &dev->flags);
3840                         set_bit(R5_Wantwrite, &dev->flags);
3841                 }
3842                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3843                         dev = &sh->dev[pd_idx];
3844                         s->locked++;
3845                         set_bit(R5_LOCKED, &dev->flags);
3846                         set_bit(R5_Wantwrite, &dev->flags);
3847                 }
3848                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3849                         dev = &sh->dev[qd_idx];
3850                         s->locked++;
3851                         set_bit(R5_LOCKED, &dev->flags);
3852                         set_bit(R5_Wantwrite, &dev->flags);
3853                 }
3854                 clear_bit(STRIPE_DEGRADED, &sh->state);
3855
3856                 set_bit(STRIPE_INSYNC, &sh->state);
3857                 break;
3858         case check_state_run:
3859         case check_state_run_q:
3860         case check_state_run_pq:
3861                 break; /* we will be called again upon completion */
3862         case check_state_check_result:
3863                 sh->check_state = check_state_idle;
3864
3865                 /* handle a successful check operation, if parity is correct
3866                  * we are done.  Otherwise update the mismatch count and repair
3867                  * parity if !MD_RECOVERY_CHECK
3868                  */
3869                 if (sh->ops.zero_sum_result == 0) {
3870                         /* both parities are correct */
3871                         if (!s->failed)
3872                                 set_bit(STRIPE_INSYNC, &sh->state);
3873                         else {
3874                                 /* in contrast to the raid5 case we can validate
3875                                  * parity, but still have a failure to write
3876                                  * back
3877                                  */
3878                                 sh->check_state = check_state_compute_result;
3879                                 /* Returning at this point means that we may go
3880                                  * off and bring p and/or q uptodate again so
3881                                  * we make sure to check zero_sum_result again
3882                                  * to verify if p or q need writeback
3883                                  */
3884                         }
3885                 } else {
3886                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3887                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3888                                 /* don't try to repair!! */
3889                                 set_bit(STRIPE_INSYNC, &sh->state);
3890                         else {
3891                                 int *target = &sh->ops.target;
3892
3893                                 sh->ops.target = -1;
3894                                 sh->ops.target2 = -1;
3895                                 sh->check_state = check_state_compute_run;
3896                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3897                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3898                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3899                                         set_bit(R5_Wantcompute,
3900                                                 &sh->dev[pd_idx].flags);
3901                                         *target = pd_idx;
3902                                         target = &sh->ops.target2;
3903                                         s->uptodate++;
3904                                 }
3905                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3906                                         set_bit(R5_Wantcompute,
3907                                                 &sh->dev[qd_idx].flags);
3908                                         *target = qd_idx;
3909                                         s->uptodate++;
3910                                 }
3911                         }
3912                 }
3913                 break;
3914         case check_state_compute_run:
3915                 break;
3916         default:
3917                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3918                        __func__, sh->check_state,
3919                        (unsigned long long) sh->sector);
3920                 BUG();
3921         }
3922 }
3923
3924 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3925 {
3926         int i;
3927
3928         /* We have read all the blocks in this stripe and now we need to
3929          * copy some of them into a target stripe for expand.
3930          */
3931         struct dma_async_tx_descriptor *tx = NULL;
3932         BUG_ON(sh->batch_head);
3933         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3934         for (i = 0; i < sh->disks; i++)
3935                 if (i != sh->pd_idx && i != sh->qd_idx) {
3936                         int dd_idx, j;
3937                         struct stripe_head *sh2;
3938                         struct async_submit_ctl submit;
3939
3940                         sector_t bn = compute_blocknr(sh, i, 1);
3941                         sector_t s = raid5_compute_sector(conf, bn, 0,
3942                                                           &dd_idx, NULL);
3943                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3944                         if (sh2 == NULL)
3945                                 /* so far only the early blocks of this stripe
3946                                  * have been requested.  When later blocks
3947                                  * get requested, we will try again
3948                                  */
3949                                 continue;
3950                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3951                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3952                                 /* must have already done this block */
3953                                 release_stripe(sh2);
3954                                 continue;
3955                         }
3956
3957                         /* place all the copies on one channel */
3958                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3959                         tx = async_memcpy(sh2->dev[dd_idx].page,
3960                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3961                                           &submit);
3962
3963                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3964                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3965                         for (j = 0; j < conf->raid_disks; j++)
3966                                 if (j != sh2->pd_idx &&
3967                                     j != sh2->qd_idx &&
3968                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3969                                         break;
3970                         if (j == conf->raid_disks) {
3971                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3972                                 set_bit(STRIPE_HANDLE, &sh2->state);
3973                         }
3974                         release_stripe(sh2);
3975
3976                 }
3977         /* done submitting copies, wait for them to complete */
3978         async_tx_quiesce(&tx);
3979 }
3980
3981 /*
3982  * handle_stripe - do things to a stripe.
3983  *
3984  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3985  * state of various bits to see what needs to be done.
3986  * Possible results:
3987  *    return some read requests which now have data
3988  *    return some write requests which are safely on storage
3989  *    schedule a read on some buffers
3990  *    schedule a write of some buffers
3991  *    return confirmation of parity correctness
3992  *
3993  */
3994
3995 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3996 {
3997         struct r5conf *conf = sh->raid_conf;
3998         int disks = sh->disks;
3999         struct r5dev *dev;
4000         int i;
4001         int do_recovery = 0;
4002
4003         memset(s, 0, sizeof(*s));
4004
4005         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4006         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4007         s->failed_num[0] = -1;
4008         s->failed_num[1] = -1;
4009
4010         /* Now to look around and see what can be done */
4011         rcu_read_lock();
4012         for (i=disks; i--; ) {
4013                 struct md_rdev *rdev;
4014                 sector_t first_bad;
4015                 int bad_sectors;
4016                 int is_bad = 0;
4017
4018                 dev = &sh->dev[i];
4019
4020                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4021                          i, dev->flags,
4022                          dev->toread, dev->towrite, dev->written);
4023                 /* maybe we can reply to a read
4024                  *
4025                  * new wantfill requests are only permitted while
4026                  * ops_complete_biofill is guaranteed to be inactive
4027                  */
4028                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4029                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4030                         set_bit(R5_Wantfill, &dev->flags);
4031
4032                 /* now count some things */
4033                 if (test_bit(R5_LOCKED, &dev->flags))
4034                         s->locked++;
4035                 if (test_bit(R5_UPTODATE, &dev->flags))
4036                         s->uptodate++;
4037                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4038                         s->compute++;
4039                         BUG_ON(s->compute > 2);
4040                 }
4041
4042                 if (test_bit(R5_Wantfill, &dev->flags))
4043                         s->to_fill++;
4044                 else if (dev->toread)
4045                         s->to_read++;
4046                 if (dev->towrite) {
4047                         s->to_write++;
4048                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4049                                 s->non_overwrite++;
4050                 }
4051                 if (dev->written)
4052                         s->written++;
4053                 /* Prefer to use the replacement for reads, but only
4054                  * if it is recovered enough and has no bad blocks.
4055                  */
4056                 rdev = rcu_dereference(conf->disks[i].replacement);
4057                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4058                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4059                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4060                                  &first_bad, &bad_sectors))
4061                         set_bit(R5_ReadRepl, &dev->flags);
4062                 else {
4063                         if (rdev && !test_bit(Faulty, &rdev->flags))
4064                                 set_bit(R5_NeedReplace, &dev->flags);
4065                         else
4066                                 clear_bit(R5_NeedReplace, &dev->flags);
4067                         rdev = rcu_dereference(conf->disks[i].rdev);
4068                         clear_bit(R5_ReadRepl, &dev->flags);
4069                 }
4070                 if (rdev && test_bit(Faulty, &rdev->flags))
4071                         rdev = NULL;
4072                 if (rdev) {
4073                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4074                                              &first_bad, &bad_sectors);
4075                         if (s->blocked_rdev == NULL
4076                             && (test_bit(Blocked, &rdev->flags)
4077                                 || is_bad < 0)) {
4078                                 if (is_bad < 0)
4079                                         set_bit(BlockedBadBlocks,
4080                                                 &rdev->flags);
4081                                 s->blocked_rdev = rdev;
4082                                 atomic_inc(&rdev->nr_pending);
4083                         }
4084                 }
4085                 clear_bit(R5_Insync, &dev->flags);
4086                 if (!rdev)
4087                         /* Not in-sync */;
4088                 else if (is_bad) {
4089                         /* also not in-sync */
4090                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4091                             test_bit(R5_UPTODATE, &dev->flags)) {
4092                                 /* treat as in-sync, but with a read error
4093                                  * which we can now try to correct
4094                                  */
4095                                 set_bit(R5_Insync, &dev->flags);
4096                                 set_bit(R5_ReadError, &dev->flags);
4097                         }
4098                 } else if (test_bit(In_sync, &rdev->flags))
4099                         set_bit(R5_Insync, &dev->flags);
4100                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4101                         /* in sync if before recovery_offset */
4102                         set_bit(R5_Insync, &dev->flags);
4103                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4104                          test_bit(R5_Expanded, &dev->flags))
4105                         /* If we've reshaped into here, we assume it is Insync.
4106                          * We will shortly update recovery_offset to make
4107                          * it official.
4108                          */
4109                         set_bit(R5_Insync, &dev->flags);
4110
4111                 if (test_bit(R5_WriteError, &dev->flags)) {
4112                         /* This flag does not apply to '.replacement'
4113                          * only to .rdev, so make sure to check that*/
4114                         struct md_rdev *rdev2 = rcu_dereference(
4115                                 conf->disks[i].rdev);
4116                         if (rdev2 == rdev)
4117                                 clear_bit(R5_Insync, &dev->flags);
4118                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4119                                 s->handle_bad_blocks = 1;
4120                                 atomic_inc(&rdev2->nr_pending);
4121                         } else
4122                                 clear_bit(R5_WriteError, &dev->flags);
4123                 }
4124                 if (test_bit(R5_MadeGood, &dev->flags)) {
4125                         /* This flag does not apply to '.replacement'
4126                          * only to .rdev, so make sure to check that*/
4127                         struct md_rdev *rdev2 = rcu_dereference(
4128                                 conf->disks[i].rdev);
4129                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4130                                 s->handle_bad_blocks = 1;
4131                                 atomic_inc(&rdev2->nr_pending);
4132                         } else
4133                                 clear_bit(R5_MadeGood, &dev->flags);
4134                 }
4135                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4136                         struct md_rdev *rdev2 = rcu_dereference(
4137                                 conf->disks[i].replacement);
4138                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4139                                 s->handle_bad_blocks = 1;
4140                                 atomic_inc(&rdev2->nr_pending);
4141                         } else
4142                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4143                 }
4144                 if (!test_bit(R5_Insync, &dev->flags)) {
4145                         /* The ReadError flag will just be confusing now */
4146                         clear_bit(R5_ReadError, &dev->flags);
4147                         clear_bit(R5_ReWrite, &dev->flags);
4148                 }
4149                 if (test_bit(R5_ReadError, &dev->flags))
4150                         clear_bit(R5_Insync, &dev->flags);
4151                 if (!test_bit(R5_Insync, &dev->flags)) {
4152                         if (s->failed < 2)
4153                                 s->failed_num[s->failed] = i;
4154                         s->failed++;
4155                         if (rdev && !test_bit(Faulty, &rdev->flags))
4156                                 do_recovery = 1;
4157                 }
4158         }
4159         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4160                 /* If there is a failed device being replaced,
4161                  *     we must be recovering.
4162                  * else if we are after recovery_cp, we must be syncing
4163                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4164                  * else we can only be replacing
4165                  * sync and recovery both need to read all devices, and so
4166                  * use the same flag.
4167                  */
4168                 if (do_recovery ||
4169                     sh->sector >= conf->mddev->recovery_cp ||
4170                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4171                         s->syncing = 1;
4172                 else
4173                         s->replacing = 1;
4174         }
4175         rcu_read_unlock();
4176 }
4177
4178 static int clear_batch_ready(struct stripe_head *sh)
4179 {
4180         /* Return '1' if this is a member of batch, or
4181          * '0' if it is a lone stripe or a head which can now be
4182          * handled.
4183          */
4184         struct stripe_head *tmp;
4185         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4186                 return (sh->batch_head && sh->batch_head != sh);
4187         spin_lock(&sh->stripe_lock);
4188         if (!sh->batch_head) {
4189                 spin_unlock(&sh->stripe_lock);
4190                 return 0;
4191         }
4192
4193         /*
4194          * this stripe could be added to a batch list before we check
4195          * BATCH_READY, skips it
4196          */
4197         if (sh->batch_head != sh) {
4198                 spin_unlock(&sh->stripe_lock);
4199                 return 1;
4200         }
4201         spin_lock(&sh->batch_lock);
4202         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4203                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4204         spin_unlock(&sh->batch_lock);
4205         spin_unlock(&sh->stripe_lock);
4206
4207         /*
4208          * BATCH_READY is cleared, no new stripes can be added.
4209          * batch_list can be accessed without lock
4210          */
4211         return 0;
4212 }
4213
4214 static void break_stripe_batch_list(struct stripe_head *head_sh,
4215                                     unsigned long handle_flags)
4216 {
4217         struct stripe_head *sh, *next;
4218         int i;
4219         int do_wakeup = 0;
4220
4221         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4222
4223                 list_del_init(&sh->batch_list);
4224
4225                 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4226                                           (1 << STRIPE_SYNCING) |
4227                                           (1 << STRIPE_REPLACED) |
4228                                           (1 << STRIPE_PREREAD_ACTIVE) |
4229                                           (1 << STRIPE_DELAYED) |
4230                                           (1 << STRIPE_BIT_DELAY) |
4231                                           (1 << STRIPE_FULL_WRITE) |
4232                                           (1 << STRIPE_BIOFILL_RUN) |
4233                                           (1 << STRIPE_COMPUTE_RUN)  |
4234                                           (1 << STRIPE_OPS_REQ_PENDING) |
4235                                           (1 << STRIPE_DISCARD) |
4236                                           (1 << STRIPE_BATCH_READY) |
4237                                           (1 << STRIPE_BATCH_ERR) |
4238                                           (1 << STRIPE_BITMAP_PENDING)));
4239                 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4240                                               (1 << STRIPE_REPLACED)));
4241
4242                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4243                                             (1 << STRIPE_DEGRADED)),
4244                               head_sh->state & (1 << STRIPE_INSYNC));
4245
4246                 sh->check_state = head_sh->check_state;
4247                 sh->reconstruct_state = head_sh->reconstruct_state;
4248                 for (i = 0; i < sh->disks; i++) {
4249                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4250                                 do_wakeup = 1;
4251                         sh->dev[i].flags = head_sh->dev[i].flags &
4252                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4253                 }
4254                 spin_lock_irq(&sh->stripe_lock);
4255                 sh->batch_head = NULL;
4256                 spin_unlock_irq(&sh->stripe_lock);
4257                 if (handle_flags == 0 ||
4258                     sh->state & handle_flags)
4259                         set_bit(STRIPE_HANDLE, &sh->state);
4260                 release_stripe(sh);
4261         }
4262         spin_lock_irq(&head_sh->stripe_lock);
4263         head_sh->batch_head = NULL;
4264         spin_unlock_irq(&head_sh->stripe_lock);
4265         for (i = 0; i < head_sh->disks; i++)
4266                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4267                         do_wakeup = 1;
4268         if (head_sh->state & handle_flags)
4269                 set_bit(STRIPE_HANDLE, &head_sh->state);
4270
4271         if (do_wakeup)
4272                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4273 }
4274
4275 static void handle_stripe(struct stripe_head *sh)
4276 {
4277         struct stripe_head_state s;
4278         struct r5conf *conf = sh->raid_conf;
4279         int i;
4280         int prexor;
4281         int disks = sh->disks;
4282         struct r5dev *pdev, *qdev;
4283
4284         clear_bit(STRIPE_HANDLE, &sh->state);
4285         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4286                 /* already being handled, ensure it gets handled
4287                  * again when current action finishes */
4288                 set_bit(STRIPE_HANDLE, &sh->state);
4289                 return;
4290         }
4291
4292         if (clear_batch_ready(sh) ) {
4293                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4294                 return;
4295         }
4296
4297         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4298                 break_stripe_batch_list(sh, 0);
4299
4300         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4301                 spin_lock(&sh->stripe_lock);
4302                 /* Cannot process 'sync' concurrently with 'discard' */
4303                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4304                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4305                         set_bit(STRIPE_SYNCING, &sh->state);
4306                         clear_bit(STRIPE_INSYNC, &sh->state);
4307                         clear_bit(STRIPE_REPLACED, &sh->state);
4308                 }
4309                 spin_unlock(&sh->stripe_lock);
4310         }
4311         clear_bit(STRIPE_DELAYED, &sh->state);
4312
4313         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4314                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4315                (unsigned long long)sh->sector, sh->state,
4316                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4317                sh->check_state, sh->reconstruct_state);
4318
4319         analyse_stripe(sh, &s);
4320
4321         if (s.handle_bad_blocks) {
4322                 set_bit(STRIPE_HANDLE, &sh->state);
4323                 goto finish;
4324         }
4325
4326         if (unlikely(s.blocked_rdev)) {
4327                 if (s.syncing || s.expanding || s.expanded ||
4328                     s.replacing || s.to_write || s.written) {
4329                         set_bit(STRIPE_HANDLE, &sh->state);
4330                         goto finish;
4331                 }
4332                 /* There is nothing for the blocked_rdev to block */
4333                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4334                 s.blocked_rdev = NULL;
4335         }
4336
4337         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4338                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4339                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4340         }
4341
4342         pr_debug("locked=%d uptodate=%d to_read=%d"
4343                " to_write=%d failed=%d failed_num=%d,%d\n",
4344                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4345                s.failed_num[0], s.failed_num[1]);
4346         /* check if the array has lost more than max_degraded devices and,
4347          * if so, some requests might need to be failed.
