]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
Merge branch 'x86-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         unsigned long do_wakeup = 0;
344         int i = 0;
345         unsigned long flags;
346
347         if (hash == NR_STRIPE_HASH_LOCKS) {
348                 size = NR_STRIPE_HASH_LOCKS;
349                 hash = NR_STRIPE_HASH_LOCKS - 1;
350         } else
351                 size = 1;
352         while (size) {
353                 struct list_head *list = &temp_inactive_list[size - 1];
354
355                 /*
356                  * We don't hold any lock here yet, get_active_stripe() might
357                  * remove stripes from the list
358                  */
359                 if (!list_empty_careful(list)) {
360                         spin_lock_irqsave(conf->hash_locks + hash, flags);
361                         if (list_empty(conf->inactive_list + hash) &&
362                             !list_empty(list))
363                                 atomic_dec(&conf->empty_inactive_list_nr);
364                         list_splice_tail_init(list, conf->inactive_list + hash);
365                         do_wakeup |= 1 << hash;
366                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367                 }
368                 size--;
369                 hash--;
370         }
371
372         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373                 if (do_wakeup & (1 << i))
374                         wake_up(&conf->wait_for_stripe[i]);
375         }
376
377         if (do_wakeup) {
378                 if (atomic_read(&conf->active_stripes) == 0)
379                         wake_up(&conf->wait_for_quiescent);
380                 if (conf->retry_read_aligned)
381                         md_wakeup_thread(conf->mddev->thread);
382         }
383 }
384
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387                                struct list_head *temp_inactive_list)
388 {
389         struct stripe_head *sh;
390         int count = 0;
391         struct llist_node *head;
392
393         head = llist_del_all(&conf->released_stripes);
394         head = llist_reverse_order(head);
395         while (head) {
396                 int hash;
397
398                 sh = llist_entry(head, struct stripe_head, release_list);
399                 head = llist_next(head);
400                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401                 smp_mb();
402                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403                 /*
404                  * Don't worry the bit is set here, because if the bit is set
405                  * again, the count is always > 1. This is true for
406                  * STRIPE_ON_UNPLUG_LIST bit too.
407                  */
408                 hash = sh->hash_lock_index;
409                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
410                 count++;
411         }
412
413         return count;
414 }
415
416 static void release_stripe(struct stripe_head *sh)
417 {
418         struct r5conf *conf = sh->raid_conf;
419         unsigned long flags;
420         struct list_head list;
421         int hash;
422         bool wakeup;
423
424         /* Avoid release_list until the last reference.
425          */
426         if (atomic_add_unless(&sh->count, -1, 1))
427                 return;
428
429         if (unlikely(!conf->mddev->thread) ||
430                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431                 goto slow_path;
432         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433         if (wakeup)
434                 md_wakeup_thread(conf->mddev->thread);
435         return;
436 slow_path:
437         local_irq_save(flags);
438         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440                 INIT_LIST_HEAD(&list);
441                 hash = sh->hash_lock_index;
442                 do_release_stripe(conf, sh, &list);
443                 spin_unlock(&conf->device_lock);
444                 release_inactive_stripe_list(conf, &list, hash);
445         }
446         local_irq_restore(flags);
447 }
448
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451         pr_debug("remove_hash(), stripe %llu\n",
452                 (unsigned long long)sh->sector);
453
454         hlist_del_init(&sh->hash);
455 }
456
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459         struct hlist_head *hp = stripe_hash(conf, sh->sector);
460
461         pr_debug("insert_hash(), stripe %llu\n",
462                 (unsigned long long)sh->sector);
463
464         hlist_add_head(&sh->hash, hp);
465 }
466
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470         struct stripe_head *sh = NULL;
471         struct list_head *first;
472
473         if (list_empty(conf->inactive_list + hash))
474                 goto out;
475         first = (conf->inactive_list + hash)->next;
476         sh = list_entry(first, struct stripe_head, lru);
477         list_del_init(first);
478         remove_hash(sh);
479         atomic_inc(&conf->active_stripes);
480         BUG_ON(hash != sh->hash_lock_index);
481         if (list_empty(conf->inactive_list + hash))
482                 atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484         return sh;
485 }
486
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489         struct page *p;
490         int i;
491         int num = sh->raid_conf->pool_size;
492
493         for (i = 0; i < num ; i++) {
494                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495                 p = sh->dev[i].page;
496                 if (!p)
497                         continue;
498                 sh->dev[i].page = NULL;
499                 put_page(p);
500         }
501 }
502
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505         int i;
506         int num = sh->raid_conf->pool_size;
507
508         for (i = 0; i < num; i++) {
509                 struct page *page;
510
511                 if (!(page = alloc_page(gfp))) {
512                         return 1;
513                 }
514                 sh->dev[i].page = page;
515                 sh->dev[i].orig_page = page;
516         }
517         return 0;
518 }
519
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522                             struct stripe_head *sh);
523
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526         struct r5conf *conf = sh->raid_conf;
527         int i, seq;
528
529         BUG_ON(atomic_read(&sh->count) != 0);
530         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531         BUG_ON(stripe_operations_active(sh));
532         BUG_ON(sh->batch_head);
533
534         pr_debug("init_stripe called, stripe %llu\n",
535                 (unsigned long long)sector);
536 retry:
537         seq = read_seqcount_begin(&conf->gen_lock);
538         sh->generation = conf->generation - previous;
539         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540         sh->sector = sector;
541         stripe_set_idx(sector, conf, previous, sh);
542         sh->state = 0;
543
544         for (i = sh->disks; i--; ) {
545                 struct r5dev *dev = &sh->dev[i];
546
547                 if (dev->toread || dev->read || dev->towrite || dev->written ||
548                     test_bit(R5_LOCKED, &dev->flags)) {
549                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550                                (unsigned long long)sh->sector, i, dev->toread,
551                                dev->read, dev->towrite, dev->written,
552                                test_bit(R5_LOCKED, &dev->flags));
553                         WARN_ON(1);
554                 }
555                 dev->flags = 0;
556                 raid5_build_block(sh, i, previous);
557         }
558         if (read_seqcount_retry(&conf->gen_lock, seq))
559                 goto retry;
560         sh->overwrite_disks = 0;
561         insert_hash(conf, sh);
562         sh->cpu = smp_processor_id();
563         set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567                                          short generation)
568 {
569         struct stripe_head *sh;
570
571         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573                 if (sh->sector == sector && sh->generation == generation)
574                         return sh;
575         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576         return NULL;
577 }
578
579 /*
580  * Need to check if array has failed when deciding whether to:
581  *  - start an array
582  *  - remove non-faulty devices
583  *  - add a spare
584  *  - allow a reshape
585  * This determination is simple when no reshape is happening.
586  * However if there is a reshape, we need to carefully check
587  * both the before and after sections.
588  * This is because some failed devices may only affect one
589  * of the two sections, and some non-in_sync devices may
590  * be insync in the section most affected by failed devices.
591  */
592 static int calc_degraded(struct r5conf *conf)
593 {
594         int degraded, degraded2;
595         int i;
596
597         rcu_read_lock();
598         degraded = 0;
599         for (i = 0; i < conf->previous_raid_disks; i++) {
600                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601                 if (rdev && test_bit(Faulty, &rdev->flags))
602                         rdev = rcu_dereference(conf->disks[i].replacement);
603                 if (!rdev || test_bit(Faulty, &rdev->flags))
604                         degraded++;
605                 else if (test_bit(In_sync, &rdev->flags))
606                         ;
607                 else
608                         /* not in-sync or faulty.
609                          * If the reshape increases the number of devices,
610                          * this is being recovered by the reshape, so
611                          * this 'previous' section is not in_sync.
612                          * If the number of devices is being reduced however,
613                          * the device can only be part of the array if
614                          * we are reverting a reshape, so this section will
615                          * be in-sync.
616                          */
617                         if (conf->raid_disks >= conf->previous_raid_disks)
618                                 degraded++;
619         }
620         rcu_read_unlock();
621         if (conf->raid_disks == conf->previous_raid_disks)
622                 return degraded;
623         rcu_read_lock();
624         degraded2 = 0;
625         for (i = 0; i < conf->raid_disks; i++) {
626                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627                 if (rdev && test_bit(Faulty, &rdev->flags))
628                         rdev = rcu_dereference(conf->disks[i].replacement);
629                 if (!rdev || test_bit(Faulty, &rdev->flags))
630                         degraded2++;
631                 else if (test_bit(In_sync, &rdev->flags))
632                         ;
633                 else
634                         /* not in-sync or faulty.
635                          * If reshape increases the number of devices, this
636                          * section has already been recovered, else it
637                          * almost certainly hasn't.
638                          */
639                         if (conf->raid_disks <= conf->previous_raid_disks)
640                                 degraded2++;
641         }
642         rcu_read_unlock();
643         if (degraded2 > degraded)
644                 return degraded2;
645         return degraded;
646 }
647
648 static int has_failed(struct r5conf *conf)
649 {
650         int degraded;
651
652         if (conf->mddev->reshape_position == MaxSector)
653                 return conf->mddev->degraded > conf->max_degraded;
654
655         degraded = calc_degraded(conf);
656         if (degraded > conf->max_degraded)
657                 return 1;
658         return 0;
659 }
660
661 static struct stripe_head *
662 get_active_stripe(struct r5conf *conf, sector_t sector,
663                   int previous, int noblock, int noquiesce)
664 {
665         struct stripe_head *sh;
666         int hash = stripe_hash_locks_hash(sector);
667
668         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669
670         spin_lock_irq(conf->hash_locks + hash);
671
672         do {
673                 wait_event_lock_irq(conf->wait_for_quiescent,
674                                     conf->quiesce == 0 || noquiesce,
675                                     *(conf->hash_locks + hash));
676                 sh = __find_stripe(conf, sector, conf->generation - previous);
677                 if (!sh) {
678                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679                                 sh = get_free_stripe(conf, hash);
680                                 if (!sh && !test_bit(R5_DID_ALLOC,
681                                                      &conf->cache_state))
682                                         set_bit(R5_ALLOC_MORE,
683                                                 &conf->cache_state);
684                         }
685                         if (noblock && sh == NULL)
686                                 break;
687                         if (!sh) {
688                                 set_bit(R5_INACTIVE_BLOCKED,
689                                         &conf->cache_state);
690                                 wait_event_exclusive_cmd(
691                                         conf->wait_for_stripe[hash],
692                                         !list_empty(conf->inactive_list + hash) &&
693                                         (atomic_read(&conf->active_stripes)
694                                          < (conf->max_nr_stripes * 3 / 4)
695                                          || !test_bit(R5_INACTIVE_BLOCKED,
696                                                       &conf->cache_state)),
697                                         spin_unlock_irq(conf->hash_locks + hash),
698                                         spin_lock_irq(conf->hash_locks + hash));
699                                 clear_bit(R5_INACTIVE_BLOCKED,
700                                           &conf->cache_state);
701                         } else {
702                                 init_stripe(sh, sector, previous);
703                                 atomic_inc(&sh->count);
704                         }
705                 } else if (!atomic_inc_not_zero(&sh->count)) {
706                         spin_lock(&conf->device_lock);
707                         if (!atomic_read(&sh->count)) {
708                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
709                                         atomic_inc(&conf->active_stripes);
710                                 BUG_ON(list_empty(&sh->lru) &&
711                                        !test_bit(STRIPE_EXPANDING, &sh->state));
712                                 list_del_init(&sh->lru);
713                                 if (sh->group) {
714                                         sh->group->stripes_cnt--;
715                                         sh->group = NULL;
716                                 }
717                         }
718                         atomic_inc(&sh->count);
719                         spin_unlock(&conf->device_lock);
720                 }
721         } while (sh == NULL);
722
723         if (!list_empty(conf->inactive_list + hash))
724                 wake_up(&conf->wait_for_stripe[hash]);
725
726         spin_unlock_irq(conf->hash_locks + hash);
727         return sh;
728 }
729
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738         local_irq_disable();
739         if (sh1 > sh2) {
740                 spin_lock(&sh2->stripe_lock);
741                 spin_lock_nested(&sh1->stripe_lock, 1);
742         } else {
743                 spin_lock(&sh1->stripe_lock);
744                 spin_lock_nested(&sh2->stripe_lock, 1);
745         }
746 }
747
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750         spin_unlock(&sh1->stripe_lock);
751         spin_unlock(&sh2->stripe_lock);
752         local_irq_enable();
753 }
754
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
759                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
760                 is_full_stripe_write(sh);
761 }
762
763 /* we only do back search */
764 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
765 {
766         struct stripe_head *head;
767         sector_t head_sector, tmp_sec;
768         int hash;
769         int dd_idx;
770
771         if (!stripe_can_batch(sh))
772                 return;
773         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774         tmp_sec = sh->sector;
775         if (!sector_div(tmp_sec, conf->chunk_sectors))
776                 return;
777         head_sector = sh->sector - STRIPE_SECTORS;
778
779         hash = stripe_hash_locks_hash(head_sector);
780         spin_lock_irq(conf->hash_locks + hash);
781         head = __find_stripe(conf, head_sector, conf->generation);
782         if (head && !atomic_inc_not_zero(&head->count)) {
783                 spin_lock(&conf->device_lock);
784                 if (!atomic_read(&head->count)) {
785                         if (!test_bit(STRIPE_HANDLE, &head->state))
786                                 atomic_inc(&conf->active_stripes);
787                         BUG_ON(list_empty(&head->lru) &&
788                                !test_bit(STRIPE_EXPANDING, &head->state));
789                         list_del_init(&head->lru);
790                         if (head->group) {
791                                 head->group->stripes_cnt--;
792                                 head->group = NULL;
793                         }
794                 }
795                 atomic_inc(&head->count);
796                 spin_unlock(&conf->device_lock);
797         }
798         spin_unlock_irq(conf->hash_locks + hash);
799
800         if (!head)
801                 return;
802         if (!stripe_can_batch(head))
803                 goto out;
804
805         lock_two_stripes(head, sh);
806         /* clear_batch_ready clear the flag */
807         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
808                 goto unlock_out;
809
810         if (sh->batch_head)
811                 goto unlock_out;
812
813         dd_idx = 0;
814         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
815                 dd_idx++;
816         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
817                 goto unlock_out;
818
819         if (head->batch_head) {
820                 spin_lock(&head->batch_head->batch_lock);
821                 /* This batch list is already running */
822                 if (!stripe_can_batch(head)) {
823                         spin_unlock(&head->batch_head->batch_lock);
824                         goto unlock_out;
825                 }
826
827                 /*
828                  * at this point, head's BATCH_READY could be cleared, but we
829                  * can still add the stripe to batch list
830                  */
831                 list_add(&sh->batch_list, &head->batch_list);
832                 spin_unlock(&head->batch_head->batch_lock);
833
834                 sh->batch_head = head->batch_head;
835         } else {
836                 head->batch_head = head;
837                 sh->batch_head = head->batch_head;
838                 spin_lock(&head->batch_lock);
839                 list_add_tail(&sh->batch_list, &head->batch_list);
840                 spin_unlock(&head->batch_lock);
841         }
842
843         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
844                 if (atomic_dec_return(&conf->preread_active_stripes)
845                     < IO_THRESHOLD)
846                         md_wakeup_thread(conf->mddev->thread);
847
848         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
849                 int seq = sh->bm_seq;
850                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
851                     sh->batch_head->bm_seq > seq)
852                         seq = sh->batch_head->bm_seq;
853                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
854                 sh->batch_head->bm_seq = seq;
855         }
856
857         atomic_inc(&sh->count);
858 unlock_out:
859         unlock_two_stripes(head, sh);
860 out:
861         release_stripe(head);
862 }
863
864 /* Determine if 'data_offset' or 'new_data_offset' should be used
865  * in this stripe_head.
866  */
867 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
868 {
869         sector_t progress = conf->reshape_progress;
870         /* Need a memory barrier to make sure we see the value
871          * of conf->generation, or ->data_offset that was set before
872          * reshape_progress was updated.
873          */
874         smp_rmb();
875         if (progress == MaxSector)
876                 return 0;
877         if (sh->generation == conf->generation - 1)
878                 return 0;
879         /* We are in a reshape, and this is a new-generation stripe,
880          * so use new_data_offset.
881          */
882         return 1;
883 }
884
885 static void
886 raid5_end_read_request(struct bio *bi);
887 static void
888 raid5_end_write_request(struct bio *bi);
889
890 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
891 {
892         struct r5conf *conf = sh->raid_conf;
893         int i, disks = sh->disks;
894         struct stripe_head *head_sh = sh;
895
896         might_sleep();
897
898         for (i = disks; i--; ) {
899                 int rw;
900                 int replace_only = 0;
901                 struct bio *bi, *rbi;
902                 struct md_rdev *rdev, *rrdev = NULL;
903
904                 sh = head_sh;
905                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
906                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
907                                 rw = WRITE_FUA;
908                         else
909                                 rw = WRITE;
910                         if (test_bit(R5_Discard, &sh->dev[i].flags))
911                                 rw |= REQ_DISCARD;
912                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
913                         rw = READ;
914                 else if (test_and_clear_bit(R5_WantReplace,
915                                             &sh->dev[i].flags)) {
916                         rw = WRITE;
917                         replace_only = 1;
918                 } else
919                         continue;
920                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
921                         rw |= REQ_SYNC;
922
923 again:
924                 bi = &sh->dev[i].req;
925                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
926
927                 rcu_read_lock();
928                 rrdev = rcu_dereference(conf->disks[i].replacement);
929                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
930                 rdev = rcu_dereference(conf->disks[i].rdev);
931                 if (!rdev) {
932                         rdev = rrdev;
933                         rrdev = NULL;
934                 }
935                 if (rw & WRITE) {
936                         if (replace_only)
937                                 rdev = NULL;
938                         if (rdev == rrdev)
939                                 /* We raced and saw duplicates */
940                                 rrdev = NULL;
941                 } else {
942                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
943                                 rdev = rrdev;
944                         rrdev = NULL;
945                 }
946
947                 if (rdev && test_bit(Faulty, &rdev->flags))
948                         rdev = NULL;
949                 if (rdev)
950                         atomic_inc(&rdev->nr_pending);
951                 if (rrdev && test_bit(Faulty, &rrdev->flags))
952                         rrdev = NULL;
953                 if (rrdev)
954                         atomic_inc(&rrdev->nr_pending);
955                 rcu_read_unlock();
956
957                 /* We have already checked bad blocks for reads.  Now
958                  * need to check for writes.  We never accept write errors
959                  * on the replacement, so we don't to check rrdev.
960                  */
961                 while ((rw & WRITE) && rdev &&
962                        test_bit(WriteErrorSeen, &rdev->flags)) {
963                         sector_t first_bad;
964                         int bad_sectors;
965                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
966                                               &first_bad, &bad_sectors);
967                         if (!bad)
968                                 break;
969
970                         if (bad < 0) {
971                                 set_bit(BlockedBadBlocks, &rdev->flags);
972                                 if (!conf->mddev->external &&
973                                     conf->mddev->flags) {
974                                         /* It is very unlikely, but we might
975                                          * still need to write out the
976                                          * bad block log - better give it
977                                          * a chance*/
978                                         md_check_recovery(conf->mddev);
979                                 }
980                                 /*
981                                  * Because md_wait_for_blocked_rdev
982                                  * will dec nr_pending, we must
983                                  * increment it first.
984                                  */
985                                 atomic_inc(&rdev->nr_pending);
986                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
987                         } else {
988                                 /* Acknowledged bad block - skip the write */
989                                 rdev_dec_pending(rdev, conf->mddev);
990                                 rdev = NULL;
991                         }
992                 }
993
994                 if (rdev) {
995                         if (s->syncing || s->expanding || s->expanded
996                             || s->replacing)
997                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
998
999                         set_bit(STRIPE_IO_STARTED, &sh->state);
1000
1001                         bio_reset(bi);
1002                         bi->bi_bdev = rdev->bdev;
1003                         bi->bi_rw = rw;
1004                         bi->bi_end_io = (rw & WRITE)
1005                                 ? raid5_end_write_request
1006                                 : raid5_end_read_request;
1007                         bi->bi_private = sh;
1008
1009                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1010                                 __func__, (unsigned long long)sh->sector,
1011                                 bi->bi_rw, i);
1012                         atomic_inc(&sh->count);
1013                         if (sh != head_sh)
1014                                 atomic_inc(&head_sh->count);
1015                         if (use_new_offset(conf, sh))
1016                                 bi->bi_iter.bi_sector = (sh->sector
1017                                                  + rdev->new_data_offset);
1018                         else
1019                                 bi->bi_iter.bi_sector = (sh->sector
1020                                                  + rdev->data_offset);
1021                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1022                                 bi->bi_rw |= REQ_NOMERGE;
1023
1024                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1025                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1026                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1027                         bi->bi_vcnt = 1;
1028                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1029                         bi->bi_io_vec[0].bv_offset = 0;
1030                         bi->bi_iter.bi_size = STRIPE_SIZE;
1031                         /*
1032                          * If this is discard request, set bi_vcnt 0. We don't
1033                          * want to confuse SCSI because SCSI will replace payload
1034                          */
1035                         if (rw & REQ_DISCARD)
1036                                 bi->bi_vcnt = 0;
1037                         if (rrdev)
1038                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1039
1040                         if (conf->mddev->gendisk)
1041                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1042                                                       bi, disk_devt(conf->mddev->gendisk),
1043                                                       sh->dev[i].sector);
1044                         generic_make_request(bi);
1045                 }
1046                 if (rrdev) {
1047                         if (s->syncing || s->expanding || s->expanded
1048                             || s->replacing)
1049                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1050
1051                         set_bit(STRIPE_IO_STARTED, &sh->state);
1052
1053                         bio_reset(rbi);
1054                         rbi->bi_bdev = rrdev->bdev;
1055                         rbi->bi_rw = rw;
1056                         BUG_ON(!(rw & WRITE));
1057                         rbi->bi_end_io = raid5_end_write_request;
1058                         rbi->bi_private = sh;
1059
1060                         pr_debug("%s: for %llu schedule op %ld on "
1061                                  "replacement disc %d\n",
1062                                 __func__, (unsigned long long)sh->sector,
1063                                 rbi->bi_rw, i);
1064                         atomic_inc(&sh->count);
1065                         if (sh != head_sh)
1066                                 atomic_inc(&head_sh->count);
1067                         if (use_new_offset(conf, sh))
1068                                 rbi->bi_iter.bi_sector = (sh->sector
1069                                                   + rrdev->new_data_offset);
1070                         else
1071                                 rbi->bi_iter.bi_sector = (sh->sector
1072                                                   + rrdev->data_offset);
1073                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1074                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1075                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1076                         rbi->bi_vcnt = 1;
1077                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1078                         rbi->bi_io_vec[0].bv_offset = 0;
1079                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1080                         /*
1081                          * If this is discard request, set bi_vcnt 0. We don't
1082                          * want to confuse SCSI because SCSI will replace payload
1083                          */
1084                         if (rw & REQ_DISCARD)
1085                                 rbi->bi_vcnt = 0;
1086                         if (conf->mddev->gendisk)
1087                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1088                                                       rbi, disk_devt(conf->mddev->gendisk),
1089                                                       sh->dev[i].sector);
1090                         generic_make_request(rbi);
1091                 }
1092                 if (!rdev && !rrdev) {
1093                         if (rw & WRITE)
1094                                 set_bit(STRIPE_DEGRADED, &sh->state);
1095                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1096                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1097                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1098                         set_bit(STRIPE_HANDLE, &sh->state);
1099                 }
1100
1101                 if (!head_sh->batch_head)
1102                         continue;
1103                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1104                                       batch_list);
1105                 if (sh != head_sh)
1106                         goto again;
1107         }
1108 }
1109
1110 static struct dma_async_tx_descriptor *
1111 async_copy_data(int frombio, struct bio *bio, struct page **page,
1112         sector_t sector, struct dma_async_tx_descriptor *tx,
1113         struct stripe_head *sh)
1114 {
1115         struct bio_vec bvl;
1116         struct bvec_iter iter;
1117         struct page *bio_page;
1118         int page_offset;
1119         struct async_submit_ctl submit;
1120         enum async_tx_flags flags = 0;
1121
1122         if (bio->bi_iter.bi_sector >= sector)
1123                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1124         else
1125                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1126
1127         if (frombio)
1128                 flags |= ASYNC_TX_FENCE;
1129         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1130
1131         bio_for_each_segment(bvl, bio, iter) {
1132                 int len = bvl.bv_len;
1133                 int clen;
1134                 int b_offset = 0;
1135
1136                 if (page_offset < 0) {
1137                         b_offset = -page_offset;
1138                         page_offset += b_offset;
1139                         len -= b_offset;
1140                 }
1141
1142                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1143                         clen = STRIPE_SIZE - page_offset;
1144                 else
1145                         clen = len;
1146
1147                 if (clen > 0) {
1148                         b_offset += bvl.bv_offset;
1149                         bio_page = bvl.bv_page;
1150                         if (frombio) {
1151                                 if (sh->raid_conf->skip_copy &&
1152                                     b_offset == 0 && page_offset == 0 &&
1153                                     clen == STRIPE_SIZE)
1154                                         *page = bio_page;
1155                                 else
1156                                         tx = async_memcpy(*page, bio_page, page_offset,
1157                                                   b_offset, clen, &submit);
1158                         } else
1159                                 tx = async_memcpy(bio_page, *page, b_offset,
1160                                                   page_offset, clen, &submit);
1161                 }
1162                 /* chain the operations */
1163                 submit.depend_tx = tx;
1164
1165                 if (clen < len) /* hit end of page */
1166                         break;
1167                 page_offset +=  len;
1168         }
1169
1170         return tx;
1171 }
1172
1173 static void ops_complete_biofill(void *stripe_head_ref)
1174 {
1175         struct stripe_head *sh = stripe_head_ref;
1176         struct bio_list return_bi = BIO_EMPTY_LIST;
1177         int i;
1178
1179         pr_debug("%s: stripe %llu\n", __func__,
1180                 (unsigned long long)sh->sector);
1181
1182         /* clear completed biofills */
1183         for (i = sh->disks; i--; ) {
1184                 struct r5dev *dev = &sh->dev[i];
1185
1186                 /* acknowledge completion of a biofill operation */
1187                 /* and check if we need to reply to a read request,
1188                  * new R5_Wantfill requests are held off until
1189                  * !STRIPE_BIOFILL_RUN
1190                  */
1191                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1192                         struct bio *rbi, *rbi2;
1193
1194                         BUG_ON(!dev->read);
1195                         rbi = dev->read;
1196                         dev->read = NULL;
1197                         while (rbi && rbi->bi_iter.bi_sector <
1198                                 dev->sector + STRIPE_SECTORS) {
1199                                 rbi2 = r5_next_bio(rbi, dev->sector);
1200                                 if (!raid5_dec_bi_active_stripes(rbi))
1201                                         bio_list_add(&return_bi, rbi);
1202                                 rbi = rbi2;
1203                         }
1204                 }
1205         }
1206         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1207
1208         return_io(&return_bi);
1209
1210         set_bit(STRIPE_HANDLE, &sh->state);
1211         release_stripe(sh);
1212 }
1213
1214 static void ops_run_biofill(struct stripe_head *sh)
1215 {
1216         struct dma_async_tx_descriptor *tx = NULL;
1217         struct async_submit_ctl submit;
1218         int i;
1219
1220         BUG_ON(sh->batch_head);
1221         pr_debug("%s: stripe %llu\n", __func__,
1222                 (unsigned long long)sh->sector);
1223
1224         for (i = sh->disks; i--; ) {
1225                 struct r5dev *dev = &sh->dev[i];
1226                 if (test_bit(R5_Wantfill, &dev->flags)) {
1227                         struct bio *rbi;
1228                         spin_lock_irq(&sh->stripe_lock);
1229                         dev->read = rbi = dev->toread;
1230                         dev->toread = NULL;
1231                         spin_unlock_irq(&sh->stripe_lock);
1232                         while (rbi && rbi->bi_iter.bi_sector <
1233                                 dev->sector + STRIPE_SECTORS) {
1234                                 tx = async_copy_data(0, rbi, &dev->page,
1235                                         dev->sector, tx, sh);
1236                                 rbi = r5_next_bio(rbi, dev->sector);
1237                         }
1238                 }
1239         }
1240
1241         atomic_inc(&sh->count);
1242         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1243         async_trigger_callback(&submit);
1244 }
1245
1246 static void mark_target_uptodate(struct stripe_head *sh, int target)
1247 {
1248         struct r5dev *tgt;
1249
1250         if (target < 0)
1251                 return;
1252
1253         tgt = &sh->dev[target];
1254         set_bit(R5_UPTODATE, &tgt->flags);
1255         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1256         clear_bit(R5_Wantcompute, &tgt->flags);
1257 }
1258
1259 static void ops_complete_compute(void *stripe_head_ref)
1260 {
1261         struct stripe_head *sh = stripe_head_ref;
1262
1263         pr_debug("%s: stripe %llu\n", __func__,
1264                 (unsigned long long)sh->sector);
1265
1266         /* mark the computed target(s) as uptodate */
1267         mark_target_uptodate(sh, sh->ops.target);
1268         mark_target_uptodate(sh, sh->ops.target2);
1269
1270         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1271         if (sh->check_state == check_state_compute_run)
1272                 sh->check_state = check_state_compute_result;
1273         set_bit(STRIPE_HANDLE, &sh->state);
1274         release_stripe(sh);
1275 }
1276
1277 /* return a pointer to the address conversion region of the scribble buffer */
1278 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1279                                  struct raid5_percpu *percpu, int i)
1280 {
1281         void *addr;
1282
1283         addr = flex_array_get(percpu->scribble, i);
1284         return addr + sizeof(struct page *) * (sh->disks + 2);
1285 }
1286
1287 /* return a pointer to the address conversion region of the scribble buffer */
1288 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1289 {
1290         void *addr;
1291
1292         addr = flex_array_get(percpu->scribble, i);
1293         return addr;
1294 }
1295
1296 static struct dma_async_tx_descriptor *
1297 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1298 {
1299         int disks = sh->disks;
1300         struct page **xor_srcs = to_addr_page(percpu, 0);
1301         int target = sh->ops.target;
1302         struct r5dev *tgt = &sh->dev[target];
1303         struct page *xor_dest = tgt->page;
1304         int count = 0;
1305         struct dma_async_tx_descriptor *tx;
1306         struct async_submit_ctl submit;
1307         int i;
1308
1309         BUG_ON(sh->batch_head);
1310
1311         pr_debug("%s: stripe %llu block: %d\n",
1312                 __func__, (unsigned long long)sh->sector, target);
1313         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1314
1315         for (i = disks; i--; )
1316                 if (i != target)
1317                         xor_srcs[count++] = sh->dev[i].page;
1318
1319         atomic_inc(&sh->count);
1320
1321         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1322                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1323         if (unlikely(count == 1))
1324                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1325         else
1326                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1327
1328         return tx;
1329 }
1330
1331 /* set_syndrome_sources - populate source buffers for gen_syndrome
1332  * @srcs - (struct page *) array of size sh->disks
1333  * @sh - stripe_head to parse
1334  *
1335  * Populates srcs in proper layout order for the stripe and returns the
1336  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1337  * destination buffer is recorded in srcs[count] and the Q destination
1338  * is recorded in srcs[count+1]].