4348          */
4349         if (s.failed > conf->max_degraded) {
4350                 sh->check_state = 0;
4351                 sh->reconstruct_state = 0;
4352                 break_stripe_batch_list(sh, 0);
4353                 if (s.to_read+s.to_write+s.written)
4354                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4355                 if (s.syncing + s.replacing)
4356                         handle_failed_sync(conf, sh, &s);
4357         }
4358
4359         /* Now we check to see if any write operations have recently
4360          * completed
4361          */
4362         prexor = 0;
4363         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4364                 prexor = 1;
4365         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4366             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4367                 sh->reconstruct_state = reconstruct_state_idle;
4368
4369                 /* All the 'written' buffers and the parity block are ready to
4370                  * be written back to disk
4371                  */
4372                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4373                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4374                 BUG_ON(sh->qd_idx >= 0 &&
4375                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4376                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4377                 for (i = disks; i--; ) {
4378                         struct r5dev *dev = &sh->dev[i];
4379                         if (test_bit(R5_LOCKED, &dev->flags) &&
4380                                 (i == sh->pd_idx || i == sh->qd_idx ||
4381                                  dev->written)) {
4382                                 pr_debug("Writing block %d\n", i);
4383                                 set_bit(R5_Wantwrite, &dev->flags);
4384                                 if (prexor)
4385                                         continue;
4386                                 if (s.failed > 1)
4387                                         continue;
4388                                 if (!test_bit(R5_Insync, &dev->flags) ||
4389                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4390                                      s.failed == 0))
4391                                         set_bit(STRIPE_INSYNC, &sh->state);
4392                         }
4393                 }
4394                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4395                         s.dec_preread_active = 1;
4396         }
4397
4398         /*
4399          * might be able to return some write requests if the parity blocks
4400          * are safe, or on a failed drive
4401          */
4402         pdev = &sh->dev[sh->pd_idx];
4403         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4404                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4405         qdev = &sh->dev[sh->qd_idx];
4406         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4407                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4408                 || conf->level < 6;
4409
4410         if (s.written &&
4411             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4412                              && !test_bit(R5_LOCKED, &pdev->flags)
4413                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4414                                  test_bit(R5_Discard, &pdev->flags))))) &&
4415             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4416                              && !test_bit(R5_LOCKED, &qdev->flags)
4417                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4418                                  test_bit(R5_Discard, &qdev->flags))))))
4419                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4420
4421         /* Now we might consider reading some blocks, either to check/generate
4422          * parity, or to satisfy requests
4423          * or to load a block that is being partially written.
4424          */
4425         if (s.to_read || s.non_overwrite
4426             || (conf->level == 6 && s.to_write && s.failed)
4427             || (s.syncing && (s.uptodate + s.compute < disks))
4428             || s.replacing
4429             || s.expanding)
4430                 handle_stripe_fill(sh, &s, disks);
4431
4432         /* Now to consider new write requests and what else, if anything
4433          * should be read.  We do not handle new writes when:
4434          * 1/ A 'write' operation (copy+xor) is already in flight.
4435          * 2/ A 'check' operation is in flight, as it may clobber the parity
4436          *    block.
4437          */
4438         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4439                 handle_stripe_dirtying(conf, sh, &s, disks);
4440
4441         /* maybe we need to check and possibly fix the parity for this stripe
4442          * Any reads will already have been scheduled, so we just see if enough
4443          * data is available.  The parity check is held off while parity
4444          * dependent operations are in flight.
4445          */
4446         if (sh->check_state ||
4447             (s.syncing && s.locked == 0 &&
4448              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4449              !test_bit(STRIPE_INSYNC, &sh->state))) {
4450                 if (conf->level == 6)
4451                         handle_parity_checks6(conf, sh, &s, disks);
4452                 else
4453                         handle_parity_checks5(conf, sh, &s, disks);
4454         }
4455
4456         if ((s.replacing || s.syncing) && s.locked == 0
4457             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4458             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4459                 /* Write out to replacement devices where possible */
4460                 for (i = 0; i < conf->raid_disks; i++)
4461                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4462                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4463                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4464                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4465                                 s.locked++;
4466                         }
4467                 if (s.replacing)
4468                         set_bit(STRIPE_INSYNC, &sh->state);
4469                 set_bit(STRIPE_REPLACED, &sh->state);
4470         }
4471         if ((s.syncing || s.replacing) && s.locked == 0 &&
4472             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4473             test_bit(STRIPE_INSYNC, &sh->state)) {
4474                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4475                 clear_bit(STRIPE_SYNCING, &sh->state);
4476                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4477                         wake_up(&conf->wait_for_overlap);
4478         }
4479
4480         /* If the failed drives are just a ReadError, then we might need
4481          * to progress the repair/check process
4482          */
4483         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4484                 for (i = 0; i < s.failed; i++) {
4485                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4486                         if (test_bit(R5_ReadError, &dev->flags)
4487                             && !test_bit(R5_LOCKED, &dev->flags)
4488                             && test_bit(R5_UPTODATE, &dev->flags)
4489                                 ) {
4490                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4491                                         set_bit(R5_Wantwrite, &dev->flags);
4492                                         set_bit(R5_ReWrite, &dev->flags);
4493                                         set_bit(R5_LOCKED, &dev->flags);
4494                                         s.locked++;
4495                                 } else {
4496                                         /* let's read it back */
4497                                         set_bit(R5_Wantread, &dev->flags);
4498                                         set_bit(R5_LOCKED, &dev->flags);
4499                                         s.locked++;
4500                                 }
4501                         }
4502                 }
4503
4504         /* Finish reconstruct operations initiated by the expansion process */
4505         if (sh->reconstruct_state == reconstruct_state_result) {
4506                 struct stripe_head *sh_src
4507                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4508                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4509                         /* sh cannot be written until sh_src has been read.
4510                          * so arrange for sh to be delayed a little
4511                          */
4512                         set_bit(STRIPE_DELAYED, &sh->state);
4513                         set_bit(STRIPE_HANDLE, &sh->state);
4514                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4515                                               &sh_src->state))
4516                                 atomic_inc(&conf->preread_active_stripes);
4517                         release_stripe(sh_src);
4518                         goto finish;
4519                 }
4520                 if (sh_src)
4521                         release_stripe(sh_src);
4522
4523                 sh->reconstruct_state = reconstruct_state_idle;
4524                 clear_bit(STRIPE_EXPANDING, &sh->state);
4525                 for (i = conf->raid_disks; i--; ) {
4526                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4527                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4528                         s.locked++;
4529                 }
4530         }
4531
4532         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4533             !sh->reconstruct_state) {
4534                 /* Need to write out all blocks after computing parity */
4535                 sh->disks = conf->raid_disks;
4536                 stripe_set_idx(sh->sector, conf, 0, sh);
4537                 schedule_reconstruction(sh, &s, 1, 1);
4538         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4539                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4540                 atomic_dec(&conf->reshape_stripes);
4541                 wake_up(&conf->wait_for_overlap);
4542                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4543         }
4544
4545         if (s.expanding && s.locked == 0 &&
4546             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4547                 handle_stripe_expansion(conf, sh);
4548
4549 finish:
4550         /* wait for this device to become unblocked */
4551         if (unlikely(s.blocked_rdev)) {
4552                 if (conf->mddev->external)
4553                         md_wait_for_blocked_rdev(s.blocked_rdev,
4554                                                  conf->mddev);
4555                 else
4556                         /* Internal metadata will immediately
4557                          * be written by raid5d, so we don't
4558                          * need to wait here.
4559                          */
4560                         rdev_dec_pending(s.blocked_rdev,
4561                                          conf->mddev);
4562         }
4563
4564         if (s.handle_bad_blocks)
4565                 for (i = disks; i--; ) {
4566                         struct md_rdev *rdev;
4567                         struct r5dev *dev = &sh->dev[i];
4568                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4569                                 /* We own a safe reference to the rdev */
4570                                 rdev = conf->disks[i].rdev;
4571                                 if (!rdev_set_badblocks(rdev, sh->sector,
4572                                                         STRIPE_SECTORS, 0))
4573                                         md_error(conf->mddev, rdev);
4574                                 rdev_dec_pending(rdev, conf->mddev);
4575                         }
4576                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4577                                 rdev = conf->disks[i].rdev;
4578                                 rdev_clear_badblocks(rdev, sh->sector,
4579                                                      STRIPE_SECTORS, 0);
4580                                 rdev_dec_pending(rdev, conf->mddev);
4581                         }
4582                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4583                                 rdev = conf->disks[i].replacement;
4584                                 if (!rdev)
4585                                         /* rdev have been moved down */
4586                                         rdev = conf->disks[i].rdev;
4587                                 rdev_clear_badblocks(rdev, sh->sector,
4588                                                      STRIPE_SECTORS, 0);
4589                                 rdev_dec_pending(rdev, conf->mddev);
4590                         }
4591                 }
4592
4593         if (s.ops_request)
4594                 raid_run_ops(sh, s.ops_request);
4595
4596         ops_run_io(sh, &s);
4597
4598         if (s.dec_preread_active) {
4599                 /* We delay this until after ops_run_io so that if make_request
4600                  * is waiting on a flush, it won't continue until the writes
4601                  * have actually been submitted.
4602                  */
4603                 atomic_dec(&conf->preread_active_stripes);
4604                 if (atomic_read(&conf->preread_active_stripes) <
4605                     IO_THRESHOLD)
4606                         md_wakeup_thread(conf->mddev->thread);
4607         }
4608
4609         if (!bio_list_empty(&s.return_bi)) {
4610                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4611                         spin_lock_irq(&conf->device_lock);
4612                         bio_list_merge(&conf->return_bi, &s.return_bi);
4613                         spin_unlock_irq(&conf->device_lock);
4614                         md_wakeup_thread(conf->mddev->thread);
4615                 } else
4616                         return_io(&s.return_bi);
4617         }
4618
4619         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4620 }
4621
4622 static void raid5_activate_delayed(struct r5conf *conf)
4623 {
4624         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4625                 while (!list_empty(&conf->delayed_list)) {
4626                         struct list_head *l = conf->delayed_list.next;
4627                         struct stripe_head *sh;
4628                         sh = list_entry(l, struct stripe_head, lru);
4629                         list_del_init(l);
4630                         clear_bit(STRIPE_DELAYED, &sh->state);
4631                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4632                                 atomic_inc(&conf->preread_active_stripes);
4633                         list_add_tail(&sh->lru, &conf->hold_list);
4634                         raid5_wakeup_stripe_thread(sh);
4635                 }
4636         }
4637 }
4638
4639 static void activate_bit_delay(struct r5conf *conf,
4640         struct list_head *temp_inactive_list)
4641 {
4642         /* device_lock is held */
4643         struct list_head head;
4644         list_add(&head, &conf->bitmap_list);
4645         list_del_init(&conf->bitmap_list);
4646         while (!list_empty(&head)) {
4647                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4648                 int hash;
4649                 list_del_init(&sh->lru);
4650                 atomic_inc(&sh->count);
4651                 hash = sh->hash_lock_index;
4652                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4653         }
4654 }
4655
4656 static int raid5_congested(struct mddev *mddev, int bits)
4657 {
4658         struct r5conf *conf = mddev->private;
4659
4660         /* No difference between reads and writes.  Just check
4661          * how busy the stripe_cache is
4662          */
4663
4664         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4665                 return 1;
4666         if (conf->quiesce)
4667                 return 1;
4668         if (atomic_read(&conf->empty_inactive_list_nr))
4669                 return 1;
4670
4671         return 0;
4672 }
4673
4674 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4675 {
4676         struct r5conf *conf = mddev->private;
4677         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4678         unsigned int chunk_sectors;
4679         unsigned int bio_sectors = bio_sectors(bio);
4680
4681         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4682         return  chunk_sectors >=
4683                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4684 }
4685
4686 /*
4687  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4688  *  later sampled by raid5d.
4689  */
4690 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4691 {
4692         unsigned long flags;
4693
4694         spin_lock_irqsave(&conf->device_lock, flags);
4695
4696         bi->bi_next = conf->retry_read_aligned_list;
4697         conf->retry_read_aligned_list = bi;
4698
4699         spin_unlock_irqrestore(&conf->device_lock, flags);
4700         md_wakeup_thread(conf->mddev->thread);
4701 }
4702
4703 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4704 {
4705         struct bio *bi;
4706
4707         bi = conf->retry_read_aligned;
4708         if (bi) {
4709                 conf->retry_read_aligned = NULL;
4710                 return bi;
4711         }
4712         bi = conf->retry_read_aligned_list;
4713         if(bi) {
4714                 conf->retry_read_aligned_list = bi->bi_next;
4715                 bi->bi_next = NULL;
4716                 /*
4717                  * this sets the active strip count to 1 and the processed
4718                  * strip count to zero (upper 8 bits)
4719                  */
4720                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4721         }
4722
4723         return bi;
4724 }
4725
4726 /*
4727  *  The "raid5_align_endio" should check if the read succeeded and if it
4728  *  did, call bio_endio on the original bio (having bio_put the new bio
4729  *  first).
4730  *  If the read failed..
4731  */
4732 static void raid5_align_endio(struct bio *bi)
4733 {
4734         struct bio* raid_bi  = bi->bi_private;
4735         struct mddev *mddev;
4736         struct r5conf *conf;
4737         struct md_rdev *rdev;
4738         int error = bi->bi_error;
4739
4740         bio_put(bi);
4741
4742         rdev = (void*)raid_bi->bi_next;
4743         raid_bi->bi_next = NULL;
4744         mddev = rdev->mddev;
4745         conf = mddev->private;
4746
4747         rdev_dec_pending(rdev, conf->mddev);
4748
4749         if (!error) {
4750                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4751                                          raid_bi, 0);
4752                 bio_endio(raid_bi);
4753                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4754                         wake_up(&conf->wait_for_quiescent);
4755                 return;
4756         }
4757
4758         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4759
4760         add_bio_to_retry(raid_bi, conf);
4761 }
4762
4763 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4764 {
4765         struct r5conf *conf = mddev->private;
4766         int dd_idx;
4767         struct bio* align_bi;
4768         struct md_rdev *rdev;
4769         sector_t end_sector;
4770
4771         if (!in_chunk_boundary(mddev, raid_bio)) {
4772                 pr_debug("%s: non aligned\n", __func__);
4773                 return 0;
4774         }
4775         /*
4776          * use bio_clone_mddev to make a copy of the bio
4777          */
4778         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4779         if (!align_bi)
4780                 return 0;
4781         /*
4782          *   set bi_end_io to a new function, and set bi_private to the
4783          *     original bio.
4784          */
4785         align_bi->bi_end_io  = raid5_align_endio;
4786         align_bi->bi_private = raid_bio;
4787         /*
4788          *      compute position
4789          */
4790         align_bi->bi_iter.bi_sector =
4791                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4792                                      0, &dd_idx, NULL);
4793
4794         end_sector = bio_end_sector(align_bi);
4795         rcu_read_lock();
4796         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4797         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4798             rdev->recovery_offset < end_sector) {
4799                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4800                 if (rdev &&
4801                     (test_bit(Faulty, &rdev->flags) ||
4802                     !(test_bit(In_sync, &rdev->flags) ||
4803                       rdev->recovery_offset >= end_sector)))
4804                         rdev = NULL;
4805         }
4806         if (rdev) {
4807                 sector_t first_bad;
4808                 int bad_sectors;
4809
4810                 atomic_inc(&rdev->nr_pending);
4811                 rcu_read_unlock();
4812                 raid_bio->bi_next = (void*)rdev;
4813                 align_bi->bi_bdev =  rdev->bdev;
4814                 bio_clear_flag(align_bi, BIO_SEG_VALID);
4815
4816                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4817                                 bio_sectors(align_bi),
4818                                 &first_bad, &bad_sectors)) {
4819                         bio_put(align_bi);
4820                         rdev_dec_pending(rdev, mddev);
4821                         return 0;
4822                 }
4823
4824                 /* No reshape active, so we can trust rdev->data_offset */
4825                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4826
4827                 spin_lock_irq(&conf->device_lock);
4828                 wait_event_lock_irq(conf->wait_for_quiescent,
4829                                     conf->quiesce == 0,
4830                                     conf->device_lock);
4831                 atomic_inc(&conf->active_aligned_reads);
4832                 spin_unlock_irq(&conf->device_lock);
4833
4834                 if (mddev->gendisk)
4835                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4836                                               align_bi, disk_devt(mddev->gendisk),
4837                                               raid_bio->bi_iter.bi_sector);
4838                 generic_make_request(align_bi);
4839                 return 1;
4840         } else {
4841                 rcu_read_unlock();
4842                 bio_put(align_bi);
4843                 return 0;
4844         }
4845 }
4846
4847 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4848 {
4849         struct bio *split;
4850
4851         do {
4852                 sector_t sector = raid_bio->bi_iter.bi_sector;
4853                 unsigned chunk_sects = mddev->chunk_sectors;
4854                 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4855
4856                 if (sectors < bio_sectors(raid_bio)) {
4857                         split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4858                         bio_chain(split, raid_bio);
4859                 } else
4860                         split = raid_bio;
4861
4862                 if (!raid5_read_one_chunk(mddev, split)) {
4863                         if (split != raid_bio)
4864                                 generic_make_request(raid_bio);
4865                         return split;
4866                 }
4867         } while (split != raid_bio);
4868
4869         return NULL;
4870 }
4871
4872 /* __get_priority_stripe - get the next stripe to process
4873  *
4874  * Full stripe writes are allowed to pass preread active stripes up until
4875  * the bypass_threshold is exceeded.  In general the bypass_count
4876  * increments when the handle_list is handled before the hold_list; however, it
4877  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4878  * stripe with in flight i/o.  The bypass_count will be reset when the
4879  * head of the hold_list has changed, i.e. the head was promoted to the
4880  * handle_list.