1339  */
1340 static int set_syndrome_sources(struct page **srcs,
1341                                 struct stripe_head *sh,
1342                                 int srctype)
1343 {
1344         int disks = sh->disks;
1345         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1346         int d0_idx = raid6_d0(sh);
1347         int count;
1348         int i;
1349
1350         for (i = 0; i < disks; i++)
1351                 srcs[i] = NULL;
1352
1353         count = 0;
1354         i = d0_idx;
1355         do {
1356                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1357                 struct r5dev *dev = &sh->dev[i];
1358
1359                 if (i == sh->qd_idx || i == sh->pd_idx ||
1360                     (srctype == SYNDROME_SRC_ALL) ||
1361                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1362                      test_bit(R5_Wantdrain, &dev->flags)) ||
1363                     (srctype == SYNDROME_SRC_WRITTEN &&
1364                      dev->written))
1365                         srcs[slot] = sh->dev[i].page;
1366                 i = raid6_next_disk(i, disks);
1367         } while (i != d0_idx);
1368
1369         return syndrome_disks;
1370 }
1371
1372 static struct dma_async_tx_descriptor *
1373 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1374 {
1375         int disks = sh->disks;
1376         struct page **blocks = to_addr_page(percpu, 0);
1377         int target;
1378         int qd_idx = sh->qd_idx;
1379         struct dma_async_tx_descriptor *tx;
1380         struct async_submit_ctl submit;
1381         struct r5dev *tgt;
1382         struct page *dest;
1383         int i;
1384         int count;
1385
1386         BUG_ON(sh->batch_head);
1387         if (sh->ops.target < 0)
1388                 target = sh->ops.target2;
1389         else if (sh->ops.target2 < 0)
1390                 target = sh->ops.target;
1391         else
1392                 /* we should only have one valid target */
1393                 BUG();
1394         BUG_ON(target < 0);
1395         pr_debug("%s: stripe %llu block: %d\n",
1396                 __func__, (unsigned long long)sh->sector, target);
1397
1398         tgt = &sh->dev[target];
1399         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1400         dest = tgt->page;
1401
1402         atomic_inc(&sh->count);
1403
1404         if (target == qd_idx) {
1405                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1406                 blocks[count] = NULL; /* regenerating p is not necessary */
1407                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1408                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1409                                   ops_complete_compute, sh,
1410                                   to_addr_conv(sh, percpu, 0));
1411                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1412         } else {
1413                 /* Compute any data- or p-drive using XOR */
1414                 count = 0;
1415                 for (i = disks; i-- ; ) {
1416                         if (i == target || i == qd_idx)
1417                                 continue;
1418                         blocks[count++] = sh->dev[i].page;
1419                 }
1420
1421                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1422                                   NULL, ops_complete_compute, sh,
1423                                   to_addr_conv(sh, percpu, 0));
1424                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1425         }
1426
1427         return tx;
1428 }
1429
1430 static struct dma_async_tx_descriptor *
1431 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1432 {
1433         int i, count, disks = sh->disks;
1434         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1435         int d0_idx = raid6_d0(sh);
1436         int faila = -1, failb = -1;
1437         int target = sh->ops.target;
1438         int target2 = sh->ops.target2;
1439         struct r5dev *tgt = &sh->dev[target];
1440         struct r5dev *tgt2 = &sh->dev[target2];
1441         struct dma_async_tx_descriptor *tx;
1442         struct page **blocks = to_addr_page(percpu, 0);
1443         struct async_submit_ctl submit;
1444
1445         BUG_ON(sh->batch_head);
1446         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1447                  __func__, (unsigned long long)sh->sector, target, target2);
1448         BUG_ON(target < 0 || target2 < 0);
1449         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1450         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1451
1452         /* we need to open-code set_syndrome_sources to handle the
1453          * slot number conversion for 'faila' and 'failb'
1454          */
1455         for (i = 0; i < disks ; i++)
1456                 blocks[i] = NULL;
1457         count = 0;
1458         i = d0_idx;
1459         do {
1460                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1461
1462                 blocks[slot] = sh->dev[i].page;
1463
1464                 if (i == target)
1465                         faila = slot;
1466                 if (i == target2)
1467                         failb = slot;
1468                 i = raid6_next_disk(i, disks);
1469         } while (i != d0_idx);
1470
1471         BUG_ON(faila == failb);
1472         if (failb < faila)
1473                 swap(faila, failb);
1474         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1475                  __func__, (unsigned long long)sh->sector, faila, failb);
1476
1477         atomic_inc(&sh->count);
1478
1479         if (failb == syndrome_disks+1) {
1480                 /* Q disk is one of the missing disks */
1481                 if (faila == syndrome_disks) {
1482                         /* Missing P+Q, just recompute */
1483                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1484                                           ops_complete_compute, sh,
1485                                           to_addr_conv(sh, percpu, 0));
1486                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1487                                                   STRIPE_SIZE, &submit);
1488                 } else {
1489                         struct page *dest;
1490                         int data_target;
1491                         int qd_idx = sh->qd_idx;
1492
1493                         /* Missing D+Q: recompute D from P, then recompute Q */
1494                         if (target == qd_idx)
1495                                 data_target = target2;
1496                         else
1497                                 data_target = target;
1498
1499                         count = 0;
1500                         for (i = disks; i-- ; ) {
1501                                 if (i == data_target || i == qd_idx)
1502                                         continue;
1503                                 blocks[count++] = sh->dev[i].page;
1504                         }
1505                         dest = sh->dev[data_target].page;
1506                         init_async_submit(&submit,
1507                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1508                                           NULL, NULL, NULL,
1509                                           to_addr_conv(sh, percpu, 0));
1510                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1511                                        &submit);
1512
1513                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1514                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1515                                           ops_complete_compute, sh,
1516                                           to_addr_conv(sh, percpu, 0));
1517                         return async_gen_syndrome(blocks, 0, count+2,
1518                                                   STRIPE_SIZE, &submit);
1519                 }
1520         } else {
1521                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1522                                   ops_complete_compute, sh,
1523                                   to_addr_conv(sh, percpu, 0));
1524                 if (failb == syndrome_disks) {
1525                         /* We're missing D+P. */
1526                         return async_raid6_datap_recov(syndrome_disks+2,
1527                                                        STRIPE_SIZE, faila,
1528                                                        blocks, &submit);
1529                 } else {
1530                         /* We're missing D+D. */
1531                         return async_raid6_2data_recov(syndrome_disks+2,
1532                                                        STRIPE_SIZE, faila, failb,
1533                                                        blocks, &submit);
1534                 }
1535         }
1536 }
1537
1538 static void ops_complete_prexor(void *stripe_head_ref)
1539 {
1540         struct stripe_head *sh = stripe_head_ref;
1541
1542         pr_debug("%s: stripe %llu\n", __func__,
1543                 (unsigned long long)sh->sector);
1544 }
1545
1546 static struct dma_async_tx_descriptor *
1547 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1548                 struct dma_async_tx_descriptor *tx)
1549 {
1550         int disks = sh->disks;
1551         struct page **xor_srcs = to_addr_page(percpu, 0);
1552         int count = 0, pd_idx = sh->pd_idx, i;
1553         struct async_submit_ctl submit;
1554
1555         /* existing parity data subtracted */
1556         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1557
1558         BUG_ON(sh->batch_head);
1559         pr_debug("%s: stripe %llu\n", __func__,
1560                 (unsigned long long)sh->sector);
1561
1562         for (i = disks; i--; ) {
1563                 struct r5dev *dev = &sh->dev[i];
1564                 /* Only process blocks that are known to be uptodate */
1565                 if (test_bit(R5_Wantdrain, &dev->flags))
1566                         xor_srcs[count++] = dev->page;
1567         }
1568
1569         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1570                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1571         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1572
1573         return tx;
1574 }
1575
1576 static struct dma_async_tx_descriptor *
1577 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1578                 struct dma_async_tx_descriptor *tx)
1579 {
1580         struct page **blocks = to_addr_page(percpu, 0);
1581         int count;
1582         struct async_submit_ctl submit;
1583
1584         pr_debug("%s: stripe %llu\n", __func__,
1585                 (unsigned long long)sh->sector);
1586
1587         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1588
1589         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1590                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1591         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1592
1593         return tx;
1594 }
1595
1596 static struct dma_async_tx_descriptor *
1597 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1598 {
1599         int disks = sh->disks;
1600         int i;
1601         struct stripe_head *head_sh = sh;
1602
1603         pr_debug("%s: stripe %llu\n", __func__,
1604                 (unsigned long long)sh->sector);
1605
1606         for (i = disks; i--; ) {
1607                 struct r5dev *dev;
1608                 struct bio *chosen;
1609
1610                 sh = head_sh;
1611                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1612                         struct bio *wbi;
1613
1614 again:
1615                         dev = &sh->dev[i];
1616                         spin_lock_irq(&sh->stripe_lock);
1617                         chosen = dev->towrite;
1618                         dev->towrite = NULL;
1619                         sh->overwrite_disks = 0;
1620                         BUG_ON(dev->written);
1621                         wbi = dev->written = chosen;
1622                         spin_unlock_irq(&sh->stripe_lock);
1623                         WARN_ON(dev->page != dev->orig_page);
1624
1625                         while (wbi && wbi->bi_iter.bi_sector <
1626                                 dev->sector + STRIPE_SECTORS) {
1627                                 if (wbi->bi_rw & REQ_FUA)
1628                                         set_bit(R5_WantFUA, &dev->flags);
1629                                 if (wbi->bi_rw & REQ_SYNC)
1630                                         set_bit(R5_SyncIO, &dev->flags);
1631                                 if (wbi->bi_rw & REQ_DISCARD)
1632                                         set_bit(R5_Discard, &dev->flags);
1633                                 else {
1634                                         tx = async_copy_data(1, wbi, &dev->page,
1635                                                 dev->sector, tx, sh);
1636                                         if (dev->page != dev->orig_page) {
1637                                                 set_bit(R5_SkipCopy, &dev->flags);
1638                                                 clear_bit(R5_UPTODATE, &dev->flags);
1639                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1640                                         }
1641                                 }
1642                                 wbi = r5_next_bio(wbi, dev->sector);
1643                         }
1644
1645                         if (head_sh->batch_head) {
1646                                 sh = list_first_entry(&sh->batch_list,
1647                                                       struct stripe_head,
1648                                                       batch_list);
1649                                 if (sh == head_sh)
1650                                         continue;
1651                                 goto again;
1652                         }
1653                 }
1654         }
1655
1656         return tx;
1657 }
1658
1659 static void ops_complete_reconstruct(void *stripe_head_ref)
1660 {
1661         struct stripe_head *sh = stripe_head_ref;
1662         int disks = sh->disks;
1663         int pd_idx = sh->pd_idx;
1664         int qd_idx = sh->qd_idx;
1665         int i;
1666         bool fua = false, sync = false, discard = false;
1667
1668         pr_debug("%s: stripe %llu\n", __func__,
1669                 (unsigned long long)sh->sector);
1670
1671         for (i = disks; i--; ) {
1672                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1673                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1674                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1675         }
1676
1677         for (i = disks; i--; ) {
1678                 struct r5dev *dev = &sh->dev[i];
1679
1680                 if (dev->written || i == pd_idx || i == qd_idx) {
1681                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1682                                 set_bit(R5_UPTODATE, &dev->flags);
1683                         if (fua)
1684                                 set_bit(R5_WantFUA, &dev->flags);
1685                         if (sync)
1686                                 set_bit(R5_SyncIO, &dev->flags);
1687                 }
1688         }
1689
1690         if (sh->reconstruct_state == reconstruct_state_drain_run)
1691                 sh->reconstruct_state = reconstruct_state_drain_result;
1692         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1693                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1694         else {
1695                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1696                 sh->reconstruct_state = reconstruct_state_result;
1697         }
1698
1699         set_bit(STRIPE_HANDLE, &sh->state);
1700         release_stripe(sh);
1701 }
1702
1703 static void
1704 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1705                      struct dma_async_tx_descriptor *tx)
1706 {
1707         int disks = sh->disks;
1708         struct page **xor_srcs;
1709         struct async_submit_ctl submit;
1710         int count, pd_idx = sh->pd_idx, i;
1711         struct page *xor_dest;
1712         int prexor = 0;
1713         unsigned long flags;
1714         int j = 0;
1715         struct stripe_head *head_sh = sh;
1716         int last_stripe;
1717
1718         pr_debug("%s: stripe %llu\n", __func__,
1719                 (unsigned long long)sh->sector);
1720
1721         for (i = 0; i < sh->disks; i++) {
1722                 if (pd_idx == i)
1723                         continue;
1724                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1725                         break;
1726         }
1727         if (i >= sh->disks) {
1728                 atomic_inc(&sh->count);
1729                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1730                 ops_complete_reconstruct(sh);
1731                 return;
1732         }
1733 again:
1734         count = 0;
1735         xor_srcs = to_addr_page(percpu, j);
1736         /* check if prexor is active which means only process blocks
1737          * that are part of a read-modify-write (written)
1738          */
1739         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1740                 prexor = 1;
1741                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1742                 for (i = disks; i--; ) {
1743                         struct r5dev *dev = &sh->dev[i];
1744                         if (head_sh->dev[i].written)
1745                                 xor_srcs[count++] = dev->page;
1746                 }
1747         } else {
1748                 xor_dest = sh->dev[pd_idx].page;
1749                 for (i = disks; i--; ) {
1750                         struct r5dev *dev = &sh->dev[i];
1751                         if (i != pd_idx)
1752                                 xor_srcs[count++] = dev->page;
1753                 }
1754         }
1755
1756         /* 1/ if we prexor'd then the dest is reused as a source
1757          * 2/ if we did not prexor then we are redoing the parity
1758          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1759          * for the synchronous xor case
1760          */
1761         last_stripe = !head_sh->batch_head ||
1762                 list_first_entry(&sh->batch_list,
1763                                  struct stripe_head, batch_list) == head_sh;
1764         if (last_stripe) {
1765                 flags = ASYNC_TX_ACK |
1766                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1767
1768                 atomic_inc(&head_sh->count);
1769                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1770                                   to_addr_conv(sh, percpu, j));
1771         } else {
1772                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1773                 init_async_submit(&submit, flags, tx, NULL, NULL,
1774                                   to_addr_conv(sh, percpu, j));
1775         }
1776
1777         if (unlikely(count == 1))
1778                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1779         else
1780                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1781         if (!last_stripe) {
1782                 j++;
1783                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1784                                       batch_list);
1785                 goto again;
1786         }
1787 }
1788
1789 static void
1790 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1791                      struct dma_async_tx_descriptor *tx)
1792 {
1793         struct async_submit_ctl submit;
1794         struct page **blocks;
1795         int count, i, j = 0;
1796         struct stripe_head *head_sh = sh;
1797         int last_stripe;
1798         int synflags;
1799         unsigned long txflags;
1800
1801         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1802
1803         for (i = 0; i < sh->disks; i++) {
1804                 if (sh->pd_idx == i || sh->qd_idx == i)
1805                         continue;
1806                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1807                         break;
1808         }
1809         if (i >= sh->disks) {
1810                 atomic_inc(&sh->count);
1811                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1812                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1813                 ops_complete_reconstruct(sh);
1814                 return;
1815         }
1816
1817 again:
1818         blocks = to_addr_page(percpu, j);
1819
1820         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1821                 synflags = SYNDROME_SRC_WRITTEN;
1822                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1823         } else {
1824                 synflags = SYNDROME_SRC_ALL;
1825                 txflags = ASYNC_TX_ACK;
1826         }
1827
1828         count = set_syndrome_sources(blocks, sh, synflags);
1829         last_stripe = !head_sh->batch_head ||
1830                 list_first_entry(&sh->batch_list,
1831                                  struct stripe_head, batch_list) == head_sh;
1832
1833         if (last_stripe) {
1834                 atomic_inc(&head_sh->count);
1835                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1836                                   head_sh, to_addr_conv(sh, percpu, j));
1837         } else
1838                 init_async_submit(&submit, 0, tx, NULL, NULL,
1839                                   to_addr_conv(sh, percpu, j));
1840         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1841         if (!last_stripe) {
1842                 j++;
1843                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1844                                       batch_list);
1845                 goto again;
1846         }
1847 }
1848
1849 static void ops_complete_check(void *stripe_head_ref)
1850 {
1851         struct stripe_head *sh = stripe_head_ref;
1852
1853         pr_debug("%s: stripe %llu\n", __func__,
1854                 (unsigned long long)sh->sector);
1855
1856         sh->check_state = check_state_check_result;
1857         set_bit(STRIPE_HANDLE, &sh->state);
1858         release_stripe(sh);
1859 }
1860
1861 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1862 {
1863         int disks = sh->disks;
1864         int pd_idx = sh->pd_idx;
1865         int qd_idx = sh->qd_idx;
1866         struct page *xor_dest;
1867         struct page **xor_srcs = to_addr_page(percpu, 0);
1868         struct dma_async_tx_descriptor *tx;
1869         struct async_submit_ctl submit;
1870         int count;
1871         int i;
1872
1873         pr_debug("%s: stripe %llu\n", __func__,
1874                 (unsigned long long)sh->sector);
1875
1876         BUG_ON(sh->batch_head);
1877         count = 0;
1878         xor_dest = sh->dev[pd_idx].page;
1879         xor_srcs[count++] = xor_dest;
1880         for (i = disks; i--; ) {
1881                 if (i == pd_idx || i == qd_idx)
1882                         continue;
1883                 xor_srcs[count++] = sh->dev[i].page;
1884         }
1885
1886         init_async_submit(&submit, 0, NULL, NULL, NULL,
1887                           to_addr_conv(sh, percpu, 0));
1888         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1889                            &sh->ops.zero_sum_result, &submit);
1890
1891         atomic_inc(&sh->count);
1892         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1893         tx = async_trigger_callback(&submit);
1894 }
1895
1896 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1897 {
1898         struct page **srcs = to_addr_page(percpu, 0);
1899         struct async_submit_ctl submit;
1900         int count;
1901
1902         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1903                 (unsigned long long)sh->sector, checkp);
1904
1905         BUG_ON(sh->batch_head);
1906         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1907         if (!checkp)
1908                 srcs[count] = NULL;
1909
1910         atomic_inc(&sh->count);
1911         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1912                           sh, to_addr_conv(sh, percpu, 0));
1913         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1914                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1915 }
1916
1917 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1918 {
1919         int overlap_clear = 0, i, disks = sh->disks;
1920         struct dma_async_tx_descriptor *tx = NULL;
1921         struct r5conf *conf = sh->raid_conf;
1922         int level = conf->level;
1923         struct raid5_percpu *percpu;
1924         unsigned long cpu;
1925
1926         cpu = get_cpu();
1927         percpu = per_cpu_ptr(conf->percpu, cpu);
1928         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1929                 ops_run_biofill(sh);
1930                 overlap_clear++;
1931         }
1932
1933         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1934                 if (level < 6)
1935                         tx = ops_run_compute5(sh, percpu);
1936                 else {
1937                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1938                                 tx = ops_run_compute6_1(sh, percpu);
1939                         else
1940                                 tx = ops_run_compute6_2(sh, percpu);
1941                 }
1942                 /* terminate the chain if reconstruct is not set to be run */
1943                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1944                         async_tx_ack(tx);
1945         }
1946
1947         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1948                 if (level < 6)
1949                         tx = ops_run_prexor5(sh, percpu, tx);
1950                 else
1951                         tx = ops_run_prexor6(sh, percpu, tx);
1952         }
1953
1954         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1955                 tx = ops_run_biodrain(sh, tx);
1956                 overlap_clear++;
1957         }
1958
1959         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1960                 if (level < 6)
1961                         ops_run_reconstruct5(sh, percpu, tx);
1962                 else
1963                         ops_run_reconstruct6(sh, percpu, tx);
1964         }
1965
1966         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1967                 if (sh->check_state == check_state_run)
1968                         ops_run_check_p(sh, percpu);
1969                 else if (sh->check_state == check_state_run_q)
1970                         ops_run_check_pq(sh, percpu, 0);
1971                 else if (sh->check_state == check_state_run_pq)
1972                         ops_run_check_pq(sh, percpu, 1);
1973                 else
1974                         BUG();
1975         }
1976
1977         if (overlap_clear && !sh->batch_head)
1978                 for (i = disks; i--; ) {
1979                         struct r5dev *dev = &sh->dev[i];
1980                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1981                                 wake_up(&sh->raid_conf->wait_for_overlap);
1982                 }
1983         put_cpu();
1984 }
1985
1986 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1987 {
1988         struct stripe_head *sh;
1989
1990         sh = kmem_cache_zalloc(sc, gfp);
1991         if (sh) {
1992                 spin_lock_init(&sh->stripe_lock);
1993                 spin_lock_init(&sh->batch_lock);
1994                 INIT_LIST_HEAD(&sh->batch_list);
1995                 INIT_LIST_HEAD(&sh->lru);
1996                 atomic_set(&sh->count, 1);
1997         }
1998         return sh;
1999 }
2000 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2001 {
2002         struct stripe_head *sh;
2003
2004         sh = alloc_stripe(conf->slab_cache, gfp);
2005         if (!sh)
2006                 return 0;
2007
2008         sh->raid_conf = conf;
2009
2010         if (grow_buffers(sh, gfp)) {
2011                 shrink_buffers(sh);
2012                 kmem_cache_free(conf->slab_cache, sh);
2013                 return 0;
2014         }
2015         sh->hash_lock_index =
2016                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2017         /* we just created an active stripe so... */
2018         atomic_inc(&conf->active_stripes);
2019
2020         release_stripe(sh);
2021         conf->max_nr_stripes++;
2022         return 1;
2023 }
2024
2025 static int grow_stripes(struct r5conf *conf, int num)
2026 {
2027         struct kmem_cache *sc;
2028         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2029
2030         if (conf->mddev->gendisk)
2031                 sprintf(conf->cache_name[0],
2032                         "raid%d-%s", conf->level, mdname(conf->mddev));
2033         else
2034                 sprintf(conf->cache_name[0],
2035                         "raid%d-%p", conf->level, conf->mddev);
2036         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2037
2038         conf->active_name = 0;
2039         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2040                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2041                                0, 0, NULL);
2042         if (!sc)
2043                 return 1;
2044         conf->slab_cache = sc;
2045         conf->pool_size = devs;
2046         while (num--)
2047                 if (!grow_one_stripe(conf, GFP_KERNEL))
2048                         return 1;
2049
2050         return 0;
2051 }
2052
2053 /**
2054  * scribble_len - return the required size of the scribble region
2055  * @num - total number of disks in the array
2056  *
2057  * The size must be enough to contain:
2058  * 1/ a struct page pointer for each device in the array +2
2059  * 2/ room to convert each entry in (1) to its corresponding dma
2060  *    (dma_map_page()) or page (page_address()) address.
2061  *
2062  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2063  * calculate over all devices (not just the data blocks), using zeros in place
2064  * of the P and Q blocks.
2065  */
2066 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2067 {
2068         struct flex_array *ret;
2069         size_t len;
2070
2071         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2072         ret = flex_array_alloc(len, cnt, flags);
2073         if (!ret)
2074                 return NULL;
2075         /* always prealloc all elements, so no locking is required */
2076         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2077                 flex_array_free(ret);
2078                 return NULL;
2079         }
2080         return ret;
2081 }
2082
2083 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2084 {
2085         unsigned long cpu;
2086         int err = 0;
2087
2088         mddev_suspend(conf->mddev);
2089         get_online_cpus();
2090         for_each_present_cpu(cpu) {
2091                 struct raid5_percpu *percpu;
2092                 struct flex_array *scribble;
2093
2094                 percpu = per_cpu_ptr(conf->percpu, cpu);
2095                 scribble = scribble_alloc(new_disks,
2096                                           new_sectors / STRIPE_SECTORS,
2097                                           GFP_NOIO);
2098
2099                 if (scribble) {
2100                         flex_array_free(percpu->scribble);
2101                         percpu->scribble = scribble;
2102                 } else {
2103                         err = -ENOMEM;
2104                         break;
2105                 }
2106         }
2107         put_online_cpus();
2108         mddev_resume(conf->mddev);
2109         return err;
2110 }
2111
2112 static int resize_stripes(struct r5conf *conf, int newsize)
2113 {
2114         /* Make all the stripes able to hold 'newsize' devices.
2115          * New slots in each stripe get 'page' set to a new page.
2116          *
2117          * This happens in stages:
2118          * 1/ create a new kmem_cache and allocate the required number of
2119          *    stripe_heads.
2120          * 2/ gather all the old stripe_heads and transfer the pages across
2121          *    to the new stripe_heads.  This will have the side effect of
2122          *    freezing the array as once all stripe_heads have been collected,
2123          *    no IO will be possible.  Old stripe heads are freed once their
2124          *    pages have been transferred over, and the old kmem_cache is
2125          *    freed when all stripes are done.
2126          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2127          *    we simple return a failre status - no need to clean anything up.
2128          * 4/ allocate new pages for the new slots in the new stripe_heads.
2129          *    If this fails, we don't bother trying the shrink the
2130          *    stripe_heads down again, we just leave them as they are.
2131          *    As each stripe_head is processed the new one is released into
2132          *    active service.
2133          *
2134          * Once step2 is started, we cannot afford to wait for a write,
2135          * so we use GFP_NOIO allocations.
2136          */
2137         struct stripe_head *osh, *nsh;
2138         LIST_HEAD(newstripes);
2139         struct disk_info *ndisks;
2140         int err;
2141         struct kmem_cache *sc;
2142         int i;
2143         int hash, cnt;
2144
2145         if (newsize <= conf->pool_size)
2146                 return 0; /* never bother to shrink */
2147
2148         err = md_allow_write(conf->mddev);
2149         if (err)
2150                 return err;
2151
2152         /* Step 1 */
2153         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2154                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2155                                0, 0, NULL);
2156         if (!sc)
2157                 return -ENOMEM;
2158
2159         /* Need to ensure auto-resizing doesn't interfere */
2160         mutex_lock(&conf->cache_size_mutex);
2161
2162         for (i = conf->max_nr_stripes; i; i--) {
2163                 nsh = alloc_stripe(sc, GFP_KERNEL);
2164                 if (!nsh)
2165                         break;
2166
2167                 nsh->raid_conf = conf;
2168                 list_add(&nsh->lru, &newstripes);
2169         }
2170         if (i) {
2171                 /* didn't get enough, give up */
2172                 while (!list_empty(&newstripes)) {
2173                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2174                         list_del(&nsh->lru);
2175                         kmem_cache_free(sc, nsh);
2176                 }
2177                 kmem_cache_destroy(sc);
2178                 mutex_unlock(&conf->cache_size_mutex);
2179                 return -ENOMEM;
2180         }
2181         /* Step 2 - Must use GFP_NOIO now.
2182          * OK, we have enough stripes, start collecting inactive
2183          * stripes and copying them over
2184          */
2185         hash = 0;
2186         cnt = 0;
2187         list_for_each_entry(nsh, &newstripes, lru) {
2188                 lock_device_hash_lock(conf, hash);
2189                 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2190                                     !list_empty(conf->inactive_list + hash),
2191                                     unlock_device_hash_lock(conf, hash),
2192                                     lock_device_hash_lock(conf, hash));
2193                 osh = get_free_stripe(conf, hash);
2194                 unlock_device_hash_lock(conf, hash);
2195
2196                 for(i=0; i<conf->pool_size; i++) {
2197                         nsh->dev[i].page = osh->dev[i].page;
2198                         nsh->dev[i].orig_page = osh->dev[i].page;
2199                 }
2200                 nsh->hash_lock_index = hash;
2201                 kmem_cache_free(conf->slab_cache, osh);
2202                 cnt++;
2203                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2204                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2205                         hash++;
2206                         cnt = 0;
2207                 }
2208         }
2209         kmem_cache_destroy(conf->slab_cache);
2210
2211         /* Step 3.
2212          * At this point, we are holding all the stripes so the array
2213          * is completely stalled, so now is a good time to resize
2214          * conf->disks and the scribble region
2215          */
2216         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2217         if (ndisks) {
2218                 for (i=0; i<conf->raid_disks; i++)
2219                         ndisks[i] = conf->disks[i];
2220                 kfree(conf->disks);
2221                 conf->disks = ndisks;
2222         } else
2223                 err = -ENOMEM;
2224
2225         mutex_unlock(&conf->cache_size_mutex);
2226         /* Step 4, return new stripes to service */
2227         while(!list_empty(&newstripes)) {
2228                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2229                 list_del_init(&nsh->lru);
2230
2231                 for (i=conf->raid_disks; i < newsize; i++)
2232                         if (nsh->dev[i].page == NULL) {
2233                                 struct page *p = alloc_page(GFP_NOIO);
2234                                 nsh->dev[i].page = p;
2235                                 nsh->dev[i].orig_page = p;
2236                                 if (!p)
2237                                         err = -ENOMEM;
2238                         }
2239                 release_stripe(nsh);
2240         }
2241         /* critical section pass, GFP_NOIO no longer needed */
2242
2243         conf->slab_cache = sc;
2244         conf->active_name = 1-conf->active_name;
2245         if (!err)
2246                 conf->pool_size = newsize;
2247         return err;
2248 }
2249
2250 static int drop_one_stripe(struct r5conf *conf)
2251 {
2252         struct stripe_head *sh;
2253         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2254
2255         spin_lock_irq(conf->hash_locks + hash);
2256         sh = get_free_stripe(conf, hash);
2257         spin_unlock_irq(conf->hash_locks + hash);
2258         if (!sh)
2259                 return 0;
2260         BUG_ON(atomic_read(&sh->count));
2261         shrink_buffers(sh);
2262         kmem_cache_free(conf->slab_cache, sh);
2263         atomic_dec(&conf->active_stripes);
2264         conf->max_nr_stripes--;
2265         return 1;
2266 }
2267
2268 static void shrink_stripes(struct r5conf *conf)
2269 {
2270         while (conf->max_nr_stripes &&
2271                drop_one_stripe(conf))
2272                 ;
2273
2274         kmem_cache_destroy(conf->slab_cache);
2275         conf->slab_cache = NULL;
2276 }
2277
2278 static void raid5_end_read_request(struct bio * bi)
2279 {
2280         struct stripe_head *sh = bi->bi_private;
2281         struct r5conf *conf = sh->raid_conf;
2282         int disks = sh->disks, i;
2283         char b[BDEVNAME_SIZE];
2284         struct md_rdev *rdev = NULL;
2285         sector_t s;
2286
2287         for (i=0 ; i<disks; i++)
2288                 if (bi == &sh->dev[i].req)
2289                         break;
2290
2291         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2292                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2293                 bi->bi_error);
2294         if (i == disks) {
2295                 BUG();
2296                 return;
2297         }
2298         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2299                 /* If replacement finished while this request was outstanding,
2300                  * 'replacement' might be NULL already.
2301                  * In that case it moved down to 'rdev'.
2302                  * rdev is not removed until all requests are finished.