4881  */
4882 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4883 {
4884         struct stripe_head *sh = NULL, *tmp;
4885         struct list_head *handle_list = NULL;
4886         struct r5worker_group *wg = NULL;
4887
4888         if (conf->worker_cnt_per_group == 0) {
4889                 handle_list = &conf->handle_list;
4890         } else if (group != ANY_GROUP) {
4891                 handle_list = &conf->worker_groups[group].handle_list;
4892                 wg = &conf->worker_groups[group];
4893         } else {
4894                 int i;
4895                 for (i = 0; i < conf->group_cnt; i++) {
4896                         handle_list = &conf->worker_groups[i].handle_list;
4897                         wg = &conf->worker_groups[i];
4898                         if (!list_empty(handle_list))
4899                                 break;
4900                 }
4901         }
4902
4903         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4904                   __func__,
4905                   list_empty(handle_list) ? "empty" : "busy",
4906                   list_empty(&conf->hold_list) ? "empty" : "busy",
4907                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4908
4909         if (!list_empty(handle_list)) {
4910                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4911
4912                 if (list_empty(&conf->hold_list))
4913                         conf->bypass_count = 0;
4914                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4915                         if (conf->hold_list.next == conf->last_hold)
4916                                 conf->bypass_count++;
4917                         else {
4918                                 conf->last_hold = conf->hold_list.next;
4919                                 conf->bypass_count -= conf->bypass_threshold;
4920                                 if (conf->bypass_count < 0)
4921                                         conf->bypass_count = 0;
4922                         }
4923                 }
4924         } else if (!list_empty(&conf->hold_list) &&
4925                    ((conf->bypass_threshold &&
4926                      conf->bypass_count > conf->bypass_threshold) ||
4927                     atomic_read(&conf->pending_full_writes) == 0)) {
4928
4929                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4930                         if (conf->worker_cnt_per_group == 0 ||
4931                             group == ANY_GROUP ||
4932                             !cpu_online(tmp->cpu) ||
4933                             cpu_to_group(tmp->cpu) == group) {
4934                                 sh = tmp;
4935                                 break;
4936                         }
4937                 }
4938
4939                 if (sh) {
4940                         conf->bypass_count -= conf->bypass_threshold;
4941                         if (conf->bypass_count < 0)
4942                                 conf->bypass_count = 0;
4943                 }
4944                 wg = NULL;
4945         }
4946
4947         if (!sh)
4948                 return NULL;
4949
4950         if (wg) {
4951                 wg->stripes_cnt--;
4952                 sh->group = NULL;
4953         }
4954         list_del_init(&sh->lru);
4955         BUG_ON(atomic_inc_return(&sh->count) != 1);
4956         return sh;
4957 }
4958
4959 struct raid5_plug_cb {
4960         struct blk_plug_cb      cb;
4961         struct list_head        list;
4962         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4963 };
4964
4965 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4966 {
4967         struct raid5_plug_cb *cb = container_of(
4968                 blk_cb, struct raid5_plug_cb, cb);
4969         struct stripe_head *sh;
4970         struct mddev *mddev = cb->cb.data;
4971         struct r5conf *conf = mddev->private;
4972         int cnt = 0;
4973         int hash;
4974
4975         if (cb->list.next && !list_empty(&cb->list)) {
4976                 spin_lock_irq(&conf->device_lock);
4977                 while (!list_empty(&cb->list)) {
4978                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4979                         list_del_init(&sh->lru);
4980                         /*
4981                          * avoid race release_stripe_plug() sees
4982                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4983                          * is still in our list
4984                          */
4985                         smp_mb__before_atomic();
4986                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4987                         /*
4988                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4989                          * case, the count is always > 1 here
4990                          */
4991                         hash = sh->hash_lock_index;
4992                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4993                         cnt++;
4994                 }
4995                 spin_unlock_irq(&conf->device_lock);
4996         }
4997         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4998                                      NR_STRIPE_HASH_LOCKS);
4999         if (mddev->queue)
5000                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5001         kfree(cb);
5002 }
5003
5004 static void release_stripe_plug(struct mddev *mddev,
5005                                 struct stripe_head *sh)
5006 {
5007         struct blk_plug_cb *blk_cb = blk_check_plugged(
5008                 raid5_unplug, mddev,
5009                 sizeof(struct raid5_plug_cb));
5010         struct raid5_plug_cb *cb;
5011
5012         if (!blk_cb) {
5013                 release_stripe(sh);
5014                 return;
5015         }
5016
5017         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5018
5019         if (cb->list.next == NULL) {
5020                 int i;
5021                 INIT_LIST_HEAD(&cb->list);
5022                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5023                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5024         }
5025
5026         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5027                 list_add_tail(&sh->lru, &cb->list);
5028         else
5029                 release_stripe(sh);
5030 }
5031
5032 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5033 {
5034         struct r5conf *conf = mddev->private;
5035         sector_t logical_sector, last_sector;
5036         struct stripe_head *sh;
5037         int remaining;
5038         int stripe_sectors;
5039
5040         if (mddev->reshape_position != MaxSector)
5041                 /* Skip discard while reshape is happening */
5042                 return;
5043
5044         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5045         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5046
5047         bi->bi_next = NULL;
5048         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5049
5050         stripe_sectors = conf->chunk_sectors *
5051                 (conf->raid_disks - conf->max_degraded);
5052         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5053                                                stripe_sectors);
5054         sector_div(last_sector, stripe_sectors);
5055
5056         logical_sector *= conf->chunk_sectors;
5057         last_sector *= conf->chunk_sectors;
5058
5059         for (; logical_sector < last_sector;
5060              logical_sector += STRIPE_SECTORS) {
5061                 DEFINE_WAIT(w);
5062                 int d;
5063         again:
5064                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5065                 prepare_to_wait(&conf->wait_for_overlap, &w,
5066                                 TASK_UNINTERRUPTIBLE);
5067                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5068                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5069                         release_stripe(sh);
5070                         schedule();
5071                         goto again;
5072                 }
5073                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5074                 spin_lock_irq(&sh->stripe_lock);
5075                 for (d = 0; d < conf->raid_disks; d++) {
5076                         if (d == sh->pd_idx || d == sh->qd_idx)
5077                                 continue;
5078                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5079                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5080                                 spin_unlock_irq(&sh->stripe_lock);
5081                                 release_stripe(sh);
5082                                 schedule();
5083                                 goto again;
5084                         }
5085                 }
5086                 set_bit(STRIPE_DISCARD, &sh->state);
5087                 finish_wait(&conf->wait_for_overlap, &w);
5088                 sh->overwrite_disks = 0;
5089                 for (d = 0; d < conf->raid_disks; d++) {
5090                         if (d == sh->pd_idx || d == sh->qd_idx)
5091                                 continue;
5092                         sh->dev[d].towrite = bi;
5093                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5094                         raid5_inc_bi_active_stripes(bi);
5095                         sh->overwrite_disks++;
5096                 }
5097                 spin_unlock_irq(&sh->stripe_lock);
5098                 if (conf->mddev->bitmap) {
5099                         for (d = 0;
5100                              d < conf->raid_disks - conf->max_degraded;
5101                              d++)
5102                                 bitmap_startwrite(mddev->bitmap,
5103                                                   sh->sector,
5104                                                   STRIPE_SECTORS,
5105                                                   0);
5106                         sh->bm_seq = conf->seq_flush + 1;
5107                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5108                 }
5109
5110                 set_bit(STRIPE_HANDLE, &sh->state);
5111                 clear_bit(STRIPE_DELAYED, &sh->state);
5112                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5113                         atomic_inc(&conf->preread_active_stripes);
5114                 release_stripe_plug(mddev, sh);
5115         }
5116
5117         remaining = raid5_dec_bi_active_stripes(bi);
5118         if (remaining == 0) {
5119                 md_write_end(mddev);
5120                 bio_endio(bi);
5121         }
5122 }
5123
5124 static void make_request(struct mddev *mddev, struct bio * bi)
5125 {
5126         struct r5conf *conf = mddev->private;
5127         int dd_idx;
5128         sector_t new_sector;
5129         sector_t logical_sector, last_sector;
5130         struct stripe_head *sh;
5131         const int rw = bio_data_dir(bi);
5132         int remaining;
5133         DEFINE_WAIT(w);
5134         bool do_prepare;
5135
5136         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5137                 md_flush_request(mddev, bi);
5138                 return;
5139         }
5140
5141         md_write_start(mddev, bi);
5142
5143         /*
5144          * If array is degraded, better not do chunk aligned read because
5145          * later we might have to read it again in order to reconstruct
5146          * data on failed drives.
5147          */
5148         if (rw == READ && mddev->degraded == 0 &&
5149             mddev->reshape_position == MaxSector) {
5150                 bi = chunk_aligned_read(mddev, bi);
5151                 if (!bi)
5152                         return;
5153         }
5154
5155         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5156                 make_discard_request(mddev, bi);
5157                 return;
5158         }
5159
5160         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5161         last_sector = bio_end_sector(bi);
5162         bi->bi_next = NULL;
5163         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5164
5165         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5166         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5167                 int previous;
5168                 int seq;
5169
5170                 do_prepare = false;
5171         retry:
5172                 seq = read_seqcount_begin(&conf->gen_lock);
5173                 previous = 0;
5174                 if (do_prepare)
5175                         prepare_to_wait(&conf->wait_for_overlap, &w,
5176                                 TASK_UNINTERRUPTIBLE);
5177                 if (unlikely(conf->reshape_progress != MaxSector)) {
5178                         /* spinlock is needed as reshape_progress may be
5179                          * 64bit on a 32bit platform, and so it might be
5180                          * possible to see a half-updated value
5181                          * Of course reshape_progress could change after
5182                          * the lock is dropped, so once we get a reference
5183                          * to the stripe that we think it is, we will have
5184                          * to check again.
5185                          */
5186                         spin_lock_irq(&conf->device_lock);
5187                         if (mddev->reshape_backwards
5188                             ? logical_sector < conf->reshape_progress
5189                             : logical_sector >= conf->reshape_progress) {
5190                                 previous = 1;
5191                         } else {
5192                                 if (mddev->reshape_backwards
5193                                     ? logical_sector < conf->reshape_safe
5194                                     : logical_sector >= conf->reshape_safe) {
5195                                         spin_unlock_irq(&conf->device_lock);
5196                                         schedule();
5197                                         do_prepare = true;
5198                                         goto retry;
5199                                 }
5200                         }
5201                         spin_unlock_irq(&conf->device_lock);
5202                 }
5203
5204                 new_sector = raid5_compute_sector(conf, logical_sector,
5205                                                   previous,
5206                                                   &dd_idx, NULL);
5207                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5208                         (unsigned long long)new_sector,
5209                         (unsigned long long)logical_sector);
5210
5211                 sh = get_active_stripe(conf, new_sector, previous,
5212                                        (bi->bi_rw&RWA_MASK), 0);
5213                 if (sh) {
5214                         if (unlikely(previous)) {
5215                                 /* expansion might have moved on while waiting for a
5216                                  * stripe, so we must do the range check again.
5217                                  * Expansion could still move past after this
5218                                  * test, but as we are holding a reference to
5219                                  * 'sh', we know that if that happens,
5220                                  *  STRIPE_EXPANDING will get set and the expansion
5221                                  * won't proceed until we finish with the stripe.
5222                                  */
5223                                 int must_retry = 0;
5224                                 spin_lock_irq(&conf->device_lock);
5225                                 if (mddev->reshape_backwards
5226                                     ? logical_sector >= conf->reshape_progress
5227                                     : logical_sector < conf->reshape_progress)
5228                                         /* mismatch, need to try again */
5229                                         must_retry = 1;
5230                                 spin_unlock_irq(&conf->device_lock);
5231                                 if (must_retry) {
5232                                         release_stripe(sh);
5233                                         schedule();
5234                                         do_prepare = true;
5235                                         goto retry;
5236                                 }
5237                         }
5238                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5239                                 /* Might have got the wrong stripe_head
5240                                  * by accident
5241                                  */
5242                                 release_stripe(sh);
5243                                 goto retry;
5244                         }
5245
5246                         if (rw == WRITE &&
5247                             logical_sector >= mddev->suspend_lo &&
5248                             logical_sector < mddev->suspend_hi) {
5249                                 release_stripe(sh);
5250                                 /* As the suspend_* range is controlled by
5251                                  * userspace, we want an interruptible
5252                                  * wait.
5253                                  */
5254                                 flush_signals(current);
5255                                 prepare_to_wait(&conf->wait_for_overlap,
5256                                                 &w, TASK_INTERRUPTIBLE);
5257                                 if (logical_sector >= mddev->suspend_lo &&
5258                                     logical_sector < mddev->suspend_hi) {
5259                                         schedule();
5260                                         do_prepare = true;
5261                                 }
5262                                 goto retry;
5263                         }
5264
5265                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5266                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5267                                 /* Stripe is busy expanding or
5268                                  * add failed due to overlap.  Flush everything
5269                                  * and wait a while
5270                                  */
5271                                 md_wakeup_thread(mddev->thread);
5272                                 release_stripe(sh);
5273                                 schedule();
5274                                 do_prepare = true;
5275                                 goto retry;
5276                         }
5277                         set_bit(STRIPE_HANDLE, &sh->state);
5278                         clear_bit(STRIPE_DELAYED, &sh->state);
5279                         if ((!sh->batch_head || sh == sh->batch_head) &&
5280                             (bi->bi_rw & REQ_SYNC) &&
5281                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5282                                 atomic_inc(&conf->preread_active_stripes);
5283                         release_stripe_plug(mddev, sh);
5284                 } else {
5285                         /* cannot get stripe for read-ahead, just give-up */
5286                         bi->bi_error = -EIO;
5287                         break;
5288                 }
5289         }
5290         finish_wait(&conf->wait_for_overlap, &w);
5291
5292         remaining = raid5_dec_bi_active_stripes(bi);
5293         if (remaining == 0) {
5294
5295                 if ( rw == WRITE )
5296                         md_write_end(mddev);
5297
5298                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5299                                          bi, 0);
5300                 bio_endio(bi);
5301         }
5302 }
5303
5304 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5305
5306 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5307 {
5308         /* reshaping is quite different to recovery/resync so it is
5309          * handled quite separately ... here.
5310          *
5311          * On each call to sync_request, we gather one chunk worth of
5312          * destination stripes and flag them as expanding.
5313          * Then we find all the source stripes and request reads.
5314          * As the reads complete, handle_stripe will copy the data
5315          * into the destination stripe and release that stripe.
5316          */
5317         struct r5conf *conf = mddev->private;
5318         struct stripe_head *sh;
5319         sector_t first_sector, last_sector;
5320         int raid_disks = conf->previous_raid_disks;
5321         int data_disks = raid_disks - conf->max_degraded;
5322         int new_data_disks = conf->raid_disks - conf->max_degraded;
5323         int i;
5324         int dd_idx;
5325         sector_t writepos, readpos, safepos;
5326         sector_t stripe_addr;
5327         int reshape_sectors;
5328         struct list_head stripes;
5329         sector_t retn;
5330
5331         if (sector_nr == 0) {
5332                 /* If restarting in the middle, skip the initial sectors */
5333                 if (mddev->reshape_backwards &&
5334                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5335                         sector_nr = raid5_size(mddev, 0, 0)
5336                                 - conf->reshape_progress;
5337                 } else if (mddev->reshape_backwards &&
5338                            conf->reshape_progress == MaxSector) {
5339                         /* shouldn't happen, but just in case, finish up.*/
5340                         sector_nr = MaxSector;
5341                 } else if (!mddev->reshape_backwards &&
5342                            conf->reshape_progress > 0)
5343                         sector_nr = conf->reshape_progress;
5344                 sector_div(sector_nr, new_data_disks);
5345                 if (sector_nr) {
5346                         mddev->curr_resync_completed = sector_nr;
5347                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5348                         *skipped = 1;
5349                         retn = sector_nr;
5350                         goto finish;
5351                 }
5352         }
5353
5354         /* We need to process a full chunk at a time.