2303                  */
2304                 rdev = conf->disks[i].replacement;
2305         if (!rdev)
2306                 rdev = conf->disks[i].rdev;
2307
2308         if (use_new_offset(conf, sh))
2309                 s = sh->sector + rdev->new_data_offset;
2310         else
2311                 s = sh->sector + rdev->data_offset;
2312         if (!bi->bi_error) {
2313                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2314                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2315                         /* Note that this cannot happen on a
2316                          * replacement device.  We just fail those on
2317                          * any error
2318                          */
2319                         printk_ratelimited(
2320                                 KERN_INFO
2321                                 "md/raid:%s: read error corrected"
2322                                 " (%lu sectors at %llu on %s)\n",
2323                                 mdname(conf->mddev), STRIPE_SECTORS,
2324                                 (unsigned long long)s,
2325                                 bdevname(rdev->bdev, b));
2326                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2327                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2328                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2329                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2330                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2331
2332                 if (atomic_read(&rdev->read_errors))
2333                         atomic_set(&rdev->read_errors, 0);
2334         } else {
2335                 const char *bdn = bdevname(rdev->bdev, b);
2336                 int retry = 0;
2337                 int set_bad = 0;
2338
2339                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2340                 atomic_inc(&rdev->read_errors);
2341                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2342                         printk_ratelimited(
2343                                 KERN_WARNING
2344                                 "md/raid:%s: read error on replacement device "
2345                                 "(sector %llu on %s).\n",
2346                                 mdname(conf->mddev),
2347                                 (unsigned long long)s,
2348                                 bdn);
2349                 else if (conf->mddev->degraded >= conf->max_degraded) {
2350                         set_bad = 1;
2351                         printk_ratelimited(
2352                                 KERN_WARNING
2353                                 "md/raid:%s: read error not correctable "
2354                                 "(sector %llu on %s).\n",
2355                                 mdname(conf->mddev),
2356                                 (unsigned long long)s,
2357                                 bdn);
2358                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2359                         /* Oh, no!!! */
2360                         set_bad = 1;
2361                         printk_ratelimited(
2362                                 KERN_WARNING
2363                                 "md/raid:%s: read error NOT corrected!! "
2364                                 "(sector %llu on %s).\n",
2365                                 mdname(conf->mddev),
2366                                 (unsigned long long)s,
2367                                 bdn);
2368                 } else if (atomic_read(&rdev->read_errors)
2369                          > conf->max_nr_stripes)
2370                         printk(KERN_WARNING
2371                                "md/raid:%s: Too many read errors, failing device %s.\n",
2372                                mdname(conf->mddev), bdn);
2373                 else
2374                         retry = 1;
2375                 if (set_bad && test_bit(In_sync, &rdev->flags)
2376                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2377                         retry = 1;
2378                 if (retry)
2379                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2380                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2381                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2382                         } else
2383                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2384                 else {
2385                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2386                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2387                         if (!(set_bad
2388                               && test_bit(In_sync, &rdev->flags)
2389                               && rdev_set_badblocks(
2390                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2391                                 md_error(conf->mddev, rdev);
2392                 }
2393         }
2394         rdev_dec_pending(rdev, conf->mddev);
2395         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2396         set_bit(STRIPE_HANDLE, &sh->state);
2397         release_stripe(sh);
2398 }
2399
2400 static void raid5_end_write_request(struct bio *bi)
2401 {
2402         struct stripe_head *sh = bi->bi_private;
2403         struct r5conf *conf = sh->raid_conf;
2404         int disks = sh->disks, i;
2405         struct md_rdev *uninitialized_var(rdev);
2406         sector_t first_bad;
2407         int bad_sectors;
2408         int replacement = 0;
2409
2410         for (i = 0 ; i < disks; i++) {
2411                 if (bi == &sh->dev[i].req) {
2412                         rdev = conf->disks[i].rdev;
2413                         break;
2414                 }
2415                 if (bi == &sh->dev[i].rreq) {
2416                         rdev = conf->disks[i].replacement;
2417                         if (rdev)
2418                                 replacement = 1;
2419                         else
2420                                 /* rdev was removed and 'replacement'
2421                                  * replaced it.  rdev is not removed
2422                                  * until all requests are finished.
2423                                  */
2424                                 rdev = conf->disks[i].rdev;
2425                         break;
2426                 }
2427         }
2428         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2429                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2430                 bi->bi_error);
2431         if (i == disks) {
2432                 BUG();
2433                 return;
2434         }
2435
2436         if (replacement) {
2437                 if (bi->bi_error)
2438                         md_error(conf->mddev, rdev);
2439                 else if (is_badblock(rdev, sh->sector,
2440                                      STRIPE_SECTORS,
2441                                      &first_bad, &bad_sectors))
2442                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2443         } else {
2444                 if (bi->bi_error) {
2445                         set_bit(STRIPE_DEGRADED, &sh->state);
2446                         set_bit(WriteErrorSeen, &rdev->flags);
2447                         set_bit(R5_WriteError, &sh->dev[i].flags);
2448                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2449                                 set_bit(MD_RECOVERY_NEEDED,
2450                                         &rdev->mddev->recovery);
2451                 } else if (is_badblock(rdev, sh->sector,
2452                                        STRIPE_SECTORS,
2453                                        &first_bad, &bad_sectors)) {
2454                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2455                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2456                                 /* That was a successful write so make
2457                                  * sure it looks like we already did
2458                                  * a re-write.
2459                                  */
2460                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2461                 }
2462         }
2463         rdev_dec_pending(rdev, conf->mddev);
2464
2465         if (sh->batch_head && bi->bi_error && !replacement)
2466                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2467
2468         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2469                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2470         set_bit(STRIPE_HANDLE, &sh->state);
2471         release_stripe(sh);
2472
2473         if (sh->batch_head && sh != sh->batch_head)
2474                 release_stripe(sh->batch_head);
2475 }
2476
2477 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2478
2479 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2480 {
2481         struct r5dev *dev = &sh->dev[i];
2482
2483         bio_init(&dev->req);
2484         dev->req.bi_io_vec = &dev->vec;
2485         dev->req.bi_max_vecs = 1;
2486         dev->req.bi_private = sh;
2487
2488         bio_init(&dev->rreq);
2489         dev->rreq.bi_io_vec = &dev->rvec;
2490         dev->rreq.bi_max_vecs = 1;
2491         dev->rreq.bi_private = sh;
2492
2493         dev->flags = 0;
2494         dev->sector = compute_blocknr(sh, i, previous);
2495 }
2496
2497 static void error(struct mddev *mddev, struct md_rdev *rdev)
2498 {
2499         char b[BDEVNAME_SIZE];
2500         struct r5conf *conf = mddev->private;
2501         unsigned long flags;
2502         pr_debug("raid456: error called\n");
2503
2504         spin_lock_irqsave(&conf->device_lock, flags);
2505         clear_bit(In_sync, &rdev->flags);
2506         mddev->degraded = calc_degraded(conf);
2507         spin_unlock_irqrestore(&conf->device_lock, flags);
2508         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2509
2510         set_bit(Blocked, &rdev->flags);
2511         set_bit(Faulty, &rdev->flags);
2512         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2513         set_bit(MD_CHANGE_PENDING, &mddev->flags);
2514         printk(KERN_ALERT
2515                "md/raid:%s: Disk failure on %s, disabling device.\n"
2516                "md/raid:%s: Operation continuing on %d devices.\n",
2517                mdname(mddev),
2518                bdevname(rdev->bdev, b),
2519                mdname(mddev),
2520                conf->raid_disks - mddev->degraded);
2521 }
2522
2523 /*
2524  * Input: a 'big' sector number,
2525  * Output: index of the data and parity disk, and the sector # in them.
2526  */
2527 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2528                                      int previous, int *dd_idx,
2529                                      struct stripe_head *sh)
2530 {
2531         sector_t stripe, stripe2;
2532         sector_t chunk_number;
2533         unsigned int chunk_offset;
2534         int pd_idx, qd_idx;
2535         int ddf_layout = 0;
2536         sector_t new_sector;
2537         int algorithm = previous ? conf->prev_algo
2538                                  : conf->algorithm;
2539         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2540                                          : conf->chunk_sectors;
2541         int raid_disks = previous ? conf->previous_raid_disks
2542                                   : conf->raid_disks;
2543         int data_disks = raid_disks - conf->max_degraded;
2544
2545         /* First compute the information on this sector */
2546
2547         /*
2548          * Compute the chunk number and the sector offset inside the chunk
2549          */
2550         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2551         chunk_number = r_sector;
2552
2553         /*
2554          * Compute the stripe number
2555          */
2556         stripe = chunk_number;
2557         *dd_idx = sector_div(stripe, data_disks);
2558         stripe2 = stripe;
2559         /*
2560          * Select the parity disk based on the user selected algorithm.
2561          */
2562         pd_idx = qd_idx = -1;
2563         switch(conf->level) {
2564         case 4:
2565                 pd_idx = data_disks;
2566                 break;
2567         case 5:
2568                 switch (algorithm) {
2569                 case ALGORITHM_LEFT_ASYMMETRIC:
2570                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2571                         if (*dd_idx >= pd_idx)
2572                                 (*dd_idx)++;
2573                         break;
2574                 case ALGORITHM_RIGHT_ASYMMETRIC:
2575                         pd_idx = sector_div(stripe2, raid_disks);
2576                         if (*dd_idx >= pd_idx)
2577                                 (*dd_idx)++;
2578                         break;
2579                 case ALGORITHM_LEFT_SYMMETRIC:
2580                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2581                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2582                         break;
2583                 case ALGORITHM_RIGHT_SYMMETRIC:
2584                         pd_idx = sector_div(stripe2, raid_disks);
2585                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2586                         break;
2587                 case ALGORITHM_PARITY_0:
2588                         pd_idx = 0;
2589                         (*dd_idx)++;
2590                         break;
2591                 case ALGORITHM_PARITY_N:
2592                         pd_idx = data_disks;
2593                         break;
2594                 default:
2595                         BUG();
2596                 }
2597                 break;
2598         case 6:
2599
2600                 switch (algorithm) {
2601                 case ALGORITHM_LEFT_ASYMMETRIC:
2602                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2603                         qd_idx = pd_idx + 1;
2604                         if (pd_idx == raid_disks-1) {
2605                                 (*dd_idx)++;    /* Q D D D P */
2606                                 qd_idx = 0;
2607                         } else if (*dd_idx >= pd_idx)
2608                                 (*dd_idx) += 2; /* D D P Q D */
2609                         break;
2610                 case ALGORITHM_RIGHT_ASYMMETRIC:
2611                         pd_idx = sector_div(stripe2, raid_disks);
2612                         qd_idx = pd_idx + 1;
2613                         if (pd_idx == raid_disks-1) {
2614                                 (*dd_idx)++;    /* Q D D D P */
2615                                 qd_idx = 0;
2616                         } else if (*dd_idx >= pd_idx)
2617                                 (*dd_idx) += 2; /* D D P Q D */
2618                         break;
2619                 case ALGORITHM_LEFT_SYMMETRIC:
2620                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2621                         qd_idx = (pd_idx + 1) % raid_disks;
2622                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2623                         break;
2624                 case ALGORITHM_RIGHT_SYMMETRIC:
2625                         pd_idx = sector_div(stripe2, raid_disks);
2626                         qd_idx = (pd_idx + 1) % raid_disks;
2627                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2628                         break;
2629
2630                 case ALGORITHM_PARITY_0:
2631                         pd_idx = 0;
2632                         qd_idx = 1;
2633                         (*dd_idx) += 2;
2634                         break;
2635                 case ALGORITHM_PARITY_N:
2636                         pd_idx = data_disks;
2637                         qd_idx = data_disks + 1;
2638                         break;
2639
2640                 case ALGORITHM_ROTATING_ZERO_RESTART:
2641                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2642                          * of blocks for computing Q is different.
2643                          */
2644                         pd_idx = sector_div(stripe2, raid_disks);
2645                         qd_idx = pd_idx + 1;
2646                         if (pd_idx == raid_disks-1) {
2647                                 (*dd_idx)++;    /* Q D D D P */
2648                                 qd_idx = 0;
2649                         } else if (*dd_idx >= pd_idx)
2650                                 (*dd_idx) += 2; /* D D P Q D */
2651                         ddf_layout = 1;
2652                         break;
2653
2654                 case ALGORITHM_ROTATING_N_RESTART:
2655                         /* Same a left_asymmetric, by first stripe is
2656                          * D D D P Q  rather than
2657                          * Q D D D P
2658                          */
2659                         stripe2 += 1;
2660                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2661                         qd_idx = pd_idx + 1;
2662                         if (pd_idx == raid_disks-1) {
2663                                 (*dd_idx)++;    /* Q D D D P */
2664                                 qd_idx = 0;
2665                         } else if (*dd_idx >= pd_idx)
2666                                 (*dd_idx) += 2; /* D D P Q D */
2667                         ddf_layout = 1;
2668                         break;
2669
2670                 case ALGORITHM_ROTATING_N_CONTINUE:
2671                         /* Same as left_symmetric but Q is before P */
2672                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2673                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2674                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2675                         ddf_layout = 1;
2676                         break;
2677
2678                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2679                         /* RAID5 left_asymmetric, with Q on last device */
2680                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2681                         if (*dd_idx >= pd_idx)
2682                                 (*dd_idx)++;
2683                         qd_idx = raid_disks - 1;
2684                         break;
2685
2686                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2687                         pd_idx = sector_div(stripe2, raid_disks-1);
2688                         if (*dd_idx >= pd_idx)
2689                                 (*dd_idx)++;
2690                         qd_idx = raid_disks - 1;
2691                         break;
2692
2693                 case ALGORITHM_LEFT_SYMMETRIC_6:
2694                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2695                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2696                         qd_idx = raid_disks - 1;
2697                         break;
2698
2699                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2700                         pd_idx = sector_div(stripe2, raid_disks-1);
2701                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2702                         qd_idx = raid_disks - 1;
2703                         break;
2704
2705                 case ALGORITHM_PARITY_0_6:
2706                         pd_idx = 0;
2707                         (*dd_idx)++;
2708                         qd_idx = raid_disks - 1;
2709                         break;
2710
2711                 default:
2712                         BUG();
2713                 }
2714                 break;
2715         }
2716
2717         if (sh) {
2718                 sh->pd_idx = pd_idx;
2719                 sh->qd_idx = qd_idx;
2720                 sh->ddf_layout = ddf_layout;
2721         }
2722         /*
2723          * Finally, compute the new sector number
2724          */
2725         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2726         return new_sector;
2727 }
2728
2729 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2730 {
2731         struct r5conf *conf = sh->raid_conf;
2732         int raid_disks = sh->disks;
2733         int data_disks = raid_disks - conf->max_degraded;
2734         sector_t new_sector = sh->sector, check;
2735         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2736                                          : conf->chunk_sectors;
2737         int algorithm = previous ? conf->prev_algo
2738                                  : conf->algorithm;
2739         sector_t stripe;
2740         int chunk_offset;
2741         sector_t chunk_number;
2742         int dummy1, dd_idx = i;
2743         sector_t r_sector;
2744         struct stripe_head sh2;
2745
2746         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2747         stripe = new_sector;
2748
2749         if (i == sh->pd_idx)
2750                 return 0;
2751         switch(conf->level) {
2752         case 4: break;
2753         case 5:
2754                 switch (algorithm) {
2755                 case ALGORITHM_LEFT_ASYMMETRIC:
2756                 case ALGORITHM_RIGHT_ASYMMETRIC:
2757                         if (i > sh->pd_idx)
2758                                 i--;
2759                         break;
2760                 case ALGORITHM_LEFT_SYMMETRIC:
2761                 case ALGORITHM_RIGHT_SYMMETRIC:
2762                         if (i < sh->pd_idx)
2763                                 i += raid_disks;
2764                         i -= (sh->pd_idx + 1);
2765                         break;
2766                 case ALGORITHM_PARITY_0:
2767                         i -= 1;
2768                         break;
2769                 case ALGORITHM_PARITY_N:
2770                         break;
2771                 default:
2772                         BUG();
2773                 }
2774                 break;
2775         case 6:
2776                 if (i == sh->qd_idx)
2777                         return 0; /* It is the Q disk */
2778                 switch (algorithm) {
2779                 case ALGORITHM_LEFT_ASYMMETRIC:
2780                 case ALGORITHM_RIGHT_ASYMMETRIC:
2781                 case ALGORITHM_ROTATING_ZERO_RESTART:
2782                 case ALGORITHM_ROTATING_N_RESTART:
2783                         if (sh->pd_idx == raid_disks-1)
2784                                 i--;    /* Q D D D P */
2785                         else if (i > sh->pd_idx)
2786                                 i -= 2; /* D D P Q D */
2787                         break;
2788                 case ALGORITHM_LEFT_SYMMETRIC:
2789                 case ALGORITHM_RIGHT_SYMMETRIC:
2790                         if (sh->pd_idx == raid_disks-1)
2791                                 i--; /* Q D D D P */
2792                         else {
2793                                 /* D D P Q D */
2794                                 if (i < sh->pd_idx)
2795                                         i += raid_disks;
2796                                 i -= (sh->pd_idx + 2);
2797                         }
2798                         break;
2799                 case ALGORITHM_PARITY_0:
2800                         i -= 2;
2801                         break;
2802                 case ALGORITHM_PARITY_N:
2803                         break;
2804                 case ALGORITHM_ROTATING_N_CONTINUE:
2805                         /* Like left_symmetric, but P is before Q */
2806                         if (sh->pd_idx == 0)
2807                                 i--;    /* P D D D Q */
2808                         else {
2809                                 /* D D Q P D */
2810                                 if (i < sh->pd_idx)
2811                                         i += raid_disks;
2812                                 i -= (sh->pd_idx + 1);
2813                         }
2814                         break;
2815                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2816                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2817                         if (i > sh->pd_idx)
2818                                 i--;
2819                         break;
2820                 case ALGORITHM_LEFT_SYMMETRIC_6:
2821                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2822                         if (i < sh->pd_idx)
2823                                 i += data_disks + 1;
2824                         i -= (sh->pd_idx + 1);
2825                         break;
2826                 case ALGORITHM_PARITY_0_6:
2827                         i -= 1;
2828                         break;
2829                 default:
2830                         BUG();
2831                 }
2832                 break;
2833         }
2834
2835         chunk_number = stripe * data_disks + i;
2836         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2837
2838         check = raid5_compute_sector(conf, r_sector,
2839                                      previous, &dummy1, &sh2);
2840         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2841                 || sh2.qd_idx != sh->qd_idx) {
2842                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2843                        mdname(conf->mddev));
2844                 return 0;
2845         }
2846         return r_sector;
2847 }
2848
2849 static void
2850 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2851                          int rcw, int expand)
2852 {
2853         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2854         struct r5conf *conf = sh->raid_conf;
2855         int level = conf->level;
2856
2857         if (rcw) {
2858
2859                 for (i = disks; i--; ) {
2860                         struct r5dev *dev = &sh->dev[i];
2861
2862                         if (dev->towrite) {
2863                                 set_bit(R5_LOCKED, &dev->flags);
2864                                 set_bit(R5_Wantdrain, &dev->flags);
2865                                 if (!expand)
2866                                         clear_bit(R5_UPTODATE, &dev->flags);
2867                                 s->locked++;
2868                         }
2869                 }
2870                 /* if we are not expanding this is a proper write request, and
2871                  * there will be bios with new data to be drained into the
2872                  * stripe cache
2873                  */
2874                 if (!expand) {
2875                         if (!s->locked)
2876                                 /* False alarm, nothing to do */
2877                                 return;
2878                         sh->reconstruct_state = reconstruct_state_drain_run;
2879                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2880                 } else
2881                         sh->reconstruct_state = reconstruct_state_run;
2882
2883                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2884
2885                 if (s->locked + conf->max_degraded == disks)
2886                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2887                                 atomic_inc(&conf->pending_full_writes);
2888         } else {
2889                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2890                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2891                 BUG_ON(level == 6 &&
2892                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2893                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2894
2895                 for (i = disks; i--; ) {
2896                         struct r5dev *dev = &sh->dev[i];
2897                         if (i == pd_idx || i == qd_idx)
2898                                 continue;
2899
2900                         if (dev->towrite &&
2901                             (test_bit(R5_UPTODATE, &dev->flags) ||
2902                              test_bit(R5_Wantcompute, &dev->flags))) {
2903                                 set_bit(R5_Wantdrain, &dev->flags);
2904                                 set_bit(R5_LOCKED, &dev->flags);
2905                                 clear_bit(R5_UPTODATE, &dev->flags);
2906                                 s->locked++;
2907                         }
2908                 }
2909                 if (!s->locked)
2910                         /* False alarm - nothing to do */
2911                         return;
2912                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2913                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2914                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2915                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2916         }
2917
2918         /* keep the parity disk(s) locked while asynchronous operations
2919          * are in flight
2920          */
2921         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2922         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2923         s->locked++;
2924
2925         if (level == 6) {
2926                 int qd_idx = sh->qd_idx;
2927                 struct r5dev *dev = &sh->dev[qd_idx];
2928
2929                 set_bit(R5_LOCKED, &dev->flags);
2930                 clear_bit(R5_UPTODATE, &dev->flags);
2931                 s->locked++;
2932         }
2933
2934         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2935                 __func__, (unsigned long long)sh->sector,
2936                 s->locked, s->ops_request);
2937 }
2938
2939 /*
2940  * Each stripe/dev can have one or more bion attached.
2941  * toread/towrite point to the first in a chain.
2942  * The bi_next chain must be in order.
2943  */
2944 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2945                           int forwrite, int previous)
2946 {
2947         struct bio **bip;
2948         struct r5conf *conf = sh->raid_conf;
2949         int firstwrite=0;
2950
2951         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2952                 (unsigned long long)bi->bi_iter.bi_sector,
2953                 (unsigned long long)sh->sector);
2954
2955         /*
2956          * If several bio share a stripe. The bio bi_phys_segments acts as a
2957          * reference count to avoid race. The reference count should already be
2958          * increased before this function is called (for example, in
2959          * make_request()), so other bio sharing this stripe will not free the
2960          * stripe. If a stripe is owned by one stripe, the stripe lock will
2961          * protect it.
2962          */
2963         spin_lock_irq(&sh->stripe_lock);
2964         /* Don't allow new IO added to stripes in batch list */
2965         if (sh->batch_head)
2966                 goto overlap;
2967         if (forwrite) {
2968                 bip = &sh->dev[dd_idx].towrite;
2969                 if (*bip == NULL)
2970                         firstwrite = 1;
2971         } else
2972                 bip = &sh->dev[dd_idx].toread;
2973         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2974                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2975                         goto overlap;
2976                 bip = & (*bip)->bi_next;
2977         }
2978         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2979                 goto overlap;
2980
2981         if (!forwrite || previous)
2982                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2983
2984         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2985         if (*bip)
2986                 bi->bi_next = *bip;
2987         *bip = bi;
2988         raid5_inc_bi_active_stripes(bi);
2989
2990         if (forwrite) {
2991                 /* check if page is covered */
2992                 sector_t sector = sh->dev[dd_idx].sector;
2993                 for (bi=sh->dev[dd_idx].towrite;
2994                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2995                              bi && bi->bi_iter.bi_sector <= sector;
2996                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2997                         if (bio_end_sector(bi) >= sector)
2998                                 sector = bio_end_sector(bi);
2999                 }
3000                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3001                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3002                                 sh->overwrite_disks++;
3003         }
3004
3005         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3006                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3007                 (unsigned long long)sh->sector, dd_idx);
3008
3009         if (conf->mddev->bitmap && firstwrite) {
3010                 /* Cannot hold spinlock over bitmap_startwrite,
3011                  * but must ensure this isn't added to a batch until
3012                  * we have added to the bitmap and set bm_seq.
3013                  * So set STRIPE_BITMAP_PENDING to prevent
3014                  * batching.
3015                  * If multiple add_stripe_bio() calls race here they
3016                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3017                  * to complete "bitmap_startwrite" gets to set
3018                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3019                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3020                  * any more.
3021                  */
3022                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3023                 spin_unlock_irq(&sh->stripe_lock);
3024                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3025                                   STRIPE_SECTORS, 0);
3026                 spin_lock_irq(&sh->stripe_lock);
3027                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3028                 if (!sh->batch_head) {
3029                         sh->bm_seq = conf->seq_flush+1;
3030                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3031                 }
3032         }
3033         spin_unlock_irq(&sh->stripe_lock);
3034
3035         if (stripe_can_batch(sh))
3036                 stripe_add_to_batch_list(conf, sh);
3037         return 1;
3038
3039  overlap:
3040         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3041         spin_unlock_irq(&sh->stripe_lock);
3042         return 0;
3043 }
3044
3045 static void end_reshape(struct r5conf *conf);
3046
3047 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3048                             struct stripe_head *sh)
3049 {
3050         int sectors_per_chunk =
3051                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3052         int dd_idx;
3053         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3054         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3055
3056         raid5_compute_sector(conf,
3057                              stripe * (disks - conf->max_degraded)
3058                              *sectors_per_chunk + chunk_offset,
3059                              previous,
3060                              &dd_idx, sh);
3061 }
3062
3063 static void
3064 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3065                                 struct stripe_head_state *s, int disks,
3066                                 struct bio_list *return_bi)
3067 {
3068         int i;
3069         BUG_ON(sh->batch_head);
3070         for (i = disks; i--; ) {
3071                 struct bio *bi;
3072                 int bitmap_end = 0;
3073
3074                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3075                         struct md_rdev *rdev;
3076                         rcu_read_lock();
3077                         rdev = rcu_dereference(conf->disks[i].rdev);
3078                         if (rdev && test_bit(In_sync, &rdev->flags))
3079                                 atomic_inc(&rdev->nr_pending);
3080                         else
3081                                 rdev = NULL;
3082                         rcu_read_unlock();
3083                         if (rdev) {
3084                                 if (!rdev_set_badblocks(
3085                                             rdev,
3086                                             sh->sector,
3087                                             STRIPE_SECTORS, 0))
3088                                         md_error(conf->mddev, rdev);
3089                                 rdev_dec_pending(rdev, conf->mddev);
3090                         }
3091                 }
3092                 spin_lock_irq(&sh->stripe_lock);
3093                 /* fail all writes first */
3094                 bi = sh->dev[i].towrite;
3095                 sh->dev[i].towrite = NULL;
3096                 sh->overwrite_disks = 0;
3097                 spin_unlock_irq(&sh->stripe_lock);
3098                 if (bi)
3099                         bitmap_end = 1;
3100
3101                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3102                         wake_up(&conf->wait_for_overlap);
3103
3104                 while (bi && bi->bi_iter.bi_sector <
3105                         sh->dev[i].sector + STRIPE_SECTORS) {
3106                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3107
3108                         bi->bi_error = -EIO;
3109                         if (!raid5_dec_bi_active_stripes(bi)) {
3110                                 md_write_end(conf->mddev);
3111                                 bio_list_add(return_bi, bi);
3112                         }
3113                         bi = nextbi;
3114                 }
3115                 if (bitmap_end)
3116                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3117                                 STRIPE_SECTORS, 0, 0);
3118                 bitmap_end = 0;
3119                 /* and fail all 'written' */
3120                 bi = sh->dev[i].written;
3121                 sh->dev[i].written = NULL;
3122                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3123                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3124                         sh->dev[i].page = sh->dev[i].orig_page;
3125                 }
3126
3127                 if (bi) bitmap_end = 1;
3128                 while (bi && bi->bi_iter.bi_sector <
3129                        sh->dev[i].sector + STRIPE_SECTORS) {
3130                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3131
3132                         bi->bi_error = -EIO;
3133                         if (!raid5_dec_bi_active_stripes(bi)) {
3134                                 md_write_end(conf->mddev);
3135                                 bio_list_add(return_bi, bi);
3136                         }
3137                         bi = bi2;
3138                 }
3139
3140                 /* fail any reads if this device is non-operational and
3141                  * the data has not reached the cache yet.
3142                  */
3143                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3144                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3145                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3146                         spin_lock_irq(&sh->stripe_lock);
3147                         bi = sh->dev[i].toread;
3148                         sh->dev[i].toread = NULL;
3149                         spin_unlock_irq(&sh->stripe_lock);
3150                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3151                                 wake_up(&conf->wait_for_overlap);
3152                         if (bi)
3153                                 s->to_read--;
3154                         while (bi && bi->bi_iter.bi_sector <
3155                                sh->dev[i].sector + STRIPE_SECTORS) {
3156                                 struct bio *nextbi =
3157                                         r5_next_bio(bi, sh->dev[i].sector);
3158
3159                                 bi->bi_error = -EIO;
3160                                 if (!raid5_dec_bi_active_stripes(bi))
3161                                         bio_list_add(return_bi, bi);
3162                                 bi = nextbi;
3163                         }
3164                 }
3165                 if (bitmap_end)
3166                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3167                                         STRIPE_SECTORS, 0, 0);
3168                 /* If we were in the middle of a write the parity block might
3169                  * still be locked - so just clear all R5_LOCKED flags
3170                  */
3171                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3172         }
3173         s->to_write = 0;
3174         s->written = 0;
3175
3176         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3177                 if (atomic_dec_and_test(&conf->pending_full_writes))
3178                         md_wakeup_thread(conf->mddev->thread);
3179 }
3180
3181 static void
3182 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3183                    struct stripe_head_state *s)
3184 {
3185         int abort = 0;
3186         int i;
3187
3188         BUG_ON(sh->batch_head);
3189         clear_bit(STRIPE_SYNCING, &sh->state);
3190         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3191                 wake_up(&conf->wait_for_overlap);
3192         s->syncing = 0;
3193         s->replacing = 0;
3194         /* There is nothing more to do for sync/check/repair.
3195          * Don't even need to abort as that is handled elsewhere
3196          * if needed, and not always wanted e.g. if there is a known
3197          * bad block here.
3198          * For recover/replace we need to record a bad block on all
3199          * non-sync devices, or abort the recovery
3200          */
3201         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3202                 /* During recovery devices cannot be removed, so
3203                  * locking and refcounting of rdevs is not needed
3204                  */
3205                 for (i = 0; i < conf->raid_disks; i++) {
3206                         struct md_rdev *rdev = conf->disks[i].rdev;
3207                         if (rdev
3208                             && !test_bit(Faulty, &rdev->flags)
3209                             && !test_bit(In_sync, &rdev->flags)
3210                             && !rdev_set_badblocks(rdev, sh->sector,
3211                                                    STRIPE_SECTORS, 0))
3212                                 abort = 1;
3213                         rdev = conf->disks[i].replacement;
3214                         if (rdev
3215                             && !test_bit(Faulty, &rdev->flags)
3216                             && !test_bit(In_sync, &rdev->flags)
3217                             && !rdev_set_badblocks(rdev, sh->sector,
3218                                                    STRIPE_SECTORS, 0))
3219                                 abort = 1;
3220                 }
3221                 if (abort)
3222                         conf->recovery_disabled =
3223                                 conf->mddev->recovery_disabled;
3224         }
3225         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3226 }
3227
3228 static int want_replace(struct stripe_head *sh, int disk_idx)
3229 {
3230         struct md_rdev *rdev;
3231         int rv = 0;
3232         /* Doing recovery so rcu locking not required */
3233         rdev = sh->raid_conf->disks[disk_idx].replacement;
3234         if (rdev
3235             && !test_bit(Faulty, &rdev->flags)
3236             && !test_bit(In_sync, &rdev->flags)
3237             && (rdev->recovery_offset <= sh->sector
3238                 || rdev->mddev->recovery_cp <= sh->sector))
3239                 rv = 1;
3240
3241         return rv;
3242 }
3243
3244 /* fetch_block - checks the given member device to see if its data needs
3245  * to be read or computed to satisfy a request.
3246  *
3247  * Returns 1 when no more member devices need to be checked, otherwise returns
3248  * 0 to tell the loop in handle_stripe_fill to continue
3249  */
3250
3251 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3252                            int disk_idx, int disks)
3253 {
3254         struct r5dev *dev = &sh->dev[disk_idx];
3255         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3256                                   &sh->dev[s->failed_num[1]] };
3257         int i;
3258
3259
3260         if (test_bit(R5_LOCKED, &dev->flags) ||
3261             test_bit(R5_UPTODATE, &dev->flags))
3262                 /* No point reading this as we already have it or have
3263                  * decided to get it.
3264                  */
3265                 return 0;
3266
3267         if (dev->toread ||
3268             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3269                 /* We need this block to directly satisfy a request */
3270                 return 1;
3271
3272         if (s->syncing || s->expanding ||
3273             (s->replacing && want_replace(sh, disk_idx)))
3274                 /* When syncing, or expanding we read everything.
3275                  * When replacing, we need the replaced block.
3276                  */
3277                 return 1;
3278
3279         if ((s->failed >= 1 && fdev[0]->toread) ||
3280             (s->failed >= 2 && fdev[1]->toread))
3281                 /* If we want to read from a failed device, then
3282                  * we need to actually read every other device.
3283                  */
3284                 return 1;
3285
3286         /* Sometimes neither read-modify-write nor reconstruct-write
3287          * cycles can work.  In those cases we read every block we
3288          * can.  Then the parity-update is certain to have enough to
3289          * work with.
3290          * This can only be a problem when we need to write something,
3291          * and some device has failed.  If either of those tests
3292          * fail we need look no further.
3293          */
3294         if (!s->failed || !s->to_write)
3295                 return 0;
3296
3297         if (test_bit(R5_Insync, &dev->flags) &&
3298             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3299                 /* Pre-reads at not permitted until after short delay
3300                  * to gather multiple requests.  However if this
3301                  * device is no Insync, the block could only be be computed
3302                  * and there is no need to delay that.
3303                  */
3304                 return 0;
3305
3306         for (i = 0; i < s->failed && i < 2; i++) {
3307                 if (fdev[i]->towrite &&
3308                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3309                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3310                         /* If we have a partial write to a failed
3311                          * device, then we will need to reconstruct
3312                          * the content of that device, so all other
3313                          * devices must be read.
3314                          */
3315                         return 1;
3316         }
3317
3318         /* If we are forced to do a reconstruct-write, either because
3319          * the current RAID6 implementation only supports that, or
3320          * or because parity cannot be trusted and we are currently
3321          * recovering it, there is extra need to be careful.
3322          * If one of the devices that we would need to read, because
3323          * it is not being overwritten (and maybe not written at all)
3324          * is missing/faulty, then we need to read everything we can.
3325          */
3326         if (sh->raid_conf->level != 6 &&
3327             sh->sector < sh->raid_conf->mddev->recovery_cp)
3328                 /* reconstruct-write isn't being forced */
3329                 return 0;
3330         for (i = 0; i < s->failed && i < 2; i++) {
3331                 if (s->failed_num[i] != sh->pd_idx &&
3332                     s->failed_num[i] != sh->qd_idx &&
3333                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3334                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3335                         return 1;
3336         }
3337
3338         return 0;
3339 }
3340
3341 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3342                        int disk_idx, int disks)
3343 {
3344         struct r5dev *dev = &sh->dev[disk_idx];
3345
3346         /* is the data in this block needed, and can we get it? */
3347         if (need_this_block(sh, s, disk_idx, disks)) {
3348                 /* we would like to get this block, possibly by computing it,
3349                  * otherwise read it if the backing disk is insync
3350                  */
3351                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3352                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3353                 BUG_ON(sh->batch_head);
3354                 if ((s->uptodate == disks - 1) &&
3355                     (s->failed && (disk_idx == s->failed_num[0] ||
3356                                    disk_idx == s->failed_num[1]))) {
3357                         /* have disk failed, and we're requested to fetch it;
3358                          * do compute it
3359                          */
3360                         pr_debug("Computing stripe %llu block %d\n",
3361                                (unsigned long long)sh->sector, disk_idx);
3362                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3363                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3364                         set_bit(R5_Wantcompute, &dev->flags);
3365                         sh->ops.target = disk_idx;
3366                         sh->ops.target2 = -1; /* no 2nd target */
3367                         s->req_compute = 1;
3368                         /* Careful: from this point on 'uptodate' is in the eye
3369                          * of raid_run_ops which services 'compute' operations
3370                          * before writes. R5_Wantcompute flags a block that will
3371                          * be R5_UPTODATE by the time it is needed for a
3372                          * subsequent operation.
3373                          */
3374                         s->uptodate++;
3375                         return 1;
3376                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3377                         /* Computing 2-failure is *very* expensive; only
3378                          * do it if failed >= 2
3379                          */
3380                         int other;
3381                         for (other = disks; other--; ) {
3382                                 if (other == disk_idx)
3383                                         continue;
3384                                 if (!test_bit(R5_UPTODATE,
3385                                       &sh->dev[other].flags))
3386                                         break;
3387                         }
3388                         BUG_ON(other < 0);
3389                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3390                                (unsigned long long)sh->sector,
3391                                disk_idx, other);
3392                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3393                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3394                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3395                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3396                         sh->ops.target = disk_idx;
3397                         sh->ops.target2 = other;
3398                         s->uptodate += 2;
3399                         s->req_compute = 1;
3400                         return 1;
3401                 } else if (test_bit(R5_Insync, &dev->flags)) {
3402                         set_bit(R5_LOCKED, &dev->flags);
3403                         set_bit(R5_Wantread, &dev->flags);
3404                         s->locked++;
3405                         pr_debug("Reading block %d (sync=%d)\n",
3406                                 disk_idx, s->syncing);
3407                 }
3408         }
3409
3410         return 0;
3411 }
3412
3413 /**
3414  * handle_stripe_fill - read or compute data to satisfy pending requests.
3415  */
3416 static void handle_stripe_fill(struct stripe_head *sh,
3417                                struct stripe_head_state *s,
3418                                int disks)
3419 {
3420         int i;
3421
3422         /* look for blocks to read/compute, skip this if a compute
3423          * is already in flight, or if the stripe contents are in the
3424          * midst of changing due to a write
3425          */
3426         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3427             !sh->reconstruct_state)
3428                 for (i = disks; i--; )
3429                         if (fetch_block(sh, s, i, disks))
3430                                 break;
3431         set_bit(STRIPE_HANDLE, &sh->state);
3432 }
3433
3434 static void break_stripe_batch_list(struct stripe_head *head_sh,
3435                                     unsigned long handle_flags);
3436 /* handle_stripe_clean_event
3437  * any written block on an uptodate or failed drive can be returned.
3438  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3439  * never LOCKED, so we don't need to test 'failed' directly.
3440  */
3441 static void handle_stripe_clean_event(struct r5conf *conf,
3442         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3443 {
3444         int i;
3445         struct r5dev *dev;
3446         int discard_pending = 0;
3447         struct stripe_head *head_sh = sh;
3448         bool do_endio = false;
3449
3450         for (i = disks; i--; )
3451                 if (sh->dev[i].written) {
3452                         dev = &sh->dev[i];
3453                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3454                             (test_bit(R5_UPTODATE, &dev->flags) ||
3455                              test_bit(R5_Discard, &dev->flags) ||
3456                              test_bit(R5_SkipCopy, &dev->flags))) {
3457                                 /* We can return any write requests */
3458                                 struct bio *wbi, *wbi2;
3459                                 pr_debug("Return write for disc %d\n", i);
3460                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3461                                         clear_bit(R5_UPTODATE, &dev->flags);
3462                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3463                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3464                                 }
3465                                 do_endio = true;
3466
3467 returnbi:
3468                                 dev->page = dev->orig_page;
3469                                 wbi = dev->written;
3470                                 dev->written = NULL;
3471                                 while (wbi && wbi->bi_iter.bi_sector <
3472                                         dev->sector + STRIPE_SECTORS) {
3473                                         wbi2 = r5_next_bio(wbi, dev->sector);
3474                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3475                                                 md_write_end(conf->mddev);
3476                                                 bio_list_add(return_bi, wbi);
3477                                         }
3478                                         wbi = wbi2;
3479                                 }
3480                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3481                                                 STRIPE_SECTORS,
3482                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3483                                                 0);
3484                                 if (head_sh->batch_head) {
3485                                         sh = list_first_entry(&sh->batch_list,
3486                                                               struct stripe_head,
3487                                                               batch_list);
3488                                         if (sh != head_sh) {
3489                                                 dev = &sh->dev[i];
3490                                                 goto returnbi;
3491                                         }
3492                                 }
3493                                 sh = head_sh;
3494                                 dev = &sh->dev[i];
3495                         } else if (test_bit(R5_Discard, &dev->flags))
3496                                 discard_pending = 1;
3497                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3498                         WARN_ON(dev->page != dev->orig_page);
3499                 }
3500         if (!discard_pending &&
3501             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3502                 int hash;
3503                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3504                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3505                 if (sh->qd_idx >= 0) {
3506                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3507                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3508                 }
3509                 /* now that discard is done we can proceed with any sync */
3510                 clear_bit(STRIPE_DISCARD, &sh->state);
3511                 /*
3512                  * SCSI discard will change some bio fields and the stripe has
3513                  * no updated data, so remove it from hash list and the stripe
3514                  * will be reinitialized
3515                  */
3516 unhash:
3517                 hash = sh->hash_lock_index;
3518                 spin_lock_irq(conf->hash_locks + hash);
3519                 remove_hash(sh);
3520                 spin_unlock_irq(conf->hash_locks + hash);
3521                 if (head_sh->batch_head) {
3522                         sh = list_first_entry(&sh->batch_list,
3523                                               struct stripe_head, batch_list);
3524                         if (sh != head_sh)
3525                                         goto unhash;
3526                 }
3527                 sh = head_sh;
3528
3529                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3530                         set_bit(STRIPE_HANDLE, &sh->state);
3531
3532         }
3533
3534         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3535                 if (atomic_dec_and_test(&conf->pending_full_writes))
3536                         md_wakeup_thread(conf->mddev->thread);
3537
3538         if (head_sh->batch_head && do_endio)
3539                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3540 }
3541
3542 static void handle_stripe_dirtying(struct r5conf *conf,
3543                                    struct stripe_head *sh,
3544                                    struct stripe_head_state *s,
3545                                    int disks)
3546 {
3547         int rmw = 0, rcw = 0, i;
3548         sector_t recovery_cp = conf->mddev->recovery_cp;
3549
3550         /* Check whether resync is now happening or should start.
3551          * If yes, then the array is dirty (after unclean shutdown or
3552          * initial creation), so parity in some stripes might be inconsistent.
3553          * In this case, we need to always do reconstruct-write, to ensure
3554          * that in case of drive failure or read-error correction, we
3555          * generate correct data from the parity.
3556          */
3557         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3558             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3559              s->failed == 0)) {
3560                 /* Calculate the real rcw later - for now make it
3561                  * look like rcw is cheaper
3562                  */
3563                 rcw = 1; rmw = 2;
3564                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3565                          conf->rmw_level, (unsigned long long)recovery_cp,
3566                          (unsigned long long)sh->sector);
3567         } else for (i = disks; i--; ) {
3568                 /* would I have to read this buffer for read_modify_write */
3569                 struct r5dev *dev = &sh->dev[i];
3570                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3571                     !test_bit(R5_LOCKED, &dev->flags) &&
3572                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3573                       test_bit(R5_Wantcompute, &dev->flags))) {
3574                         if (test_bit(R5_Insync, &dev->flags))
3575                                 rmw++;
3576                         else
3577                                 rmw += 2*disks;  /* cannot read it */
3578                 }
3579                 /* Would I have to read this buffer for reconstruct_write */
3580                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3581                     i != sh->pd_idx && i != sh->qd_idx &&
3582                     !test_bit(R5_LOCKED, &dev->flags) &&
3583                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3584                     test_bit(R5_Wantcompute, &dev->flags))) {
3585                         if (test_bit(R5_Insync, &dev->flags))
3586                                 rcw++;
3587                         else
3588                                 rcw += 2*disks;
3589                 }
3590         }
3591         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3592                 (unsigned long long)sh->sector, rmw, rcw);
3593         set_bit(STRIPE_HANDLE, &sh->state);
3594         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3595                 /* prefer read-modify-write, but need to get some data */
3596                 if (conf->mddev->queue)
3597                         blk_add_trace_msg(conf->mddev->queue,
3598                                           "raid5 rmw %llu %d",
3599                                           (unsigned long long)sh->sector, rmw);
3600                 for (i = disks; i--; ) {
3601                         struct r5dev *dev = &sh->dev[i];
3602                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3603                             !test_bit(R5_LOCKED, &dev->flags) &&
3604                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3605                             test_bit(R5_Wantcompute, &dev->flags)) &&
3606                             test_bit(R5_Insync, &dev->flags)) {
3607                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3608                                              &sh->state)) {
3609                                         pr_debug("Read_old block %d for r-m-w\n",
3610                                                  i);
3611                                         set_bit(R5_LOCKED, &dev->flags);
3612                                         set_bit(R5_Wantread, &dev->flags);
3613                                         s->locked++;
3614                                 } else {
3615                                         set_bit(STRIPE_DELAYED, &sh->state);
3616                                         set_bit(STRIPE_HANDLE, &sh->state);
3617                                 }
3618                         }
3619                 }
3620         }
3621         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3622                 /* want reconstruct write, but need to get some data */
3623                 int qread =0;
3624                 rcw = 0;
3625                 for (i = disks; i--; ) {
3626                         struct r5dev *dev = &sh->dev[i];
3627                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3628                             i != sh->pd_idx && i != sh->qd_idx &&
3629                             !test_bit(R5_LOCKED, &dev->flags) &&
3630                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3631                               test_bit(R5_Wantcompute, &dev->flags))) {
3632                                 rcw++;
3633                                 if (test_bit(R5_Insync, &dev->flags) &&
3634                                     test_bit(STRIPE_PREREAD_ACTIVE,
3635                                              &sh->state)) {
3636                                         pr_debug("Read_old block "
3637                                                 "%d for Reconstruct\n", i);
3638                                         set_bit(R5_LOCKED, &dev->flags);
3639                                         set_bit(R5_Wantread, &dev->flags);
3640                                         s->locked++;
3641                                         qread++;
3642                                 } else {
3643                                         set_bit(STRIPE_DELAYED, &sh->state);
3644                                         set_bit(STRIPE_HANDLE, &sh->state);
3645                                 }
3646                         }
3647                 }
3648                 if (rcw && conf->mddev->queue)
3649                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3650                                           (unsigned long long)sh->sector,
3651                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3652         }
3653
3654         if (rcw > disks && rmw > disks &&
3655             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3656                 set_bit(STRIPE_DELAYED, &sh->state);
3657
3658         /* now if nothing is locked, and if we have enough data,
3659          * we can start a write request
3660          */
3661         /* since handle_stripe can be called at any time we need to handle the
3662          * case where a compute block operation has been submitted and then a
3663          * subsequent call wants to start a write request.  raid_run_ops only
3664          * handles the case where compute block and reconstruct are requested
3665          * simultaneously.  If this is not the case then new writes need to be
3666          * held off until the compute completes.
3667          */
3668         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3669             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3670             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3671                 schedule_reconstruction(sh, s, rcw == 0, 0);
3672 }
3673
3674 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3675                                 struct stripe_head_state *s, int disks)
3676 {
3677         struct r5dev *dev = NULL;
3678
3679         BUG_ON(sh->batch_head);
3680         set_bit(STRIPE_HANDLE, &sh->state);
3681
3682         switch (sh->check_state) {
3683         case check_state_idle:
3684                 /* start a new check operation if there are no failures */
3685                 if (s->failed == 0) {
3686                         BUG_ON(s->uptodate != disks);
3687                         sh->check_state = check_state_run;
3688                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3689                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3690                         s->uptodate--;
3691                         break;
3692                 }
3693                 dev = &sh->dev[s->failed_num[0]];
3694                 /* fall through */
3695         case check_state_compute_result:
3696                 sh->check_state = check_state_idle;
3697                 if (!dev)
3698                         dev = &sh->dev[sh->pd_idx];
3699
3700                 /* check that a write has not made the stripe insync */
3701                 if (test_bit(STRIPE_INSYNC, &sh->state))
3702                         break;
3703
3704                 /* either failed parity check, or recovery is happening */
3705                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3706                 BUG_ON(s->uptodate != disks);
3707
3708                 set_bit(R5_LOCKED, &dev->flags);
3709                 s->locked++;
3710                 set_bit(R5_Wantwrite, &dev->flags);
3711
3712                 clear_bit(STRIPE_DEGRADED, &sh->state);
3713                 set_bit(STRIPE_INSYNC, &sh->state);
3714                 break;
3715         case check_state_run:
3716                 break; /* we will be called again upon completion */
3717         case check_state_check_result:
3718                 sh->check_state = check_state_idle;
3719
3720                 /* if a failure occurred during the check operation, leave
3721                  * STRIPE_INSYNC not set and let the stripe be handled again
3722                  */
3723                 if (s->failed)
3724                         break;
3725
3726                 /* handle a successful check operation, if parity is correct
3727                  * we are done.  Otherwise update the mismatch count and repair
3728                  * parity if !MD_RECOVERY_CHECK
3729                  */
3730                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3731                         /* parity is correct (on disc,
3732                          * not in buffer any more)
3733                          */
3734                         set_bit(STRIPE_INSYNC, &sh->state);
3735                 else {
3736                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3737                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3738                                 /* don't try to repair!! */
3739                                 set_bit(STRIPE_INSYNC, &sh->state);
3740                         else {
3741                                 sh->check_state = check_state_compute_run;
3742                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3743                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3744                                 set_bit(R5_Wantcompute,
3745                                         &sh->dev[sh->pd_idx].flags);
3746                                 sh->ops.target = sh->pd_idx;
3747                                 sh->ops.target2 = -1;
3748                                 s->uptodate++;
3749                         }
3750                 }
3751                 break;
3752         case check_state_compute_run:
3753                 break;
3754         default:
3755                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3756                        __func__, sh->check_state,
3757                        (unsigned long long) sh->sector);
3758                 BUG();
3759         }
3760 }
3761
3762 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3763                                   struct stripe_head_state *s,
3764                                   int disks)
3765 {
3766         int pd_idx = sh->pd_idx;
3767         int qd_idx = sh->qd_idx;
3768         struct r5dev *dev;
3769
3770         BUG_ON(sh->batch_head);
3771         set_bit(STRIPE_HANDLE, &sh->state);
3772
3773         BUG_ON(s->failed > 2);
3774
3775         /* Want to check and possibly repair P and Q.
3776          * However there could be one 'failed' device, in which
3777          * case we can only check one of them, possibly using the
3778          * other to generate missing data
3779          */
3780
3781         switch (sh->check_state) {
3782         case check_state_idle:
3783                 /* start a new check operation if there are < 2 failures */
3784                 if (s->failed == s->q_failed) {
3785                         /* The only possible failed device holds Q, so it
3786                          * makes sense to check P (If anything else were failed,
3787                          * we would have used P to recreate it).
3788                          */
3789                         sh->check_state = check_state_run;
3790                 }
3791                 if (!s->q_failed && s->failed < 2) {
3792                         /* Q is not failed, and we didn't use it to generate
3793                          * anything, so it makes sense to check it
3794                          */
3795                         if (sh->check_state == check_state_run)
3796                                 sh->check_state = check_state_run_pq;
3797                         else
3798                                 sh->check_state = check_state_run_q;
3799                 }
3800
3801                 /* discard potentially stale zero_sum_result */
3802                 sh->ops.zero_sum_result = 0;
3803
3804                 if (sh->check_state == check_state_run) {
3805                         /* async_xor_zero_sum destroys the contents of P */
3806                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3807                         s->uptodate--;
3808                 }
3809                 if (sh->check_state >= check_state_run &&
3810                     sh->check_state <= check_state_run_pq) {
3811                         /* async_syndrome_zero_sum preserves P and Q, so
3812                          * no need to mark them !uptodate here
3813                          */
3814                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3815                         break;
3816                 }
3817
3818                 /* we have 2-disk failure */
3819                 BUG_ON(s->failed != 2);
3820                 /* fall through */
3821         case check_state_compute_result:
3822                 sh->check_state = check_state_idle;
3823
3824                 /* check that a write has not made the stripe insync */
3825                 if (test_bit(STRIPE_INSYNC, &sh->state))
3826                         break;
3827
3828                 /* now write out any block on a failed drive,
3829                  * or P or Q if they were recomputed
3830                  */
3831                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3832                 if (s->failed == 2) {
3833                         dev = &sh->dev[s->failed_num[1]];
3834                         s->locked++;
3835                         set_bit(R5_LOCKED, &dev->flags);
3836                         set_bit(R5_Wantwrite, &dev->flags);
3837                 }
3838                 if (s->failed >= 1) {
3839                         dev = &sh->dev[s->failed_num[0]];
3840                         s->locked++;
3841                         set_bit(R5_LOCKED, &dev->flags);
3842                         set_bit(R5_Wantwrite, &dev->flags);
3843                 }
3844                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3845                         dev = &sh->dev[pd_idx];
3846                         s->locked++;
3847                         set_bit(R5_LOCKED, &dev->flags);
3848                         set_bit(R5_Wantwrite, &dev->flags);
3849                 }
3850                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3851                         dev = &sh->dev[qd_idx];
3852                         s->locked++;
3853                         set_bit(R5_LOCKED, &dev->flags);
3854                         set_bit(R5_Wantwrite, &dev->flags);
3855                 }
3856                 clear_bit(STRIPE_DEGRADED, &sh->state);
3857
3858                 set_bit(STRIPE_INSYNC, &sh->state);
3859                 break;
3860         case check_state_run:
3861         case check_state_run_q:
3862         case check_state_run_pq:
3863                 break; /* we will be called again upon completion */
3864         case check_state_check_result:
3865                 sh->check_state = check_state_idle;
3866
3867                 /* handle a successful check operation, if parity is correct
3868                  * we are done.  Otherwise update the mismatch count and repair
3869                  * parity if !MD_RECOVERY_CHECK
3870                  */
3871                 if (sh->ops.zero_sum_result == 0) {
3872                         /* both parities are correct */
3873                         if (!s->failed)
3874                                 set_bit(STRIPE_INSYNC, &sh->state);
3875                         else {
3876                                 /* in contrast to the raid5 case we can validate
3877                                  * parity, but still have a failure to write
3878                                  * back
3879                                  */
3880                                 sh->check_state = check_state_compute_result;
3881                                 /* Returning at this point means that we may go
3882                                  * off and bring p and/or q uptodate again so
3883                                  * we make sure to check zero_sum_result again
3884                                  * to verify if p or q need writeback
3885                                  */
3886                         }
3887                 } else {
3888                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3889                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3890                                 /* don't try to repair!! */
3891                                 set_bit(STRIPE_INSYNC, &sh->state);
3892                         else {
3893                                 int *target = &sh->ops.target;
3894
3895                                 sh->ops.target = -1;
3896                                 sh->ops.target2 = -1;
3897                                 sh->check_state = check_state_compute_run;
3898                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3899                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3900                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3901                                         set_bit(R5_Wantcompute,
3902                                                 &sh->dev[pd_idx].flags);
3903                                         *target = pd_idx;
3904                                         target = &sh->ops.target2;
3905                                         s->uptodate++;
3906                                 }
3907                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3908                                         set_bit(R5_Wantcompute,
3909                                                 &sh->dev[qd_idx].flags);
3910                                         *target = qd_idx;
3911                                         s->uptodate++;
3912                                 }
3913                         }
3914                 }
3915                 break;
3916         case check_state_compute_run:
3917                 break;
3918         default:
3919                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3920                        __func__, sh->check_state,
3921                        (unsigned long long) sh->sector);
3922                 BUG();
3923         }
3924 }
3925
3926 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3927 {
3928         int i;
3929
3930         /* We have read all the blocks in this stripe and now we need to
3931          * copy some of them into a target stripe for expand.
3932          */
3933         struct dma_async_tx_descriptor *tx = NULL;
3934         BUG_ON(sh->batch_head);
3935         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3936         for (i = 0; i < sh->disks; i++)
3937                 if (i != sh->pd_idx && i != sh->qd_idx) {
3938                         int dd_idx, j;
3939                         struct stripe_head *sh2;
3940                         struct async_submit_ctl submit;
3941
3942                         sector_t bn = compute_blocknr(sh, i, 1);
3943                         sector_t s = raid5_compute_sector(conf, bn, 0,
3944                                                           &dd_idx, NULL);
3945                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3946                         if (sh2 == NULL)
3947                                 /* so far only the early blocks of this stripe
3948                                  * have been requested.  When later blocks
3949                                  * get requested, we will try again
3950                                  */
3951                                 continue;
3952                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3953                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3954                                 /* must have already done this block */
3955                                 release_stripe(sh2);
3956                                 continue;
3957                         }
3958
3959                         /* place all the copies on one channel */
3960                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3961                         tx = async_memcpy(sh2->dev[dd_idx].page,
3962                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3963                                           &submit);
3964
3965                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3966                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3967                         for (j = 0; j < conf->raid_disks; j++)
3968                                 if (j != sh2->pd_idx &&
3969                                     j != sh2->qd_idx &&
3970                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3971                                         break;
3972                         if (j == conf->raid_disks) {
3973                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3974                                 set_bit(STRIPE_HANDLE, &sh2->state);
3975                         }
3976                         release_stripe(sh2);
3977
3978                 }
3979         /* done submitting copies, wait for them to complete */
3980         async_tx_quiesce(&tx);
3981 }
3982
3983 /*
3984  * handle_stripe - do things to a stripe.
3985  *
3986  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3987  * state of various bits to see what needs to be done.
3988  * Possible results:
3989  *    return some read requests which now have data
3990  *    return some write requests which are safely on storage
3991  *    schedule a read on some buffers
3992  *    schedule a write of some buffers
3993  *    return confirmation of parity correctness
3994  *
3995  */
3996
3997 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3998 {
3999         struct r5conf *conf = sh->raid_conf;
4000         int disks = sh->disks;
4001         struct r5dev *dev;
4002         int i;
4003         int do_recovery = 0;
4004
4005         memset(s, 0, sizeof(*s));
4006
4007         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4008         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4009         s->failed_num[0] = -1;
4010         s->failed_num[1] = -1;
4011
4012         /* Now to look around and see what can be done */
4013         rcu_read_lock();
4014         for (i=disks; i--; ) {
4015                 struct md_rdev *rdev;
4016                 sector_t first_bad;
4017                 int bad_sectors;
4018                 int is_bad = 0;
4019
4020                 dev = &sh->dev[i];
4021
4022                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4023                          i, dev->flags,
4024                          dev->toread, dev->towrite, dev->written);
4025                 /* maybe we can reply to a read
4026                  *
4027                  * new wantfill requests are only permitted while
4028                  * ops_complete_biofill is guaranteed to be inactive
4029                  */
4030                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4031                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4032                         set_bit(R5_Wantfill, &dev->flags);
4033
4034                 /* now count some things */
4035                 if (test_bit(R5_LOCKED, &dev->flags))
4036                         s->locked++;
4037                 if (test_bit(R5_UPTODATE, &dev->flags))
4038                         s->uptodate++;
4039                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4040                         s->compute++;
4041                         BUG_ON(s->compute > 2);
4042                 }
4043
4044                 if (test_bit(R5_Wantfill, &dev->flags))
4045                         s->to_fill++;
4046                 else if (dev->toread)
4047                         s->to_read++;
4048                 if (dev->towrite) {
4049                         s->to_write++;
4050                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4051                                 s->non_overwrite++;
4052                 }
4053                 if (dev->written)
4054                         s->written++;
4055                 /* Prefer to use the replacement for reads, but only
4056                  * if it is recovered enough and has no bad blocks.
4057                  */
4058                 rdev = rcu_dereference(conf->disks[i].replacement);
4059                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4060                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4061                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4062                                  &first_bad, &bad_sectors))
4063                         set_bit(R5_ReadRepl, &dev->flags);
4064                 else {
4065                         if (rdev && !test_bit(Faulty, &rdev->flags))
4066                                 set_bit(R5_NeedReplace, &dev->flags);
4067                         else
4068                                 clear_bit(R5_NeedReplace, &dev->flags);
4069                         rdev = rcu_dereference(conf->disks[i].rdev);
4070                         clear_bit(R5_ReadRepl, &dev->flags);
4071                 }
4072                 if (rdev && test_bit(Faulty, &rdev->flags))
4073                         rdev = NULL;
4074                 if (rdev) {
4075                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4076                                              &first_bad, &bad_sectors);
4077                         if (s->blocked_rdev == NULL
4078                             && (test_bit(Blocked, &rdev->flags)
4079                                 || is_bad < 0)) {
4080                                 if (is_bad < 0)
4081                                         set_bit(BlockedBadBlocks,
4082                                                 &rdev->flags);
4083                                 s->blocked_rdev = rdev;
4084                                 atomic_inc(&rdev->nr_pending);
4085                         }
4086                 }
4087                 clear_bit(R5_Insync, &dev->flags);
4088                 if (!rdev)
4089                         /* Not in-sync */;
4090                 else if (is_bad) {
4091                         /* also not in-sync */
4092                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4093                             test_bit(R5_UPTODATE, &dev->flags)) {
4094                                 /* treat as in-sync, but with a read error
4095                                  * which we can now try to correct
4096                                  */
4097                                 set_bit(R5_Insync, &dev->flags);
4098                                 set_bit(R5_ReadError, &dev->flags);
4099                         }
4100                 } else if (test_bit(In_sync, &rdev->flags))
4101                         set_bit(R5_Insync, &dev->flags);
4102                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4103                         /* in sync if before recovery_offset */
4104                         set_bit(R5_Insync, &dev->flags);
4105                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4106                          test_bit(R5_Expanded, &dev->flags))
4107                         /* If we've reshaped into here, we assume it is Insync.
4108                          * We will shortly update recovery_offset to make
4109                          * it official.
4110                          */
4111                         set_bit(R5_Insync, &dev->flags);
4112
4113                 if (test_bit(R5_WriteError, &dev->flags)) {
4114                         /* This flag does not apply to '.replacement'
4115                          * only to .rdev, so make sure to check that*/
4116                         struct md_rdev *rdev2 = rcu_dereference(
4117                                 conf->disks[i].rdev);
4118                         if (rdev2 == rdev)
4119                                 clear_bit(R5_Insync, &dev->flags);
4120                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4121                                 s->handle_bad_blocks = 1;
4122                                 atomic_inc(&rdev2->nr_pending);
4123                         } else
4124                                 clear_bit(R5_WriteError, &dev->flags);
4125                 }
4126                 if (test_bit(R5_MadeGood, &dev->flags)) {
4127                         /* This flag does not apply to '.replacement'
4128                          * only to .rdev, so make sure to check that*/
4129                         struct md_rdev *rdev2 = rcu_dereference(
4130                                 conf->disks[i].rdev);
4131                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4132                                 s->handle_bad_blocks = 1;
4133                                 atomic_inc(&rdev2->nr_pending);
4134                         } else
4135                                 clear_bit(R5_MadeGood, &dev->flags);
4136                 }
4137                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4138                         struct md_rdev *rdev2 = rcu_dereference(
4139                                 conf->disks[i].replacement);
4140                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4141                                 s->handle_bad_blocks = 1;
4142                                 atomic_inc(&rdev2->nr_pending);
4143                         } else
4144                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4145                 }
4146                 if (!test_bit(R5_Insync, &dev->flags)) {
4147                         /* The ReadError flag will just be confusing now */
4148                         clear_bit(R5_ReadError, &dev->flags);
4149                         clear_bit(R5_ReWrite, &dev->flags);
4150                 }
4151                 if (test_bit(R5_ReadError, &dev->flags))
4152                         clear_bit(R5_Insync, &dev->flags);
4153                 if (!test_bit(R5_Insync, &dev->flags)) {
4154                         if (s->failed < 2)
4155                                 s->failed_num[s->failed] = i;
4156                         s->failed++;
4157                         if (rdev && !test_bit(Faulty, &rdev->flags))
4158                                 do_recovery = 1;
4159                 }
4160         }
4161         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4162                 /* If there is a failed device being replaced,
4163                  *     we must be recovering.