5355          * If old and new chunk sizes differ, we need to process the
5356          * largest of these
5357          */
5358
5359         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5360
5361         /* We update the metadata at least every 10 seconds, or when
5362          * the data about to be copied would over-write the source of
5363          * the data at the front of the range.  i.e. one new_stripe
5364          * along from reshape_progress new_maps to after where
5365          * reshape_safe old_maps to
5366          */
5367         writepos = conf->reshape_progress;
5368         sector_div(writepos, new_data_disks);
5369         readpos = conf->reshape_progress;
5370         sector_div(readpos, data_disks);
5371         safepos = conf->reshape_safe;
5372         sector_div(safepos, data_disks);
5373         if (mddev->reshape_backwards) {
5374                 BUG_ON(writepos < reshape_sectors);
5375                 writepos -= reshape_sectors;
5376                 readpos += reshape_sectors;
5377                 safepos += reshape_sectors;
5378         } else {
5379                 writepos += reshape_sectors;
5380                 /* readpos and safepos are worst-case calculations.
5381                  * A negative number is overly pessimistic, and causes
5382                  * obvious problems for unsigned storage.  So clip to 0.
5383                  */
5384                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5385                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5386         }
5387
5388         /* Having calculated the 'writepos' possibly use it
5389          * to set 'stripe_addr' which is where we will write to.
5390          */
5391         if (mddev->reshape_backwards) {
5392                 BUG_ON(conf->reshape_progress == 0);
5393                 stripe_addr = writepos;
5394                 BUG_ON((mddev->dev_sectors &
5395                         ~((sector_t)reshape_sectors - 1))
5396                        - reshape_sectors - stripe_addr
5397                        != sector_nr);
5398         } else {
5399                 BUG_ON(writepos != sector_nr + reshape_sectors);
5400                 stripe_addr = sector_nr;
5401         }
5402
5403         /* 'writepos' is the most advanced device address we might write.
5404          * 'readpos' is the least advanced device address we might read.
5405          * 'safepos' is the least address recorded in the metadata as having
5406          *     been reshaped.
5407          * If there is a min_offset_diff, these are adjusted either by
5408          * increasing the safepos/readpos if diff is negative, or
5409          * increasing writepos if diff is positive.
5410          * If 'readpos' is then behind 'writepos', there is no way that we can
5411          * ensure safety in the face of a crash - that must be done by userspace
5412          * making a backup of the data.  So in that case there is no particular
5413          * rush to update metadata.
5414          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5415          * update the metadata to advance 'safepos' to match 'readpos' so that
5416          * we can be safe in the event of a crash.
5417          * So we insist on updating metadata if safepos is behind writepos and
5418          * readpos is beyond writepos.
5419          * In any case, update the metadata every 10 seconds.
5420          * Maybe that number should be configurable, but I'm not sure it is
5421          * worth it.... maybe it could be a multiple of safemode_delay???
5422          */
5423         if (conf->min_offset_diff < 0) {
5424                 safepos += -conf->min_offset_diff;
5425                 readpos += -conf->min_offset_diff;
5426         } else
5427                 writepos += conf->min_offset_diff;
5428
5429         if ((mddev->reshape_backwards
5430              ? (safepos > writepos && readpos < writepos)
5431              : (safepos < writepos && readpos > writepos)) ||
5432             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5433                 /* Cannot proceed until we've updated the superblock... */
5434                 wait_event(conf->wait_for_overlap,
5435                            atomic_read(&conf->reshape_stripes)==0
5436                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5437                 if (atomic_read(&conf->reshape_stripes) != 0)
5438                         return 0;
5439                 mddev->reshape_position = conf->reshape_progress;
5440                 mddev->curr_resync_completed = sector_nr;
5441                 conf->reshape_checkpoint = jiffies;
5442                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5443                 md_wakeup_thread(mddev->thread);
5444                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5445                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5446                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5447                         return 0;
5448                 spin_lock_irq(&conf->device_lock);
5449                 conf->reshape_safe = mddev->reshape_position;
5450                 spin_unlock_irq(&conf->device_lock);
5451                 wake_up(&conf->wait_for_overlap);
5452                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5453         }
5454
5455         INIT_LIST_HEAD(&stripes);
5456         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5457                 int j;
5458                 int skipped_disk = 0;
5459                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5460                 set_bit(STRIPE_EXPANDING, &sh->state);
5461                 atomic_inc(&conf->reshape_stripes);
5462                 /* If any of this stripe is beyond the end of the old
5463                  * array, then we need to zero those blocks
5464                  */
5465                 for (j=sh->disks; j--;) {
5466                         sector_t s;
5467                         if (j == sh->pd_idx)
5468                                 continue;
5469                         if (conf->level == 6 &&
5470                             j == sh->qd_idx)
5471                                 continue;
5472                         s = compute_blocknr(sh, j, 0);
5473                         if (s < raid5_size(mddev, 0, 0)) {
5474                                 skipped_disk = 1;
5475                                 continue;
5476                         }
5477                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5478                         set_bit(R5_Expanded, &sh->dev[j].flags);
5479                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5480                 }
5481                 if (!skipped_disk) {
5482                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5483                         set_bit(STRIPE_HANDLE, &sh->state);
5484                 }
5485                 list_add(&sh->lru, &stripes);
5486         }
5487         spin_lock_irq(&conf->device_lock);
5488         if (mddev->reshape_backwards)
5489                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5490         else
5491                 conf->reshape_progress += reshape_sectors * new_data_disks;
5492         spin_unlock_irq(&conf->device_lock);
5493         /* Ok, those stripe are ready. We can start scheduling
5494          * reads on the source stripes.
5495          * The source stripes are determined by mapping the first and last
5496          * block on the destination stripes.
5497          */
5498         first_sector =
5499                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5500                                      1, &dd_idx, NULL);
5501         last_sector =
5502                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5503                                             * new_data_disks - 1),
5504                                      1, &dd_idx, NULL);
5505         if (last_sector >= mddev->dev_sectors)
5506                 last_sector = mddev->dev_sectors - 1;
5507         while (first_sector <= last_sector) {
5508                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5509                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5510                 set_bit(STRIPE_HANDLE, &sh->state);
5511                 release_stripe(sh);
5512                 first_sector += STRIPE_SECTORS;
5513         }
5514         /* Now that the sources are clearly marked, we can release
5515          * the destination stripes
5516          */
5517         while (!list_empty(&stripes)) {
5518                 sh = list_entry(stripes.next, struct stripe_head, lru);
5519                 list_del_init(&sh->lru);
5520                 release_stripe(sh);
5521         }
5522         /* If this takes us to the resync_max point where we have to pause,
5523          * then we need to write out the superblock.
5524          */
5525         sector_nr += reshape_sectors;
5526         retn = reshape_sectors;
5527 finish:
5528         if (mddev->curr_resync_completed > mddev->resync_max ||
5529             (sector_nr - mddev->curr_resync_completed) * 2
5530             >= mddev->resync_max - mddev->curr_resync_completed) {
5531                 /* Cannot proceed until we've updated the superblock... */
5532                 wait_event(conf->wait_for_overlap,
5533                            atomic_read(&conf->reshape_stripes) == 0
5534                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5535                 if (atomic_read(&conf->reshape_stripes) != 0)
5536                         goto ret;
5537                 mddev->reshape_position = conf->reshape_progress;
5538                 mddev->curr_resync_completed = sector_nr;
5539                 conf->reshape_checkpoint = jiffies;
5540                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5541                 md_wakeup_thread(mddev->thread);
5542                 wait_event(mddev->sb_wait,
5543                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5544                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5545                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5546                         goto ret;
5547                 spin_lock_irq(&conf->device_lock);
5548                 conf->reshape_safe = mddev->reshape_position;
5549                 spin_unlock_irq(&conf->device_lock);
5550                 wake_up(&conf->wait_for_overlap);
5551                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5552         }
5553 ret:
5554         return retn;
5555 }
5556
5557 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5558 {
5559         struct r5conf *conf = mddev->private;
5560         struct stripe_head *sh;
5561         sector_t max_sector = mddev->dev_sectors;
5562         sector_t sync_blocks;
5563         int still_degraded = 0;
5564         int i;
5565
5566         if (sector_nr >= max_sector) {
5567                 /* just being told to finish up .. nothing much to do */
5568
5569                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5570                         end_reshape(conf);
5571                         return 0;
5572                 }
5573
5574                 if (mddev->curr_resync < max_sector) /* aborted */
5575                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5576                                         &sync_blocks, 1);
5577                 else /* completed sync */
5578                         conf->fullsync = 0;
5579                 bitmap_close_sync(mddev->bitmap);
5580
5581                 return 0;
5582         }
5583
5584         /* Allow raid5_quiesce to complete */
5585         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5586
5587         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5588                 return reshape_request(mddev, sector_nr, skipped);
5589
5590         /* No need to check resync_max as we never do more than one
5591          * stripe, and as resync_max will always be on a chunk boundary,
5592          * if the check in md_do_sync didn't fire, there is no chance
5593          * of overstepping resync_max here
5594          */
5595
5596         /* if there is too many failed drives and we are trying
5597          * to resync, then assert that we are finished, because there is
5598          * nothing we can do.
5599          */
5600         if (mddev->degraded >= conf->max_degraded &&
5601             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5602                 sector_t rv = mddev->dev_sectors - sector_nr;
5603                 *skipped = 1;
5604                 return rv;
5605         }
5606         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5607             !conf->fullsync &&
5608             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5609             sync_blocks >= STRIPE_SECTORS) {
5610                 /* we can skip this block, and probably more */
5611                 sync_blocks /= STRIPE_SECTORS;
5612                 *skipped = 1;
5613                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5614         }
5615
5616         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5617
5618         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5619         if (sh == NULL) {
5620                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5621                 /* make sure we don't swamp the stripe cache if someone else
5622                  * is trying to get access
5623                  */
5624                 schedule_timeout_uninterruptible(1);
5625         }
5626         /* Need to check if array will still be degraded after recovery/resync
5627          * Note in case of > 1 drive failures it's possible we're rebuilding
5628          * one drive while leaving another faulty drive in array.
5629          */
5630         rcu_read_lock();
5631         for (i = 0; i < conf->raid_disks; i++) {
5632                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5633
5634                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5635                         still_degraded = 1;
5636         }
5637         rcu_read_unlock();
5638
5639         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5640
5641         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5642         set_bit(STRIPE_HANDLE, &sh->state);
5643
5644         release_stripe(sh);
5645
5646         return STRIPE_SECTORS;
5647 }
5648
5649 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5650 {
5651         /* We may not be able to submit a whole bio at once as there
5652          * may not be enough stripe_heads available.
5653          * We cannot pre-allocate enough stripe_heads as we may need
5654          * more than exist in the cache (if we allow ever large chunks).
5655          * So we do one stripe head at a time and record in
5656          * ->bi_hw_segments how many have been done.
5657          *
5658          * We *know* that this entire raid_bio is in one chunk, so
5659          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5660          */
5661         struct stripe_head *sh;
5662         int dd_idx;
5663         sector_t sector, logical_sector, last_sector;
5664         int scnt = 0;
5665         int remaining;
5666         int handled = 0;
5667
5668         logical_sector = raid_bio->bi_iter.bi_sector &
5669                 ~((sector_t)STRIPE_SECTORS-1);
5670         sector = raid5_compute_sector(conf, logical_sector,
5671                                       0, &dd_idx, NULL);
5672         last_sector = bio_end_sector(raid_bio);
5673
5674         for (; logical_sector < last_sector;
5675              logical_sector += STRIPE_SECTORS,
5676                      sector += STRIPE_SECTORS,
5677                      scnt++) {
5678
5679                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5680                         /* already done this stripe */
5681                         continue;
5682
5683                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5684
5685                 if (!sh) {
5686                         /* failed to get a stripe - must wait */
5687                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5688                         conf->retry_read_aligned = raid_bio;
5689                         return handled;
5690                 }
5691
5692                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5693                         release_stripe(sh);
5694                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5695                         conf->retry_read_aligned = raid_bio;
5696                         return handled;
5697                 }
5698
5699                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5700                 handle_stripe(sh);
5701                 release_stripe(sh);
5702                 handled++;
5703         }
5704         remaining = raid5_dec_bi_active_stripes(raid_bio);
5705         if (remaining == 0) {
5706                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5707                                          raid_bio, 0);
5708                 bio_endio(raid_bio);
5709         }
5710         if (atomic_dec_and_test(&conf->active_aligned_reads))
5711                 wake_up(&conf->wait_for_quiescent);
5712         return handled;
5713 }
5714
5715 static int handle_active_stripes(struct r5conf *conf, int group,
5716                                  struct r5worker *worker,
5717                                  struct list_head *temp_inactive_list)
5718 {
5719         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5720         int i, batch_size = 0, hash;
5721         bool release_inactive = false;
5722
5723         while (batch_size < MAX_STRIPE_BATCH &&
5724                         (sh = __get_priority_stripe(conf, group)) != NULL)
5725                 batch[batch_size++] = sh;
5726
5727         if (batch_size == 0) {
5728                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5729                         if (!list_empty(temp_inactive_list + i))
5730                                 break;
5731                 if (i == NR_STRIPE_HASH_LOCKS)
5732                         return batch_size;
5733                 release_inactive = true;
5734         }
5735         spin_unlock_irq(&conf->device_lock);
5736
5737         release_inactive_stripe_list(conf, temp_inactive_list,
5738                                      NR_STRIPE_HASH_LOCKS);
5739
5740         if (release_inactive) {
5741                 spin_lock_irq(&conf->device_lock);
5742                 return 0;
5743         }
5744
5745         for (i = 0; i < batch_size; i++)
5746                 handle_stripe(batch[i]);
5747
5748         cond_resched();
5749
5750         spin_lock_irq(&conf->device_lock);
5751         for (i = 0; i < batch_size; i++) {
5752                 hash = batch[i]->hash_lock_index;
5753                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5754         }
5755         return batch_size;
5756 }
5757
5758 static void raid5_do_work(struct work_struct *work)
5759 {
5760         struct r5worker *worker = container_of(work, struct r5worker, work);
5761         struct r5worker_group *group = worker->group;
5762         struct r5conf *conf = group->conf;
5763         int group_id = group - conf->worker_groups;
5764         int handled;
5765         struct blk_plug plug;
5766
5767         pr_debug("+++ raid5worker active\n");
5768
5769         blk_start_plug(&plug);
5770         handled = 0;
5771         spin_lock_irq(&conf->device_lock);
5772         while (1) {
5773                 int batch_size, released;
5774
5775                 released = release_stripe_list(conf, worker->temp_inactive_list);
5776
5777                 batch_size = handle_active_stripes(conf, group_id, worker,
5778                                                    worker->temp_inactive_list);
5779                 worker->working = false;
5780                 if (!batch_size && !released)
5781                         break;
5782                 handled += batch_size;
5783         }
5784         pr_debug("%d stripes handled\n", handled);
5785
5786         spin_unlock_irq(&conf->device_lock);
5787         blk_finish_plug(&plug);
5788
5789         pr_debug("--- raid5worker inactive\n");
5790 }
5791
5792 /*
5793  * This is our raid5 kernel thread.
5794  *
5795  * We scan the hash table for stripes which can be handled now.
5796  * During the scan, completed stripes are saved for us by the interrupt
5797  * handler, so that they will not have to wait for our next wakeup.