4164                  * else if we are after recovery_cp, we must be syncing
4165                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4166                  * else we can only be replacing
4167                  * sync and recovery both need to read all devices, and so
4168                  * use the same flag.
4169                  */
4170                 if (do_recovery ||
4171                     sh->sector >= conf->mddev->recovery_cp ||
4172                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4173                         s->syncing = 1;
4174                 else
4175                         s->replacing = 1;
4176         }
4177         rcu_read_unlock();
4178 }
4179
4180 static int clear_batch_ready(struct stripe_head *sh)
4181 {
4182         /* Return '1' if this is a member of batch, or
4183          * '0' if it is a lone stripe or a head which can now be
4184          * handled.
4185          */
4186         struct stripe_head *tmp;
4187         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4188                 return (sh->batch_head && sh->batch_head != sh);
4189         spin_lock(&sh->stripe_lock);
4190         if (!sh->batch_head) {
4191                 spin_unlock(&sh->stripe_lock);
4192                 return 0;
4193         }
4194
4195         /*
4196          * this stripe could be added to a batch list before we check
4197          * BATCH_READY, skips it
4198          */
4199         if (sh->batch_head != sh) {
4200                 spin_unlock(&sh->stripe_lock);
4201                 return 1;
4202         }
4203         spin_lock(&sh->batch_lock);
4204         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4205                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4206         spin_unlock(&sh->batch_lock);
4207         spin_unlock(&sh->stripe_lock);
4208
4209         /*
4210          * BATCH_READY is cleared, no new stripes can be added.
4211          * batch_list can be accessed without lock
4212          */
4213         return 0;
4214 }
4215
4216 static void break_stripe_batch_list(struct stripe_head *head_sh,
4217                                     unsigned long handle_flags)
4218 {
4219         struct stripe_head *sh, *next;
4220         int i;
4221         int do_wakeup = 0;
4222
4223         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4224
4225                 list_del_init(&sh->batch_list);
4226
4227                 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4228                                           (1 << STRIPE_SYNCING) |
4229                                           (1 << STRIPE_REPLACED) |
4230                                           (1 << STRIPE_PREREAD_ACTIVE) |
4231                                           (1 << STRIPE_DELAYED) |
4232                                           (1 << STRIPE_BIT_DELAY) |
4233                                           (1 << STRIPE_FULL_WRITE) |
4234                                           (1 << STRIPE_BIOFILL_RUN) |
4235                                           (1 << STRIPE_COMPUTE_RUN)  |
4236                                           (1 << STRIPE_OPS_REQ_PENDING) |
4237                                           (1 << STRIPE_DISCARD) |
4238                                           (1 << STRIPE_BATCH_READY) |
4239                                           (1 << STRIPE_BATCH_ERR) |
4240                                           (1 << STRIPE_BITMAP_PENDING)));
4241                 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4242                                               (1 << STRIPE_REPLACED)));
4243
4244                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4245                                             (1 << STRIPE_DEGRADED)),
4246                               head_sh->state & (1 << STRIPE_INSYNC));
4247
4248                 sh->check_state = head_sh->check_state;
4249                 sh->reconstruct_state = head_sh->reconstruct_state;
4250                 for (i = 0; i < sh->disks; i++) {
4251                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4252                                 do_wakeup = 1;
4253                         sh->dev[i].flags = head_sh->dev[i].flags &
4254                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4255                 }
4256                 spin_lock_irq(&sh->stripe_lock);
4257                 sh->batch_head = NULL;
4258                 spin_unlock_irq(&sh->stripe_lock);
4259                 if (handle_flags == 0 ||
4260                     sh->state & handle_flags)
4261                         set_bit(STRIPE_HANDLE, &sh->state);
4262                 release_stripe(sh);
4263         }
4264         spin_lock_irq(&head_sh->stripe_lock);
4265         head_sh->batch_head = NULL;
4266         spin_unlock_irq(&head_sh->stripe_lock);
4267         for (i = 0; i < head_sh->disks; i++)
4268                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4269                         do_wakeup = 1;
4270         if (head_sh->state & handle_flags)
4271                 set_bit(STRIPE_HANDLE, &head_sh->state);
4272
4273         if (do_wakeup)
4274                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4275 }
4276
4277 static void handle_stripe(struct stripe_head *sh)
4278 {
4279         struct stripe_head_state s;
4280         struct r5conf *conf = sh->raid_conf;
4281         int i;
4282         int prexor;
4283         int disks = sh->disks;
4284         struct r5dev *pdev, *qdev;
4285
4286         clear_bit(STRIPE_HANDLE, &sh->state);
4287         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4288                 /* already being handled, ensure it gets handled
4289                  * again when current action finishes */
4290                 set_bit(STRIPE_HANDLE, &sh->state);
4291                 return;
4292         }
4293
4294         if (clear_batch_ready(sh) ) {
4295                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4296                 return;
4297         }
4298
4299         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4300                 break_stripe_batch_list(sh, 0);
4301
4302         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4303                 spin_lock(&sh->stripe_lock);
4304                 /* Cannot process 'sync' concurrently with 'discard' */
4305                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4306                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4307                         set_bit(STRIPE_SYNCING, &sh->state);
4308                         clear_bit(STRIPE_INSYNC, &sh->state);
4309                         clear_bit(STRIPE_REPLACED, &sh->state);
4310                 }
4311                 spin_unlock(&sh->stripe_lock);
4312         }
4313         clear_bit(STRIPE_DELAYED, &sh->state);
4314
4315         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4316                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4317                (unsigned long long)sh->sector, sh->state,
4318                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4319                sh->check_state, sh->reconstruct_state);
4320
4321         analyse_stripe(sh, &s);
4322
4323         if (s.handle_bad_blocks) {
4324                 set_bit(STRIPE_HANDLE, &sh->state);
4325                 goto finish;
4326         }
4327
4328         if (unlikely(s.blocked_rdev)) {
4329                 if (s.syncing || s.expanding || s.expanded ||
4330                     s.replacing || s.to_write || s.written) {
4331                         set_bit(STRIPE_HANDLE, &sh->state);
4332                         goto finish;
4333                 }
4334                 /* There is nothing for the blocked_rdev to block */
4335                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4336                 s.blocked_rdev = NULL;
4337         }
4338
4339         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4340                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4341                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4342         }
4343
4344         pr_debug("locked=%d uptodate=%d to_read=%d"
4345                " to_write=%d failed=%d failed_num=%d,%d\n",
4346                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4347                s.failed_num[0], s.failed_num[1]);
4348         /* check if the array has lost more than max_degraded devices and,
4349          * if so, some requests might need to be failed.
4350          */
4351         if (s.failed > conf->max_degraded) {
4352                 sh->check_state = 0;
4353                 sh->reconstruct_state = 0;
4354                 break_stripe_batch_list(sh, 0);
4355                 if (s.to_read+s.to_write+s.written)
4356                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4357                 if (s.syncing + s.replacing)
4358                         handle_failed_sync(conf, sh, &s);
4359         }
4360
4361         /* Now we check to see if any write operations have recently
4362          * completed
4363          */
4364         prexor = 0;
4365         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4366                 prexor = 1;
4367         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4368             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4369                 sh->reconstruct_state = reconstruct_state_idle;
4370
4371                 /* All the 'written' buffers and the parity block are ready to
4372                  * be written back to disk
4373                  */
4374                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4375                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4376                 BUG_ON(sh->qd_idx >= 0 &&
4377                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4378                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4379                 for (i = disks; i--; ) {
4380                         struct r5dev *dev = &sh->dev[i];
4381                         if (test_bit(R5_LOCKED, &dev->flags) &&
4382                                 (i == sh->pd_idx || i == sh->qd_idx ||
4383                                  dev->written)) {
4384                                 pr_debug("Writing block %d\n", i);
4385                                 set_bit(R5_Wantwrite, &dev->flags);
4386                                 if (prexor)
4387                                         continue;
4388                                 if (s.failed > 1)
4389                                         continue;
4390                                 if (!test_bit(R5_Insync, &dev->flags) ||
4391                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4392                                      s.failed == 0))
4393                                         set_bit(STRIPE_INSYNC, &sh->state);
4394                         }
4395                 }
4396                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4397                         s.dec_preread_active = 1;
4398         }
4399
4400         /*
4401          * might be able to return some write requests if the parity blocks
4402          * are safe, or on a failed drive
4403          */
4404         pdev = &sh->dev[sh->pd_idx];
4405         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4406                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4407         qdev = &sh->dev[sh->qd_idx];
4408         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4409                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4410                 || conf->level < 6;
4411
4412         if (s.written &&
4413             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4414                              && !test_bit(R5_LOCKED, &pdev->flags)
4415                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4416                                  test_bit(R5_Discard, &pdev->flags))))) &&
4417             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4418                              && !test_bit(R5_LOCKED, &qdev->flags)
4419                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4420                                  test_bit(R5_Discard, &qdev->flags))))))
4421                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4422
4423         /* Now we might consider reading some blocks, either to check/generate
4424          * parity, or to satisfy requests
4425          * or to load a block that is being partially written.
4426          */
4427         if (s.to_read || s.non_overwrite
4428             || (conf->level == 6 && s.to_write && s.failed)
4429             || (s.syncing && (s.uptodate + s.compute < disks))
4430             || s.replacing
4431             || s.expanding)
4432                 handle_stripe_fill(sh, &s, disks);
4433
4434         /* Now to consider new write requests and what else, if anything
4435          * should be read.  We do not handle new writes when:
4436          * 1/ A 'write' operation (copy+xor) is already in flight.
4437          * 2/ A 'check' operation is in flight, as it may clobber the parity
4438          *    block.
4439          */
4440         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4441                 handle_stripe_dirtying(conf, sh, &s, disks);
4442
4443         /* maybe we need to check and possibly fix the parity for this stripe
4444          * Any reads will already have been scheduled, so we just see if enough
4445          * data is available.  The parity check is held off while parity
4446          * dependent operations are in flight.
4447          */
4448         if (sh->check_state ||
4449             (s.syncing && s.locked == 0 &&
4450              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4451              !test_bit(STRIPE_INSYNC, &sh->state))) {
4452                 if (conf->level == 6)
4453                         handle_parity_checks6(conf, sh, &s, disks);
4454                 else
4455                         handle_parity_checks5(conf, sh, &s, disks);
4456         }
4457
4458         if ((s.replacing || s.syncing) && s.locked == 0
4459             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4460             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4461                 /* Write out to replacement devices where possible */
4462                 for (i = 0; i < conf->raid_disks; i++)
4463                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4464                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4465                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4466                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4467                                 s.locked++;
4468                         }
4469                 if (s.replacing)
4470                         set_bit(STRIPE_INSYNC, &sh->state);
4471                 set_bit(STRIPE_REPLACED, &sh->state);
4472         }
4473         if ((s.syncing || s.replacing) && s.locked == 0 &&
4474             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4475             test_bit(STRIPE_INSYNC, &sh->state)) {
4476                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4477                 clear_bit(STRIPE_SYNCING, &sh->state);
4478                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4479                         wake_up(&conf->wait_for_overlap);
4480         }
4481
4482         /* If the failed drives are just a ReadError, then we might need
4483          * to progress the repair/check process
4484          */
4485         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4486                 for (i = 0; i < s.failed; i++) {
4487                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4488                         if (test_bit(R5_ReadError, &dev->flags)
4489                             && !test_bit(R5_LOCKED, &dev->flags)
4490                             && test_bit(R5_UPTODATE, &dev->flags)
4491                                 ) {
4492                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4493                                         set_bit(R5_Wantwrite, &dev->flags);
4494                                         set_bit(R5_ReWrite, &dev->flags);
4495                                         set_bit(R5_LOCKED, &dev->flags);
4496                                         s.locked++;
4497                                 } else {
4498                                         /* let's read it back */
4499                                         set_bit(R5_Wantread, &dev->flags);
4500                                         set_bit(R5_LOCKED, &dev->flags);
4501                                         s.locked++;
4502                                 }
4503                         }
4504                 }
4505
4506         /* Finish reconstruct operations initiated by the expansion process */
4507         if (sh->reconstruct_state == reconstruct_state_result) {
4508                 struct stripe_head *sh_src
4509                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4510                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4511                         /* sh cannot be written until sh_src has been read.
4512                          * so arrange for sh to be delayed a little
4513                          */
4514                         set_bit(STRIPE_DELAYED, &sh->state);
4515                         set_bit(STRIPE_HANDLE, &sh->state);
4516                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4517                                               &sh_src->state))
4518                                 atomic_inc(&conf->preread_active_stripes);
4519                         release_stripe(sh_src);
4520                         goto finish;
4521                 }
4522                 if (sh_src)
4523                         release_stripe(sh_src);
4524
4525                 sh->reconstruct_state = reconstruct_state_idle;
4526                 clear_bit(STRIPE_EXPANDING, &sh->state);
4527                 for (i = conf->raid_disks; i--; ) {
4528                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4529                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4530                         s.locked++;
4531                 }
4532         }
4533
4534         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4535             !sh->reconstruct_state) {
4536                 /* Need to write out all blocks after computing parity */
4537                 sh->disks = conf->raid_disks;
4538                 stripe_set_idx(sh->sector, conf, 0, sh);
4539                 schedule_reconstruction(sh, &s, 1, 1);
4540         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4541                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4542                 atomic_dec(&conf->reshape_stripes);
4543                 wake_up(&conf->wait_for_overlap);
4544                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4545         }
4546
4547         if (s.expanding && s.locked == 0 &&
4548             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4549                 handle_stripe_expansion(conf, sh);
4550
4551 finish:
4552         /* wait for this device to become unblocked */
4553         if (unlikely(s.blocked_rdev)) {
4554                 if (conf->mddev->external)
4555                         md_wait_for_blocked_rdev(s.blocked_rdev,
4556                                                  conf->mddev);
4557                 else
4558                         /* Internal metadata will immediately
4559                          * be written by raid5d, so we don't
4560                          * need to wait here.
4561                          */
4562                         rdev_dec_pending(s.blocked_rdev,
4563                                          conf->mddev);
4564         }
4565
4566         if (s.handle_bad_blocks)
4567                 for (i = disks; i--; ) {
4568                         struct md_rdev *rdev;
4569                         struct r5dev *dev = &sh->dev[i];
4570                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4571                                 /* We own a safe reference to the rdev */
4572                                 rdev = conf->disks[i].rdev;
4573                                 if (!rdev_set_badblocks(rdev, sh->sector,
4574                                                         STRIPE_SECTORS, 0))
4575                                         md_error(conf->mddev, rdev);
4576                                 rdev_dec_pending(rdev, conf->mddev);
4577                         }
4578                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4579                                 rdev = conf->disks[i].rdev;
4580                                 rdev_clear_badblocks(rdev, sh->sector,
4581                                                      STRIPE_SECTORS, 0);
4582                                 rdev_dec_pending(rdev, conf->mddev);
4583                         }
4584                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4585                                 rdev = conf->disks[i].replacement;
4586                                 if (!rdev)
4587                                         /* rdev have been moved down */
4588                                         rdev = conf->disks[i].rdev;
4589                                 rdev_clear_badblocks(rdev, sh->sector,
4590                                                      STRIPE_SECTORS, 0);
4591                                 rdev_dec_pending(rdev, conf->mddev);
4592                         }
4593                 }
4594
4595         if (s.ops_request)
4596                 raid_run_ops(sh, s.ops_request);
4597
4598         ops_run_io(sh, &s);
4599
4600         if (s.dec_preread_active) {
4601                 /* We delay this until after ops_run_io so that if make_request
4602                  * is waiting on a flush, it won't continue until the writes
4603                  * have actually been submitted.
4604                  */
4605                 atomic_dec(&conf->preread_active_stripes);
4606                 if (atomic_read(&conf->preread_active_stripes) <
4607                     IO_THRESHOLD)
4608                         md_wakeup_thread(conf->mddev->thread);
4609         }
4610
4611         if (!bio_list_empty(&s.return_bi)) {
4612                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4613                         spin_lock_irq(&conf->device_lock);
4614                         bio_list_merge(&conf->return_bi, &s.return_bi);
4615                         spin_unlock_irq(&conf->device_lock);
4616                         md_wakeup_thread(conf->mddev->thread);
4617                 } else
4618                         return_io(&s.return_bi);
4619         }
4620
4621         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4622 }
4623
4624 static void raid5_activate_delayed(struct r5conf *conf)
4625 {
4626         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4627                 while (!list_empty(&conf->delayed_list)) {
4628                         struct list_head *l = conf->delayed_list.next;
4629                         struct stripe_head *sh;
4630                         sh = list_entry(l, struct stripe_head, lru);
4631                         list_del_init(l);
4632                         clear_bit(STRIPE_DELAYED, &sh->state);
4633                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4634                                 atomic_inc(&conf->preread_active_stripes);
4635                         list_add_tail(&sh->lru, &conf->hold_list);
4636                         raid5_wakeup_stripe_thread(sh);
4637                 }
4638         }
4639 }
4640
4641 static void activate_bit_delay(struct r5conf *conf,
4642         struct list_head *temp_inactive_list)
4643 {
4644         /* device_lock is held */
4645         struct list_head head;
4646         list_add(&head, &conf->bitmap_list);
4647         list_del_init(&conf->bitmap_list);
4648         while (!list_empty(&head)) {
4649                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4650                 int hash;
4651                 list_del_init(&sh->lru);
4652                 atomic_inc(&sh->count);
4653                 hash = sh->hash_lock_index;
4654                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4655         }
4656 }
4657
4658 static int raid5_congested(struct mddev *mddev, int bits)
4659 {
4660         struct r5conf *conf = mddev->private;
4661
4662         /* No difference between reads and writes.  Just check
4663          * how busy the stripe_cache is
4664          */
4665
4666         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4667                 return 1;
4668         if (conf->quiesce)
4669                 return 1;
4670         if (atomic_read(&conf->empty_inactive_list_nr))
4671                 return 1;
4672
4673         return 0;
4674 }
4675
4676 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4677 {
4678         struct r5conf *conf = mddev->private;
4679         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4680         unsigned int chunk_sectors;
4681         unsigned int bio_sectors = bio_sectors(bio);
4682
4683         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4684         return  chunk_sectors >=
4685                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4686 }
4687
4688 /*
4689  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4690  *  later sampled by raid5d.
4691  */
4692 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4693 {
4694         unsigned long flags;
4695
4696         spin_lock_irqsave(&conf->device_lock, flags);
4697
4698         bi->bi_next = conf->retry_read_aligned_list;
4699         conf->retry_read_aligned_list = bi;
4700
4701         spin_unlock_irqrestore(&conf->device_lock, flags);
4702         md_wakeup_thread(conf->mddev->thread);
4703 }
4704
4705 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4706 {
4707         struct bio *bi;
4708
4709         bi = conf->retry_read_aligned;
4710         if (bi) {
4711                 conf->retry_read_aligned = NULL;
4712                 return bi;
4713         }
4714         bi = conf->retry_read_aligned_list;
4715         if(bi) {
4716                 conf->retry_read_aligned_list = bi->bi_next;
4717                 bi->bi_next = NULL;
4718                 /*
4719                  * this sets the active strip count to 1 and the processed
4720                  * strip count to zero (upper 8 bits)
4721                  */
4722                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4723         }
4724
4725         return bi;
4726 }
4727
4728 /*
4729  *  The "raid5_align_endio" should check if the read succeeded and if it
4730  *  did, call bio_endio on the original bio (having bio_put the new bio
4731  *  first).
4732  *  If the read failed..
4733  */
4734 static void raid5_align_endio(struct bio *bi)
4735 {
4736         struct bio* raid_bi  = bi->bi_private;
4737         struct mddev *mddev;
4738         struct r5conf *conf;
4739         struct md_rdev *rdev;
4740         int error = bi->bi_error;
4741
4742         bio_put(bi);
4743
4744         rdev = (void*)raid_bi->bi_next;
4745         raid_bi->bi_next = NULL;
4746         mddev = rdev->mddev;
4747         conf = mddev->private;
4748
4749         rdev_dec_pending(rdev, conf->mddev);
4750
4751         if (!error) {
4752                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4753                                          raid_bi, 0);
4754                 bio_endio(raid_bi);
4755                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4756                         wake_up(&conf->wait_for_quiescent);
4757                 return;
4758         }
4759
4760         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4761
4762         add_bio_to_retry(raid_bi, conf);
4763 }
4764
4765 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4766 {
4767         struct r5conf *conf = mddev->private;
4768         int dd_idx;
4769         struct bio* align_bi;
4770         struct md_rdev *rdev;
4771         sector_t end_sector;
4772
4773         if (!in_chunk_boundary(mddev, raid_bio)) {
4774                 pr_debug("%s: non aligned\n", __func__);
4775                 return 0;
4776         }
4777         /*
4778          * use bio_clone_mddev to make a copy of the bio
4779          */
4780         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4781         if (!align_bi)
4782                 return 0;
4783         /*
4784          *   set bi_end_io to a new function, and set bi_private to the
4785          *     original bio.
4786          */
4787         align_bi->bi_end_io  = raid5_align_endio;
4788         align_bi->bi_private = raid_bio;
4789         /*
4790          *      compute position
4791          */
4792         align_bi->bi_iter.bi_sector =
4793                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4794                                      0, &dd_idx, NULL);
4795
4796         end_sector = bio_end_sector(align_bi);
4797         rcu_read_lock();
4798         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4799         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4800             rdev->recovery_offset < end_sector) {
4801                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4802                 if (rdev &&
4803                     (test_bit(Faulty, &rdev->flags) ||
4804                     !(test_bit(In_sync, &rdev->flags) ||
4805                       rdev->recovery_offset >= end_sector)))
4806                         rdev = NULL;
4807         }
4808         if (rdev) {
4809                 sector_t first_bad;
4810                 int bad_sectors;
4811
4812                 atomic_inc(&rdev->nr_pending);
4813                 rcu_read_unlock();
4814                 raid_bio->bi_next = (void*)rdev;
4815                 align_bi->bi_bdev =  rdev->bdev;
4816                 bio_clear_flag(align_bi, BIO_SEG_VALID);
4817
4818                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4819                                 bio_sectors(align_bi),
4820                                 &first_bad, &bad_sectors)) {
4821                         bio_put(align_bi);
4822                         rdev_dec_pending(rdev, mddev);
4823                         return 0;
4824                 }
4825
4826                 /* No reshape active, so we can trust rdev->data_offset */
4827                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4828
4829                 spin_lock_irq(&conf->device_lock);
4830                 wait_event_lock_irq(conf->wait_for_quiescent,
4831                                     conf->quiesce == 0,
4832                                     conf->device_lock);
4833                 atomic_inc(&conf->active_aligned_reads);
4834                 spin_unlock_irq(&conf->device_lock);
4835
4836                 if (mddev->gendisk)
4837                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4838                                               align_bi, disk_devt(mddev->gendisk),
4839                                               raid_bio->bi_iter.bi_sector);
4840                 generic_make_request(align_bi);
4841                 return 1;
4842         } else {
4843                 rcu_read_unlock();
4844                 bio_put(align_bi);
4845                 return 0;
4846         }
4847 }
4848
4849 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4850 {
4851         struct bio *split;
4852
4853         do {
4854                 sector_t sector = raid_bio->bi_iter.bi_sector;
4855                 unsigned chunk_sects = mddev->chunk_sectors;
4856                 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4857
4858                 if (sectors < bio_sectors(raid_bio)) {
4859                         split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4860                         bio_chain(split, raid_bio);
4861                 } else
4862                         split = raid_bio;
4863
4864                 if (!raid5_read_one_chunk(mddev, split)) {
4865                         if (split != raid_bio)
4866                                 generic_make_request(raid_bio);
4867                         return split;
4868                 }
4869         } while (split != raid_bio);
4870
4871         return NULL;
4872 }
4873
4874 /* __get_priority_stripe - get the next stripe to process
4875  *
4876  * Full stripe writes are allowed to pass preread active stripes up until
4877  * the bypass_threshold is exceeded.  In general the bypass_count
4878  * increments when the handle_list is handled before the hold_list; however, it
4879  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4880  * stripe with in flight i/o.  The bypass_count will be reset when the
4881  * head of the hold_list has changed, i.e. the head was promoted to the
4882  * handle_list.
4883  */
4884 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4885 {
4886         struct stripe_head *sh = NULL, *tmp;
4887         struct list_head *handle_list = NULL;
4888         struct r5worker_group *wg = NULL;
4889
4890         if (conf->worker_cnt_per_group == 0) {
4891                 handle_list = &conf->handle_list;
4892         } else if (group != ANY_GROUP) {
4893                 handle_list = &conf->worker_groups[group].handle_list;
4894                 wg = &conf->worker_groups[group];
4895         } else {
4896                 int i;
4897                 for (i = 0; i < conf->group_cnt; i++) {
4898                         handle_list = &conf->worker_groups[i].handle_list;
4899                         wg = &conf->worker_groups[i];
4900                         if (!list_empty(handle_list))
4901                                 break;
4902                 }
4903         }
4904
4905         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4906                   __func__,
4907                   list_empty(handle_list) ? "empty" : "busy",
4908                   list_empty(&conf->hold_list) ? "empty" : "busy",
4909                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4910
4911         if (!list_empty(handle_list)) {
4912                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4913
4914                 if (list_empty(&conf->hold_list))
4915                         conf->bypass_count = 0;
4916                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4917                         if (conf->hold_list.next == conf->last_hold)
4918                                 conf->bypass_count++;
4919                         else {
4920                                 conf->last_hold = conf->hold_list.next;
4921                                 conf->bypass_count -= conf->bypass_threshold;
4922                                 if (conf->bypass_count < 0)
4923                                         conf->bypass_count = 0;
4924                         }
4925                 }
4926         } else if (!list_empty(&conf->hold_list) &&
4927                    ((conf->bypass_threshold &&
4928                      conf->bypass_count > conf->bypass_threshold) ||
4929                     atomic_read(&conf->pending_full_writes) == 0)) {
4930
4931                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4932                         if (conf->worker_cnt_per_group == 0 ||
4933                             group == ANY_GROUP ||
4934                             !cpu_online(tmp->cpu) ||
4935                             cpu_to_group(tmp->cpu) == group) {
4936                                 sh = tmp;
4937                                 break;
4938                         }
4939                 }
4940
4941                 if (sh) {
4942                         conf->bypass_count -= conf->bypass_threshold;
4943                         if (conf->bypass_count < 0)
4944                                 conf->bypass_count = 0;
4945                 }
4946                 wg = NULL;
4947         }
4948
4949         if (!sh)
4950                 return NULL;
4951
4952         if (wg) {
4953                 wg->stripes_cnt--;
4954                 sh->group = NULL;
4955         }
4956         list_del_init(&sh->lru);
4957         BUG_ON(atomic_inc_return(&sh->count) != 1);
4958         return sh;
4959 }
4960
4961 struct raid5_plug_cb {
4962         struct blk_plug_cb      cb;
4963         struct list_head        list;
4964         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4965 };
4966
4967 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4968 {
4969         struct raid5_plug_cb *cb = container_of(
4970                 blk_cb, struct raid5_plug_cb, cb);
4971         struct stripe_head *sh;
4972         struct mddev *mddev = cb->cb.data;
4973         struct r5conf *conf = mddev->private;
4974         int cnt = 0;
4975         int hash;
4976
4977         if (cb->list.next && !list_empty(&cb->list)) {
4978                 spin_lock_irq(&conf->device_lock);
4979                 while (!list_empty(&cb->list)) {
4980                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4981                         list_del_init(&sh->lru);
4982                         /*
4983                          * avoid race release_stripe_plug() sees
4984                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4985                          * is still in our list
4986                          */
4987                         smp_mb__before_atomic();
4988                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4989                         /*
4990                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4991                          * case, the count is always > 1 here
4992                          */
4993                         hash = sh->hash_lock_index;
4994                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4995                         cnt++;
4996                 }
4997                 spin_unlock_irq(&conf->device_lock);
4998         }
4999         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5000                                      NR_STRIPE_HASH_LOCKS);
5001         if (mddev->queue)
5002                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5003         kfree(cb);
5004 }
5005
5006 static void release_stripe_plug(struct mddev *mddev,
5007                                 struct stripe_head *sh)
5008 {
5009         struct blk_plug_cb *blk_cb = blk_check_plugged(
5010                 raid5_unplug, mddev,
5011                 sizeof(struct raid5_plug_cb));
5012         struct raid5_plug_cb *cb;
5013
5014         if (!blk_cb) {
5015                 release_stripe(sh);
5016                 return;
5017         }
5018
5019         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5020
5021         if (cb->list.next == NULL) {
5022                 int i;
5023                 INIT_LIST_HEAD(&cb->list);
5024                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5025                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5026         }
5027
5028         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5029                 list_add_tail(&sh->lru, &cb->list);
5030         else
5031                 release_stripe(sh);
5032 }
5033
5034 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5035 {
5036         struct r5conf *conf = mddev->private;
5037         sector_t logical_sector, last_sector;
5038         struct stripe_head *sh;
5039         int remaining;
5040         int stripe_sectors;
5041
5042         if (mddev->reshape_position != MaxSector)
5043                 /* Skip discard while reshape is happening */
5044                 return;
5045
5046         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5047         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5048
5049         bi->bi_next = NULL;
5050         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5051
5052         stripe_sectors = conf->chunk_sectors *
5053                 (conf->raid_disks - conf->max_degraded);
5054         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5055                                                stripe_sectors);
5056         sector_div(last_sector, stripe_sectors);
5057
5058         logical_sector *= conf->chunk_sectors;
5059         last_sector *= conf->chunk_sectors;
5060
5061         for (; logical_sector < last_sector;
5062              logical_sector += STRIPE_SECTORS) {
5063                 DEFINE_WAIT(w);
5064                 int d;
5065         again:
5066                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5067                 prepare_to_wait(&conf->wait_for_overlap, &w,
5068                                 TASK_UNINTERRUPTIBLE);
5069                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5070                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5071                         release_stripe(sh);
5072                         schedule();
5073                         goto again;
5074                 }
5075                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5076                 spin_lock_irq(&sh->stripe_lock);
5077                 for (d = 0; d < conf->raid_disks; d++) {
5078                         if (d == sh->pd_idx || d == sh->qd_idx)
5079                                 continue;
5080                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5081                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5082                                 spin_unlock_irq(&sh->stripe_lock);
5083                                 release_stripe(sh);
5084                                 schedule();
5085                                 goto again;
5086                         }
5087                 }
5088                 set_bit(STRIPE_DISCARD, &sh->state);
5089                 finish_wait(&conf->wait_for_overlap, &w);
5090                 sh->overwrite_disks = 0;
5091                 for (d = 0; d < conf->raid_disks; d++) {
5092                         if (d == sh->pd_idx || d == sh->qd_idx)
5093                                 continue;
5094                         sh->dev[d].towrite = bi;
5095                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5096                         raid5_inc_bi_active_stripes(bi);
5097                         sh->overwrite_disks++;
5098                 }
5099                 spin_unlock_irq(&sh->stripe_lock);
5100                 if (conf->mddev->bitmap) {
5101                         for (d = 0;
5102                              d < conf->raid_disks - conf->max_degraded;
5103                              d++)
5104                                 bitmap_startwrite(mddev->bitmap,
5105                                                   sh->sector,
5106                                                   STRIPE_SECTORS,
5107                                                   0);
5108                         sh->bm_seq = conf->seq_flush + 1;
5109                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5110                 }
5111
5112                 set_bit(STRIPE_HANDLE, &sh->state);
5113                 clear_bit(STRIPE_DELAYED, &sh->state);
5114                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5115                         atomic_inc(&conf->preread_active_stripes);
5116                 release_stripe_plug(mddev, sh);
5117         }
5118
5119         remaining = raid5_dec_bi_active_stripes(bi);
5120         if (remaining == 0) {
5121                 md_write_end(mddev);
5122                 bio_endio(bi);
5123         }
5124 }
5125
5126 static void make_request(struct mddev *mddev, struct bio * bi)
5127 {
5128         struct r5conf *conf = mddev->private;
5129         int dd_idx;
5130         sector_t new_sector;
5131         sector_t logical_sector, last_sector;
5132         struct stripe_head *sh;
5133         const int rw = bio_data_dir(bi);
5134         int remaining;
5135         DEFINE_WAIT(w);
5136         bool do_prepare;
5137
5138         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5139                 md_flush_request(mddev, bi);
5140                 return;
5141         }
5142
5143         md_write_start(mddev, bi);
5144
5145         /*
5146          * If array is degraded, better not do chunk aligned read because
5147          * later we might have to read it again in order to reconstruct
5148          * data on failed drives.
5149          */
5150         if (rw == READ && mddev->degraded == 0 &&
5151             mddev->reshape_position == MaxSector) {
5152                 bi = chunk_aligned_read(mddev, bi);
5153                 if (!bi)
5154                         return;
5155         }
5156
5157         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5158                 make_discard_request(mddev, bi);
5159                 return;
5160         }
5161
5162         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5163         last_sector = bio_end_sector(bi);
5164         bi->bi_next = NULL;
5165         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5166
5167         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5168         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5169                 int previous;
5170                 int seq;
5171
5172                 do_prepare = false;
5173         retry:
5174                 seq = read_seqcount_begin(&conf->gen_lock);
5175                 previous = 0;
5176                 if (do_prepare)
5177                         prepare_to_wait(&conf->wait_for_overlap, &w,
5178                                 TASK_UNINTERRUPTIBLE);
5179                 if (unlikely(conf->reshape_progress != MaxSector)) {
5180                         /* spinlock is needed as reshape_progress may be
5181                          * 64bit on a 32bit platform, and so it might be
5182                          * possible to see a half-updated value
5183                          * Of course reshape_progress could change after
5184                          * the lock is dropped, so once we get a reference
5185                          * to the stripe that we think it is, we will have
5186                          * to check again.
5187                          */
5188                         spin_lock_irq(&conf->device_lock);
5189                         if (mddev->reshape_backwards
5190                             ? logical_sector < conf->reshape_progress
5191                             : logical_sector >= conf->reshape_progress) {
5192                                 previous = 1;
5193                         } else {
5194                                 if (mddev->reshape_backwards
5195                                     ? logical_sector < conf->reshape_safe
5196                                     : logical_sector >= conf->reshape_safe) {
5197                                         spin_unlock_irq(&conf->device_lock);
5198                                         schedule();
5199                                         do_prepare = true;
5200                                         goto retry;
5201                                 }
5202                         }
5203                         spin_unlock_irq(&conf->device_lock);
5204                 }
5205
5206                 new_sector = raid5_compute_sector(conf, logical_sector,
5207                                                   previous,
5208                                                   &dd_idx, NULL);
5209                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5210                         (unsigned long long)new_sector,
5211                         (unsigned long long)logical_sector);
5212
5213                 sh = get_active_stripe(conf, new_sector, previous,
5214                                        (bi->bi_rw&RWA_MASK), 0);
5215                 if (sh) {
5216                         if (unlikely(previous)) {
5217                                 /* expansion might have moved on while waiting for a
5218                                  * stripe, so we must do the range check again.
5219                                  * Expansion could still move past after this
5220                                  * test, but as we are holding a reference to
5221                                  * 'sh', we know that if that happens,
5222                                  *  STRIPE_EXPANDING will get set and the expansion
5223                                  * won't proceed until we finish with the stripe.
5224                                  */
5225                                 int must_retry = 0;
5226                                 spin_lock_irq(&conf->device_lock);
5227                                 if (mddev->reshape_backwards
5228                                     ? logical_sector >= conf->reshape_progress
5229                                     : logical_sector < conf->reshape_progress)
5230                                         /* mismatch, need to try again */
5231                                         must_retry = 1;
5232                                 spin_unlock_irq(&conf->device_lock);
5233                                 if (must_retry) {
5234                                         release_stripe(sh);
5235                                         schedule();
5236                                         do_prepare = true;
5237                                         goto retry;
5238                                 }
5239                         }
5240                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5241                                 /* Might have got the wrong stripe_head
5242                                  * by accident
5243                                  */
5244                                 release_stripe(sh);
5245                                 goto retry;
5246                         }
5247
5248                         if (rw == WRITE &&
5249                             logical_sector >= mddev->suspend_lo &&
5250                             logical_sector < mddev->suspend_hi) {
5251                                 release_stripe(sh);
5252                                 /* As the suspend_* range is controlled by
5253                                  * userspace, we want an interruptible
5254                                  * wait.
5255                                  */
5256                                 flush_signals(current);
5257                                 prepare_to_wait(&conf->wait_for_overlap,
5258                                                 &w, TASK_INTERRUPTIBLE);
5259                                 if (logical_sector >= mddev->suspend_lo &&
5260                                     logical_sector < mddev->suspend_hi) {
5261                                         schedule();
5262                                         do_prepare = true;
5263                                 }
5264                                 goto retry;
5265                         }
5266
5267                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5268                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5269                                 /* Stripe is busy expanding or
5270                                  * add failed due to overlap.  Flush everything
5271                                  * and wait a while
5272                                  */
5273                                 md_wakeup_thread(mddev->thread);
5274                                 release_stripe(sh);
5275                                 schedule();
5276                                 do_prepare = true;
5277                                 goto retry;
5278                         }
5279                         set_bit(STRIPE_HANDLE, &sh->state);
5280                         clear_bit(STRIPE_DELAYED, &sh->state);
5281                         if ((!sh->batch_head || sh == sh->batch_head) &&
5282                             (bi->bi_rw & REQ_SYNC) &&
5283                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5284                                 atomic_inc(&conf->preread_active_stripes);
5285                         release_stripe_plug(mddev, sh);
5286                 } else {
5287                         /* cannot get stripe for read-ahead, just give-up */
5288                         bi->bi_error = -EIO;
5289                         break;
5290                 }
5291         }
5292         finish_wait(&conf->wait_for_overlap, &w);
5293
5294         remaining = raid5_dec_bi_active_stripes(bi);
5295         if (remaining == 0) {
5296
5297                 if ( rw == WRITE )
5298                         md_write_end(mddev);
5299
5300                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5301                                          bi, 0);
5302                 bio_endio(bi);
5303         }
5304 }
5305
5306 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5307
5308 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5309 {
5310         /* reshaping is quite different to recovery/resync so it is
5311          * handled quite separately ... here.
5312          *
5313          * On each call to sync_request, we gather one chunk worth of
5314          * destination stripes and flag them as expanding.
5315          * Then we find all the source stripes and request reads.
5316          * As the reads complete, handle_stripe will copy the data
5317          * into the destination stripe and release that stripe.
5318          */
5319         struct r5conf *conf = mddev->private;
5320         struct stripe_head *sh;
5321         sector_t first_sector, last_sector;
5322         int raid_disks = conf->previous_raid_disks;
5323         int data_disks = raid_disks - conf->max_degraded;
5324         int new_data_disks = conf->raid_disks - conf->max_degraded;
5325         int i;
5326         int dd_idx;
5327         sector_t writepos, readpos, safepos;
5328         sector_t stripe_addr;
5329         int reshape_sectors;
5330         struct list_head stripes;
5331         sector_t retn;
5332
5333         if (sector_nr == 0) {
5334                 /* If restarting in the middle, skip the initial sectors */
5335                 if (mddev->reshape_backwards &&
5336                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5337                         sector_nr = raid5_size(mddev, 0, 0)
5338                                 - conf->reshape_progress;
5339                 } else if (mddev->reshape_backwards &&
5340                            conf->reshape_progress == MaxSector) {
5341                         /* shouldn't happen, but just in case, finish up.*/
5342                         sector_nr = MaxSector;
5343                 } else if (!mddev->reshape_backwards &&
5344                            conf->reshape_progress > 0)
5345                         sector_nr = conf->reshape_progress;
5346                 sector_div(sector_nr, new_data_disks);
5347                 if (sector_nr) {
5348                         mddev->curr_resync_completed = sector_nr;
5349                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5350                         *skipped = 1;
5351                         retn = sector_nr;
5352                         goto finish;
5353                 }
5354         }
5355
5356         /* We need to process a full chunk at a time.
5357          * If old and new chunk sizes differ, we need to process the
5358          * largest of these
5359          */
5360
5361         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5362
5363         /* We update the metadata at least every 10 seconds, or when
5364          * the data about to be copied would over-write the source of
5365          * the data at the front of the range.  i.e. one new_stripe
5366          * along from reshape_progress new_maps to after where
5367          * reshape_safe old_maps to
5368          */
5369         writepos = conf->reshape_progress;
5370         sector_div(writepos, new_data_disks);
5371         readpos = conf->reshape_progress;
5372         sector_div(readpos, data_disks);
5373         safepos = conf->reshape_safe;
5374         sector_div(safepos, data_disks);
5375         if (mddev->reshape_backwards) {
5376                 BUG_ON(writepos < reshape_sectors);
5377                 writepos -= reshape_sectors;
5378                 readpos += reshape_sectors;
5379                 safepos += reshape_sectors;
5380         } else {
5381                 writepos += reshape_sectors;
5382                 /* readpos and safepos are worst-case calculations.
5383                  * A negative number is overly pessimistic, and causes
5384                  * obvious problems for unsigned storage.  So clip to 0.
5385                  */
5386                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5387                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5388         }
5389
5390         /* Having calculated the 'writepos' possibly use it
5391          * to set 'stripe_addr' which is where we will write to.
5392          */
5393         if (mddev->reshape_backwards) {
5394                 BUG_ON(conf->reshape_progress == 0);
5395                 stripe_addr = writepos;
5396                 BUG_ON((mddev->dev_sectors &
5397                         ~((sector_t)reshape_sectors - 1))
5398                        - reshape_sectors - stripe_addr
5399                        != sector_nr);
5400         } else {
5401                 BUG_ON(writepos != sector_nr + reshape_sectors);
5402                 stripe_addr = sector_nr;
5403         }
5404
5405         /* 'writepos' is the most advanced device address we might write.
5406          * 'readpos' is the least advanced device address we might read.
5407          * 'safepos' is the least address recorded in the metadata as having
5408          *     been reshaped.
5409          * If there is a min_offset_diff, these are adjusted either by
5410          * increasing the safepos/readpos if diff is negative, or
5411          * increasing writepos if diff is positive.
5412          * If 'readpos' is then behind 'writepos', there is no way that we can
5413          * ensure safety in the face of a crash - that must be done by userspace
5414          * making a backup of the data.  So in that case there is no particular
5415          * rush to update metadata.
5416          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5417          * update the metadata to advance 'safepos' to match 'readpos' so that
5418          * we can be safe in the event of a crash.
5419          * So we insist on updating metadata if safepos is behind writepos and
5420          * readpos is beyond writepos.
5421          * In any case, update the metadata every 10 seconds.
5422          * Maybe that number should be configurable, but I'm not sure it is
5423          * worth it.... maybe it could be a multiple of safemode_delay???
5424          */
5425         if (conf->min_offset_diff < 0) {
5426                 safepos += -conf->min_offset_diff;
5427                 readpos += -conf->min_offset_diff;
5428         } else
5429                 writepos += conf->min_offset_diff;
5430
5431         if ((mddev->reshape_backwards
5432              ? (safepos > writepos && readpos < writepos)
5433              : (safepos < writepos && readpos > writepos)) ||
5434             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5435                 /* Cannot proceed until we've updated the superblock... */
5436                 wait_event(conf->wait_for_overlap,
5437                            atomic_read(&conf->reshape_stripes)==0
5438                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5439                 if (atomic_read(&conf->reshape_stripes) != 0)
5440                         return 0;
5441                 mddev->reshape_position = conf->reshape_progress;
5442                 mddev->curr_resync_completed = sector_nr;
5443                 conf->reshape_checkpoint = jiffies;
5444                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5445                 md_wakeup_thread(mddev->thread);
5446                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5447                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5448                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5449                         return 0;
5450                 spin_lock_irq(&conf->device_lock);
5451                 conf->reshape_safe = mddev->reshape_position;
5452                 spin_unlock_irq(&conf->device_lock);
5453                 wake_up(&conf->wait_for_overlap);
5454                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5455         }
5456
5457         INIT_LIST_HEAD(&stripes);
5458         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5459                 int j;
5460                 int skipped_disk = 0;
5461                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5462                 set_bit(STRIPE_EXPANDING, &sh->state);
5463                 atomic_inc(&conf->reshape_stripes);
5464                 /* If any of this stripe is beyond the end of the old
5465                  * array, then we need to zero those blocks
5466                  */
5467                 for (j=sh->disks; j--;) {
5468                         sector_t s;
5469                         if (j == sh->pd_idx)
5470                                 continue;
5471                         if (conf->level == 6 &&
5472                             j == sh->qd_idx)
5473                                 continue;
5474                         s = compute_blocknr(sh, j, 0);
5475                         if (s < raid5_size(mddev, 0, 0)) {
5476                                 skipped_disk = 1;
5477                                 continue;
5478                         }
5479                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5480                         set_bit(R5_Expanded, &sh->dev[j].flags);
5481                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5482                 }
5483                 if (!skipped_disk) {
5484                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5485                         set_bit(STRIPE_HANDLE, &sh->state);
5486                 }
5487                 list_add(&sh->lru, &stripes);
5488         }
5489         spin_lock_irq(&conf->device_lock);
5490         if (mddev->reshape_backwards)
5491                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5492         else
5493                 conf->reshape_progress += reshape_sectors * new_data_disks;
5494         spin_unlock_irq(&conf->device_lock);
5495         /* Ok, those stripe are ready. We can start scheduling
5496          * reads on the source stripes.
5497          * The source stripes are determined by mapping the first and last
5498          * block on the destination stripes.
5499          */
5500         first_sector =
5501                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5502                                      1, &dd_idx, NULL);
5503         last_sector =
5504                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5505                                             * new_data_disks - 1),
5506                                      1, &dd_idx, NULL);
5507         if (last_sector >= mddev->dev_sectors)
5508                 last_sector = mddev->dev_sectors - 1;
5509         while (first_sector <= last_sector) {
5510                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5511                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5512                 set_bit(STRIPE_HANDLE, &sh->state);
5513                 release_stripe(sh);
5514                 first_sector += STRIPE_SECTORS;
5515         }
5516         /* Now that the sources are clearly marked, we can release
5517          * the destination stripes
5518          */
5519         while (!list_empty(&stripes)) {
5520                 sh = list_entry(stripes.next, struct stripe_head, lru);
5521                 list_del_init(&sh->lru);
5522                 release_stripe(sh);
5523         }
5524         /* If this takes us to the resync_max point where we have to pause,
5525          * then we need to write out the superblock.
5526          */
5527         sector_nr += reshape_sectors;
5528         retn = reshape_sectors;
5529 finish:
5530         if (mddev->curr_resync_completed > mddev->resync_max ||
5531             (sector_nr - mddev->curr_resync_completed) * 2
5532             >= mddev->resync_max - mddev->curr_resync_completed) {
5533                 /* Cannot proceed until we've updated the superblock... */
5534                 wait_event(conf->wait_for_overlap,
5535                            atomic_read(&conf->reshape_stripes) == 0
5536                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5537                 if (atomic_read(&conf->reshape_stripes) != 0)
5538                         goto ret;
5539                 mddev->reshape_position = conf->reshape_progress;
5540                 mddev->curr_resync_completed = sector_nr;
5541                 conf->reshape_checkpoint = jiffies;
5542                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5543                 md_wakeup_thread(mddev->thread);
5544                 wait_event(mddev->sb_wait,
5545                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5546                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5547                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5548                         goto ret;
5549                 spin_lock_irq(&conf->device_lock);
5550                 conf->reshape_safe = mddev->reshape_position;
5551                 spin_unlock_irq(&conf->device_lock);
5552                 wake_up(&conf->wait_for_overlap);
5553                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5554         }
5555 ret:
5556         return retn;
5557 }
5558
5559 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5560 {
5561         struct r5conf *conf = mddev->private;
5562         struct stripe_head *sh;
5563         sector_t max_sector = mddev->dev_sectors;
5564         sector_t sync_blocks;
5565         int still_degraded = 0;
5566         int i;
5567
5568         if (sector_nr >= max_sector) {
5569                 /* just being told to finish up .. nothing much to do */
5570
5571                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5572                         end_reshape(conf);
5573                         return 0;
5574                 }
5575
5576                 if (mddev->curr_resync < max_sector) /* aborted */
5577                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5578                                         &sync_blocks, 1);
5579                 else /* completed sync */
5580                         conf->fullsync = 0;
5581                 bitmap_close_sync(mddev->bitmap);
5582
5583                 return 0;
5584         }
5585
5586         /* Allow raid5_quiesce to complete */
5587         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5588
5589         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5590                 return reshape_request(mddev, sector_nr, skipped);
5591
5592         /* No need to check resync_max as we never do more than one
5593          * stripe, and as resync_max will always be on a chunk boundary,
5594          * if the check in md_do_sync didn't fire, there is no chance
5595          * of overstepping resync_max here
5596          */
5597
5598         /* if there is too many failed drives and we are trying
5599          * to resync, then assert that we are finished, because there is
5600          * nothing we can do.
5601          */
5602         if (mddev->degraded >= conf->max_degraded &&
5603             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5604                 sector_t rv = mddev->dev_sectors - sector_nr;
5605                 *skipped = 1;
5606                 return rv;
5607         }
5608         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5609             !conf->fullsync &&
5610             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5611             sync_blocks >= STRIPE_SECTORS) {
5612                 /* we can skip this block, and probably more */
5613                 sync_blocks /= STRIPE_SECTORS;
5614                 *skipped = 1;
5615                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5616         }
5617
5618         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5619
5620         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5621         if (sh == NULL) {
5622                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5623                 /* make sure we don't swamp the stripe cache if someone else
5624                  * is trying to get access
5625                  */
5626                 schedule_timeout_uninterruptible(1);
5627         }
5628         /* Need to check if array will still be degraded after recovery/resync
5629          * Note in case of > 1 drive failures it's possible we're rebuilding
5630          * one drive while leaving another faulty drive in array.
5631          */
5632         rcu_read_lock();
5633         for (i = 0; i < conf->raid_disks; i++) {
5634                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5635
5636                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5637                         still_degraded = 1;
5638         }
5639         rcu_read_unlock();
5640
5641         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5642
5643         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5644         set_bit(STRIPE_HANDLE, &sh->state);
5645
5646         release_stripe(sh);
5647
5648         return STRIPE_SECTORS;
5649 }
5650
5651 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5652 {
5653         /* We may not be able to submit a whole bio at once as there
5654          * may not be enough stripe_heads available.
5655          * We cannot pre-allocate enough stripe_heads as we may need
5656          * more than exist in the cache (if we allow ever large chunks).
5657          * So we do one stripe head at a time and record in
5658          * ->bi_hw_segments how many have been done.
5659          *
5660          * We *know* that this entire raid_bio is in one chunk, so
5661          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5662          */
5663         struct stripe_head *sh;
5664         int dd_idx;
5665         sector_t sector, logical_sector, last_sector;
5666         int scnt = 0;
5667         int remaining;
5668         int handled = 0;
5669
5670         logical_sector = raid_bio->bi_iter.bi_sector &
5671                 ~((sector_t)STRIPE_SECTORS-1);
5672         sector = raid5_compute_sector(conf, logical_sector,
5673                                       0, &dd_idx, NULL);
5674         last_sector = bio_end_sector(raid_bio);
5675
5676         for (; logical_sector < last_sector;
5677              logical_sector += STRIPE_SECTORS,
5678                      sector += STRIPE_SECTORS,
5679                      scnt++) {
5680
5681                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5682                         /* already done this stripe */
5683                         continue;
5684
5685                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5686
5687                 if (!sh) {
5688                         /* failed to get a stripe - must wait */
5689                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5690                         conf->retry_read_aligned = raid_bio;
5691                         return handled;
5692                 }
5693
5694                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5695                         release_stripe(sh);
5696                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5697                         conf->retry_read_aligned = raid_bio;
5698                         return handled;
5699                 }
5700
5701                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5702                 handle_stripe(sh);
5703                 release_stripe(sh);
5704                 handled++;
5705         }
5706         remaining = raid5_dec_bi_active_stripes(raid_bio);
5707         if (remaining == 0) {
5708                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5709                                          raid_bio, 0);
5710                 bio_endio(raid_bio);
5711         }
5712         if (atomic_dec_and_test(&conf->active_aligned_reads))
5713                 wake_up(&conf->wait_for_quiescent);
5714         return handled;
5715 }
5716
5717 static int handle_active_stripes(struct r5conf *conf, int group,
5718                                  struct r5worker *worker,
5719                                  struct list_head *temp_inactive_list)
5720 {
5721         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5722         int i, batch_size = 0, hash;
5723         bool release_inactive = false;
5724
5725         while (batch_size < MAX_STRIPE_BATCH &&
5726                         (sh = __get_priority_stripe(conf, group)) != NULL)
5727                 batch[batch_size++] = sh;
5728
5729         if (batch_size == 0) {
5730                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5731                         if (!list_empty(temp_inactive_list + i))
5732                                 break;
5733                 if (i == NR_STRIPE_HASH_LOCKS)
5734                         return batch_size;
5735                 release_inactive = true;
5736         }
5737         spin_unlock_irq(&conf->device_lock);
5738
5739         release_inactive_stripe_list(conf, temp_inactive_list,
5740                                      NR_STRIPE_HASH_LOCKS);
5741
5742         if (release_inactive) {
5743                 spin_lock_irq(&conf->device_lock);
5744                 return 0;
5745         }
5746
5747         for (i = 0; i < batch_size; i++)
5748                 handle_stripe(batch[i]);
5749
5750         cond_resched();
5751
5752         spin_lock_irq(&conf->device_lock);
5753         for (i = 0; i < batch_size; i++) {
5754                 hash = batch[i]->hash_lock_index;
5755                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5756         }
5757         return batch_size;
5758 }
5759
5760 static void raid5_do_work(struct work_struct *work)
5761 {
5762         struct r5worker *worker = container_of(work, struct r5worker, work);
5763         struct r5worker_group *group = worker->group;
5764         struct r5conf *conf = group->conf;
5765         int group_id = group - conf->worker_groups;
5766         int handled;
5767         struct blk_plug plug;
5768
5769         pr_debug("+++ raid5worker active\n");
5770
5771         blk_start_plug(&plug);
5772         handled = 0;
5773         spin_lock_irq(&conf->device_lock);
5774         while (1) {
5775                 int batch_size, released;
5776
5777                 released = release_stripe_list(conf, worker->temp_inactive_list);
5778
5779                 batch_size = handle_active_stripes(conf, group_id, worker,
5780                                                    worker->temp_inactive_list);
5781                 worker->working = false;
5782                 if (!batch_size && !released)
5783                         break;
5784                 handled += batch_size;
5785         }
5786         pr_debug("%d stripes handled\n", handled);
5787
5788         spin_unlock_irq(&conf->device_lock);
5789         blk_finish_plug(&plug);
5790
5791         pr_debug("--- raid5worker inactive\n");
5792 }
5793
5794 /*
5795  * This is our raid5 kernel thread.
5796  *
5797  * We scan the hash table for stripes which can be handled now.
5798  * During the scan, completed stripes are saved for us by the interrupt
5799  * handler, so that they will not have to wait for our next wakeup.