5798  */
5799 static void raid5d(struct md_thread *thread)
5800 {
5801         struct mddev *mddev = thread->mddev;
5802         struct r5conf *conf = mddev->private;
5803         int handled;
5804         struct blk_plug plug;
5805
5806         pr_debug("+++ raid5d active\n");
5807
5808         md_check_recovery(mddev);
5809
5810         if (!bio_list_empty(&conf->return_bi) &&
5811             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5812                 struct bio_list tmp = BIO_EMPTY_LIST;
5813                 spin_lock_irq(&conf->device_lock);
5814                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5815                         bio_list_merge(&tmp, &conf->return_bi);
5816                         bio_list_init(&conf->return_bi);
5817                 }
5818                 spin_unlock_irq(&conf->device_lock);
5819                 return_io(&tmp);
5820         }
5821
5822         blk_start_plug(&plug);
5823         handled = 0;
5824         spin_lock_irq(&conf->device_lock);
5825         while (1) {
5826                 struct bio *bio;
5827                 int batch_size, released;
5828
5829                 released = release_stripe_list(conf, conf->temp_inactive_list);
5830                 if (released)
5831                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5832
5833                 if (
5834                     !list_empty(&conf->bitmap_list)) {
5835                         /* Now is a good time to flush some bitmap updates */
5836                         conf->seq_flush++;
5837                         spin_unlock_irq(&conf->device_lock);
5838                         bitmap_unplug(mddev->bitmap);
5839                         spin_lock_irq(&conf->device_lock);
5840                         conf->seq_write = conf->seq_flush;
5841                         activate_bit_delay(conf, conf->temp_inactive_list);
5842                 }
5843                 raid5_activate_delayed(conf);
5844
5845                 while ((bio = remove_bio_from_retry(conf))) {
5846                         int ok;
5847                         spin_unlock_irq(&conf->device_lock);
5848                         ok = retry_aligned_read(conf, bio);
5849                         spin_lock_irq(&conf->device_lock);
5850                         if (!ok)
5851                                 break;
5852                         handled++;
5853                 }
5854
5855                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5856                                                    conf->temp_inactive_list);
5857                 if (!batch_size && !released)
5858                         break;
5859                 handled += batch_size;
5860
5861                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5862                         spin_unlock_irq(&conf->device_lock);
5863                         md_check_recovery(mddev);
5864                         spin_lock_irq(&conf->device_lock);
5865                 }
5866         }
5867         pr_debug("%d stripes handled\n", handled);
5868
5869         spin_unlock_irq(&conf->device_lock);
5870         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5871             mutex_trylock(&conf->cache_size_mutex)) {
5872                 grow_one_stripe(conf, __GFP_NOWARN);
5873                 /* Set flag even if allocation failed.  This helps
5874                  * slow down allocation requests when mem is short
5875                  */
5876                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5877                 mutex_unlock(&conf->cache_size_mutex);
5878         }
5879
5880         async_tx_issue_pending_all();
5881         blk_finish_plug(&plug);
5882
5883         pr_debug("--- raid5d inactive\n");
5884 }
5885
5886 static ssize_t
5887 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5888 {
5889         struct r5conf *conf;
5890         int ret = 0;
5891         spin_lock(&mddev->lock);
5892         conf = mddev->private;
5893         if (conf)
5894                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5895         spin_unlock(&mddev->lock);
5896         return ret;
5897 }
5898
5899 int
5900 raid5_set_cache_size(struct mddev *mddev, int size)
5901 {
5902         struct r5conf *conf = mddev->private;
5903         int err;
5904
5905         if (size <= 16 || size > 32768)
5906                 return -EINVAL;
5907
5908         conf->min_nr_stripes = size;
5909         mutex_lock(&conf->cache_size_mutex);
5910         while (size < conf->max_nr_stripes &&
5911                drop_one_stripe(conf))
5912                 ;
5913         mutex_unlock(&conf->cache_size_mutex);
5914
5915
5916         err = md_allow_write(mddev);
5917         if (err)
5918                 return err;
5919
5920         mutex_lock(&conf->cache_size_mutex);
5921         while (size > conf->max_nr_stripes)
5922                 if (!grow_one_stripe(conf, GFP_KERNEL))
5923                         break;
5924         mutex_unlock(&conf->cache_size_mutex);
5925
5926         return 0;
5927 }
5928 EXPORT_SYMBOL(raid5_set_cache_size);
5929
5930 static ssize_t
5931 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5932 {
5933         struct r5conf *conf;
5934         unsigned long new;
5935         int err;
5936
5937         if (len >= PAGE_SIZE)
5938                 return -EINVAL;
5939         if (kstrtoul(page, 10, &new))
5940                 return -EINVAL;
5941         err = mddev_lock(mddev);
5942         if (err)
5943                 return err;
5944         conf = mddev->private;
5945         if (!conf)
5946                 err = -ENODEV;
5947         else
5948                 err = raid5_set_cache_size(mddev, new);
5949         mddev_unlock(mddev);
5950
5951         return err ?: len;
5952 }
5953
5954 static struct md_sysfs_entry
5955 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5956                                 raid5_show_stripe_cache_size,
5957                                 raid5_store_stripe_cache_size);
5958
5959 static ssize_t
5960 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5961 {
5962         struct r5conf *conf = mddev->private;
5963         if (conf)
5964                 return sprintf(page, "%d\n", conf->rmw_level);
5965         else
5966                 return 0;
5967 }
5968
5969 static ssize_t
5970 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5971 {
5972         struct r5conf *conf = mddev->private;
5973         unsigned long new;
5974
5975         if (!conf)
5976                 return -ENODEV;
5977
5978         if (len >= PAGE_SIZE)
5979                 return -EINVAL;
5980
5981         if (kstrtoul(page, 10, &new))
5982                 return -EINVAL;
5983
5984         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5985                 return -EINVAL;
5986
5987         if (new != PARITY_DISABLE_RMW &&
5988             new != PARITY_ENABLE_RMW &&
5989             new != PARITY_PREFER_RMW)
5990                 return -EINVAL;
5991
5992         conf->rmw_level = new;
5993         return len;
5994 }
5995
5996 static struct md_sysfs_entry
5997 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5998                          raid5_show_rmw_level,
5999                          raid5_store_rmw_level);
6000
6001
6002 static ssize_t
6003 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6004 {
6005         struct r5conf *conf;
6006         int ret = 0;
6007         spin_lock(&mddev->lock);
6008         conf = mddev->private;
6009         if (conf)
6010                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6011         spin_unlock(&mddev->lock);
6012         return ret;
6013 }
6014
6015 static ssize_t
6016 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6017 {
6018         struct r5conf *conf;
6019         unsigned long new;
6020         int err;
6021
6022         if (len >= PAGE_SIZE)
6023                 return -EINVAL;
6024         if (kstrtoul(page, 10, &new))
6025                 return -EINVAL;
6026
6027         err = mddev_lock(mddev);
6028         if (err)
6029                 return err;
6030         conf = mddev->private;
6031         if (!conf)
6032                 err = -ENODEV;
6033         else if (new > conf->min_nr_stripes)
6034                 err = -EINVAL;
6035         else
6036                 conf->bypass_threshold = new;
6037         mddev_unlock(mddev);
6038         return err ?: len;
6039 }
6040
6041 static struct md_sysfs_entry
6042 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6043                                         S_IRUGO | S_IWUSR,
6044                                         raid5_show_preread_threshold,
6045                                         raid5_store_preread_threshold);
6046
6047 static ssize_t
6048 raid5_show_skip_copy(struct mddev *mddev, char *page)
6049 {
6050         struct r5conf *conf;
6051         int ret = 0;
6052         spin_lock(&mddev->lock);
6053         conf = mddev->private;
6054         if (conf)
6055                 ret = sprintf(page, "%d\n", conf->skip_copy);
6056         spin_unlock(&mddev->lock);
6057         return ret;
6058 }
6059
6060 static ssize_t
6061 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6062 {
6063         struct r5conf *conf;
6064         unsigned long new;
6065         int err;
6066
6067         if (len >= PAGE_SIZE)
6068                 return -EINVAL;
6069         if (kstrtoul(page, 10, &new))
6070                 return -EINVAL;
6071         new = !!new;
6072
6073         err = mddev_lock(mddev);
6074         if (err)
6075                 return err;
6076         conf = mddev->private;
6077         if (!conf)
6078                 err = -ENODEV;
6079         else if (new != conf->skip_copy) {
6080                 mddev_suspend(mddev);
6081                 conf->skip_copy = new;
6082                 if (new)
6083                         mddev->queue->backing_dev_info.capabilities |=
6084                                 BDI_CAP_STABLE_WRITES;
6085                 else
6086                         mddev->queue->backing_dev_info.capabilities &=
6087                                 ~BDI_CAP_STABLE_WRITES;
6088                 mddev_resume(mddev);
6089         }
6090         mddev_unlock(mddev);
6091         return err ?: len;
6092 }
6093
6094 static struct md_sysfs_entry
6095 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6096                                         raid5_show_skip_copy,
6097                                         raid5_store_skip_copy);
6098
6099 static ssize_t
6100 stripe_cache_active_show(struct mddev *mddev, char *page)
6101 {
6102         struct r5conf *conf = mddev->private;
6103         if (conf)
6104                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6105         else
6106                 return 0;
6107 }
6108
6109 static struct md_sysfs_entry
6110 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6111
6112 static ssize_t
6113 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6114 {
6115         struct r5conf *conf;
6116         int ret = 0;
6117         spin_lock(&mddev->lock);
6118         conf = mddev->private;
6119         if (conf)
6120                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6121         spin_unlock(&mddev->lock);
6122         return ret;
6123 }
6124
6125 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6126                                int *group_cnt,
6127                                int *worker_cnt_per_group,
6128                                struct r5worker_group **worker_groups);
6129 static ssize_t
6130 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6131 {
6132         struct r5conf *conf;
6133         unsigned long new;
6134         int err;
6135         struct r5worker_group *new_groups, *old_groups;
6136         int group_cnt, worker_cnt_per_group;
6137
6138         if (len >= PAGE_SIZE)
6139                 return -EINVAL;
6140         if (kstrtoul(page, 10, &new))
6141                 return -EINVAL;
6142
6143         err = mddev_lock(mddev);
6144         if (err)
6145                 return err;
6146         conf = mddev->private;
6147         if (!conf)
6148                 err = -ENODEV;
6149         else if (new != conf->worker_cnt_per_group) {
6150                 mddev_suspend(mddev);
6151
6152                 old_groups = conf->worker_groups;
6153                 if (old_groups)
6154                         flush_workqueue(raid5_wq);
6155
6156                 err = alloc_thread_groups(conf, new,
6157                                           &group_cnt, &worker_cnt_per_group,
6158                                           &new_groups);
6159                 if (!err) {
6160                         spin_lock_irq(&conf->device_lock);
6161                         conf->group_cnt = group_cnt;
6162                         conf->worker_cnt_per_group = worker_cnt_per_group;
6163                         conf->worker_groups = new_groups;
6164                         spin_unlock_irq(&conf->device_lock);
6165
6166                         if (old_groups)
6167                                 kfree(old_groups[0].workers);
6168                         kfree(old_groups);
6169                 }
6170                 mddev_resume(mddev);
6171         }
6172         mddev_unlock(mddev);
6173
6174         return err ?: len;
6175 }
6176
6177 static struct md_sysfs_entry
6178 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6179                                 raid5_show_group_thread_cnt,
6180                                 raid5_store_group_thread_cnt);
6181
6182 static struct attribute *raid5_attrs[] =  {
6183         &raid5_stripecache_size.attr,
6184         &raid5_stripecache_active.attr,
6185         &raid5_preread_bypass_threshold.attr,
6186         &raid5_group_thread_cnt.attr,
6187         &raid5_skip_copy.attr,
6188         &raid5_rmw_level.attr,
6189         NULL,
6190 };
6191 static struct attribute_group raid5_attrs_group = {
6192         .name = NULL,
6193         .attrs = raid5_attrs,
6194 };
6195
6196 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6197                                int *group_cnt,
6198                                int *worker_cnt_per_group,
6199                                struct r5worker_group **worker_groups)
6200 {
6201         int i, j, k;
6202         ssize_t size;
6203         struct r5worker *workers;
6204
6205         *worker_cnt_per_group = cnt;
6206         if (cnt == 0) {
6207                 *group_cnt = 0;
6208                 *worker_groups = NULL;
6209                 return 0;
6210         }
6211         *group_cnt = num_possible_nodes();
6212         size = sizeof(struct r5worker) * cnt;
6213         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6214         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6215                                 *group_cnt, GFP_NOIO);
6216         if (!*worker_groups || !workers) {
6217                 kfree(workers);
6218                 kfree(*worker_groups);
6219                 return -ENOMEM;
6220         }
6221
6222         for (i = 0; i < *group_cnt; i++) {
6223                 struct r5worker_group *group;
6224
6225                 group = &(*worker_groups)[i];
6226                 INIT_LIST_HEAD(&group->handle_list);
6227                 group->conf = conf;
6228                 group->workers = workers + i * cnt;
6229
6230                 for (j = 0; j < cnt; j++) {
6231                         struct r5worker *worker = group->workers + j;
6232                         worker->group = group;
6233                         INIT_WORK(&worker->work, raid5_do_work);
6234
6235                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6236                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6237                 }
6238         }
6239
6240         return 0;
6241 }
6242
6243 static void free_thread_groups(struct r5conf *conf)
6244 {
6245         if (conf->worker_groups)
6246                 kfree(conf->worker_groups[0].workers);
6247         kfree(conf->worker_groups);
6248         conf->worker_groups = NULL;
6249 }
6250
6251 static sector_t
6252 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6253 {
6254         struct r5conf *conf = mddev->private;
6255
6256         if (!sectors)
6257                 sectors = mddev->dev_sectors;
6258         if (!raid_disks)
6259                 /* size is defined by the smallest of previous and new size */
6260                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6261
6262         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6263         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6264         return sectors * (raid_disks - conf->max_degraded);
6265 }
6266
6267 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6268 {
6269         safe_put_page(percpu->spare_page);
6270         if (percpu->scribble)
6271                 flex_array_free(percpu->scribble);
6272         percpu->spare_page = NULL;
6273         percpu->scribble = NULL;
6274 }
6275
6276 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6277 {
6278         if (conf->level == 6 && !percpu->spare_page)
6279                 percpu->spare_page = alloc_page(GFP_KERNEL);
6280         if (!percpu->scribble)
6281                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6282                                                       conf->previous_raid_disks),
6283                                                   max(conf->chunk_sectors,
6284                                                       conf->prev_chunk_sectors)
6285                                                    / STRIPE_SECTORS,
6286                                                   GFP_KERNEL);
6287
6288         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6289                 free_scratch_buffer(conf, percpu);
6290                 return -ENOMEM;
6291         }
6292
6293         return 0;
6294 }
6295
6296 static void raid5_free_percpu(struct r5conf *conf)
6297 {
6298         unsigned long cpu;
6299
6300         if (!conf->percpu)
6301                 return;
6302
6303 #ifdef CONFIG_HOTPLUG_CPU
6304         unregister_cpu_notifier(&conf->cpu_notify);
6305 #endif
6306
6307         get_online_cpus();
6308         for_each_possible_cpu(cpu)
6309                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6310         put_online_cpus();
6311
6312         free_percpu(conf->percpu);
6313 }
6314
6315 static void free_conf(struct r5conf *conf)
6316 {
6317         if (conf->shrinker.seeks)
6318                 unregister_shrinker(&conf->shrinker);
6319         free_thread_groups(conf);
6320         shrink_stripes(conf);
6321         raid5_free_percpu(conf);
6322         kfree(conf->disks);
6323         kfree(conf->stripe_hashtbl);
6324         kfree(conf);
6325 }
6326
6327 #ifdef CONFIG_HOTPLUG_CPU
6328 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6329                               void *hcpu)
6330 {
6331         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6332         long cpu = (long)hcpu;
6333         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6334
6335         switch (action) {
6336         case CPU_UP_PREPARE:
6337         case CPU_UP_PREPARE_FROZEN:
6338                 if (alloc_scratch_buffer(conf, percpu)) {
6339                         pr_err("%s: failed memory allocation for cpu%ld\n",
6340                                __func__, cpu);
6341                         return notifier_from_errno(-ENOMEM);
6342                 }
6343                 break;
6344         case CPU_DEAD:
6345         case CPU_DEAD_FROZEN:
6346                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6347                 break;
6348         default:
6349                 break;
6350         }
6351         return NOTIFY_OK;
6352 }
6353 #endif
6354
6355 static int raid5_alloc_percpu(struct r5conf *conf)
6356 {
6357         unsigned long cpu;
6358         int err = 0;
6359
6360         conf->percpu = alloc_percpu(struct raid5_percpu);
6361         if (!conf->percpu)
6362                 return -ENOMEM;
6363
6364 #ifdef CONFIG_HOTPLUG_CPU
6365         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6366         conf->cpu_notify.priority = 0;
6367         err = register_cpu_notifier(&conf->cpu_notify);
6368         if (err)
6369                 return err;
6370 #endif
6371
6372         get_online_cpus();
6373         for_each_present_cpu(cpu) {
6374                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6375                 if (err) {
6376                         pr_err("%s: failed memory allocation for cpu%ld\n",
6377                                __func__, cpu);
6378                         break;
6379                 }
6380         }
6381         put_online_cpus();
6382
6383         return err;
6384 }
6385
6386 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6387                                       struct shrink_control *sc)
6388 {
6389         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6390         unsigned long ret = SHRINK_STOP;
6391
6392         if (mutex_trylock(&conf->cache_size_mutex)) {
6393                 ret= 0;
6394                 while (ret < sc->nr_to_scan &&
6395                        conf->max_nr_stripes > conf->min_nr_stripes) {
6396                         if (drop_one_stripe(conf) == 0) {
6397                                 ret = SHRINK_STOP;
6398                                 break;
6399                         }
6400                         ret++;
6401                 }
6402                 mutex_unlock(&conf->cache_size_mutex);
6403         }
6404         return ret;
6405 }
6406
6407 static unsigned long raid5_cache_count(struct shrinker *shrink,
6408                                        struct shrink_control *sc)
6409 {
6410         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6411
6412         if (conf->max_nr_stripes < conf->min_nr_stripes)
6413                 /* unlikely, but not impossible */
6414                 return 0;
6415         return conf->max_nr_stripes - conf->min_nr_stripes;
6416 }
6417
6418 static struct r5conf *setup_conf(struct mddev *mddev)
6419 {
6420         struct r5conf *conf;
6421         int raid_disk, memory, max_disks;
6422         struct md_rdev *rdev;
6423         struct disk_info *disk;
6424         char pers_name[6];
6425         int i;
6426         int group_cnt, worker_cnt_per_group;
6427         struct r5worker_group *new_group;
6428
6429         if (mddev->new_level != 5
6430             && mddev->new_level != 4
6431             && mddev->new_level != 6) {
6432                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6433                        mdname(mddev), mddev->new_level);
6434                 return ERR_PTR(-EIO);
6435         }
6436         if ((mddev->new_level == 5
6437              && !algorithm_valid_raid5(mddev->new_layout)) ||
6438             (mddev->new_level == 6
6439              && !algorithm_valid_raid6(mddev->new_layout))) {
6440                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6441                        mdname(mddev), mddev->new_layout);
6442                 return ERR_PTR(-EIO);
6443         }
6444         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6445                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6446                        mdname(mddev), mddev->raid_disks);
6447                 return ERR_PTR(-EINVAL);
6448         }
6449
6450         if (!mddev->new_chunk_sectors ||
6451             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6452             !is_power_of_2(mddev->new_chunk_sectors)) {
6453                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6454                        mdname(mddev), mddev->new_chunk_sectors << 9);
6455                 return ERR_PTR(-EINVAL);
6456         }
6457
6458         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6459         if (conf == NULL)
6460                 goto abort;
6461         /* Don't enable multi-threading by default*/
6462         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6463                                  &new_group)) {
6464                 conf->group_cnt = group_cnt;
6465                 conf->worker_cnt_per_group = worker_cnt_per_group;
6466                 conf->worker_groups = new_group;
6467         } else
6468                 goto abort;
6469         spin_lock_init(&conf->device_lock);
6470         seqcount_init(&conf->gen_lock);
6471         mutex_init(&conf->cache_size_mutex);
6472         init_waitqueue_head(&conf->wait_for_quiescent);
6473         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6474                 init_waitqueue_head(&conf->wait_for_stripe[i]);
6475         }
6476         init_waitqueue_head(&conf->wait_for_overlap);
6477         INIT_LIST_HEAD(&conf->handle_list);
6478         INIT_LIST_HEAD(&conf->hold_list);
6479         INIT_LIST_HEAD(&conf->delayed_list);
6480         INIT_LIST_HEAD(&conf->bitmap_list);
6481         bio_list_init(&conf->return_bi);
6482         init_llist_head(&conf->released_stripes);
6483         atomic_set(&conf->active_stripes, 0);
6484         atomic_set(&conf->preread_active_stripes, 0);
6485         atomic_set(&conf->active_aligned_reads, 0);
6486         conf->bypass_threshold = BYPASS_THRESHOLD;
6487         conf->recovery_disabled = mddev->recovery_disabled - 1;
6488
6489         conf->raid_disks = mddev->raid_disks;
6490         if (mddev->reshape_position == MaxSector)
6491                 conf->previous_raid_disks = mddev->raid_disks;
6492         else
6493                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6494         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6495
6496         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6497                               GFP_KERNEL);
6498         if (!conf->disks)
6499                 goto abort;
6500
6501         conf->mddev = mddev;
6502
6503         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6504                 goto abort;
6505
6506         /* We init hash_locks[0] separately to that it can be used
6507          * as the reference lock in the spin_lock_nest_lock() call
6508          * in lock_all_device_hash_locks_irq in order to convince
6509          * lockdep that we know what we are doing.