5800  */
5801 static void raid5d(struct md_thread *thread)
5802 {
5803         struct mddev *mddev = thread->mddev;
5804         struct r5conf *conf = mddev->private;
5805         int handled;
5806         struct blk_plug plug;
5807
5808         pr_debug("+++ raid5d active\n");
5809
5810         md_check_recovery(mddev);
5811
5812         if (!bio_list_empty(&conf->return_bi) &&
5813             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5814                 struct bio_list tmp = BIO_EMPTY_LIST;
5815                 spin_lock_irq(&conf->device_lock);
5816                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5817                         bio_list_merge(&tmp, &conf->return_bi);
5818                         bio_list_init(&conf->return_bi);
5819                 }
5820                 spin_unlock_irq(&conf->device_lock);
5821                 return_io(&tmp);
5822         }
5823
5824         blk_start_plug(&plug);
5825         handled = 0;
5826         spin_lock_irq(&conf->device_lock);
5827         while (1) {
5828                 struct bio *bio;
5829                 int batch_size, released;
5830
5831                 released = release_stripe_list(conf, conf->temp_inactive_list);
5832                 if (released)
5833                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5834
5835                 if (
5836                     !list_empty(&conf->bitmap_list)) {
5837                         /* Now is a good time to flush some bitmap updates */
5838                         conf->seq_flush++;
5839                         spin_unlock_irq(&conf->device_lock);
5840                         bitmap_unplug(mddev->bitmap);
5841                         spin_lock_irq(&conf->device_lock);
5842                         conf->seq_write = conf->seq_flush;
5843                         activate_bit_delay(conf, conf->temp_inactive_list);
5844                 }
5845                 raid5_activate_delayed(conf);
5846
5847                 while ((bio = remove_bio_from_retry(conf))) {
5848                         int ok;
5849                         spin_unlock_irq(&conf->device_lock);
5850                         ok = retry_aligned_read(conf, bio);
5851                         spin_lock_irq(&conf->device_lock);
5852                         if (!ok)
5853                                 break;
5854                         handled++;
5855                 }
5856
5857                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5858                                                    conf->temp_inactive_list);
5859                 if (!batch_size && !released)
5860                         break;
5861                 handled += batch_size;
5862
5863                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5864                         spin_unlock_irq(&conf->device_lock);
5865                         md_check_recovery(mddev);
5866                         spin_lock_irq(&conf->device_lock);
5867                 }
5868         }
5869         pr_debug("%d stripes handled\n", handled);
5870
5871         spin_unlock_irq(&conf->device_lock);
5872         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5873             mutex_trylock(&conf->cache_size_mutex)) {
5874                 grow_one_stripe(conf, __GFP_NOWARN);
5875                 /* Set flag even if allocation failed.  This helps
5876                  * slow down allocation requests when mem is short
5877                  */
5878                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5879                 mutex_unlock(&conf->cache_size_mutex);
5880         }
5881
5882         async_tx_issue_pending_all();
5883         blk_finish_plug(&plug);
5884
5885         pr_debug("--- raid5d inactive\n");
5886 }
5887
5888 static ssize_t
5889 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5890 {
5891         struct r5conf *conf;
5892         int ret = 0;
5893         spin_lock(&mddev->lock);
5894         conf = mddev->private;
5895         if (conf)
5896                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5897         spin_unlock(&mddev->lock);
5898         return ret;
5899 }
5900
5901 int
5902 raid5_set_cache_size(struct mddev *mddev, int size)
5903 {
5904         struct r5conf *conf = mddev->private;
5905         int err;
5906
5907         if (size <= 16 || size > 32768)
5908                 return -EINVAL;
5909
5910         conf->min_nr_stripes = size;
5911         mutex_lock(&conf->cache_size_mutex);
5912         while (size < conf->max_nr_stripes &&
5913                drop_one_stripe(conf))
5914                 ;
5915         mutex_unlock(&conf->cache_size_mutex);
5916
5917
5918         err = md_allow_write(mddev);
5919         if (err)
5920                 return err;
5921
5922         mutex_lock(&conf->cache_size_mutex);
5923         while (size > conf->max_nr_stripes)
5924                 if (!grow_one_stripe(conf, GFP_KERNEL))
5925                         break;
5926         mutex_unlock(&conf->cache_size_mutex);
5927
5928         return 0;
5929 }
5930 EXPORT_SYMBOL(raid5_set_cache_size);
5931
5932 static ssize_t
5933 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5934 {
5935         struct r5conf *conf;
5936         unsigned long new;
5937         int err;
5938
5939         if (len >= PAGE_SIZE)
5940                 return -EINVAL;
5941         if (kstrtoul(page, 10, &new))
5942                 return -EINVAL;
5943         err = mddev_lock(mddev);
5944         if (err)
5945                 return err;
5946         conf = mddev->private;
5947         if (!conf)
5948                 err = -ENODEV;
5949         else
5950                 err = raid5_set_cache_size(mddev, new);
5951         mddev_unlock(mddev);
5952
5953         return err ?: len;
5954 }
5955
5956 static struct md_sysfs_entry
5957 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5958                                 raid5_show_stripe_cache_size,
5959                                 raid5_store_stripe_cache_size);
5960
5961 static ssize_t
5962 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5963 {
5964         struct r5conf *conf = mddev->private;
5965         if (conf)
5966                 return sprintf(page, "%d\n", conf->rmw_level);
5967         else
5968                 return 0;
5969 }
5970
5971 static ssize_t
5972 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5973 {
5974         struct r5conf *conf = mddev->private;
5975         unsigned long new;
5976
5977         if (!conf)
5978                 return -ENODEV;
5979
5980         if (len >= PAGE_SIZE)
5981                 return -EINVAL;
5982
5983         if (kstrtoul(page, 10, &new))
5984                 return -EINVAL;
5985
5986         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5987                 return -EINVAL;
5988
5989         if (new != PARITY_DISABLE_RMW &&
5990             new != PARITY_ENABLE_RMW &&
5991             new != PARITY_PREFER_RMW)
5992                 return -EINVAL;
5993
5994         conf->rmw_level = new;
5995         return len;
5996 }
5997
5998 static struct md_sysfs_entry
5999 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6000                          raid5_show_rmw_level,
6001                          raid5_store_rmw_level);
6002
6003
6004 static ssize_t
6005 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6006 {
6007         struct r5conf *conf;
6008         int ret = 0;
6009         spin_lock(&mddev->lock);
6010         conf = mddev->private;
6011         if (conf)
6012                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6013         spin_unlock(&mddev->lock);
6014         return ret;
6015 }
6016
6017 static ssize_t
6018 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6019 {
6020         struct r5conf *conf;
6021         unsigned long new;
6022         int err;
6023
6024         if (len >= PAGE_SIZE)
6025                 return -EINVAL;
6026         if (kstrtoul(page, 10, &new))
6027                 return -EINVAL;
6028
6029         err = mddev_lock(mddev);
6030         if (err)
6031                 return err;
6032         conf = mddev->private;
6033         if (!conf)
6034                 err = -ENODEV;
6035         else if (new > conf->min_nr_stripes)
6036                 err = -EINVAL;
6037         else
6038                 conf->bypass_threshold = new;
6039         mddev_unlock(mddev);
6040         return err ?: len;
6041 }
6042
6043 static struct md_sysfs_entry
6044 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6045                                         S_IRUGO | S_IWUSR,
6046                                         raid5_show_preread_threshold,
6047                                         raid5_store_preread_threshold);
6048
6049 static ssize_t
6050 raid5_show_skip_copy(struct mddev *mddev, char *page)
6051 {
6052         struct r5conf *conf;
6053         int ret = 0;
6054         spin_lock(&mddev->lock);
6055         conf = mddev->private;
6056         if (conf)
6057                 ret = sprintf(page, "%d\n", conf->skip_copy);
6058         spin_unlock(&mddev->lock);
6059         return ret;
6060 }
6061
6062 static ssize_t
6063 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6064 {
6065         struct r5conf *conf;
6066         unsigned long new;
6067         int err;
6068
6069         if (len >= PAGE_SIZE)
6070                 return -EINVAL;
6071         if (kstrtoul(page, 10, &new))
6072                 return -EINVAL;
6073         new = !!new;
6074
6075         err = mddev_lock(mddev);
6076         if (err)
6077                 return err;
6078         conf = mddev->private;
6079         if (!conf)
6080                 err = -ENODEV;
6081         else if (new != conf->skip_copy) {
6082                 mddev_suspend(mddev);
6083                 conf->skip_copy = new;
6084                 if (new)
6085                         mddev->queue->backing_dev_info.capabilities |=
6086                                 BDI_CAP_STABLE_WRITES;
6087                 else
6088                         mddev->queue->backing_dev_info.capabilities &=
6089                                 ~BDI_CAP_STABLE_WRITES;
6090                 mddev_resume(mddev);
6091         }
6092         mddev_unlock(mddev);
6093         return err ?: len;
6094 }
6095
6096 static struct md_sysfs_entry
6097 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6098                                         raid5_show_skip_copy,
6099                                         raid5_store_skip_copy);
6100
6101 static ssize_t
6102 stripe_cache_active_show(struct mddev *mddev, char *page)
6103 {
6104         struct r5conf *conf = mddev->private;
6105         if (conf)
6106                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6107         else
6108                 return 0;
6109 }
6110
6111 static struct md_sysfs_entry
6112 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6113
6114 static ssize_t
6115 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6116 {
6117         struct r5conf *conf;
6118         int ret = 0;
6119         spin_lock(&mddev->lock);
6120         conf = mddev->private;
6121         if (conf)
6122                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6123         spin_unlock(&mddev->lock);
6124         return ret;
6125 }
6126
6127 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6128                                int *group_cnt,
6129                                int *worker_cnt_per_group,
6130                                struct r5worker_group **worker_groups);
6131 static ssize_t
6132 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6133 {
6134         struct r5conf *conf;
6135         unsigned long new;
6136         int err;
6137         struct r5worker_group *new_groups, *old_groups;
6138         int group_cnt, worker_cnt_per_group;
6139
6140         if (len >= PAGE_SIZE)
6141                 return -EINVAL;
6142         if (kstrtoul(page, 10, &new))
6143                 return -EINVAL;
6144
6145         err = mddev_lock(mddev);
6146         if (err)
6147                 return err;
6148         conf = mddev->private;
6149         if (!conf)
6150                 err = -ENODEV;
6151         else if (new != conf->worker_cnt_per_group) {
6152                 mddev_suspend(mddev);
6153
6154                 old_groups = conf->worker_groups;
6155                 if (old_groups)
6156                         flush_workqueue(raid5_wq);
6157
6158                 err = alloc_thread_groups(conf, new,
6159                                           &group_cnt, &worker_cnt_per_group,
6160                                           &new_groups);
6161                 if (!err) {
6162                         spin_lock_irq(&conf->device_lock);
6163                         conf->group_cnt = group_cnt;
6164                         conf->worker_cnt_per_group = worker_cnt_per_group;
6165                         conf->worker_groups = new_groups;
6166                         spin_unlock_irq(&conf->device_lock);
6167
6168                         if (old_groups)
6169                                 kfree(old_groups[0].workers);
6170                         kfree(old_groups);
6171                 }
6172                 mddev_resume(mddev);
6173         }
6174         mddev_unlock(mddev);
6175
6176         return err ?: len;
6177 }
6178
6179 static struct md_sysfs_entry
6180 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6181                                 raid5_show_group_thread_cnt,
6182                                 raid5_store_group_thread_cnt);
6183
6184 static struct attribute *raid5_attrs[] =  {
6185         &raid5_stripecache_size.attr,
6186         &raid5_stripecache_active.attr,
6187         &raid5_preread_bypass_threshold.attr,
6188         &raid5_group_thread_cnt.attr,
6189         &raid5_skip_copy.attr,
6190         &raid5_rmw_level.attr,
6191         NULL,
6192 };
6193 static struct attribute_group raid5_attrs_group = {
6194         .name = NULL,
6195         .attrs = raid5_attrs,
6196 };
6197
6198 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6199                                int *group_cnt,
6200                                int *worker_cnt_per_group,
6201                                struct r5worker_group **worker_groups)
6202 {
6203         int i, j, k;
6204         ssize_t size;
6205         struct r5worker *workers;
6206
6207         *worker_cnt_per_group = cnt;
6208         if (cnt == 0) {
6209                 *group_cnt = 0;
6210                 *worker_groups = NULL;
6211                 return 0;
6212         }
6213         *group_cnt = num_possible_nodes();
6214         size = sizeof(struct r5worker) * cnt;
6215         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6216         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6217                                 *group_cnt, GFP_NOIO);
6218         if (!*worker_groups || !workers) {
6219                 kfree(workers);
6220                 kfree(*worker_groups);
6221                 return -ENOMEM;
6222         }
6223
6224         for (i = 0; i < *group_cnt; i++) {
6225                 struct r5worker_group *group;
6226
6227                 group = &(*worker_groups)[i];
6228                 INIT_LIST_HEAD(&group->handle_list);
6229                 group->conf = conf;
6230                 group->workers = workers + i * cnt;
6231
6232                 for (j = 0; j < cnt; j++) {
6233                         struct r5worker *worker = group->workers + j;
6234                         worker->group = group;
6235                         INIT_WORK(&worker->work, raid5_do_work);
6236
6237                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6238                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6239                 }
6240         }
6241
6242         return 0;
6243 }
6244
6245 static void free_thread_groups(struct r5conf *conf)
6246 {
6247         if (conf->worker_groups)
6248                 kfree(conf->worker_groups[0].workers);
6249         kfree(conf->worker_groups);
6250         conf->worker_groups = NULL;
6251 }
6252
6253 static sector_t
6254 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6255 {
6256         struct r5conf *conf = mddev->private;
6257
6258         if (!sectors)
6259                 sectors = mddev->dev_sectors;
6260         if (!raid_disks)
6261                 /* size is defined by the smallest of previous and new size */
6262                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6263
6264         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6265         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6266         return sectors * (raid_disks - conf->max_degraded);
6267 }
6268
6269 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6270 {
6271         safe_put_page(percpu->spare_page);
6272         if (percpu->scribble)
6273                 flex_array_free(percpu->scribble);
6274         percpu->spare_page = NULL;
6275         percpu->scribble = NULL;
6276 }
6277
6278 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6279 {
6280         if (conf->level == 6 && !percpu->spare_page)
6281                 percpu->spare_page = alloc_page(GFP_KERNEL);
6282         if (!percpu->scribble)
6283                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6284                                                       conf->previous_raid_disks),
6285                                                   max(conf->chunk_sectors,
6286                                                       conf->prev_chunk_sectors)
6287                                                    / STRIPE_SECTORS,
6288                                                   GFP_KERNEL);
6289
6290         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6291                 free_scratch_buffer(conf, percpu);
6292                 return -ENOMEM;
6293         }
6294
6295         return 0;
6296 }
6297
6298 static void raid5_free_percpu(struct r5conf *conf)
6299 {
6300         unsigned long cpu;
6301
6302         if (!conf->percpu)
6303                 return;
6304
6305 #ifdef CONFIG_HOTPLUG_CPU
6306         unregister_cpu_notifier(&conf->cpu_notify);
6307 #endif
6308
6309         get_online_cpus();
6310         for_each_possible_cpu(cpu)
6311                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6312         put_online_cpus();
6313
6314         free_percpu(conf->percpu);
6315 }
6316
6317 static void free_conf(struct r5conf *conf)
6318 {
6319         if (conf->shrinker.seeks)
6320                 unregister_shrinker(&conf->shrinker);
6321         free_thread_groups(conf);
6322         shrink_stripes(conf);
6323         raid5_free_percpu(conf);
6324         kfree(conf->disks);
6325         kfree(conf->stripe_hashtbl);
6326         kfree(conf);
6327 }
6328
6329 #ifdef CONFIG_HOTPLUG_CPU
6330 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6331                               void *hcpu)
6332 {
6333         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6334         long cpu = (long)hcpu;
6335         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6336
6337         switch (action) {
6338         case CPU_UP_PREPARE:
6339         case CPU_UP_PREPARE_FROZEN:
6340                 if (alloc_scratch_buffer(conf, percpu)) {
6341                         pr_err("%s: failed memory allocation for cpu%ld\n",
6342                                __func__, cpu);
6343                         return notifier_from_errno(-ENOMEM);
6344                 }
6345                 break;
6346         case CPU_DEAD:
6347         case CPU_DEAD_FROZEN:
6348                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6349                 break;
6350         default:
6351                 break;
6352         }
6353         return NOTIFY_OK;
6354 }
6355 #endif
6356
6357 static int raid5_alloc_percpu(struct r5conf *conf)
6358 {
6359         unsigned long cpu;
6360         int err = 0;
6361
6362         conf->percpu = alloc_percpu(struct raid5_percpu);
6363         if (!conf->percpu)
6364                 return -ENOMEM;
6365
6366 #ifdef CONFIG_HOTPLUG_CPU
6367         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6368         conf->cpu_notify.priority = 0;
6369         err = register_cpu_notifier(&conf->cpu_notify);
6370         if (err)
6371                 return err;
6372 #endif
6373
6374         get_online_cpus();
6375         for_each_present_cpu(cpu) {
6376                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6377                 if (err) {
6378                         pr_err("%s: failed memory allocation for cpu%ld\n",
6379                                __func__, cpu);
6380                         break;
6381                 }
6382         }
6383         put_online_cpus();
6384
6385         return err;
6386 }
6387
6388 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6389                                       struct shrink_control *sc)
6390 {
6391         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6392         unsigned long ret = SHRINK_STOP;
6393
6394         if (mutex_trylock(&conf->cache_size_mutex)) {
6395                 ret= 0;
6396                 while (ret < sc->nr_to_scan &&
6397                        conf->max_nr_stripes > conf->min_nr_stripes) {
6398                         if (drop_one_stripe(conf) == 0) {
6399                                 ret = SHRINK_STOP;
6400                                 break;
6401                         }
6402                         ret++;
6403                 }
6404                 mutex_unlock(&conf->cache_size_mutex);
6405         }
6406         return ret;
6407 }
6408
6409 static unsigned long raid5_cache_count(struct shrinker *shrink,
6410                                        struct shrink_control *sc)
6411 {
6412         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6413
6414         if (conf->max_nr_stripes < conf->min_nr_stripes)
6415                 /* unlikely, but not impossible */
6416                 return 0;
6417         return conf->max_nr_stripes - conf->min_nr_stripes;
6418 }
6419
6420 static struct r5conf *setup_conf(struct mddev *mddev)
6421 {
6422         struct r5conf *conf;
6423         int raid_disk, memory, max_disks;
6424         struct md_rdev *rdev;
6425         struct disk_info *disk;
6426         char pers_name[6];
6427         int i;
6428         int group_cnt, worker_cnt_per_group;
6429         struct r5worker_group *new_group;
6430
6431         if (mddev->new_level != 5
6432             && mddev->new_level != 4
6433             && mddev->new_level != 6) {
6434                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6435                        mdname(mddev), mddev->new_level);
6436                 return ERR_PTR(-EIO);
6437         }
6438         if ((mddev->new_level == 5
6439              && !algorithm_valid_raid5(mddev->new_layout)) ||
6440             (mddev->new_level == 6
6441              && !algorithm_valid_raid6(mddev->new_layout))) {
6442                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6443                        mdname(mddev), mddev->new_layout);
6444                 return ERR_PTR(-EIO);
6445         }
6446         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6447                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6448                        mdname(mddev), mddev->raid_disks);
6449                 return ERR_PTR(-EINVAL);
6450         }
6451
6452         if (!mddev->new_chunk_sectors ||
6453             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6454             !is_power_of_2(mddev->new_chunk_sectors)) {
6455                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6456                        mdname(mddev), mddev->new_chunk_sectors << 9);
6457                 return ERR_PTR(-EINVAL);
6458         }
6459
6460         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6461         if (conf == NULL)
6462                 goto abort;
6463         /* Don't enable multi-threading by default*/
6464         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6465                                  &new_group)) {
6466                 conf->group_cnt = group_cnt;
6467                 conf->worker_cnt_per_group = worker_cnt_per_group;
6468                 conf->worker_groups = new_group;
6469         } else
6470                 goto abort;
6471         spin_lock_init(&conf->device_lock);
6472         seqcount_init(&conf->gen_lock);
6473         mutex_init(&conf->cache_size_mutex);
6474         init_waitqueue_head(&conf->wait_for_quiescent);
6475         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6476                 init_waitqueue_head(&conf->wait_for_stripe[i]);
6477         }
6478         init_waitqueue_head(&conf->wait_for_overlap);
6479         INIT_LIST_HEAD(&conf->handle_list);
6480         INIT_LIST_HEAD(&conf->hold_list);
6481         INIT_LIST_HEAD(&conf->delayed_list);
6482         INIT_LIST_HEAD(&conf->bitmap_list);
6483         bio_list_init(&conf->return_bi);
6484         init_llist_head(&conf->released_stripes);
6485         atomic_set(&conf->active_stripes, 0);
6486         atomic_set(&conf->preread_active_stripes, 0);
6487         atomic_set(&conf->active_aligned_reads, 0);
6488         conf->bypass_threshold = BYPASS_THRESHOLD;
6489         conf->recovery_disabled = mddev->recovery_disabled - 1;
6490
6491         conf->raid_disks = mddev->raid_disks;
6492         if (mddev->reshape_position == MaxSector)
6493                 conf->previous_raid_disks = mddev->raid_disks;
6494         else
6495                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6496         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6497
6498         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6499                               GFP_KERNEL);
6500         if (!conf->disks)
6501                 goto abort;
6502
6503         conf->mddev = mddev;
6504
6505         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6506                 goto abort;
6507
6508         /* We init hash_locks[0] separately to that it can be used
6509          * as the reference lock in the spin_lock_nest_lock() call
6510          * in lock_all_device_hash_locks_irq in order to convince
6511          * lockdep that we know what we are doing.
6512          */
6513         spin_lock_init(conf->hash_locks);
6514         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6515                 spin_lock_init(conf->hash_locks + i);
6516
6517         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6518                 INIT_LIST_HEAD(conf->inactive_list + i);
6519
6520         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6521                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6522
6523         conf->level = mddev->new_level;
6524         conf->chunk_sectors = mddev->new_chunk_sectors;
6525         if (raid5_alloc_percpu(conf) != 0)
6526                 goto abort;
6527
6528         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6529
6530         rdev_for_each(rdev, mddev) {
6531                 raid_disk = rdev->raid_disk;
6532                 if (raid_disk >= max_disks
6533                     || raid_disk < 0)
6534                         continue;
6535                 disk = conf->disks + raid_disk;
6536
6537                 if (test_bit(Replacement, &rdev->flags)) {
6538                         if (disk->replacement)
6539                                 goto abort;
6540                         disk->replacement = rdev;
6541                 } else {
6542                         if (disk->rdev)
6543                                 goto abort;
6544                         disk->rdev = rdev;
6545                 }
6546
6547                 if (test_bit(In_sync, &rdev->flags)) {
6548                         char b[BDEVNAME_SIZE];
6549                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6550                                " disk %d\n",
6551                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6552                 } else if (rdev->saved_raid_disk != raid_disk)
6553                         /* Cannot rely on bitmap to complete recovery */
6554                         conf->fullsync = 1;
6555         }
6556
6557         conf->level = mddev->new_level;
6558         if (conf->level == 6) {
6559                 conf->max_degraded = 2;
6560                 if (raid6_call.xor_syndrome)
6561                         conf->rmw_level = PARITY_ENABLE_RMW;
6562                 else
6563                         conf->rmw_level = PARITY_DISABLE_RMW;
6564         } else {
6565                 conf->max_degraded = 1;
6566                 conf->rmw_level = PARITY_ENABLE_RMW;
6567         }
6568         conf->algorithm = mddev->new_layout;
6569         conf->reshape_progress = mddev->reshape_position;
6570         if (conf->reshape_progress != MaxSector) {
6571                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6572                 conf->prev_algo = mddev->layout;
6573         } else {
6574                 conf->prev_chunk_sectors = conf->chunk_sectors;
6575                 conf->prev_algo = conf->algorithm;
6576         }
6577
6578         conf->min_nr_stripes = NR_STRIPES;
6579         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6580                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6581         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6582         if (grow_stripes(conf, conf->min_nr_stripes)) {
6583                 printk(KERN_ERR
6584                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6585                        mdname(mddev), memory);
6586                 goto abort;
6587         } else
6588                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6589                        mdname(mddev), memory);
6590         /*
6591          * Losing a stripe head costs more than the time to refill it,
6592          * it reduces the queue depth and so can hurt throughput.
6593          * So set it rather large, scaled by number of devices.
6594          */
6595         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6596         conf->shrinker.scan_objects = raid5_cache_scan;
6597         conf->shrinker.count_objects = raid5_cache_count;
6598         conf->shrinker.batch = 128;
6599         conf->shrinker.flags = 0;
6600         register_shrinker(&conf->shrinker);
6601
6602         sprintf(pers_name, "raid%d", mddev->new_level);
6603         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6604         if (!conf->thread) {
6605                 printk(KERN_ERR
6606                        "md/raid:%s: couldn't allocate thread.\n",
6607                        mdname(mddev));
6608                 goto abort;
6609         }
6610
6611         return conf;
6612
6613  abort:
6614         if (conf) {
6615                 free_conf(conf);
6616                 return ERR_PTR(-EIO);
6617         } else
6618                 return ERR_PTR(-ENOMEM);
6619 }
6620
6621 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6622 {
6623         switch (algo) {
6624         case ALGORITHM_PARITY_0:
6625                 if (raid_disk < max_degraded)
6626                         return 1;
6627                 break;
6628         case ALGORITHM_PARITY_N:
6629                 if (raid_disk >= raid_disks - max_degraded)
6630                         return 1;
6631                 break;
6632         case ALGORITHM_PARITY_0_6:
6633                 if (raid_disk == 0 ||
6634                     raid_disk == raid_disks - 1)
6635                         return 1;
6636                 break;
6637         case ALGORITHM_LEFT_ASYMMETRIC_6:
6638         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6639         case ALGORITHM_LEFT_SYMMETRIC_6:
6640         case ALGORITHM_RIGHT_SYMMETRIC_6:
6641                 if (raid_disk == raid_disks - 1)
6642                         return 1;
6643         }
6644         return 0;
6645 }
6646
6647 static int run(struct mddev *mddev)
6648 {
6649         struct r5conf *conf;
6650         int working_disks = 0;
6651         int dirty_parity_disks = 0;
6652         struct md_rdev *rdev;
6653         sector_t reshape_offset = 0;
6654         int i;
6655         long long min_offset_diff = 0;
6656         int first = 1;
6657
6658         if (mddev->recovery_cp != MaxSector)
6659                 printk(KERN_NOTICE "md/raid:%s: not clean"
6660                        " -- starting background reconstruction\n",
6661                        mdname(mddev));
6662
6663         rdev_for_each(rdev, mddev) {
6664                 long long diff;
6665                 if (rdev->raid_disk < 0)
6666                         continue;
6667                 diff = (rdev->new_data_offset - rdev->data_offset);
6668                 if (first) {
6669                         min_offset_diff = diff;
6670                         first = 0;
6671                 } else if (mddev->reshape_backwards &&
6672                          diff < min_offset_diff)
6673                         min_offset_diff = diff;
6674                 else if (!mddev->reshape_backwards &&
6675                          diff > min_offset_diff)
6676                         min_offset_diff = diff;
6677         }
6678
6679         if (mddev->reshape_position != MaxSector) {
6680                 /* Check that we can continue the reshape.
6681                  * Difficulties arise if the stripe we would write to
6682                  * next is at or after the stripe we would read from next.
6683                  * For a reshape that changes the number of devices, this
6684                  * is only possible for a very short time, and mdadm makes
6685                  * sure that time appears to have past before assembling
6686                  * the array.  So we fail if that time hasn't passed.
6687                  * For a reshape that keeps the number of devices the same
6688                  * mdadm must be monitoring the reshape can keeping the
6689                  * critical areas read-only and backed up.  It will start
6690                  * the array in read-only mode, so we check for that.
6691                  */
6692                 sector_t here_new, here_old;
6693                 int old_disks;
6694                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6695                 int chunk_sectors;
6696                 int new_data_disks;
6697
6698                 if (mddev->new_level != mddev->level) {
6699                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6700                                "required - aborting.\n",
6701                                mdname(mddev));
6702                         return -EINVAL;
6703                 }
6704                 old_disks = mddev->raid_disks - mddev->delta_disks;
6705                 /* reshape_position must be on a new-stripe boundary, and one
6706                  * further up in new geometry must map after here in old
6707                  * geometry.
6708                  * If the chunk sizes are different, then as we perform reshape
6709                  * in units of the largest of the two, reshape_position needs
6710                  * be a multiple of the largest chunk size times new data disks.
6711                  */
6712                 here_new = mddev->reshape_position;
6713                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6714                 new_data_disks = mddev->raid_disks - max_degraded;
6715                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6716                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6717                                "on a stripe boundary\n", mdname(mddev));
6718                         return -EINVAL;
6719                 }
6720                 reshape_offset = here_new * chunk_sectors;
6721                 /* here_new is the stripe we will write to */
6722                 here_old = mddev->reshape_position;
6723                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6724                 /* here_old is the first stripe that we might need to read
6725                  * from */
6726                 if (mddev->delta_disks == 0) {
6727                         /* We cannot be sure it is safe to start an in-place
6728                          * reshape.  It is only safe if user-space is monitoring
6729                          * and taking constant backups.
6730                          * mdadm always starts a situation like this in
6731                          * readonly mode so it can take control before
6732                          * allowing any writes.  So just check for that.
6733                          */
6734                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6735                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6736                                 /* not really in-place - so OK */;
6737                         else if (mddev->ro == 0) {
6738                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6739                                        "must be started in read-only mode "
6740                                        "- aborting\n",
6741                                        mdname(mddev));
6742                                 return -EINVAL;
6743                         }
6744                 } else if (mddev->reshape_backwards
6745                     ? (here_new * chunk_sectors + min_offset_diff <=
6746                        here_old * chunk_sectors)
6747                     : (here_new * chunk_sectors >=
6748                        here_old * chunk_sectors + (-min_offset_diff))) {
6749                         /* Reading from the same stripe as writing to - bad */
6750                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6751                                "auto-recovery - aborting.\n",
6752                                mdname(mddev));
6753                         return -EINVAL;
6754                 }
6755                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6756                        mdname(mddev));
6757                 /* OK, we should be able to continue; */
6758         } else {
6759                 BUG_ON(mddev->level != mddev->new_level);
6760                 BUG_ON(mddev->layout != mddev->new_layout);
6761                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6762                 BUG_ON(mddev->delta_disks != 0);
6763         }
6764
6765         if (mddev->private == NULL)
6766                 conf = setup_conf(mddev);
6767         else
6768                 conf = mddev->private;
6769
6770         if (IS_ERR(conf))
6771                 return PTR_ERR(conf);
6772
6773         conf->min_offset_diff = min_offset_diff;
6774         mddev->thread = conf->thread;
6775         conf->thread = NULL;
6776         mddev->private = conf;
6777
6778         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6779              i++) {
6780                 rdev = conf->disks[i].rdev;
6781                 if (!rdev && conf->disks[i].replacement) {
6782                         /* The replacement is all we have yet */
6783                         rdev = conf->disks[i].replacement;
6784                         conf->disks[i].replacement = NULL;
6785                         clear_bit(Replacement, &rdev->flags);
6786                         conf->disks[i].rdev = rdev;
6787                 }
6788                 if (!rdev)
6789                         continue;
6790                 if (conf->disks[i].replacement &&
6791                     conf->reshape_progress != MaxSector) {
6792                         /* replacements and reshape simply do not mix. */
6793                         printk(KERN_ERR "md: cannot handle concurrent "
6794                                "replacement and reshape.\n");
6795                         goto abort;
6796                 }
6797                 if (test_bit(In_sync, &rdev->flags)) {
6798                         working_disks++;
6799                         continue;
6800                 }
6801                 /* This disc is not fully in-sync.  However if it
6802                  * just stored parity (beyond the recovery_offset),
6803                  * when we don't need to be concerned about the
6804                  * array being dirty.
6805                  * When reshape goes 'backwards', we never have
6806                  * partially completed devices, so we only need
6807                  * to worry about reshape going forwards.
6808                  */
6809                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6810                 if (mddev->major_version == 0 &&
6811                     mddev->minor_version > 90)
6812                         rdev->recovery_offset = reshape_offset;
6813
6814                 if (rdev->recovery_offset < reshape_offset) {
6815                         /* We need to check old and new layout */
6816                         if (!only_parity(rdev->raid_disk,
6817                                          conf->algorithm,
6818                                          conf->raid_disks,
6819                                          conf->max_degraded))
6820                                 continue;
6821                 }
6822                 if (!only_parity(rdev->raid_disk,
6823                                  conf->prev_algo,
6824                                  conf->previous_raid_disks,
6825                                  conf->max_degraded))
6826                         continue;
6827                 dirty_parity_disks++;
6828         }
6829
6830         /*
6831          * 0 for a fully functional array, 1 or 2 for a degraded array.
6832          */
6833         mddev->degraded = calc_degraded(conf);
6834
6835         if (has_failed(conf)) {
6836                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6837                         " (%d/%d failed)\n",
6838                         mdname(mddev), mddev->degraded, conf->raid_disks);
6839                 goto abort;
6840         }
6841
6842         /* device size must be a multiple of chunk size */
6843         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6844         mddev->resync_max_sectors = mddev->dev_sectors;
6845
6846         if (mddev->degraded > dirty_parity_disks &&
6847             mddev->recovery_cp != MaxSector) {
6848                 if (mddev->ok_start_degraded)
6849                         printk(KERN_WARNING
6850                                "md/raid:%s: starting dirty degraded array"
6851                                " - data corruption possible.\n",
6852                                mdname(mddev));
6853                 else {
6854                         printk(KERN_ERR
6855                                "md/raid:%s: cannot start dirty degraded array.\n",
6856                                mdname(mddev));
6857                         goto abort;
6858                 }
6859         }
6860
6861         if (mddev->degraded == 0)
6862                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6863                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6864                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6865                        mddev->new_layout);
6866         else
6867                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6868                        " out of %d devices, algorithm %d\n",
6869                        mdname(mddev), conf->level,
6870                        mddev->raid_disks - mddev->degraded,
6871                        mddev->raid_disks, mddev->new_layout);
6872
6873         print_raid5_conf(conf);
6874
6875         if (conf->reshape_progress != MaxSector) {
6876                 conf->reshape_safe = conf->reshape_progress;
6877                 atomic_set(&conf->reshape_stripes, 0);
6878                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6879                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6880                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6881                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6882                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6883                                                         "reshape");
6884         }
6885
6886         /* Ok, everything is just fine now */
6887         if (mddev->to_remove == &raid5_attrs_group)
6888                 mddev->to_remove = NULL;
6889         else if (mddev->kobj.sd &&
6890             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6891                 printk(KERN_WARNING
6892                        "raid5: failed to create sysfs attributes for %s\n",
6893                        mdname(mddev));
6894         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6895
6896         if (mddev->queue) {
6897                 int chunk_size;
6898                 bool discard_supported = true;
6899                 /* read-ahead size must cover two whole stripes, which
6900                  * is 2 * (datadisks) * chunksize where 'n' is the
6901                  * number of raid devices
6902                  */
6903                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6904                 int stripe = data_disks *
6905                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6906                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6907                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6908
6909                 chunk_size = mddev->chunk_sectors << 9;
6910                 blk_queue_io_min(mddev->queue, chunk_size);
6911                 blk_queue_io_opt(mddev->queue, chunk_size *
6912                                  (conf->raid_disks - conf->max_degraded));
6913                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6914                 /*
6915                  * We can only discard a whole stripe. It doesn't make sense to
6916                  * discard data disk but write parity disk
6917                  */
6918                 stripe = stripe * PAGE_SIZE;
6919                 /* Round up to power of 2, as discard handling
6920                  * currently assumes that */
6921                 while ((stripe-1) & stripe)
6922                         stripe = (stripe | (stripe-1)) + 1;
6923                 mddev->queue->limits.discard_alignment = stripe;
6924                 mddev->queue->limits.discard_granularity = stripe;
6925                 /*
6926                  * unaligned part of discard request will be ignored, so can't
6927                  * guarantee discard_zeroes_data
6928                  */
6929                 mddev->queue->limits.discard_zeroes_data = 0;
6930
6931                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6932
6933                 rdev_for_each(rdev, mddev) {
6934                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6935                                           rdev->data_offset << 9);
6936                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6937                                           rdev->new_data_offset << 9);
6938                         /*
6939                          * discard_zeroes_data is required, otherwise data
6940                          * could be lost. Consider a scenario: discard a stripe
6941                          * (the stripe could be inconsistent if
6942                          * discard_zeroes_data is 0); write one disk of the
6943                          * stripe (the stripe could be inconsistent again
6944                          * depending on which disks are used to calculate
6945                          * parity); the disk is broken; The stripe data of this
6946                          * disk is lost.
6947                          */
6948                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6949                             !bdev_get_queue(rdev->bdev)->
6950                                                 limits.discard_zeroes_data)
6951                                 discard_supported = false;
6952                         /* Unfortunately, discard_zeroes_data is not currently
6953                          * a guarantee - just a hint.  So we only allow DISCARD
6954                          * if the sysadmin has confirmed that only safe devices
6955                          * are in use by setting a module parameter.