6510          */
6511         spin_lock_init(conf->hash_locks);
6512         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6513                 spin_lock_init(conf->hash_locks + i);
6514
6515         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6516                 INIT_LIST_HEAD(conf->inactive_list + i);
6517
6518         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6519                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6520
6521         conf->level = mddev->new_level;
6522         conf->chunk_sectors = mddev->new_chunk_sectors;
6523         if (raid5_alloc_percpu(conf) != 0)
6524                 goto abort;
6525
6526         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6527
6528         rdev_for_each(rdev, mddev) {
6529                 raid_disk = rdev->raid_disk;
6530                 if (raid_disk >= max_disks
6531                     || raid_disk < 0)
6532                         continue;
6533                 disk = conf->disks + raid_disk;
6534
6535                 if (test_bit(Replacement, &rdev->flags)) {
6536                         if (disk->replacement)
6537                                 goto abort;
6538                         disk->replacement = rdev;
6539                 } else {
6540                         if (disk->rdev)
6541                                 goto abort;
6542                         disk->rdev = rdev;
6543                 }
6544
6545                 if (test_bit(In_sync, &rdev->flags)) {
6546                         char b[BDEVNAME_SIZE];
6547                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6548                                " disk %d\n",
6549                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6550                 } else if (rdev->saved_raid_disk != raid_disk)
6551                         /* Cannot rely on bitmap to complete recovery */
6552                         conf->fullsync = 1;
6553         }
6554
6555         conf->level = mddev->new_level;
6556         if (conf->level == 6) {
6557                 conf->max_degraded = 2;
6558                 if (raid6_call.xor_syndrome)
6559                         conf->rmw_level = PARITY_ENABLE_RMW;
6560                 else
6561                         conf->rmw_level = PARITY_DISABLE_RMW;
6562         } else {
6563                 conf->max_degraded = 1;
6564                 conf->rmw_level = PARITY_ENABLE_RMW;
6565         }
6566         conf->algorithm = mddev->new_layout;
6567         conf->reshape_progress = mddev->reshape_position;
6568         if (conf->reshape_progress != MaxSector) {
6569                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6570                 conf->prev_algo = mddev->layout;
6571         } else {
6572                 conf->prev_chunk_sectors = conf->chunk_sectors;
6573                 conf->prev_algo = conf->algorithm;
6574         }
6575
6576         conf->min_nr_stripes = NR_STRIPES;
6577         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6578                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6579         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6580         if (grow_stripes(conf, conf->min_nr_stripes)) {
6581                 printk(KERN_ERR
6582                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6583                        mdname(mddev), memory);
6584                 goto abort;
6585         } else
6586                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6587                        mdname(mddev), memory);
6588         /*
6589          * Losing a stripe head costs more than the time to refill it,
6590          * it reduces the queue depth and so can hurt throughput.
6591          * So set it rather large, scaled by number of devices.
6592          */
6593         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6594         conf->shrinker.scan_objects = raid5_cache_scan;
6595         conf->shrinker.count_objects = raid5_cache_count;
6596         conf->shrinker.batch = 128;
6597         conf->shrinker.flags = 0;
6598         register_shrinker(&conf->shrinker);
6599
6600         sprintf(pers_name, "raid%d", mddev->new_level);
6601         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6602         if (!conf->thread) {
6603                 printk(KERN_ERR
6604                        "md/raid:%s: couldn't allocate thread.\n",
6605                        mdname(mddev));
6606                 goto abort;
6607         }
6608
6609         return conf;
6610
6611  abort:
6612         if (conf) {
6613                 free_conf(conf);
6614                 return ERR_PTR(-EIO);
6615         } else
6616                 return ERR_PTR(-ENOMEM);
6617 }
6618
6619 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6620 {
6621         switch (algo) {
6622         case ALGORITHM_PARITY_0:
6623                 if (raid_disk < max_degraded)
6624                         return 1;
6625                 break;
6626         case ALGORITHM_PARITY_N:
6627                 if (raid_disk >= raid_disks - max_degraded)
6628                         return 1;
6629                 break;
6630         case ALGORITHM_PARITY_0_6:
6631                 if (raid_disk == 0 ||
6632                     raid_disk == raid_disks - 1)
6633                         return 1;
6634                 break;
6635         case ALGORITHM_LEFT_ASYMMETRIC_6:
6636         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6637         case ALGORITHM_LEFT_SYMMETRIC_6:
6638         case ALGORITHM_RIGHT_SYMMETRIC_6:
6639                 if (raid_disk == raid_disks - 1)
6640                         return 1;
6641         }
6642         return 0;
6643 }
6644
6645 static int run(struct mddev *mddev)
6646 {
6647         struct r5conf *conf;
6648         int working_disks = 0;
6649         int dirty_parity_disks = 0;
6650         struct md_rdev *rdev;
6651         sector_t reshape_offset = 0;
6652         int i;
6653         long long min_offset_diff = 0;
6654         int first = 1;
6655
6656         if (mddev->recovery_cp != MaxSector)
6657                 printk(KERN_NOTICE "md/raid:%s: not clean"
6658                        " -- starting background reconstruction\n",
6659                        mdname(mddev));
6660
6661         rdev_for_each(rdev, mddev) {
6662                 long long diff;
6663                 if (rdev->raid_disk < 0)
6664                         continue;
6665                 diff = (rdev->new_data_offset - rdev->data_offset);
6666                 if (first) {
6667                         min_offset_diff = diff;
6668                         first = 0;
6669                 } else if (mddev->reshape_backwards &&
6670                          diff < min_offset_diff)
6671                         min_offset_diff = diff;
6672                 else if (!mddev->reshape_backwards &&
6673                          diff > min_offset_diff)
6674                         min_offset_diff = diff;
6675         }
6676
6677         if (mddev->reshape_position != MaxSector) {
6678                 /* Check that we can continue the reshape.
6679                  * Difficulties arise if the stripe we would write to
6680                  * next is at or after the stripe we would read from next.
6681                  * For a reshape that changes the number of devices, this
6682                  * is only possible for a very short time, and mdadm makes
6683                  * sure that time appears to have past before assembling
6684                  * the array.  So we fail if that time hasn't passed.
6685                  * For a reshape that keeps the number of devices the same
6686                  * mdadm must be monitoring the reshape can keeping the
6687                  * critical areas read-only and backed up.  It will start
6688                  * the array in read-only mode, so we check for that.
6689                  */
6690                 sector_t here_new, here_old;
6691                 int old_disks;
6692                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6693                 int chunk_sectors;
6694                 int new_data_disks;
6695
6696                 if (mddev->new_level != mddev->level) {
6697                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6698                                "required - aborting.\n",
6699                                mdname(mddev));
6700                         return -EINVAL;
6701                 }
6702                 old_disks = mddev->raid_disks - mddev->delta_disks;
6703                 /* reshape_position must be on a new-stripe boundary, and one
6704                  * further up in new geometry must map after here in old
6705                  * geometry.
6706                  * If the chunk sizes are different, then as we perform reshape
6707                  * in units of the largest of the two, reshape_position needs
6708                  * be a multiple of the largest chunk size times new data disks.
6709                  */
6710                 here_new = mddev->reshape_position;
6711                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6712                 new_data_disks = mddev->raid_disks - max_degraded;
6713                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6714                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6715                                "on a stripe boundary\n", mdname(mddev));
6716                         return -EINVAL;
6717                 }
6718                 reshape_offset = here_new * chunk_sectors;
6719                 /* here_new is the stripe we will write to */
6720                 here_old = mddev->reshape_position;
6721                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6722                 /* here_old is the first stripe that we might need to read
6723                  * from */
6724                 if (mddev->delta_disks == 0) {
6725                         /* We cannot be sure it is safe to start an in-place
6726                          * reshape.  It is only safe if user-space is monitoring
6727                          * and taking constant backups.
6728                          * mdadm always starts a situation like this in
6729                          * readonly mode so it can take control before
6730                          * allowing any writes.  So just check for that.
6731                          */
6732                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6733                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6734                                 /* not really in-place - so OK */;
6735                         else if (mddev->ro == 0) {
6736                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6737                                        "must be started in read-only mode "
6738                                        "- aborting\n",
6739                                        mdname(mddev));
6740                                 return -EINVAL;
6741                         }
6742                 } else if (mddev->reshape_backwards
6743                     ? (here_new * chunk_sectors + min_offset_diff <=
6744                        here_old * chunk_sectors)
6745                     : (here_new * chunk_sectors >=
6746                        here_old * chunk_sectors + (-min_offset_diff))) {
6747                         /* Reading from the same stripe as writing to - bad */
6748                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6749                                "auto-recovery - aborting.\n",
6750                                mdname(mddev));
6751                         return -EINVAL;
6752                 }
6753                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6754                        mdname(mddev));
6755                 /* OK, we should be able to continue; */
6756         } else {
6757                 BUG_ON(mddev->level != mddev->new_level);
6758                 BUG_ON(mddev->layout != mddev->new_layout);
6759                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6760                 BUG_ON(mddev->delta_disks != 0);
6761         }
6762
6763         if (mddev->private == NULL)
6764                 conf = setup_conf(mddev);
6765         else
6766                 conf = mddev->private;
6767
6768         if (IS_ERR(conf))
6769                 return PTR_ERR(conf);
6770
6771         conf->min_offset_diff = min_offset_diff;
6772         mddev->thread = conf->thread;
6773         conf->thread = NULL;
6774         mddev->private = conf;
6775
6776         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6777              i++) {
6778                 rdev = conf->disks[i].rdev;
6779                 if (!rdev && conf->disks[i].replacement) {
6780                         /* The replacement is all we have yet */
6781                         rdev = conf->disks[i].replacement;
6782                         conf->disks[i].replacement = NULL;
6783                         clear_bit(Replacement, &rdev->flags);
6784                         conf->disks[i].rdev = rdev;
6785                 }
6786                 if (!rdev)
6787                         continue;
6788                 if (conf->disks[i].replacement &&
6789                     conf->reshape_progress != MaxSector) {
6790                         /* replacements and reshape simply do not mix. */
6791                         printk(KERN_ERR "md: cannot handle concurrent "
6792                                "replacement and reshape.\n");
6793                         goto abort;
6794                 }
6795                 if (test_bit(In_sync, &rdev->flags)) {
6796                         working_disks++;
6797                         continue;
6798                 }
6799                 /* This disc is not fully in-sync.  However if it
6800                  * just stored parity (beyond the recovery_offset),
6801                  * when we don't need to be concerned about the
6802                  * array being dirty.
6803                  * When reshape goes 'backwards', we never have
6804                  * partially completed devices, so we only need
6805                  * to worry about reshape going forwards.
6806                  */
6807                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6808                 if (mddev->major_version == 0 &&
6809                     mddev->minor_version > 90)
6810                         rdev->recovery_offset = reshape_offset;
6811
6812                 if (rdev->recovery_offset < reshape_offset) {
6813                         /* We need to check old and new layout */
6814                         if (!only_parity(rdev->raid_disk,
6815                                          conf->algorithm,
6816                                          conf->raid_disks,
6817                                          conf->max_degraded))
6818                                 continue;
6819                 }
6820                 if (!only_parity(rdev->raid_disk,
6821                                  conf->prev_algo,
6822                                  conf->previous_raid_disks,
6823                                  conf->max_degraded))
6824                         continue;
6825                 dirty_parity_disks++;
6826         }
6827
6828         /*
6829          * 0 for a fully functional array, 1 or 2 for a degraded array.
6830          */
6831         mddev->degraded = calc_degraded(conf);
6832
6833         if (has_failed(conf)) {
6834                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6835                         " (%d/%d failed)\n",
6836                         mdname(mddev), mddev->degraded, conf->raid_disks);
6837                 goto abort;
6838         }
6839
6840         /* device size must be a multiple of chunk size */
6841         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6842         mddev->resync_max_sectors = mddev->dev_sectors;
6843
6844         if (mddev->degraded > dirty_parity_disks &&
6845             mddev->recovery_cp != MaxSector) {
6846                 if (mddev->ok_start_degraded)
6847                         printk(KERN_WARNING
6848                                "md/raid:%s: starting dirty degraded array"
6849                                " - data corruption possible.\n",
6850                                mdname(mddev));
6851                 else {
6852                         printk(KERN_ERR
6853                                "md/raid:%s: cannot start dirty degraded array.\n",
6854                                mdname(mddev));
6855                         goto abort;
6856                 }
6857         }
6858
6859         if (mddev->degraded == 0)
6860                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6861                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6862                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6863                        mddev->new_layout);
6864         else
6865                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6866                        " out of %d devices, algorithm %d\n",
6867                        mdname(mddev), conf->level,
6868                        mddev->raid_disks - mddev->degraded,
6869                        mddev->raid_disks, mddev->new_layout);
6870
6871         print_raid5_conf(conf);
6872
6873         if (conf->reshape_progress != MaxSector) {
6874                 conf->reshape_safe = conf->reshape_progress;
6875                 atomic_set(&conf->reshape_stripes, 0);
6876                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6877                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6878                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6879                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6880                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6881                                                         "reshape");
6882         }
6883
6884         /* Ok, everything is just fine now */
6885         if (mddev->to_remove == &raid5_attrs_group)
6886                 mddev->to_remove = NULL;
6887         else if (mddev->kobj.sd &&
6888             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6889                 printk(KERN_WARNING
6890                        "raid5: failed to create sysfs attributes for %s\n",
6891                        mdname(mddev));
6892         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6893
6894         if (mddev->queue) {
6895                 int chunk_size;
6896                 bool discard_supported = true;
6897                 /* read-ahead size must cover two whole stripes, which
6898                  * is 2 * (datadisks) * chunksize where 'n' is the
6899                  * number of raid devices
6900                  */
6901                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6902                 int stripe = data_disks *
6903                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6904                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6905                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6906
6907                 chunk_size = mddev->chunk_sectors << 9;
6908                 blk_queue_io_min(mddev->queue, chunk_size);
6909                 blk_queue_io_opt(mddev->queue, chunk_size *
6910                                  (conf->raid_disks - conf->max_degraded));
6911                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6912                 /*
6913                  * We can only discard a whole stripe. It doesn't make sense to
6914                  * discard data disk but write parity disk
6915                  */
6916                 stripe = stripe * PAGE_SIZE;
6917                 /* Round up to power of 2, as discard handling
6918                  * currently assumes that */
6919                 while ((stripe-1) & stripe)
6920                         stripe = (stripe | (stripe-1)) + 1;
6921                 mddev->queue->limits.discard_alignment = stripe;
6922                 mddev->queue->limits.discard_granularity = stripe;
6923                 /*
6924                  * unaligned part of discard request will be ignored, so can't
6925                  * guarantee discard_zeroes_data
6926                  */
6927                 mddev->queue->limits.discard_zeroes_data = 0;
6928
6929                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6930
6931                 rdev_for_each(rdev, mddev) {
6932                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6933                                           rdev->data_offset << 9);
6934                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6935                                           rdev->new_data_offset << 9);
6936                         /*
6937                          * discard_zeroes_data is required, otherwise data
6938                          * could be lost. Consider a scenario: discard a stripe
6939                          * (the stripe could be inconsistent if
6940                          * discard_zeroes_data is 0); write one disk of the
6941                          * stripe (the stripe could be inconsistent again
6942                          * depending on which disks are used to calculate
6943                          * parity); the disk is broken; The stripe data of this
6944                          * disk is lost.