6956                          */
6957                         if (!devices_handle_discard_safely) {
6958                                 if (discard_supported) {
6959                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6960                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6961                                 }
6962                                 discard_supported = false;
6963                         }
6964                 }
6965
6966                 if (discard_supported &&
6967                    mddev->queue->limits.max_discard_sectors >= stripe &&
6968                    mddev->queue->limits.discard_granularity >= stripe)
6969                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6970                                                 mddev->queue);
6971                 else
6972                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6973                                                 mddev->queue);
6974         }
6975
6976         return 0;
6977 abort:
6978         md_unregister_thread(&mddev->thread);
6979         print_raid5_conf(conf);
6980         free_conf(conf);
6981         mddev->private = NULL;
6982         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6983         return -EIO;
6984 }
6985
6986 static void raid5_free(struct mddev *mddev, void *priv)
6987 {
6988         struct r5conf *conf = priv;
6989
6990         free_conf(conf);
6991         mddev->to_remove = &raid5_attrs_group;
6992 }
6993
6994 static void status(struct seq_file *seq, struct mddev *mddev)
6995 {
6996         struct r5conf *conf = mddev->private;
6997         int i;
6998
6999         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7000                 conf->chunk_sectors / 2, mddev->layout);
7001         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7002         for (i = 0; i < conf->raid_disks; i++)
7003                 seq_printf (seq, "%s",
7004                                conf->disks[i].rdev &&
7005                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7006         seq_printf (seq, "]");
7007 }
7008
7009 static void print_raid5_conf (struct r5conf *conf)
7010 {
7011         int i;
7012         struct disk_info *tmp;
7013
7014         printk(KERN_DEBUG "RAID conf printout:\n");
7015         if (!conf) {
7016                 printk("(conf==NULL)\n");
7017                 return;
7018         }
7019         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7020                conf->raid_disks,
7021                conf->raid_disks - conf->mddev->degraded);
7022
7023         for (i = 0; i < conf->raid_disks; i++) {
7024                 char b[BDEVNAME_SIZE];
7025                 tmp = conf->disks + i;
7026                 if (tmp->rdev)
7027                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7028                                i, !test_bit(Faulty, &tmp->rdev->flags),
7029                                bdevname(tmp->rdev->bdev, b));
7030         }
7031 }
7032
7033 static int raid5_spare_active(struct mddev *mddev)
7034 {
7035         int i;
7036         struct r5conf *conf = mddev->private;
7037         struct disk_info *tmp;
7038         int count = 0;
7039         unsigned long flags;
7040
7041         for (i = 0; i < conf->raid_disks; i++) {
7042                 tmp = conf->disks + i;
7043                 if (tmp->replacement
7044                     && tmp->replacement->recovery_offset == MaxSector
7045                     && !test_bit(Faulty, &tmp->replacement->flags)
7046                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7047                         /* Replacement has just become active. */
7048                         if (!tmp->rdev
7049                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7050                                 count++;
7051                         if (tmp->rdev) {
7052                                 /* Replaced device not technically faulty,
7053                                  * but we need to be sure it gets removed
7054                                  * and never re-added.
7055                                  */
7056                                 set_bit(Faulty, &tmp->rdev->flags);
7057                                 sysfs_notify_dirent_safe(
7058                                         tmp->rdev->sysfs_state);
7059                         }
7060                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7061                 } else if (tmp->rdev
7062                     && tmp->rdev->recovery_offset == MaxSector
7063                     && !test_bit(Faulty, &tmp->rdev->flags)
7064                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7065                         count++;
7066                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7067                 }
7068         }
7069         spin_lock_irqsave(&conf->device_lock, flags);
7070         mddev->degraded = calc_degraded(conf);
7071         spin_unlock_irqrestore(&conf->device_lock, flags);
7072         print_raid5_conf(conf);
7073         return count;
7074 }
7075
7076 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7077 {
7078         struct r5conf *conf = mddev->private;
7079         int err = 0;
7080         int number = rdev->raid_disk;
7081         struct md_rdev **rdevp;
7082         struct disk_info *p = conf->disks + number;
7083
7084         print_raid5_conf(conf);
7085         if (rdev == p->rdev)
7086                 rdevp = &p->rdev;
7087         else if (rdev == p->replacement)
7088                 rdevp = &p->replacement;
7089         else
7090                 return 0;
7091
7092         if (number >= conf->raid_disks &&
7093             conf->reshape_progress == MaxSector)
7094                 clear_bit(In_sync, &rdev->flags);
7095
7096         if (test_bit(In_sync, &rdev->flags) ||
7097             atomic_read(&rdev->nr_pending)) {
7098                 err = -EBUSY;
7099                 goto abort;
7100         }
7101         /* Only remove non-faulty devices if recovery
7102          * isn't possible.
7103          */
7104         if (!test_bit(Faulty, &rdev->flags) &&
7105             mddev->recovery_disabled != conf->recovery_disabled &&
7106             !has_failed(conf) &&
7107             (!p->replacement || p->replacement == rdev) &&
7108             number < conf->raid_disks) {
7109                 err = -EBUSY;
7110                 goto abort;
7111         }
7112         *rdevp = NULL;
7113         synchronize_rcu();
7114         if (atomic_read(&rdev->nr_pending)) {
7115                 /* lost the race, try later */
7116                 err = -EBUSY;
7117                 *rdevp = rdev;
7118         } else if (p->replacement) {
7119                 /* We must have just cleared 'rdev' */
7120                 p->rdev = p->replacement;
7121                 clear_bit(Replacement, &p->replacement->flags);
7122                 smp_mb(); /* Make sure other CPUs may see both as identical
7123                            * but will never see neither - if they are careful
7124                            */
7125                 p->replacement = NULL;
7126                 clear_bit(WantReplacement, &rdev->flags);
7127         } else
7128                 /* We might have just removed the Replacement as faulty-
7129                  * clear the bit just in case
7130                  */
7131                 clear_bit(WantReplacement, &rdev->flags);
7132 abort:
7133
7134         print_raid5_conf(conf);
7135         return err;
7136 }
7137
7138 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7139 {
7140         struct r5conf *conf = mddev->private;
7141         int err = -EEXIST;
7142         int disk;
7143         struct disk_info *p;
7144         int first = 0;
7145         int last = conf->raid_disks - 1;
7146
7147         if (mddev->recovery_disabled == conf->recovery_disabled)
7148                 return -EBUSY;
7149
7150         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7151                 /* no point adding a device */
7152                 return -EINVAL;
7153
7154         if (rdev->raid_disk >= 0)
7155                 first = last = rdev->raid_disk;
7156
7157         /*
7158          * find the disk ... but prefer rdev->saved_raid_disk
7159          * if possible.
7160          */
7161         if (rdev->saved_raid_disk >= 0 &&
7162             rdev->saved_raid_disk >= first &&
7163             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7164                 first = rdev->saved_raid_disk;
7165
7166         for (disk = first; disk <= last; disk++) {
7167                 p = conf->disks + disk;
7168                 if (p->rdev == NULL) {
7169                         clear_bit(In_sync, &rdev->flags);
7170                         rdev->raid_disk = disk;
7171                         err = 0;
7172                         if (rdev->saved_raid_disk != disk)
7173                                 conf->fullsync = 1;
7174                         rcu_assign_pointer(p->rdev, rdev);
7175                         goto out;
7176                 }
7177         }
7178         for (disk = first; disk <= last; disk++) {
7179                 p = conf->disks + disk;
7180                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7181                     p->replacement == NULL) {
7182                         clear_bit(In_sync, &rdev->flags);
7183                         set_bit(Replacement, &rdev->flags);
7184                         rdev->raid_disk = disk;
7185                         err = 0;
7186                         conf->fullsync = 1;
7187                         rcu_assign_pointer(p->replacement, rdev);
7188                         break;
7189                 }
7190         }
7191 out:
7192         print_raid5_conf(conf);
7193         return err;
7194 }
7195
7196 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7197 {
7198         /* no resync is happening, and there is enough space
7199          * on all devices, so we can resize.
7200          * We need to make sure resync covers any new space.
7201          * If the array is shrinking we should possibly wait until
7202          * any io in the removed space completes, but it hardly seems
7203          * worth it.
7204          */
7205         sector_t newsize;
7206         struct r5conf *conf = mddev->private;
7207
7208         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7209         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7210         if (mddev->external_size &&
7211             mddev->array_sectors > newsize)
7212                 return -EINVAL;
7213         if (mddev->bitmap) {
7214                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7215                 if (ret)
7216                         return ret;
7217         }
7218         md_set_array_sectors(mddev, newsize);
7219         set_capacity(mddev->gendisk, mddev->array_sectors);
7220         revalidate_disk(mddev->gendisk);
7221         if (sectors > mddev->dev_sectors &&
7222             mddev->recovery_cp > mddev->dev_sectors) {
7223                 mddev->recovery_cp = mddev->dev_sectors;
7224                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7225         }
7226         mddev->dev_sectors = sectors;
7227         mddev->resync_max_sectors = sectors;
7228         return 0;
7229 }
7230
7231 static int check_stripe_cache(struct mddev *mddev)
7232 {
7233         /* Can only proceed if there are plenty of stripe_heads.
7234          * We need a minimum of one full stripe,, and for sensible progress
7235          * it is best to have about 4 times that.
7236          * If we require 4 times, then the default 256 4K stripe_heads will
7237          * allow for chunk sizes up to 256K, which is probably OK.
7238          * If the chunk size is greater, user-space should request more
7239          * stripe_heads first.
7240          */
7241         struct r5conf *conf = mddev->private;
7242         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7243             > conf->min_nr_stripes ||
7244             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7245             > conf->min_nr_stripes) {
7246                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7247                        mdname(mddev),
7248                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7249                         / STRIPE_SIZE)*4);
7250                 return 0;
7251         }
7252         return 1;
7253 }
7254
7255 static int check_reshape(struct mddev *mddev)
7256 {
7257         struct r5conf *conf = mddev->private;
7258
7259         if (mddev->delta_disks == 0 &&
7260             mddev->new_layout == mddev->layout &&
7261             mddev->new_chunk_sectors == mddev->chunk_sectors)
7262                 return 0; /* nothing to do */
7263         if (has_failed(conf))
7264                 return -EINVAL;
7265         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7266                 /* We might be able to shrink, but the devices must
7267                  * be made bigger first.
7268                  * For raid6, 4 is the minimum size.
7269                  * Otherwise 2 is the minimum
7270                  */
7271                 int min = 2;
7272                 if (mddev->level == 6)
7273                         min = 4;
7274                 if (mddev->raid_disks + mddev->delta_disks < min)
7275                         return -EINVAL;
7276         }
7277
7278         if (!check_stripe_cache(mddev))
7279                 return -ENOSPC;
7280
7281         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7282             mddev->delta_disks > 0)
7283                 if (resize_chunks(conf,
7284                                   conf->previous_raid_disks
7285                                   + max(0, mddev->delta_disks),
7286                                   max(mddev->new_chunk_sectors,
7287                                       mddev->chunk_sectors)
7288                             ) < 0)
7289                         return -ENOMEM;
7290         return resize_stripes(conf, (conf->previous_raid_disks
7291                                      + mddev->delta_disks));
7292 }
7293
7294 static int raid5_start_reshape(struct mddev *mddev)
7295 {
7296         struct r5conf *conf = mddev->private;
7297         struct md_rdev *rdev;
7298         int spares = 0;
7299         unsigned long flags;
7300
7301         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7302                 return -EBUSY;
7303
7304         if (!check_stripe_cache(mddev))
7305                 return -ENOSPC;
7306
7307         if (has_failed(conf))
7308                 return -EINVAL;
7309
7310         rdev_for_each(rdev, mddev) {
7311                 if (!test_bit(In_sync, &rdev->flags)
7312                     && !test_bit(Faulty, &rdev->flags))
7313                         spares++;
7314         }
7315
7316         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7317                 /* Not enough devices even to make a degraded array
7318                  * of that size
7319                  */
7320                 return -EINVAL;
7321
7322         /* Refuse to reduce size of the array.  Any reductions in
7323          * array size must be through explicit setting of array_size
7324          * attribute.
7325          */
7326         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7327             < mddev->array_sectors) {
7328                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7329                        "before number of disks\n", mdname(mddev));
7330                 return -EINVAL;
7331         }
7332
7333         atomic_set(&conf->reshape_stripes, 0);
7334         spin_lock_irq(&conf->device_lock);
7335         write_seqcount_begin(&conf->gen_lock);
7336         conf->previous_raid_disks = conf->raid_disks;
7337         conf->raid_disks += mddev->delta_disks;
7338         conf->prev_chunk_sectors = conf->chunk_sectors;
7339         conf->chunk_sectors = mddev->new_chunk_sectors;
7340         conf->prev_algo = conf->algorithm;
7341         conf->algorithm = mddev->new_layout;
7342         conf->generation++;
7343         /* Code that selects data_offset needs to see the generation update
7344          * if reshape_progress has been set - so a memory barrier needed.
7345          */
7346         smp_mb();
7347         if (mddev->reshape_backwards)
7348                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7349         else
7350                 conf->reshape_progress = 0;
7351         conf->reshape_safe = conf->reshape_progress;
7352         write_seqcount_end(&conf->gen_lock);
7353         spin_unlock_irq(&conf->device_lock);
7354
7355         /* Now make sure any requests that proceeded on the assumption
7356          * the reshape wasn't running - like Discard or Read - have
7357          * completed.
7358          */
7359         mddev_suspend(mddev);
7360         mddev_resume(mddev);
7361
7362         /* Add some new drives, as many as will fit.
7363          * We know there are enough to make the newly sized array work.
7364          * Don't add devices if we are reducing the number of
7365          * devices in the array.  This is because it is not possible
7366          * to correctly record the "partially reconstructed" state of
7367          * such devices during the reshape and confusion could result.
7368          */
7369         if (mddev->delta_disks >= 0) {
7370                 rdev_for_each(rdev, mddev)
7371                         if (rdev->raid_disk < 0 &&
7372                             !test_bit(Faulty, &rdev->flags)) {
7373                                 if (raid5_add_disk(mddev, rdev) == 0) {
7374                                         if (rdev->raid_disk
7375                                             >= conf->previous_raid_disks)
7376                                                 set_bit(In_sync, &rdev->flags);
7377                                         else
7378                                                 rdev->recovery_offset = 0;
7379
7380                                         if (sysfs_link_rdev(mddev, rdev))
7381                                                 /* Failure here is OK */;
7382                                 }
7383                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7384                                    && !test_bit(Faulty, &rdev->flags)) {
7385                                 /* This is a spare that was manually added */
7386                                 set_bit(In_sync, &rdev->flags);
7387                         }
7388
7389                 /* When a reshape changes the number of devices,
7390                  * ->degraded is measured against the larger of the
7391                  * pre and post number of devices.
7392                  */
7393                 spin_lock_irqsave(&conf->device_lock, flags);
7394                 mddev->degraded = calc_degraded(conf);
7395                 spin_unlock_irqrestore(&conf->device_lock, flags);
7396         }
7397         mddev->raid_disks = conf->raid_disks;
7398         mddev->reshape_position = conf->reshape_progress;
7399         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7400
7401         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7402         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7403         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7404         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7405         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7406         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7407                                                 "reshape");
7408         if (!mddev->sync_thread) {
7409                 mddev->recovery = 0;
7410                 spin_lock_irq(&conf->device_lock);
7411                 write_seqcount_begin(&conf->gen_lock);
7412                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7413                 mddev->new_chunk_sectors =
7414                         conf->chunk_sectors = conf->prev_chunk_sectors;
7415                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7416                 rdev_for_each(rdev, mddev)
7417                         rdev->new_data_offset = rdev->data_offset;
7418                 smp_wmb();
7419                 conf->generation --;
7420                 conf->reshape_progress = MaxSector;
7421                 mddev->reshape_position = MaxSector;
7422                 write_seqcount_end(&conf->gen_lock);
7423                 spin_unlock_irq(&conf->device_lock);
7424                 return -EAGAIN;
7425         }
7426         conf->reshape_checkpoint = jiffies;
7427         md_wakeup_thread(mddev->sync_thread);
7428         md_new_event(mddev);
7429         return 0;
7430 }
7431
7432 /* This is called from the reshape thread and should make any
7433  * changes needed in 'conf'
7434  */
7435 static void end_reshape(struct r5conf *conf)
7436 {
7437
7438         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7439                 struct md_rdev *rdev;
7440
7441                 spin_lock_irq(&conf->device_lock);
7442                 conf->previous_raid_disks = conf->raid_disks;
7443                 rdev_for_each(rdev, conf->mddev)
7444                         rdev->data_offset = rdev->new_data_offset;
7445                 smp_wmb();
7446                 conf->reshape_progress = MaxSector;
7447                 conf->mddev->reshape_position = MaxSector;
7448                 spin_unlock_irq(&conf->device_lock);
7449                 wake_up(&conf->wait_for_overlap);
7450
7451                 /* read-ahead size must cover two whole stripes, which is
7452                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7453                  */
7454                 if (conf->mddev->queue) {
7455                         int data_disks = conf->raid_disks - conf->max_degraded;
7456                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7457                                                    / PAGE_SIZE);
7458                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7459                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7460                 }
7461         }
7462 }
7463
7464 /* This is called from the raid5d thread with mddev_lock held.
7465  * It makes config changes to the device.
7466  */
7467 static void raid5_finish_reshape(struct mddev *mddev)
7468 {
7469         struct r5conf *conf = mddev->private;
7470
7471         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7472
7473                 if (mddev->delta_disks > 0) {
7474                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7475                         set_capacity(mddev->gendisk, mddev->array_sectors);
7476                         revalidate_disk(mddev->gendisk);
7477                 } else {
7478                         int d;
7479                         spin_lock_irq(&conf->device_lock);
7480                         mddev->degraded = calc_degraded(conf);
7481                         spin_unlock_irq(&conf->device_lock);
7482                         for (d = conf->raid_disks ;
7483                              d < conf->raid_disks - mddev->delta_disks;
7484                              d++) {
7485                                 struct md_rdev *rdev = conf->disks[d].rdev;
7486                                 if (rdev)
7487                                         clear_bit(In_sync, &rdev->flags);
7488                                 rdev = conf->disks[d].replacement;
7489                                 if (rdev)
7490                                         clear_bit(In_sync, &rdev->flags);
7491                         }
7492                 }
7493                 mddev->layout = conf->algorithm;
7494                 mddev->chunk_sectors = conf->chunk_sectors;
7495                 mddev->reshape_position = MaxSector;
7496                 mddev->delta_disks = 0;
7497                 mddev->reshape_backwards = 0;
7498         }
7499 }
7500
7501 static void raid5_quiesce(struct mddev *mddev, int state)
7502 {
7503         struct r5conf *conf = mddev->private;
7504
7505         switch(state) {
7506         case 2: /* resume for a suspend */
7507                 wake_up(&conf->wait_for_overlap);
7508                 break;
7509
7510         case 1: /* stop all writes */
7511                 lock_all_device_hash_locks_irq(conf);
7512                 /* '2' tells resync/reshape to pause so that all
7513                  * active stripes can drain
7514                  */
7515                 conf->quiesce = 2;
7516                 wait_event_cmd(conf->wait_for_quiescent,
7517                                     atomic_read(&conf->active_stripes) == 0 &&
7518                                     atomic_read(&conf->active_aligned_reads) == 0,
7519                                     unlock_all_device_hash_locks_irq(conf),
7520                                     lock_all_device_hash_locks_irq(conf));
7521                 conf->quiesce = 1;
7522                 unlock_all_device_hash_locks_irq(conf);
7523                 /* allow reshape to continue */
7524                 wake_up(&conf->wait_for_overlap);
7525                 break;
7526
7527         case 0: /* re-enable writes */
7528                 lock_all_device_hash_locks_irq(conf);
7529                 conf->quiesce = 0;
7530                 wake_up(&conf->wait_for_quiescent);
7531                 wake_up(&conf->wait_for_overlap);
7532                 unlock_all_device_hash_locks_irq(conf);
7533                 break;
7534         }
7535 }
7536
7537 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7538 {
7539         struct r0conf *raid0_conf = mddev->private;
7540         sector_t sectors;
7541
7542         /* for raid0 takeover only one zone is supported */
7543         if (raid0_conf->nr_strip_zones > 1) {
7544                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7545                        mdname(mddev));
7546                 return ERR_PTR(-EINVAL);
7547         }
7548
7549         sectors = raid0_conf->strip_zone[0].zone_end;
7550         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7551         mddev->dev_sectors = sectors;
7552         mddev->new_level = level;
7553         mddev->new_layout = ALGORITHM_PARITY_N;
7554         mddev->new_chunk_sectors = mddev->chunk_sectors;
7555         mddev->raid_disks += 1;
7556         mddev->delta_disks = 1;
7557         /* make sure it will be not marked as dirty */
7558         mddev->recovery_cp = MaxSector;
7559
7560         return setup_conf(mddev);
7561 }
7562
7563 static void *raid5_takeover_raid1(struct mddev *mddev)
7564 {
7565         int chunksect;
7566
7567         if (mddev->raid_disks != 2 ||
7568             mddev->degraded > 1)
7569                 return ERR_PTR(-EINVAL);
7570
7571         /* Should check if there are write-behind devices? */
7572
7573         chunksect = 64*2; /* 64K by default */
7574
7575         /* The array must be an exact multiple of chunksize */
7576         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7577                 chunksect >>= 1;
7578
7579         if ((chunksect<<9) < STRIPE_SIZE)
7580                 /* array size does not allow a suitable chunk size */
7581                 return ERR_PTR(-EINVAL);
7582
7583         mddev->new_level = 5;
7584         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7585         mddev->new_chunk_sectors = chunksect;
7586
7587         return setup_conf(mddev);
7588 }
7589
7590 static void *raid5_takeover_raid6(struct mddev *mddev)
7591 {
7592         int new_layout;
7593
7594         switch (mddev->layout) {
7595         case ALGORITHM_LEFT_ASYMMETRIC_6:
7596                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7597                 break;
7598         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7599                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7600                 break;
7601         case ALGORITHM_LEFT_SYMMETRIC_6:
7602                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7603                 break;
7604         case ALGORITHM_RIGHT_SYMMETRIC_6:
7605                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7606                 break;
7607         case ALGORITHM_PARITY_0_6:
7608                 new_layout = ALGORITHM_PARITY_0;
7609                 break;
7610         case ALGORITHM_PARITY_N:
7611                 new_layout = ALGORITHM_PARITY_N;
7612                 break;
7613         default:
7614                 return ERR_PTR(-EINVAL);
7615         }
7616         mddev->new_level = 5;
7617         mddev->new_layout = new_layout;
7618         mddev->delta_disks = -1;
7619         mddev->raid_disks -= 1;
7620         return setup_conf(mddev);
7621 }
7622
7623 static int raid5_check_reshape(struct mddev *mddev)
7624 {
7625         /* For a 2-drive array, the layout and chunk size can be changed
7626          * immediately as not restriping is needed.
7627          * For larger arrays we record the new value - after validation
7628          * to be used by a reshape pass.
7629          */
7630         struct r5conf *conf = mddev->private;
7631         int new_chunk = mddev->new_chunk_sectors;
7632
7633         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7634                 return -EINVAL;
7635         if (new_chunk > 0) {
7636                 if (!is_power_of_2(new_chunk))
7637                         return -EINVAL;
7638                 if (new_chunk < (PAGE_SIZE>>9))
7639                         return -EINVAL;
7640                 if (mddev->array_sectors & (new_chunk-1))
7641                         /* not factor of array size */
7642                         return -EINVAL;
7643         }
7644
7645         /* They look valid */
7646
7647         if (mddev->raid_disks == 2) {
7648                 /* can make the change immediately */
7649                 if (mddev->new_layout >= 0) {
7650                         conf->algorithm = mddev->new_layout;
7651                         mddev->layout = mddev->new_layout;
7652                 }
7653                 if (new_chunk > 0) {
7654                         conf->chunk_sectors = new_chunk ;
7655                         mddev->chunk_sectors = new_chunk;
7656                 }
7657                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7658                 md_wakeup_thread(mddev->thread);
7659         }
7660         return check_reshape(mddev);
7661 }
7662
7663 static int raid6_check_reshape(struct mddev *mddev)
7664 {
7665         int new_chunk = mddev->new_chunk_sectors;
7666
7667         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7668                 return -EINVAL;
7669         if (new_chunk > 0) {
7670                 if (!is_power_of_2(new_chunk))
7671                         return -EINVAL;
7672                 if (new_chunk < (PAGE_SIZE >> 9))
7673                         return -EINVAL;
7674                 if (mddev->array_sectors & (new_chunk-1))
7675                         /* not factor of array size */
7676                         return -EINVAL;
7677         }
7678
7679         /* They look valid */
7680         return check_reshape(mddev);
7681 }
7682
7683 static void *raid5_takeover(struct mddev *mddev)
7684 {
7685         /* raid5 can take over:
7686          *  raid0 - if there is only one strip zone - make it a raid4 layout
7687          *  raid1 - if there are two drives.  We need to know the chunk size
7688          *  raid4 - trivial - just use a raid4 layout.
7689          *  raid6 - Providing it is a *_6 layout
7690          */
7691         if (mddev->level == 0)
7692                 return raid45_takeover_raid0(mddev, 5);
7693         if (mddev->level == 1)
7694                 return raid5_takeover_raid1(mddev);
7695         if (mddev->level == 4) {
7696                 mddev->new_layout = ALGORITHM_PARITY_N;
7697                 mddev->new_level = 5;
7698                 return setup_conf(mddev);
7699         }
7700         if (mddev->level == 6)
7701                 return raid5_takeover_raid6(mddev);
7702
7703         return ERR_PTR(-EINVAL);
7704 }
7705
7706 static void *raid4_takeover(struct mddev *mddev)
7707 {
7708         /* raid4 can take over:
7709          *  raid0 - if there is only one strip zone
7710          *  raid5 - if layout is right
7711          */
7712         if (mddev->level == 0)
7713                 return raid45_takeover_raid0(mddev, 4);
7714         if (mddev->level == 5 &&
7715             mddev->layout == ALGORITHM_PARITY_N) {
7716                 mddev->new_layout = 0;
7717                 mddev->new_level = 4;
7718                 return setup_conf(mddev);
7719         }
7720         return ERR_PTR(-EINVAL);
7721 }
7722
7723 static struct md_personality raid5_personality;
7724
7725 static void *raid6_takeover(struct mddev *mddev)
7726 {
7727         /* Currently can only take over a raid5.  We map the
7728          * personality to an equivalent raid6 personality
7729          * with the Q block at the end.
7730          */
7731         int new_layout;
7732
7733         if (mddev->pers != &raid5_personality)
7734                 return ERR_PTR(-EINVAL);
7735         if (mddev->degraded > 1)
7736                 return ERR_PTR(-EINVAL);
7737         if (mddev->raid_disks > 253)
7738                 return ERR_PTR(-EINVAL);
7739         if (mddev->raid_disks < 3)
7740                 return ERR_PTR(-EINVAL);
7741
7742         switch (mddev->layout) {
7743         case ALGORITHM_LEFT_ASYMMETRIC:
7744                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7745                 break;
7746         case ALGORITHM_RIGHT_ASYMMETRIC:
7747                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7748                 break;
7749         case ALGORITHM_LEFT_SYMMETRIC:
7750                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7751                 break;
7752         case ALGORITHM_RIGHT_SYMMETRIC:
7753                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7754                 break;
7755         case ALGORITHM_PARITY_0:
7756                 new_layout = ALGORITHM_PARITY_0_6;
7757                 break;
7758         case ALGORITHM_PARITY_N:
7759                 new_layout = ALGORITHM_PARITY_N;
7760                 break;
7761         default:
7762                 return ERR_PTR(-EINVAL);
7763         }
7764         mddev->new_level = 6;
7765         mddev->new_layout = new_layout;
7766         mddev->delta_disks = 1;
7767         mddev->raid_disks += 1;
7768         return setup_conf(mddev);
7769 }
7770
7771 static struct md_personality raid6_personality =
7772 {
7773         .name           = "raid6",
7774         .level          = 6,
7775         .owner          = THIS_MODULE,
7776         .make_request   = make_request,
7777         .run            = run,
7778         .free           = raid5_free,
7779         .status         = status,
7780         .error_handler  = error,
7781         .hot_add_disk   = raid5_add_disk,
7782         .hot_remove_disk= raid5_remove_disk,
7783         .spare_active   = raid5_spare_active,
7784         .sync_request   = sync_request,
7785         .resize         = raid5_resize,
7786         .size           = raid5_size,
7787         .check_reshape  = raid6_check_reshape,
7788         .start_reshape  = raid5_start_reshape,
7789         .finish_reshape = raid5_finish_reshape,
7790         .quiesce        = raid5_quiesce,
7791         .takeover       = raid6_takeover,
7792         .congested      = raid5_congested,
7793 };
7794 static struct md_personality raid5_personality =
7795 {
7796         .name           = "raid5",
7797         .level          = 5,
7798         .owner          = THIS_MODULE,
7799         .make_request   = make_request,
7800         .run            = run,
7801         .free           = raid5_free,
7802         .status         = status,
7803         .error_handler  = error,
7804         .hot_add_disk   = raid5_add_disk,
7805         .hot_remove_disk= raid5_remove_disk,
7806         .spare_active   = raid5_spare_active,
7807         .sync_request   = sync_request,
7808         .resize         = raid5_resize,
7809         .size           = raid5_size,
7810         .check_reshape  = raid5_check_reshape,
7811         .start_reshape  = raid5_start_reshape,
7812         .finish_reshape = raid5_finish_reshape,
7813         .quiesce        = raid5_quiesce,
7814         .takeover       = raid5_takeover,
7815         .congested      = raid5_congested,
7816 };
7817
7818 static struct md_personality raid4_personality =
7819 {
7820         .name           = "raid4",
7821         .level          = 4,
7822         .owner          = THIS_MODULE,
7823         .make_request   = make_request,
7824         .run            = run,
7825         .free           = raid5_free,
7826         .status         = status,
7827         .error_handler  = error,
7828         .hot_add_disk   = raid5_add_disk,
7829         .hot_remove_disk= raid5_remove_disk,
7830         .spare_active   = raid5_spare_active,
7831         .sync_request   = sync_request,
7832         .resize         = raid5_resize,
7833         .size           = raid5_size,
7834         .check_reshape  = raid5_check_reshape,
7835         .start_reshape  = raid5_start_reshape,
7836         .finish_reshape = raid5_finish_reshape,
7837         .quiesce        = raid5_quiesce,
7838         .takeover       = raid4_takeover,
7839         .congested      = raid5_congested,
7840 };
7841
7842 static int __init raid5_init(void)
7843 {
7844         raid5_wq = alloc_workqueue("raid5wq",
7845                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7846         if (!raid5_wq)
7847                 return -ENOMEM;
7848         register_md_personality(&raid6_personality);
7849         register_md_personality(&raid5_personality);
7850         register_md_personality(&raid4_personality);
7851         return 0;
7852 }
7853
7854 static void raid5_exit(void)
7855 {
7856         unregister_md_personality(&raid6_personality);
7857         unregister_md_personality(&raid5_personality);
7858         unregister_md_personality(&raid4_personality);
7859         destroy_workqueue(raid5_wq);
7860 }
7861
7862 module_init(raid5_init);
7863 module_exit(raid5_exit);
7864 MODULE_LICENSE("GPL");
7865 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7866 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7867 MODULE_ALIAS("md-raid5");
7868 MODULE_ALIAS("md-raid4");
7869 MODULE_ALIAS("md-level-5");
7870 MODULE_ALIAS("md-level-4");
7871 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7872 MODULE_ALIAS("md-raid6");
7873 MODULE_ALIAS("md-level-6");
7874
7875 /* This used to be two separate modules, they were: */
7876 MODULE_ALIAS("raid5");
7877 MODULE_ALIAS("raid6");