6945                          */
6946                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6947                             !bdev_get_queue(rdev->bdev)->
6948                                                 limits.discard_zeroes_data)
6949                                 discard_supported = false;
6950                         /* Unfortunately, discard_zeroes_data is not currently
6951                          * a guarantee - just a hint.  So we only allow DISCARD
6952                          * if the sysadmin has confirmed that only safe devices
6953                          * are in use by setting a module parameter.
6954                          */
6955                         if (!devices_handle_discard_safely) {
6956                                 if (discard_supported) {
6957                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6958                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6959                                 }
6960                                 discard_supported = false;
6961                         }
6962                 }
6963
6964                 if (discard_supported &&
6965                    mddev->queue->limits.max_discard_sectors >= stripe &&
6966                    mddev->queue->limits.discard_granularity >= stripe)
6967                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6968                                                 mddev->queue);
6969                 else
6970                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6971                                                 mddev->queue);
6972         }
6973
6974         return 0;
6975 abort:
6976         md_unregister_thread(&mddev->thread);
6977         print_raid5_conf(conf);
6978         free_conf(conf);
6979         mddev->private = NULL;
6980         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6981         return -EIO;
6982 }
6983
6984 static void raid5_free(struct mddev *mddev, void *priv)
6985 {
6986         struct r5conf *conf = priv;
6987
6988         free_conf(conf);
6989         mddev->to_remove = &raid5_attrs_group;
6990 }
6991
6992 static void status(struct seq_file *seq, struct mddev *mddev)
6993 {
6994         struct r5conf *conf = mddev->private;
6995         int i;
6996
6997         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6998                 conf->chunk_sectors / 2, mddev->layout);
6999         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7000         for (i = 0; i < conf->raid_disks; i++)
7001                 seq_printf (seq, "%s",
7002                                conf->disks[i].rdev &&
7003                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7004         seq_printf (seq, "]");
7005 }
7006
7007 static void print_raid5_conf (struct r5conf *conf)
7008 {
7009         int i;
7010         struct disk_info *tmp;
7011
7012         printk(KERN_DEBUG "RAID conf printout:\n");
7013         if (!conf) {
7014                 printk("(conf==NULL)\n");
7015                 return;
7016         }
7017         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7018                conf->raid_disks,
7019                conf->raid_disks - conf->mddev->degraded);
7020
7021         for (i = 0; i < conf->raid_disks; i++) {
7022                 char b[BDEVNAME_SIZE];
7023                 tmp = conf->disks + i;
7024                 if (tmp->rdev)
7025                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7026                                i, !test_bit(Faulty, &tmp->rdev->flags),
7027                                bdevname(tmp->rdev->bdev, b));
7028         }
7029 }
7030
7031 static int raid5_spare_active(struct mddev *mddev)
7032 {
7033         int i;
7034         struct r5conf *conf = mddev->private;
7035         struct disk_info *tmp;
7036         int count = 0;
7037         unsigned long flags;
7038
7039         for (i = 0; i < conf->raid_disks; i++) {
7040                 tmp = conf->disks + i;
7041                 if (tmp->replacement
7042                     && tmp->replacement->recovery_offset == MaxSector
7043                     && !test_bit(Faulty, &tmp->replacement->flags)
7044                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7045                         /* Replacement has just become active. */
7046                         if (!tmp->rdev
7047                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7048                                 count++;
7049                         if (tmp->rdev) {
7050                                 /* Replaced device not technically faulty,
7051                                  * but we need to be sure it gets removed
7052                                  * and never re-added.
7053                                  */
7054                                 set_bit(Faulty, &tmp->rdev->flags);
7055                                 sysfs_notify_dirent_safe(
7056                                         tmp->rdev->sysfs_state);
7057                         }
7058                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7059                 } else if (tmp->rdev
7060                     && tmp->rdev->recovery_offset == MaxSector
7061                     && !test_bit(Faulty, &tmp->rdev->flags)
7062                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7063                         count++;
7064                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7065                 }
7066         }
7067         spin_lock_irqsave(&conf->device_lock, flags);
7068         mddev->degraded = calc_degraded(conf);
7069         spin_unlock_irqrestore(&conf->device_lock, flags);
7070         print_raid5_conf(conf);
7071         return count;
7072 }
7073
7074 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7075 {
7076         struct r5conf *conf = mddev->private;
7077         int err = 0;
7078         int number = rdev->raid_disk;
7079         struct md_rdev **rdevp;
7080         struct disk_info *p = conf->disks + number;
7081
7082         print_raid5_conf(conf);
7083         if (rdev == p->rdev)
7084                 rdevp = &p->rdev;
7085         else if (rdev == p->replacement)
7086                 rdevp = &p->replacement;
7087         else
7088                 return 0;
7089
7090         if (number >= conf->raid_disks &&
7091             conf->reshape_progress == MaxSector)
7092                 clear_bit(In_sync, &rdev->flags);
7093
7094         if (test_bit(In_sync, &rdev->flags) ||
7095             atomic_read(&rdev->nr_pending)) {
7096                 err = -EBUSY;
7097                 goto abort;
7098         }
7099         /* Only remove non-faulty devices if recovery
7100          * isn't possible.
7101          */
7102         if (!test_bit(Faulty, &rdev->flags) &&
7103             mddev->recovery_disabled != conf->recovery_disabled &&
7104             !has_failed(conf) &&
7105             (!p->replacement || p->replacement == rdev) &&
7106             number < conf->raid_disks) {
7107                 err = -EBUSY;
7108                 goto abort;
7109         }
7110         *rdevp = NULL;
7111         synchronize_rcu();
7112         if (atomic_read(&rdev->nr_pending)) {
7113                 /* lost the race, try later */
7114                 err = -EBUSY;
7115                 *rdevp = rdev;
7116         } else if (p->replacement) {
7117                 /* We must have just cleared 'rdev' */
7118                 p->rdev = p->replacement;
7119                 clear_bit(Replacement, &p->replacement->flags);
7120                 smp_mb(); /* Make sure other CPUs may see both as identical
7121                            * but will never see neither - if they are careful
7122                            */
7123                 p->replacement = NULL;
7124                 clear_bit(WantReplacement, &rdev->flags);
7125         } else
7126                 /* We might have just removed the Replacement as faulty-
7127                  * clear the bit just in case
7128                  */
7129                 clear_bit(WantReplacement, &rdev->flags);
7130 abort:
7131
7132         print_raid5_conf(conf);
7133         return err;
7134 }
7135
7136 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7137 {
7138         struct r5conf *conf = mddev->private;
7139         int err = -EEXIST;
7140         int disk;
7141         struct disk_info *p;
7142         int first = 0;
7143         int last = conf->raid_disks - 1;
7144
7145         if (mddev->recovery_disabled == conf->recovery_disabled)
7146                 return -EBUSY;
7147
7148         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7149                 /* no point adding a device */
7150                 return -EINVAL;
7151
7152         if (rdev->raid_disk >= 0)
7153                 first = last = rdev->raid_disk;
7154
7155         /*
7156          * find the disk ... but prefer rdev->saved_raid_disk
7157          * if possible.
7158          */
7159         if (rdev->saved_raid_disk >= 0 &&
7160             rdev->saved_raid_disk >= first &&
7161             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7162                 first = rdev->saved_raid_disk;
7163
7164         for (disk = first; disk <= last; disk++) {
7165                 p = conf->disks + disk;
7166                 if (p->rdev == NULL) {
7167                         clear_bit(In_sync, &rdev->flags);
7168                         rdev->raid_disk = disk;
7169                         err = 0;
7170                         if (rdev->saved_raid_disk != disk)
7171                                 conf->fullsync = 1;
7172                         rcu_assign_pointer(p->rdev, rdev);
7173                         goto out;
7174                 }
7175         }
7176         for (disk = first; disk <= last; disk++) {
7177                 p = conf->disks + disk;
7178                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7179                     p->replacement == NULL) {
7180                         clear_bit(In_sync, &rdev->flags);
7181                         set_bit(Replacement, &rdev->flags);
7182                         rdev->raid_disk = disk;
7183                         err = 0;
7184                         conf->fullsync = 1;
7185                         rcu_assign_pointer(p->replacement, rdev);
7186                         break;
7187                 }
7188         }
7189 out:
7190         print_raid5_conf(conf);
7191         return err;
7192 }
7193
7194 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7195 {
7196         /* no resync is happening, and there is enough space
7197          * on all devices, so we can resize.
7198          * We need to make sure resync covers any new space.
7199          * If the array is shrinking we should possibly wait until
7200          * any io in the removed space completes, but it hardly seems
7201          * worth it.
7202          */
7203         sector_t newsize;
7204         struct r5conf *conf = mddev->private;
7205
7206         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7207         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7208         if (mddev->external_size &&
7209             mddev->array_sectors > newsize)
7210                 return -EINVAL;
7211         if (mddev->bitmap) {
7212                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7213                 if (ret)
7214                         return ret;
7215         }
7216         md_set_array_sectors(mddev, newsize);
7217         set_capacity(mddev->gendisk, mddev->array_sectors);
7218         revalidate_disk(mddev->gendisk);
7219         if (sectors > mddev->dev_sectors &&
7220             mddev->recovery_cp > mddev->dev_sectors) {
7221                 mddev->recovery_cp = mddev->dev_sectors;
7222                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7223         }
7224         mddev->dev_sectors = sectors;
7225         mddev->resync_max_sectors = sectors;
7226         return 0;
7227 }
7228
7229 static int check_stripe_cache(struct mddev *mddev)
7230 {
7231         /* Can only proceed if there are plenty of stripe_heads.
7232          * We need a minimum of one full stripe,, and for sensible progress
7233          * it is best to have about 4 times that.
7234          * If we require 4 times, then the default 256 4K stripe_heads will
7235          * allow for chunk sizes up to 256K, which is probably OK.
7236          * If the chunk size is greater, user-space should request more
7237          * stripe_heads first.
7238          */
7239         struct r5conf *conf = mddev->private;
7240         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7241             > conf->min_nr_stripes ||
7242             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7243             > conf->min_nr_stripes) {
7244                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7245                        mdname(mddev),
7246                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7247                         / STRIPE_SIZE)*4);
7248                 return 0;
7249         }
7250         return 1;
7251 }
7252
7253 static int check_reshape(struct mddev *mddev)
7254 {
7255         struct r5conf *conf = mddev->private;
7256
7257         if (mddev->delta_disks == 0 &&
7258             mddev->new_layout == mddev->layout &&
7259             mddev->new_chunk_sectors == mddev->chunk_sectors)
7260                 return 0; /* nothing to do */
7261         if (has_failed(conf))
7262                 return -EINVAL;
7263         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7264                 /* We might be able to shrink, but the devices must
7265                  * be made bigger first.
7266                  * For raid6, 4 is the minimum size.
7267                  * Otherwise 2 is the minimum
7268                  */
7269                 int min = 2;
7270                 if (mddev->level == 6)
7271                         min = 4;
7272                 if (mddev->raid_disks + mddev->delta_disks < min)
7273                         return -EINVAL;
7274         }
7275
7276         if (!check_stripe_cache(mddev))
7277                 return -ENOSPC;
7278
7279         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7280             mddev->delta_disks > 0)
7281                 if (resize_chunks(conf,
7282                                   conf->previous_raid_disks
7283                                   + max(0, mddev->delta_disks),
7284                                   max(mddev->new_chunk_sectors,
7285                                       mddev->chunk_sectors)
7286                             ) < 0)
7287                         return -ENOMEM;
7288         return resize_stripes(conf, (conf->previous_raid_disks
7289                                      + mddev->delta_disks));
7290 }
7291
7292 static int raid5_start_reshape(struct mddev *mddev)
7293 {
7294         struct r5conf *conf = mddev->private;
7295         struct md_rdev *rdev;
7296         int spares = 0;
7297         unsigned long flags;
7298
7299         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7300                 return -EBUSY;
7301
7302         if (!check_stripe_cache(mddev))
7303                 return -ENOSPC;
7304
7305         if (has_failed(conf))
7306                 return -EINVAL;
7307
7308         rdev_for_each(rdev, mddev) {
7309                 if (!test_bit(In_sync, &rdev->flags)
7310                     && !test_bit(Faulty, &rdev->flags))
7311                         spares++;
7312         }
7313
7314         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7315                 /* Not enough devices even to make a degraded array
7316                  * of that size
7317                  */
7318                 return -EINVAL;
7319
7320         /* Refuse to reduce size of the array.  Any reductions in
7321          * array size must be through explicit setting of array_size
7322          * attribute.
7323          */
7324         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7325             < mddev->array_sectors) {
7326                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7327                        "before number of disks\n", mdname(mddev));
7328                 return -EINVAL;
7329         }
7330
7331         atomic_set(&conf->reshape_stripes, 0);
7332         spin_lock_irq(&conf->device_lock);
7333         write_seqcount_begin(&conf->gen_lock);
7334         conf->previous_raid_disks = conf->raid_disks;
7335         conf->raid_disks += mddev->delta_disks;
7336         conf->prev_chunk_sectors = conf->chunk_sectors;
7337         conf->chunk_sectors = mddev->new_chunk_sectors;
7338         conf->prev_algo = conf->algorithm;
7339         conf->algorithm = mddev->new_layout;
7340         conf->generation++;
7341         /* Code that selects data_offset needs to see the generation update
7342          * if reshape_progress has been set - so a memory barrier needed.
7343          */
7344         smp_mb();
7345         if (mddev->reshape_backwards)
7346                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7347         else
7348                 conf->reshape_progress = 0;
7349         conf->reshape_safe = conf->reshape_progress;
7350         write_seqcount_end(&conf->gen_lock);
7351         spin_unlock_irq(&conf->device_lock);
7352
7353         /* Now make sure any requests that proceeded on the assumption
7354          * the reshape wasn't running - like Discard or Read - have
7355          * completed.
7356          */
7357         mddev_suspend(mddev);
7358         mddev_resume(mddev);
7359
7360         /* Add some new drives, as many as will fit.
7361          * We know there are enough to make the newly sized array work.
7362          * Don't add devices if we are reducing the number of
7363          * devices in the array.  This is because it is not possible
7364          * to correctly record the "partially reconstructed" state of
7365          * such devices during the reshape and confusion could result.
7366          */
7367         if (mddev->delta_disks >= 0) {
7368                 rdev_for_each(rdev, mddev)
7369                         if (rdev->raid_disk < 0 &&
7370                             !test_bit(Faulty, &rdev->flags)) {
7371                                 if (raid5_add_disk(mddev, rdev) == 0) {
7372                                         if (rdev->raid_disk
7373                                             >= conf->previous_raid_disks)
7374                                                 set_bit(In_sync, &rdev->flags);
7375                                         else
7376                                                 rdev->recovery_offset = 0;
7377
7378                                         if (sysfs_link_rdev(mddev, rdev))
7379                                                 /* Failure here is OK */;
7380                                 }
7381                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7382                                    && !test_bit(Faulty, &rdev->flags)) {
7383                                 /* This is a spare that was manually added */
7384                                 set_bit(In_sync, &rdev->flags);
7385                         }
7386
7387                 /* When a reshape changes the number of devices,
7388                  * ->degraded is measured against the larger of the
7389                  * pre and post number of devices.
7390                  */
7391                 spin_lock_irqsave(&conf->device_lock, flags);
7392                 mddev->degraded = calc_degraded(conf);
7393                 spin_unlock_irqrestore(&conf->device_lock, flags);
7394         }
7395         mddev->raid_disks = conf->raid_disks;
7396         mddev->reshape_position = conf->reshape_progress;
7397         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7398
7399         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7400         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7401         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7402         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7403         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7404         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7405                                                 "reshape");
7406         if (!mddev->sync_thread) {
7407                 mddev->recovery = 0;
7408                 spin_lock_irq(&conf->device_lock);
7409                 write_seqcount_begin(&conf->gen_lock);
7410                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7411                 mddev->new_chunk_sectors =
7412                         conf->chunk_sectors = conf->prev_chunk_sectors;
7413                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7414                 rdev_for_each(rdev, mddev)
7415                         rdev->new_data_offset = rdev->data_offset;
7416                 smp_wmb();
7417                 conf->generation --;
7418                 conf->reshape_progress = MaxSector;
7419                 mddev->reshape_position = MaxSector;
7420                 write_seqcount_end(&conf->gen_lock);
7421                 spin_unlock_irq(&conf->device_lock);
7422                 return -EAGAIN;
7423         }
7424         conf->reshape_checkpoint = jiffies;
7425         md_wakeup_thread(mddev->sync_thread);
7426         md_new_event(mddev);
7427         return 0;
7428 }
7429
7430 /* This is called from the reshape thread and should make any
7431  * changes needed in 'conf'
7432  */
7433 static void end_reshape(struct r5conf *conf)
7434 {
7435
7436         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7437                 struct md_rdev *rdev;
7438
7439                 spin_lock_irq(&conf->device_lock);
7440                 conf->previous_raid_disks = conf->raid_disks;
7441                 rdev_for_each(rdev, conf->mddev)
7442                         rdev->data_offset = rdev->new_data_offset;
7443                 smp_wmb();
7444                 conf->reshape_progress = MaxSector;
7445                 conf->mddev->reshape_position = MaxSector;
7446                 spin_unlock_irq(&conf->device_lock);
7447                 wake_up(&conf->wait_for_overlap);
7448
7449                 /* read-ahead size must cover two whole stripes, which is
7450                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7451                  */
7452                 if (conf->mddev->queue) {
7453                         int data_disks = conf->raid_disks - conf->max_degraded;
7454                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7455                                                    / PAGE_SIZE);
7456                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7457                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7458                 }
7459         }
7460 }
7461
7462 /* This is called from the raid5d thread with mddev_lock held.
7463  * It makes config changes to the device.
7464  */
7465 static void raid5_finish_reshape(struct mddev *mddev)
7466 {
7467         struct r5conf *conf = mddev->private;
7468
7469         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7470
7471                 if (mddev->delta_disks > 0) {
7472                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7473                         set_capacity(mddev->gendisk, mddev->array_sectors);
7474                         revalidate_disk(mddev->gendisk);
7475                 } else {
7476                         int d;
7477                         spin_lock_irq(&conf->device_lock);
7478                         mddev->degraded = calc_degraded(conf);
7479                         spin_unlock_irq(&conf->device_lock);
7480                         for (d = conf->raid_disks ;
7481                              d < conf->raid_disks - mddev->delta_disks;
7482                              d++) {
7483                                 struct md_rdev *rdev = conf->disks[d].rdev;
7484                                 if (rdev)
7485                                         clear_bit(In_sync, &rdev->flags);
7486                                 rdev = conf->disks[d].replacement;
7487                                 if (rdev)
7488                                         clear_bit(In_sync, &rdev->flags);
7489                         }
7490                 }
7491                 mddev->layout = conf->algorithm;
7492                 mddev->chunk_sectors = conf->chunk_sectors;
7493                 mddev->reshape_position = MaxSector;
7494                 mddev->delta_disks = 0;
7495                 mddev->reshape_backwards = 0;
7496         }
7497 }
7498
7499 static void raid5_quiesce(struct mddev *mddev, int state)
7500 {
7501         struct r5conf *conf = mddev->private;
7502
7503         switch(state) {
7504         case 2: /* resume for a suspend */
7505                 wake_up(&conf->wait_for_overlap);
7506                 break;
7507
7508         case 1: /* stop all writes */
7509                 lock_all_device_hash_locks_irq(conf);
7510                 /* '2' tells resync/reshape to pause so that all
7511                  * active stripes can drain
7512                  */
7513                 conf->quiesce = 2;
7514                 wait_event_cmd(conf->wait_for_quiescent,
7515                                     atomic_read(&conf->active_stripes) == 0 &&
7516                                     atomic_read(&conf->active_aligned_reads) == 0,
7517                                     unlock_all_device_hash_locks_irq(conf),
7518                                     lock_all_device_hash_locks_irq(conf));
7519                 conf->quiesce = 1;
7520                 unlock_all_device_hash_locks_irq(conf);
7521                 /* allow reshape to continue */
7522                 wake_up(&conf->wait_for_overlap);
7523                 break;
7524
7525         case 0: /* re-enable writes */
7526                 lock_all_device_hash_locks_irq(conf);
7527                 conf->quiesce = 0;
7528                 wake_up(&conf->wait_for_quiescent);
7529                 wake_up(&conf->wait_for_overlap);
7530                 unlock_all_device_hash_locks_irq(conf);
7531                 break;
7532         }
7533 }
7534
7535 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7536 {
7537         struct r0conf *raid0_conf = mddev->private;
7538         sector_t sectors;
7539
7540         /* for raid0 takeover only one zone is supported */
7541         if (raid0_conf->nr_strip_zones > 1) {
7542                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7543                        mdname(mddev));
7544                 return ERR_PTR(-EINVAL);
7545         }
7546
7547         sectors = raid0_conf->strip_zone[0].zone_end;
7548         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7549         mddev->dev_sectors = sectors;
7550         mddev->new_level = level;
7551         mddev->new_layout = ALGORITHM_PARITY_N;
7552         mddev->new_chunk_sectors = mddev->chunk_sectors;
7553         mddev->raid_disks += 1;
7554         mddev->delta_disks = 1;
7555         /* make sure it will be not marked as dirty */
7556         mddev->recovery_cp = MaxSector;
7557
7558         return setup_conf(mddev);
7559 }
7560
7561 static void *raid5_takeover_raid1(struct mddev *mddev)
7562 {
7563         int chunksect;
7564
7565         if (mddev->raid_disks != 2 ||
7566             mddev->degraded > 1)
7567                 return ERR_PTR(-EINVAL);
7568
7569         /* Should check if there are write-behind devices? */
7570
7571         chunksect = 64*2; /* 64K by default */
7572
7573         /* The array must be an exact multiple of chunksize */
7574         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7575                 chunksect >>= 1;
7576
7577         if ((chunksect<<9) < STRIPE_SIZE)
7578                 /* array size does not allow a suitable chunk size */
7579                 return ERR_PTR(-EINVAL);
7580
7581         mddev->new_level = 5;
7582         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7583         mddev->new_chunk_sectors = chunksect;
7584
7585         return setup_conf(mddev);
7586 }
7587
7588 static void *raid5_takeover_raid6(struct mddev *mddev)
7589 {
7590         int new_layout;
7591
7592         switch (mddev->layout) {
7593         case ALGORITHM_LEFT_ASYMMETRIC_6:
7594                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7595                 break;
7596         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7597                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7598                 break;
7599         case ALGORITHM_LEFT_SYMMETRIC_6:
7600                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7601                 break;
7602         case ALGORITHM_RIGHT_SYMMETRIC_6:
7603                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7604                 break;
7605         case ALGORITHM_PARITY_0_6:
7606                 new_layout = ALGORITHM_PARITY_0;
7607                 break;
7608         case ALGORITHM_PARITY_N:
7609                 new_layout = ALGORITHM_PARITY_N;
7610                 break;
7611         default:
7612                 return ERR_PTR(-EINVAL);
7613         }
7614         mddev->new_level = 5;
7615         mddev->new_layout = new_layout;
7616         mddev->delta_disks = -1;
7617         mddev->raid_disks -= 1;
7618         return setup_conf(mddev);
7619 }
7620
7621 static int raid5_check_reshape(struct mddev *mddev)
7622 {
7623         /* For a 2-drive array, the layout and chunk size can be changed
7624          * immediately as not restriping is needed.
7625          * For larger arrays we record the new value - after validation
7626          * to be used by a reshape pass.
7627          */
7628         struct r5conf *conf = mddev->private;
7629         int new_chunk = mddev->new_chunk_sectors;
7630
7631         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7632                 return -EINVAL;
7633         if (new_chunk > 0) {
7634                 if (!is_power_of_2(new_chunk))
7635                         return -EINVAL;
7636                 if (new_chunk < (PAGE_SIZE>>9))
7637                         return -EINVAL;
7638                 if (mddev->array_sectors & (new_chunk-1))
7639                         /* not factor of array size */
7640                         return -EINVAL;
7641         }
7642
7643         /* They look valid */
7644
7645         if (mddev->raid_disks == 2) {
7646                 /* can make the change immediately */
7647                 if (mddev->new_layout >= 0) {
7648                         conf->algorithm = mddev->new_layout;
7649                         mddev->layout = mddev->new_layout;
7650                 }
7651                 if (new_chunk > 0) {
7652                         conf->chunk_sectors = new_chunk ;
7653                         mddev->chunk_sectors = new_chunk;
7654                 }
7655                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7656                 md_wakeup_thread(mddev->thread);
7657         }
7658         return check_reshape(mddev);
7659 }
7660
7661 static int raid6_check_reshape(struct mddev *mddev)
7662 {
7663         int new_chunk = mddev->new_chunk_sectors;
7664
7665         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7666                 return -EINVAL;
7667         if (new_chunk > 0) {
7668                 if (!is_power_of_2(new_chunk))
7669                         return -EINVAL;
7670                 if (new_chunk < (PAGE_SIZE >> 9))
7671                         return -EINVAL;
7672                 if (mddev->array_sectors & (new_chunk-1))
7673                         /* not factor of array size */
7674                         return -EINVAL;
7675         }
7676
7677         /* They look valid */
7678         return check_reshape(mddev);
7679 }
7680
7681 static void *raid5_takeover(struct mddev *mddev)
7682 {
7683         /* raid5 can take over:
7684          *  raid0 - if there is only one strip zone - make it a raid4 layout
7685          *  raid1 - if there are two drives.  We need to know the chunk size
7686          *  raid4 - trivial - just use a raid4 layout.
7687          *  raid6 - Providing it is a *_6 layout
7688          */
7689         if (mddev->level == 0)
7690                 return raid45_takeover_raid0(mddev, 5);
7691         if (mddev->level == 1)
7692                 return raid5_takeover_raid1(mddev);
7693         if (mddev->level == 4) {
7694                 mddev->new_layout = ALGORITHM_PARITY_N;
7695                 mddev->new_level = 5;
7696                 return setup_conf(mddev);
7697         }
7698         if (mddev->level == 6)
7699                 return raid5_takeover_raid6(mddev);
7700
7701         return ERR_PTR(-EINVAL);
7702 }
7703
7704 static void *raid4_takeover(struct mddev *mddev)
7705 {
7706         /* raid4 can take over:
7707          *  raid0 - if there is only one strip zone
7708          *  raid5 - if layout is right
7709          */
7710         if (mddev->level == 0)
7711                 return raid45_takeover_raid0(mddev, 4);
7712         if (mddev->level == 5 &&
7713             mddev->layout == ALGORITHM_PARITY_N) {
7714                 mddev->new_layout = 0;
7715                 mddev->new_level = 4;
7716                 return setup_conf(mddev);
7717         }
7718         return ERR_PTR(-EINVAL);
7719 }
7720
7721 static struct md_personality raid5_personality;
7722
7723 static void *raid6_takeover(struct mddev *mddev)
7724 {
7725         /* Currently can only take over a raid5.  We map the
7726          * personality to an equivalent raid6 personality
7727          * with the Q block at the end.
7728          */
7729         int new_layout;
7730
7731         if (mddev->pers != &raid5_personality)
7732                 return ERR_PTR(-EINVAL);
7733         if (mddev->degraded > 1)
7734                 return ERR_PTR(-EINVAL);
7735         if (mddev->raid_disks > 253)
7736                 return ERR_PTR(-EINVAL);
7737         if (mddev->raid_disks < 3)
7738                 return ERR_PTR(-EINVAL);
7739
7740         switch (mddev->layout) {
7741         case ALGORITHM_LEFT_ASYMMETRIC:
7742                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7743                 break;
7744         case ALGORITHM_RIGHT_ASYMMETRIC:
7745                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7746                 break;
7747         case ALGORITHM_LEFT_SYMMETRIC:
7748                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7749                 break;
7750         case ALGORITHM_RIGHT_SYMMETRIC:
7751                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7752                 break;
7753         case ALGORITHM_PARITY_0:
7754                 new_layout = ALGORITHM_PARITY_0_6;
7755                 break;
7756         case ALGORITHM_PARITY_N:
7757                 new_layout = ALGORITHM_PARITY_N;
7758                 break;
7759         default:
7760                 return ERR_PTR(-EINVAL);
7761         }
7762         mddev->new_level = 6;
7763         mddev->new_layout = new_layout;
7764         mddev->delta_disks = 1;
7765         mddev->raid_disks += 1;
7766         return setup_conf(mddev);
7767 }
7768
7769 static struct md_personality raid6_personality =
7770 {
7771         .name           = "raid6",
7772         .level          = 6,
7773         .owner          = THIS_MODULE,
7774         .make_request   = make_request,
7775         .run            = run,
7776         .free           = raid5_free,
7777         .status         = status,
7778         .error_handler  = error,
7779         .hot_add_disk   = raid5_add_disk,
7780         .hot_remove_disk= raid5_remove_disk,
7781         .spare_active   = raid5_spare_active,
7782         .sync_request   = sync_request,
7783         .resize         = raid5_resize,
7784         .size           = raid5_size,
7785         .check_reshape  = raid6_check_reshape,
7786         .start_reshape  = raid5_start_reshape,
7787         .finish_reshape = raid5_finish_reshape,
7788         .quiesce        = raid5_quiesce,
7789         .takeover       = raid6_takeover,
7790         .congested      = raid5_congested,
7791 };
7792 static struct md_personality raid5_personality =
7793 {
7794         .name           = "raid5",
7795         .level          = 5,
7796         .owner          = THIS_MODULE,
7797         .make_request   = make_request,
7798         .run            = run,
7799         .free           = raid5_free,
7800         .status         = status,
7801         .error_handler  = error,
7802         .hot_add_disk   = raid5_add_disk,
7803         .hot_remove_disk= raid5_remove_disk,
7804         .spare_active   = raid5_spare_active,
7805         .sync_request   = sync_request,
7806         .resize         = raid5_resize,
7807         .size           = raid5_size,
7808         .check_reshape  = raid5_check_reshape,
7809         .start_reshape  = raid5_start_reshape,
7810         .finish_reshape = raid5_finish_reshape,
7811         .quiesce        = raid5_quiesce,
7812         .takeover       = raid5_takeover,
7813         .congested      = raid5_congested,
7814 };
7815
7816 static struct md_personality raid4_personality =
7817 {
7818         .name           = "raid4",
7819         .level          = 4,
7820         .owner          = THIS_MODULE,
7821         .make_request   = make_request,
7822         .run            = run,
7823         .free           = raid5_free,
7824         .status         = status,
7825         .error_handler  = error,
7826         .hot_add_disk   = raid5_add_disk,
7827         .hot_remove_disk= raid5_remove_disk,
7828         .spare_active   = raid5_spare_active,
7829         .sync_request   = sync_request,
7830         .resize         = raid5_resize,
7831         .size           = raid5_size,
7832         .check_reshape  = raid5_check_reshape,
7833         .start_reshape  = raid5_start_reshape,
7834         .finish_reshape = raid5_finish_reshape,
7835         .quiesce        = raid5_quiesce,
7836         .takeover       = raid4_takeover,
7837         .congested      = raid5_congested,
7838 };
7839
7840 static int __init raid5_init(void)
7841 {
7842         raid5_wq = alloc_workqueue("raid5wq",
7843                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7844         if (!raid5_wq)
7845                 return -ENOMEM;
7846         register_md_personality(&raid6_personality);
7847         register_md_personality(&raid5_personality);
7848         register_md_personality(&raid4_personality);
7849         return 0;
7850 }
7851
7852 static void raid5_exit(void)
7853 {
7854         unregister_md_personality(&raid6_personality);
7855         unregister_md_personality(&raid5_personality);
7856         unregister_md_personality(&raid4_personality);
7857         destroy_workqueue(raid5_wq);
7858 }
7859
7860 module_init(raid5_init);
7861 module_exit(raid5_exit);
7862 MODULE_LICENSE("GPL");
7863 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7864 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7865 MODULE_ALIAS("md-raid5");
7866 MODULE_ALIAS("md-raid4");
7867 MODULE_ALIAS("md-level-5");
7868 MODULE_ALIAS("md-level-4");
7869 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7870 MODULE_ALIAS("md-raid6");
7871 MODULE_ALIAS("md-level-6");
7872
7873 /* This used to be two separate modules, they were: */
7874 MODULE_ALIAS("raid5");
7875 MODULE_ALIAS("raid6");